repo_name
stringclasses
10 values
file_path
stringlengths
29
222
content
stringlengths
24
926k
extention
stringclasses
5 values
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/image.hpp
//==---- image.hpp --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_IMAGE_HPP__ #define __DPCT_IMAGE_HPP__ #include <sycl/sycl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { enum class image_channel_data_type { signed_int, unsigned_int, fp, }; class image_channel; class image_wrapper_base; namespace detail { /// Image object type traits, with accessor type and sampled data type defined. /// The data type of an image accessor must be one of sycl::int4, sycl::uint4, /// sycl::float4 and sycl::half4. The data type of accessors with 8bits/16bits /// channel width will be 32 bits. sycl::half is an exception. template <class T> struct image_trait { using acc_data_t = sycl::vec<T, 4>; template <int dimensions> using accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image>; template <int dimensions> using array_accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image_array>; using data_t = T; using elem_t = T; static constexpr image_channel_data_type data_type = std::is_integral<T>::value ? (std::is_signed<T>::value ? image_channel_data_type::signed_int : image_channel_data_type::unsigned_int) : image_channel_data_type::fp; static constexpr int channel_num = 1; }; template <> struct image_trait<std::uint8_t> : public image_trait<std::uint32_t> { using data_t = std::uint8_t; using elem_t = data_t; }; template <> struct image_trait<std::uint16_t> : public image_trait<std::uint32_t> { using data_t = std::uint16_t; using elem_t = data_t; }; template <> struct image_trait<std::int8_t> : public image_trait<std::int32_t> { using data_t = std::int8_t; using elem_t = data_t; }; template <> struct image_trait<std::int16_t> : public image_trait<std::int32_t> { using data_t = std::int16_t; using elem_t = data_t; }; template <> struct image_trait<char> : public image_trait<typename std::conditional< std::is_signed<char>::value, signed char, unsigned char>::type> {}; template <class T> struct image_trait<sycl::vec<T, 1>> : public image_trait<T> {}; template <class T> struct image_trait<sycl::vec<T, 2>> : public image_trait<T> { using data_t = sycl::vec<T, 2>; static constexpr int channel_num = 2; }; template <class T> struct image_trait<sycl::vec<T, 3>> : public image_trait<sycl::vec<T, 4>> { static constexpr int channel_num = 3; }; template <class T> struct image_trait<sycl::vec<T, 4>> : public image_trait<T> { using data_t = sycl::vec<T, 4>; static constexpr int channel_num = 4; }; /// Functor to fetch data from read result of an image accessor. template <class T> struct fetch_data { using return_t = typename image_trait<T>::data_t; using acc_data_t = typename image_trait<T>::acc_data_t; return_t operator()(acc_data_t &&original_data) { return (return_t)original_data.r(); } }; template <class T> struct fetch_data<sycl::vec<T, 1>> : public fetch_data<T> {}; template <class T> struct fetch_data<sycl::vec<T, 2>> { using return_t = typename image_trait<sycl::vec<T, 2>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 2>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g()); } }; template <class T> struct fetch_data<sycl::vec<T, 3>> : public fetch_data<sycl::vec<T, 4>> {}; template <class T> struct fetch_data<sycl::vec<T, 4>> { using return_t = typename image_trait<sycl::vec<T, 4>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 4>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g(), origin_data.b(), origin_data.a()); } }; /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims); /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims); /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims); } // namespace detail /// Image channel info, include channel number, order, data width and type class image_channel { image_channel_data_type _type = image_channel_data_type::signed_int; /// Number of channels. unsigned _channel_num = 0; /// Total size of all channels in bytes. unsigned _total_size = 0; /// Size of each channel in bytes. unsigned _channel_size = 0; public: /// Create image channel info according to template argument \p T. template <class T> static image_channel create() { image_channel channel; channel.set_channel_size(detail::image_trait<T>::channel_num, sizeof(typename detail::image_trait<T>::elem_t) * 8); channel.set_channel_data_type(detail::image_trait<T>::data_type); return channel; } image_channel() = default; image_channel_data_type get_channel_data_type() { return _type; } void set_channel_data_type(image_channel_data_type type) { _type = type; } unsigned get_total_size() { return _total_size; } unsigned get_channel_num() { return _channel_num; } void set_channel_num(unsigned channel_num) { _channel_num = channel_num; _total_size = _channel_size * _channel_num; } /// image_channel constructor. /// \param r Channel r width in bits. /// \param g Channel g width in bits. Should be same with \p r, or zero. /// \param b Channel b width in bits. Should be same with \p g, or zero. /// \param a Channel a width in bits. Should be same with \p b, or zero. /// \param data_type Image channel data type: signed_nt, unsigned_int or fp. image_channel(int r, int g, int b, int a, image_channel_data_type data_type) { _type = data_type; if (a) { assert(r == a && "SYCL doesn't support different channel size"); assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(4, a); } else if (b) { assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(3, b); } else if (g) { assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(2, g); } else { set_channel_size(1, r); } } sycl::image_channel_type get_channel_type() const { if (_channel_size == 4) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int32; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int32; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp32; } else if (_channel_size == 2) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int16; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int16; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp16; } else { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int8; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int8; } assert(false && "unexpected channel data kind and channel size"); return sycl::image_channel_type::signed_int32; } void set_channel_type(sycl::image_channel_type type) { switch (type) { case sycl::image_channel_type::unsigned_int8: _type = image_channel_data_type::unsigned_int; _channel_size = 1; break; case sycl::image_channel_type::unsigned_int16: _type = image_channel_data_type::unsigned_int; _channel_size = 2; break; case sycl::image_channel_type::unsigned_int32: _type = image_channel_data_type::unsigned_int; _channel_size = 4; break; case sycl::image_channel_type::signed_int8: _type = image_channel_data_type::signed_int; _channel_size = 1; break; case sycl::image_channel_type::signed_int16: _type = image_channel_data_type::signed_int; _channel_size = 2; break; case sycl::image_channel_type::signed_int32: _type = image_channel_data_type::signed_int; _channel_size = 4; break; case sycl::image_channel_type::fp16: _type = image_channel_data_type::fp; _channel_size = 2; break; case sycl::image_channel_type::fp32: _type = image_channel_data_type::fp; _channel_size = 4; break; default: break; } _total_size = _channel_size * _channel_num; } sycl::image_channel_order get_channel_order() const { switch (_channel_num) { case 1: return sycl::image_channel_order::r; case 2: return sycl::image_channel_order::rg; case 3: return sycl::image_channel_order::rgb; case 4: return sycl::image_channel_order::rgba; default: return sycl::image_channel_order::r; } } /// Get the size for each channel in bits. unsigned get_channel_size() const { return _channel_size * 8; } /// Set channel size. /// \param in_channel_num Channels number to set. /// \param channel_size Size for each channel in bits. void set_channel_size(unsigned in_channel_num, unsigned channel_size) { if (in_channel_num < _channel_num) return; _channel_num = in_channel_num; _channel_size = channel_size / 8; _total_size = _channel_size * _channel_num; } }; /// 2D or 3D matrix data for image. class image_matrix { image_channel _channel; int _range[3] = {1, 1, 1}; int _dims = 0; void *_host_data = nullptr; /// Set range of each dimension. template <int dimensions> void set_range(sycl::range<dimensions> range) { for (int i = 0; i < dimensions; ++i) _range[i] = range[i]; _dims = dimensions; } template <int... DimIdx> sycl::range<sizeof...(DimIdx)> get_range(integer_sequence<DimIdx...>) { return sycl::range<sizeof...(DimIdx)>(_range[DimIdx]...); } public: /// Constructor with channel info and dimension size info. template <int dimensions> image_matrix(image_channel channel, sycl::range<dimensions> range) : _channel(channel) { set_range(range); _host_data = std::malloc(range.size() * _channel.get_total_size()); } image_matrix(sycl::image_channel_type channel_type, unsigned channel_num, size_t x, size_t y) { _channel.set_channel_type(channel_type); _channel.set_channel_num(channel_num); _dims = 1; _range[0] = x; if (y) { _dims = 2; _range[1] = y; } _host_data = std::malloc(_range[0] * _range[1] * _channel.get_total_size()); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image() { return create_image<dimensions>(_channel); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image(image_channel channel) { return new sycl::image<dimensions>( _host_data, channel.get_channel_order(), channel.get_channel_type(), get_range(make_index_sequence<dimensions>()), sycl::property::image::use_host_ptr()); } /// Get channel info. inline image_channel get_channel() { return _channel; } /// Get range of the image. sycl::range<3> get_range() { return sycl::range<3>(_range[0], _range[1], _range[2]); } /// Get matrix dims. inline int get_dims() { return _dims; } /// Convert to pitched data. pitched_data to_pitched_data() { return pitched_data(_host_data, _range[0], _range[0], _range[1]); } ~image_matrix() { if (_host_data) std::free(_host_data); _host_data = nullptr; } }; using image_matrix_p = image_matrix *; enum class image_data_type { matrix, linear, pitch, unsupport }; /// Image data info. class image_data { public: image_data() { _type = image_data_type::unsupport; } image_data(image_matrix_p matrix_data) { set_data(matrix_data); } image_data(void *data_ptr, size_t x_size, image_channel channel) { set_data(data_ptr, x_size, channel); } image_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { set_data(data_ptr, x_size, y_size, pitch_size, channel); } void set_data(image_matrix_p matrix_data) { _type = image_data_type::matrix; _data = matrix_data; _channel = matrix_data->get_channel(); } void set_data(void *data_ptr, size_t x_size, image_channel channel) { _type = image_data_type::linear; _data = data_ptr; _x = x_size; _channel = channel; } void set_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { _type = image_data_type::pitch; _data = data_ptr; _x = x_size; _y = y_size; _pitch = pitch_size; _channel = channel; } image_data_type get_data_type() const { return _type; } void set_data_type(image_data_type type) { _type = type; } void *get_data_ptr() const { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_x() const { return _x; } void set_x(size_t x) { _x = x; } size_t get_y() const { return _y; } void set_y(size_t y) { _y = y; } size_t get_pitch() const { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } image_channel get_channel() const { return _channel; } void set_channel(image_channel channel) { _channel = channel; } image_channel_data_type get_channel_data_type() { return _channel.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _channel.set_channel_data_type(type); } unsigned get_channel_size() { return _channel.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _channel.set_channel_size(channel_num, channel_size); } unsigned get_channel_num() { return _channel.get_channel_num(); } void set_channel_num(unsigned num) { return _channel.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _channel.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _channel.set_channel_type(type); } private: image_data_type _type; void *_data = nullptr; size_t _x, _y, _pitch; image_channel _channel; }; /// Image sampling info, include addressing mode, filtering mode and /// normalization info. class sampling_info { sycl::addressing_mode _addressing_mode = sycl::addressing_mode::clamp_to_edge; sycl::filtering_mode _filtering_mode = sycl::filtering_mode::nearest; sycl::coordinate_normalization_mode _coordinate_normalization_mode = sycl::coordinate_normalization_mode::unnormalized; public: sycl::addressing_mode get_addressing_mode() { return _addressing_mode; } void set(sycl::addressing_mode addressing_mode) { _addressing_mode = addressing_mode; } sycl::filtering_mode get_filtering_mode() { return _filtering_mode; } void set(sycl::filtering_mode filtering_mode) { _filtering_mode = filtering_mode; } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _coordinate_normalization_mode; } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _coordinate_normalization_mode = coordinate_normalization_mode; } bool is_coordinate_normalized() { return _coordinate_normalization_mode == sycl::coordinate_normalization_mode::normalized; } void set_coordinate_normalization_mode(int is_normalized) { _coordinate_normalization_mode = is_normalized ? sycl::coordinate_normalization_mode::normalized : sycl::coordinate_normalization_mode::unnormalized; } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } sycl::sampler get_sampler() { return sycl::sampler(_coordinate_normalization_mode, _addressing_mode, _filtering_mode); } }; /// Image base class. class image_wrapper_base { sampling_info _sampling_info; image_data _data; public: virtual ~image_wrapper_base() = 0; void attach(image_data data) { set_data(data); } /// Attach matrix data to this class. void attach(image_matrix *matrix) { detach(); image_wrapper_base::set_data(image_data(matrix)); } /// Attach matrix data to this class. void attach(image_matrix *matrix, image_channel channel) { attach(matrix); image_wrapper_base::set_channel(channel); } /// Attach linear data to this class. void attach(const void *ptr, size_t count) { attach(ptr, count, get_channel()); } /// Attach linear data to this class. void attach(const void *ptr, size_t count, image_channel channel) { detach(); image_wrapper_base::set_data(image_data(const_cast<void *>(ptr), count, channel)); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch) { attach(data, x, y, pitch, get_channel()); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch, image_channel channel) { detach(); image_wrapper_base::set_data( image_data(const_cast<void *>(data), x, y, pitch, channel)); } /// Detach data. virtual void detach() {} sampling_info get_sampling_info() { return _sampling_info; } void set_sampling_info(sampling_info info) { _sampling_info = info; } const image_data &get_data() { return _data; } void set_data(image_data data) { _data = data; } image_channel get_channel() { return _data.get_channel(); } void set_channel(image_channel channel) { _data.set_channel(channel); } image_channel_data_type get_channel_data_type() { return _data.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _data.set_channel_data_type(type); } unsigned get_channel_size() { return _data.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _data.set_channel_size(channel_num, channel_size); } sycl::addressing_mode get_addressing_mode() { return _sampling_info.get_addressing_mode(); } void set(sycl::addressing_mode addressing_mode) { _sampling_info.set(addressing_mode); } sycl::filtering_mode get_filtering_mode() { return _sampling_info.get_filtering_mode(); } void set(sycl::filtering_mode filtering_mode) { _sampling_info.set(filtering_mode); } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _sampling_info.get_coordinate_normalization_mode(); } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _sampling_info.set(coordinate_normalization_mode); } bool is_coordinate_normalized() { return _sampling_info.is_coordinate_normalized(); } void set_coordinate_normalization_mode(int is_normalized) { _sampling_info.set_coordinate_normalization_mode(is_normalized); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } unsigned get_channel_num() { return _data.get_channel_num(); } void set_channel_num(unsigned num) { return _data.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _data.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _data.set_channel_type(type); } sycl::sampler get_sampler() { return _sampling_info.get_sampler(); } }; inline image_wrapper_base::~image_wrapper_base() {} using image_wrapper_base_p = image_wrapper_base *; template <class T, int dimensions, bool IsImageArray> class image_accessor_ext; /// Image class, wrapper of sycl::image. template <class T, int dimensions, bool IsImageArray = false> class image_wrapper : public image_wrapper_base { sycl::image<dimensions> *_image = nullptr; #ifndef DPCT_USM_LEVEL_NONE std::vector<char> _host_buffer; #endif void create_image(sycl::queue q) { auto &data = get_data(); if (data.get_data_type() == image_data_type::matrix) { _image = static_cast<image_matrix_p>(data.get_data_ptr()) ->create_image<dimensions>(data.get_channel()); return; } auto ptr = data.get_data_ptr(); auto channel = data.get_channel(); if (detail::get_pointer_attribute(q, ptr) == detail::pointer_access_attribute::device_only) { #ifdef DPCT_USM_LEVEL_NONE ptr = get_buffer(ptr) .template get_access<sycl::access_mode::read_write>() .get_pointer(); #else auto sz = data.get_x(); if (data.get_data_type() == image_data_type::pitch) sz *= channel.get_total_size() * data.get_y(); _host_buffer.resize(sz); q.memcpy(_host_buffer.data(), ptr, sz).wait(); ptr = _host_buffer.data(); #endif } if constexpr (dimensions == 1) { assert(data.get_data_type() == image_data_type::linear); _image = new sycl::image<1>( ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<1>(data.get_x() / channel.get_total_size())); } else if constexpr (dimensions == 2) { assert(data.get_data_type() == image_data_type::pitch); _image = new sycl::image<2>(ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<2>(data.get_x(), data.get_y()), sycl::range<1>(data.get_pitch())); } else { throw std::runtime_error("3D image only support matrix data"); } return; } public: using acc_data_t = typename detail::image_trait<T>::acc_data_t; using accessor_t = typename image_accessor_ext<T, IsImageArray ? (dimensions - 1) : dimensions, IsImageArray>::accessor_t; image_wrapper() { set_channel(image_channel::create<T>()); } ~image_wrapper() { detach(); } /// Get image accessor. accessor_t get_access(sycl::handler &cgh, sycl::queue &q = get_default_queue()) { if (!_image) create_image(q); return accessor_t(*_image, cgh); } /// Detach data. void detach() override { if (_image) delete _image; _image = nullptr; } }; /// Wrap sampler and image accessor together. template <class T, int dimensions, bool IsImageArray = false> class image_accessor_ext { public: using accessor_t = typename detail::image_trait<T>::template accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 3> typename std::enable_if<Available, data_t>::type read(float x, float y, float z) { return detail::fetch_data<T>()( _img_acc.read(sycl::float4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, class Coord2, bool Available = dimensions == 3 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value &&std::is_integral<Coord2>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y, Coord2 z) { return detail::fetch_data<T>()( _img_acc.read(sycl::int4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(float x, float y) { return detail::fetch_data<T>()( _img_acc.read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, bool Available = dimensions == 2 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y) { return detail::fetch_data<T>()( _img_acc.read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(float x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } /// Read data from accessor. template <class CoordT, bool Available = dimensions == 1 && std::is_integral<CoordT>::value> typename std::enable_if<Available, data_t>::type read(CoordT x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } }; template <class T, int dimensions> class image_accessor_ext<T, dimensions, true> { public: using accessor_t = typename detail::image_trait<T>::template array_accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, float x, float y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, int x, int y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, float x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, int x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } }; /// Create image wrapper according to image data and sampling info. /// \return Pointer to image wrapper base class. /// \param data Image data used to create image wrapper. /// \param info Image sampling info used to create image wrapper. /// \returns Pointer to base class of created image wrapper object. static inline image_wrapper_base *create_image_wrapper(image_data data, sampling_info info) { image_channel channel; int dims = 1; if (data.get_data_type() == image_data_type::matrix) { auto matrix = (image_matrix_p)data.get_data_ptr(); channel = matrix->get_channel(); dims = matrix->get_dims(); } else { if (data.get_data_type() == image_data_type::pitch) { dims = 2; } channel = data.get_channel(); } if (auto ret = detail::create_image_wrapper(channel, dims)) { ret->set_sampling_info(info); ret->set_data(data); return ret; } return nullptr; } namespace detail { /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims) { switch (dims) { case 1: return new image_wrapper<T, 1>(); case 2: return new image_wrapper<T, 2>(); case 3: return new image_wrapper<T, 3>(); default: return nullptr; } } /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims) { switch (channel_num) { case 1: return create_image_wrapper<T>(dims); case 2: return create_image_wrapper<sycl::vec<T, 2>>(dims); case 3: return create_image_wrapper<sycl::vec<T, 3>>(dims); case 4: return create_image_wrapper<sycl::vec<T, 4>>(dims); default: return nullptr; } } /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims) { switch (channel.get_channel_type()) { case sycl::image_channel_type::fp16: return create_image_wrapper<sycl::half>(channel.get_channel_num(), dims); case sycl::image_channel_type::fp32: return create_image_wrapper<float>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int8: return create_image_wrapper<std::int8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int16: return create_image_wrapper<std::int16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int32: return create_image_wrapper<std::int32_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int8: return create_image_wrapper<std::uint8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int16: return create_image_wrapper<std::uint16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int32: return create_image_wrapper<std::uint32_t>(channel.get_channel_num(), dims); default: return nullptr; } } } // namespace detail } // namespace dpct #endif // !__DPCT_IMAGE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/kernel.hpp
//==---- kernel.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_KERNEL_HPP__ #define __DPCT_KERNEL_HPP__ #include <sycl/sycl.hpp> #ifdef _WIN32 #include <unordered_set> #include <windows.h> #else #include <dlfcn.h> #endif #if defined(__has_include) && __has_include(<filesystem>) #include <filesystem> #elif defined(__has_include) && __has_include(<experimental/filesystem>) #include <experimental/filesystem> #else #error "SYCLomatic runtime requires C++ filesystem support" #endif #include <random> #include <fstream> #include <image.hpp> namespace dpct { typedef void (*kernel_functor)(sycl::queue &, const sycl::nd_range<3> &, unsigned int, void **, void **); struct kernel_function_info { int max_work_group_size = 0; }; static inline void get_kernel_function_info(kernel_function_info *kernel_info, const void *function) { kernel_info->max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); } static inline kernel_function_info get_kernel_function_info(const void *function) { kernel_function_info kernel_info; kernel_info.max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); return kernel_info; } namespace detail { #if defined(__has_include) && __has_include(<filesystem>) namespace fs = std::filesystem; #else namespace fs = std::experimental::filesystem; #endif /// Write data to temporary file and return absolute path to temporary file. /// Temporary file is created in a temporary directory both of which have random /// names with only the user having access permissions. Only one temporary file /// will be created in the temporary directory. static inline fs::path write_data_to_file(char const *const data, size_t size) { std::error_code ec; if (sizeof(size_t) >= sizeof(std::streamsize) && size > (std::numeric_limits<std::streamsize>::max)()) throw std::runtime_error("data file too large"); // random number generator std::random_device dev; std::mt19937 prng(dev()); std::uniform_int_distribution<uint64_t> rand(0); // find temporary directory auto tmp_dir = fs::temp_directory_path(ec); if (ec) throw std::runtime_error("could not find temporary directory"); // create private directory std::stringstream directory; fs::path directory_path; constexpr int max_attempts = 5; int i; for (i = 0; i < max_attempts; i++) { directory << std::hex << rand(prng); directory_path = tmp_dir / directory.str(); if (fs::create_directory(directory_path)) { break; } } if (i == max_attempts) throw std::runtime_error("could not create directory"); // only allow owner permissions to private directory fs::permissions(directory_path, fs::perms::owner_all, ec); if (ec) throw std::runtime_error("could not set directory permissions"); // random filename in private directory std::stringstream filename; filename << std::hex << rand(prng); #ifdef _WIN32 auto filepath = directory_path / (filename.str() + ".dll"); #else auto filepath = directory_path / filename.str(); #endif // write data to temporary file auto outfile = std::ofstream(filepath, std::ios::out | std::ios::binary); if (outfile) { // only allow program to write file fs::permissions(filepath, fs::perms::owner_write, ec); if (ec) throw std::runtime_error("could not set permissions"); outfile.write(data, size); if (!outfile.good()) throw std::runtime_error("could not write data"); outfile.close(); // only allow program to read/execute file fs::permissions(filepath, fs::perms::owner_read | fs::perms::owner_exec, ec); if (ec) throw std::runtime_error("could not set permissions"); } else throw std::runtime_error("could not write data"); // check temporary file contents auto infile = std::ifstream(filepath, std::ios::in | std::ios::binary); if (infile) { bool mismatch = false; size_t cnt = 0; while (1) { char c; infile.get(c); if (infile.eof()) break; if (c != data[cnt++]) mismatch = true; } if (cnt != size || mismatch) throw std::runtime_error("file contents not written correctly"); } else throw std::runtime_error("could not validate file"); if (!filepath.is_absolute()) throw std::runtime_error("temporary filepath is not absolute"); return filepath; } static inline uint16_t extract16(unsigned char const *const ptr) { uint16_t ret = 0; ret |= static_cast<uint16_t>(ptr[0]) << 0; ret |= static_cast<uint16_t>(ptr[1]) << 8; return (ret); } static inline uint32_t extract32(unsigned char const *const ptr) { uint32_t ret = 0; ret |= static_cast<uint32_t>(ptr[0]) << 0; ret |= static_cast<uint32_t>(ptr[1]) << 8; ret |= static_cast<uint32_t>(ptr[2]) << 16; ret |= static_cast<uint32_t>(ptr[3]) << 24; return (ret); } static inline uint64_t extract64(unsigned char const *const ptr) { uint64_t ret = 0; ret |= static_cast<uint64_t>(ptr[0]) << 0; ret |= static_cast<uint64_t>(ptr[1]) << 8; ret |= static_cast<uint64_t>(ptr[2]) << 16; ret |= static_cast<uint64_t>(ptr[3]) << 24; ret |= static_cast<uint64_t>(ptr[4]) << 32; ret |= static_cast<uint64_t>(ptr[5]) << 40; ret |= static_cast<uint64_t>(ptr[6]) << 48; ret |= static_cast<uint64_t>(ptr[7]) << 56; return (ret); } static inline uint64_t get_lib_size(char const *const blob) { #ifdef _WIN32 /////////////////////////////////////////////////////////////////////// // Analyze DOS stub unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); if (ublob[0] != 0x4d || ublob[1] != 0x5a) { throw std::runtime_error("Blob is not a Windows DLL."); } uint32_t pe_header_offset = extract32(ublob + 0x3c); /////////////////////////////////////////////////////////////////////// // Ananlyze PE-header unsigned char const *const pe_header = ublob + pe_header_offset; // signature uint32_t pe_signature = extract32(pe_header + 0); if (pe_signature != 0x00004550) { throw std::runtime_error("PE-header signature is not 0x00004550"); } // machine uint16_t machine = extract16(pe_header + 4); if (machine != 0x8664) { throw std::runtime_error("Only DLLs for x64 supported"); } // number of sections uint16_t number_of_sections = extract16(pe_header + 6); // sizeof optional header uint16_t sizeof_optional_header = extract16(pe_header + 20); // magic uint16_t magic = extract16(pe_header + 24); if (magic != 0x10b && magic != 0x20b) { throw std::runtime_error("MAGIC is not 0x010b or 0x020b"); } /////////////////////////////////////////////////////////////////////// // Analyze tail of optional header constexpr int coff_header_size = 24; unsigned char const *const tail_of_optional_header = pe_header + coff_header_size + sizeof_optional_header; if (extract64(tail_of_optional_header - 8) != 0) { throw std::runtime_error("Optional header not zero-padded"); } /////////////////////////////////////////////////////////////////////// // Analyze last section header constexpr int section_header_size = 40; unsigned char const *const last_section_header = tail_of_optional_header + section_header_size * (number_of_sections - 1); uint32_t sizeof_raw_data = extract32(last_section_header + 16); uint32_t pointer_to_raw_data = extract32(last_section_header + 20); return sizeof_raw_data + pointer_to_raw_data; #else if (blob[0] != 0x7F || blob[1] != 'E' || blob[2] != 'L' || blob[3] != 'F') throw std::runtime_error("Blob is not in ELF format"); if (blob[4] != 0x02) throw std::runtime_error("Only 64-bit headers are supported"); if (blob[5] != 0x01) throw std::runtime_error("Only little-endian headers are supported"); unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); uint64_t e_shoff = extract64(ublob + 0x28); uint16_t e_shentsize = extract16(ublob + 0x3A); uint16_t e_shnum = extract16(ublob + 0x3C); return e_shoff + (e_shentsize * e_shnum); #endif } #ifdef _WIN32 class path_lib_record { public: void operator=(const path_lib_record &) = delete; ~path_lib_record() { for (auto entry : lib_to_path) { FreeLibrary(static_cast<HMODULE>(entry.first)); fs::permissions(entry.second, fs::perms::owner_all); fs::remove_all(entry.second.remove_filename()); } } static void record_lib_path(fs::path path, void *library) { lib_to_path[library] = path; } static void remove_lib(void *library) { auto path = lib_to_path[library]; std::error_code ec; FreeLibrary(static_cast<HMODULE>(library)); fs::permissions(path, fs::perms::owner_all); if (fs::remove_all(path.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); lib_to_path.erase(library); } private: static inline std::unordered_map<void *, fs::path> lib_to_path; }; #endif } // namespace detail class kernel_library { public: kernel_library() : ptr{nullptr} {} kernel_library(void *ptr) : ptr{ptr} {} operator void *() const { return ptr; } private: void *ptr; #ifdef _WIN32 static inline detail::path_lib_record single_instance_to_trigger_destructor; #endif }; namespace detail { static inline kernel_library load_dl_from_data(char const *const data, size_t size) { fs::path filename = write_data_to_file(data, size); #ifdef _WIN32 void *so = LoadLibraryW(filename.wstring().c_str()); #else void *so = dlopen(filename.c_str(), RTLD_LAZY); #endif if (so == nullptr) throw std::runtime_error("Failed to load kernel library"); #ifdef _WIN32 detail::path_lib_record::record_lib_path(filename, so); #else std::error_code ec; // Windows DLL cannot be deleted while in use if (fs::remove_all(filename.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); #endif return so; } } // namespace detail /// Load kernel library and return a handle to use the library. /// \param [in] name The name of the library. static inline kernel_library load_kernel_library(const std::string &name) { std::ifstream ifs; ifs.open(name, std::ios::in | std::ios::binary); std::stringstream buffer; buffer << ifs.rdbuf(); const std::string buffer_string = buffer.str(); return detail::load_dl_from_data(buffer_string.c_str(), buffer_string.size()); } /// Load kernel library whose image is alreay in memory and return a handle to /// use the library. /// \param [in] image A pointer to the image in memory. static inline kernel_library load_kernel_library_mem(char const *const image) { const size_t size = detail::get_lib_size(image); return detail::load_dl_from_data(image, size); } /// Unload kernel library. /// \param [in,out] library Handle to the library to be closed. static inline void unload_kernel_library(const kernel_library &library) { #ifdef _WIN32 detail::path_lib_record::remove_lib(library); #else dlclose(library); #endif } class kernel_function { public: kernel_function() : ptr{nullptr} {} kernel_function(dpct::kernel_functor ptr) : ptr{ptr} {} operator void *() const { return ((void *)ptr); } void operator()(sycl::queue &q, const sycl::nd_range<3> &range, unsigned int a, void **args, void **extra) { ptr(q, range, a, args, extra); } private: dpct::kernel_functor ptr; }; /// Find kernel function in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the kernel function. static inline dpct::kernel_function get_kernel_function(kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( GetProcAddress(static_cast<HMODULE>(static_cast<void *>(library)), (name + std::string("_wrapper")).c_str())); #else dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( dlsym(library, (name + std::string("_wrapper")).c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get function"); return fn; } /// Invoke a kernel function. /// \param [in] function kernel function. /// \param [in] queue SYCL queue used to execute kernel /// \param [in] groupRange SYCL group range /// \param [in] localRange SYCL local range /// \param [in] localMemSize The size of local memory required by the kernel /// function. /// \param [in] kernelParams Array of pointers to kernel arguments. /// \param [in] extra Extra arguments. static inline void invoke_kernel_function(dpct::kernel_function &function, sycl::queue &queue, sycl::range<3> groupRange, sycl::range<3> localRange, unsigned int localMemSize, void **kernelParams, void **extra) { function(queue, sycl::nd_range<3>(groupRange * localRange, localRange), localMemSize, kernelParams, extra); } /// Find image wrapper in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the target image wrapper. static inline dpct::image_wrapper_base_p get_image_wrapper(dpct::kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>(GetProcAddress( static_cast<HMODULE>(static_cast<void *>(library)), name.c_str())); #else dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>( dlsym(library, name.c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get image"); return fn; } } // namespace dpct #endif // __DPCT_KERNEL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpct.hpp
//==---- dpct.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_HPP__ #define __DPCT_HPP__ #include <sycl/sycl.hpp> #include <iostream> #include <limits.h> #include <math.h> template <class... Args> class dpct_kernel_name; template <int Arg> class dpct_kernel_scalar; #include "atomic.hpp" #include "device.hpp" #include "image.hpp" #include "kernel.hpp" #include "math.hpp" #include "memory.hpp" #include "util.hpp" #if defined(_MSC_VER) #define __dpct_align__(n) __declspec(align(n)) #define __dpct_inline__ __forceinline #else #define __dpct_align__(n) __attribute__((aligned(n))) #define __dpct_inline__ __inline__ __attribute__((always_inline)) #endif #if defined(_MSC_VER) #define __dpct_noinline__ __declspec(noinline) #else #define __dpct_noinline__ __attribute__((noinline)) #endif #define DPCT_COMPATIBILITY_TEMP (600) namespace dpct{ enum error_code { success = 0, default_error = 999 }; } #define DPCT_CHECK_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const &e) { \ std::cerr << e.what() << std::endl; \ return dpct::default_error; \ } \ }() #define DPCT_PI_F (3.14159274101257f) #define DPCT_PI (3.141592653589793115998) #endif // __DPCT_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dnnl_utils.hpp
//==---- dnnl_utils.hpp ---------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DNNL_UTILS_HPP__ #define __DPCT_DNNL_UTILS_HPP__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <oneapi/dpl/numeric> #include <oneapi/mkl.hpp> #include <oneapi/mkl/rng/device.hpp> #include <sycl/sycl.hpp> #include <oneapi/dnnl/dnnl.hpp> #include <oneapi/dnnl/dnnl_sycl.hpp> #include <unordered_map> #include <algorithm> #include <list> #include "memory.hpp" #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace dnnl { /// Get concatenated library version as an integer. static inline size_t get_version() { const ::dnnl::version_t *ver = ::dnnl::version(); return ver->major * 1000 + ver->minor * 100 + ver->patch; } class engine_ext; typedef oneapi::mkl::rng::philox4x32x10 rng_engine_t; /// An enum class representing memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class memory_format_tag { nchw, nhwc, nchw_blocked }; /// An enum class representing RNN data memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class rnn_memory_format_tag { tnc, ntc }; /// A class holding the description of an N-dimensions memory. class memory_desc_ext { ::dnnl::memory::desc _desc; public: /// Convert dpct::library_data_t to dnnl::memory::data_type. static ::dnnl::memory::data_type to_dnnl_data_type(dpct::library_data_t dt); /// Convert dnnl::memory::data_type to dpct::library_data_t. static dpct::library_data_t to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size); /// Convert dpct::dnnl::memory_format_tag to dnnl::memory::format_tag. static ::dnnl::memory::format_tag to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag); memory_desc_ext() = default; memory_desc_ext(::dnnl::memory::desc &desc) : _desc(desc) {} memory_desc_ext(::dnnl::memory::desc &&desc) : _desc(std::move(desc)) {} /// Setting a 4D memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. void set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w); /// Setting a 3D RNN data memory with given parameters. /// \param [in] tag RNN data format tag. /// \param [in] dt Data type. /// \param [in] t Number of sequence length. /// \param [in] n Number of batch. /// \param [in] c Height of input channel. void set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c); /// Setting a 4D memory with given parameters. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. /// \param [in] n_stride Stride between two continuous images. /// \param [in] c_stride Stride between two continuous channels. /// \param [in] h_stride Stride between two continuous rows. /// \param [in] w_stride Stride between two continuous columns. void set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride); /// Setting a ND memory with given parameters. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. \param [in] strides Array of dimension ndims that /// contain the stride of each memory dimension. void set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]); /// Setting a ND memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. void set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]); /// Getting a ::dnnl::memory::desc from a memory_desc_ext. /// \returns The ::dnnl::memory::desc. const ::dnnl::memory::desc &get_desc() const { return _desc; } /// Setting holding desc with given dnnl memory descriptor. void set_desc(::dnnl::memory::desc desc) { _desc = desc; } /// Getting a size of a memory_desc_ext in bytes. /// \returns The size. size_t get_size() const { return _desc.get_size(); } /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. /// \param [out] n_stride Stride between two continuous images. /// \param [out] c_stride Stride between two continuous channels. /// \param [out] h_stride Stride between two continuous rows. /// \param [out] w_stride Stride between two continuous columns. void get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const; /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. void get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const; /// Getting parameters from a 3D RNN data memory. /// \param [out] dt Data type. /// \param [out] tag RNN data format tag. /// \param [out] t Number of sequence length. /// \param [out] n Number of batch. /// \param [out] c Height of input channel. void get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. /// \param [out] strides Array of dimension requested_ndims that contain the /// stride of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const; /// Getting dims from a ND memory. /// \return The dims. std::vector<int64_t> get_dims() const { return _desc.get_dims(); } /// Getting strides from a ND memory. /// \return The strides. std::vector<int64_t> get_strides() const { return _desc.get_strides(); } /// Getting element num from a ND memory. /// \return The element number. size_t get_element_num() const { auto dims = _desc.get_dims(); if (dims.empty()) { return 0; } size_t result = 1; for (auto &dim : dims) { result *= dim; } return result; } operator bool() const { return bool(_desc); } memory_desc_ext &operator=(std::nullptr_t) { _desc.reset(nullptr); return *this; } }; /// A class holding description for an activation operation. class activation_desc { ::dnnl::algorithm _alg; float _alpha; float _beta; public: /// Setting an activation descriptor with given parameters. /// \param [in] alg Activation algorithm. /// \param [in] alpha Value of alpha parameter. void set(::dnnl::algorithm alg, float alpha) { _alg = alg; if(alg == ::dnnl::algorithm::eltwise_clip) { _alpha = 0; _beta = alpha; } else { _alpha = alpha; } } /// Getting parameters form an activation descriptor. /// \param [out] alg Activation algorithm. /// \param [out] alpha Value of alpha parameter. void get(::dnnl::algorithm *alg, float *alpha) const { *alg = _alg; if(_alg == ::dnnl::algorithm::eltwise_clip) { *alpha = _beta; } else { *alpha = _alpha; } } /// Setting the alpha parameter of an activation descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of an activation descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the algorithm parameter of an activation descriptor. /// \param [in] alg Activation algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Getting the alpha parameter from an activation descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from an activation descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the algorithm parameter from an activation descriptor. /// \param [out] alg Activation algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } }; /// A class holding description for a local response normalization operation. class lrn_desc { unsigned int _local_size; float _alpha; float _beta; float _k; public: /// Setting a local response normalization descriptor with given parameters. /// \param [in] local_size Value of local_size parameter. /// \param [in] alpha Value of alpha parameter. /// \param [in] beta Value of beta parameter. /// \param [in] k Value of k parameter. void set(unsigned int local_size, float alpha, float beta, float k) { _local_size = local_size; _alpha = alpha; _beta = beta; _k = k; } /// Getting parameters form a local response normalization descriptor. /// \param [out] local_size Value of local_size parameter. /// \param [out] alpha Value of alpha parameter. /// \param [out] beta Value of beta parameter. /// \param [out] k Value of k parameter. void get(unsigned int *local_size, float *alpha, float *beta, float *k) const { *local_size = _local_size; *alpha = _alpha; *beta = _beta; *k = _k; } /// Setting the local size parameter of a local response normalization /// descriptor. /// \param [in] local_size Value of local_size parameter. void set_local_size(unsigned int local_size) { _local_size = local_size; } /// Setting the alpha parameter of a local response normalization descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of a local response normalization descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the k parameter of a local response normalization descriptor. /// \param [in] k Value of k parameter. void set_k(float k) { _k = k; } /// Getting the local size parameter from a local response normalization /// descriptor. /// \param [out] local_size Value of local_size parameter. unsigned int get_local_size() const { return _local_size; } /// Getting the alpha parameter from a local response normalization /// descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from a local response normalization descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the k parameter from a local response normalization descriptor. /// \param [out] k Value of k parameter. float get_k() const { return _k; } }; /// An enum class representing softmax algorithm. enum class softmax_algorithm { normal, log }; /// An enum class representing softmax mode. enum class softmax_mode { instance, channel }; /// A class holding description for a pooling operation. class pooling_desc { ::dnnl::algorithm _alg; std::vector<int64_t> _stride; std::vector<int64_t> _kernel; std::vector<int64_t> _padding; public: /// Setting a 2D pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] kernel_h Value of height of kernel. /// \param [in] kernel_w Value of width of kernel. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. void set(::dnnl::algorithm alg, int kernel_h, int kernel_w, int padding_h, int padding_w, int stride_h, int stride_w) { _alg = alg; _stride = {stride_h, stride_w}; _kernel = {kernel_h, kernel_w}; _padding = {padding_h, padding_w}; } /// Setting a ND pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] ndims Dimension of the pooling operation. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [in] padding Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set(::dnnl::algorithm alg, int ndims, int kernel[], int padding[], int stride[]) { _alg = alg; _stride = std::vector<int64_t>(stride, stride + ndims); _kernel = std::vector<int64_t>(kernel, kernel + ndims); _padding = std::vector<int64_t>(padding, padding + ndims); } /// Getting parameters from a 2D pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] kernel_h Value of height of kernel. /// \param [out] kernel_w Value of width of kernel. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. void get(::dnnl::algorithm *alg, int *kernel_h, int *kernel_w, int *padding_h, int *padding_w, int *stride_h, int *stride_w) const { *alg = _alg; *kernel_h = _kernel[0]; *kernel_w = _kernel[1]; *padding_h = _padding[0]; *padding_w = _padding[1]; *stride_h = _stride[0]; *stride_w = _stride[1]; } /// Getting parameters from a ND pooling descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [out] padding Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] stride Array of dimension ndims containing the stride size of /// each dimension. void get(int requested_ndims, ::dnnl::algorithm *alg, int *ndims, int kernel[], int padding[], int stride[]) const { *alg = _alg; *ndims = _stride.size(); for (int i = 0; i < requested_ndims; i++) { kernel[i] = _kernel[i]; padding[i] = _padding[i]; stride[i] = _stride[i]; } } /// Setting the algorithm parameter of a pooling descriptor. /// \param [in] alg Pooling algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Setting the stride parameter of a pooling descriptor. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set_stride(const std::vector<int64_t> &stride) { _stride = stride; } /// Setting the kernel parameter of a pooling descriptor. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. void set_kernel(const std::vector<int64_t> &kernel) { _kernel = kernel; } /// Setting the padding parameter of a pooling descriptor. /// \param [in] padding Array of dimension ndims containing the padding size /// of each dimension. void set_padding(const std::vector<int64_t> &padding) { _padding = padding; } /// Getting the algorithm parameter from a pooling descriptor. /// \param [out] alg Pooling algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } /// Getting the stride parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _stride; } /// Getting the kernel parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the kernel size of each /// dimension. const std::vector<int64_t> &get_kernel() const { return _kernel; } /// Getting the padding parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _padding; } /// Getting the output dimensions of a memory after 2D pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); *out_n = dims[0]; *out_c = dims[1]; *out_h = 1 + (dims[2] + 2 * _padding[0] - _kernel[0]) / _stride[0]; *out_w = 1 + (dims[3] + 2 * _padding[1] - _kernel[1]) / _stride[1]; } /// Getting the output dimensions of a memory after ND pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _padding[i - 2] - _kernel[i - 2]) / _stride[i - 2]; } } }; /// An enum class representing reduction operations. enum class reduction_op { max, min, sum, mul, mean, amax, mul_no_zeros, norm1, norm2 }; /// An enum class representing batch normalization mode. enum class batch_normalization_mode { per_activation, spatial }; /// An enum class representing batch normalization operations. enum class batch_normalization_ops { none, activation, add_activation }; /// An enum class representing binary operations. enum class binary_op { add, sub, mul, div, min, max, sqrt, neg }; /// An struct representing convolution algorithm infomation. struct convolution_algorithm_info { ::dnnl::algorithm algo = ::dnnl::algorithm::convolution_auto; int status = 0; }; /// A class holding description for a convolution operation. class convolution_desc { std::vector<int64_t> _strides; std::vector<int64_t> _dilates; std::vector<int64_t> _paddings; int _group_count = 1; ::dnnl::fpmath_mode _math_mode = ::dnnl::fpmath_mode::strict; public: /// Setting a group count to be used in the convolution. /// \param [in] group_count Value of group count. void set_group_count(int group_count) { _group_count = group_count; } /// Getting a group count specified in the given convolution descriptor. /// \returns Value of group count. int get_group_count() { return _group_count; } /// Setting floating point math mode to be used in the convolution. /// \param [in] math_mode Value of math_mode. void set_math_mode(::dnnl::fpmath_mode math_mode) { _math_mode = math_mode; } /// Getting floating point math mode specified in the given convolution descriptor. /// \returns Value of math mode. ::dnnl::fpmath_mode get_math_mode() { return _math_mode; } /// Setting a 2D convolution descriptor with given parameters. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. /// \param [in] dilate_h Value of height of dilate. /// \param [in] dilate_w Value of width of dilate. void set(int padding_h, int padding_w, int stride_h, int stride_w, int dilate_h, int dilate_w) { _strides = {stride_h, stride_w}; _dilates = {dilate_h - 1, dilate_w - 1}; _paddings = {padding_h, padding_w}; } /// Setting a ND convolution descriptor with given parameters. /// \param [in] ndims Dimension of the convolution operation. /// \param [in] paddings Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [in] dilates Array of dimension ndims containing the kernel size of /// each dimension. void set(int ndims, int paddings[], int strides[], int dilates[]) { _strides = std::vector<int64_t>(strides, strides + ndims); _paddings = std::vector<int64_t>(paddings, paddings + ndims); _dilates = std::vector<int64_t>(dilates, dilates + ndims); for (auto &dilate : _dilates) { dilate--; } } /// Getting parameters from a 2D convolution descriptor. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. /// \param [out] dilate_h Value of height of dilate. /// \param [out] dilate_w Value of width of dilate. void get(int *padding_h, int *padding_w, int *stride_h, int *stride_w, int *dilate_h, int *dilate_w) const { *dilate_h = _dilates[0]; *dilate_w = _dilates[1]; *padding_h = _paddings[0]; *padding_w = _paddings[1]; *stride_h = _strides[0]; *stride_w = _strides[1]; } /// Getting parameters from a ND convolution descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given convolution descriptor. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] paddings Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [out] dilates Array of dimension ndims containing the dilate size of /// each dimension. void get(int requested_ndims, int *ndims, int paddings[], int strides[], int dilates[]) const { *ndims = _strides.size(); for (int i = 0; i < requested_ndims; i++) { dilates[i] = _dilates[i]; paddings[i] = _paddings[i]; strides[i] = _strides[i]; } } /// Getting the stride parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _strides; } /// Getting the kernel parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the dilate size of each /// dimension. const std::vector<int64_t> &get_dilate() const { return _dilates; } /// Getting the padding parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _paddings; } /// Getting the output dimensions of a memory after 2D convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); *out_n = dims[0]; *out_c = weight_dims[0]; *out_h = 1 + (dims[2] + 2 * _paddings[0] - (1 + (_dilates[0] * (weight_dims[2] - 1)))) / _strides[0]; *out_w = 1 + (dims[3] + 2 * _paddings[1] - (1 + (_dilates[1] * (weight_dims[3] - 1)))) / _strides[1]; } /// Getting the output dimensions of a memory after ND convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = weight_dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _paddings[i - 2] - (1 + (_dilates[i - 2] * (weight_dims[i] - 1)))) / _strides[i - 2]; } } convolution_desc &operator=(std::nullptr_t) { return *this = convolution_desc(); } operator bool() const { return !(_strides.size() == 0 && _dilates.size() == 0 && _paddings.size() == 0); } }; /// An enum class representing rnn mode. enum class rnn_mode { vanilla_relu, vanilla_tanh, lstm, gru }; /// An enum class representing rnn bias mode. enum class rnn_bias_mode { none, single }; /// An enum class representing rnn direction. enum class rnn_direction {unidirectional, bidirectional}; /// A class holding description for a RNN operation. class rnn_desc { rnn_mode _mode; rnn_bias_mode _bias_mode; rnn_direction _direction; dpct::library_data_t _dt; int _input_size; int _hidden_size; int _projection_size; int _layer_size; public: void set(rnn_mode mode, rnn_bias_mode bias_mode, rnn_direction direction, dpct::library_data_t dt, int input_size, int hidden_size, int projection_size, int layer_size) { _mode = mode; _bias_mode = bias_mode; _direction = direction; _input_size = input_size; _hidden_size = hidden_size; _projection_size = projection_size; _layer_size = layer_size; _dt = dt; } void get(rnn_mode *mode, rnn_bias_mode *bias_mode, rnn_direction *direction, dpct::library_data_t *dt, int *input_size, int *hidden_size, int *projection_size, int *layer_size) const { *mode = _mode; *bias_mode = _bias_mode; *direction = _direction; *input_size = _input_size; *hidden_size = _hidden_size; *projection_size = _projection_size; *layer_size = _layer_size; *dt = _dt; } }; /// A class holding description for a Dropout operation. class dropout_desc { struct dropout_desc_imp { float _p = 0.5f; unsigned long long _seed = 1; void *_state = nullptr; std::vector<std::uint8_t> _host_state; rng_engine_t _rng_engine; dropout_desc_imp() : _rng_engine(dpct::get_default_queue(), 1) {} }; std::shared_ptr<dropout_desc_imp> _imp; void generate(sycl::queue *q, std::int64_t required_state_size, std::int64_t num, void *buffer) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::event e_gen = oneapi::mkl::rng::generate( oneapi::mkl::rng::bernoulli<std::int32_t>(1.f - _imp->_p), _imp->_rng_engine, num, (std::int32_t *)buffer); sycl::event e_save = q->submit([&](sycl::handler &cgh) { cgh.depends_on(e_gen); cgh.host_task([=] { oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); }); }); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size, e_save); #endif } public: operator bool() const { return bool(_imp); } dropout_desc &operator=(std::nullptr_t) { _imp.reset(); return *this; } /// Initializing a dropout descriptor. void init(){ _imp = std::make_shared<dropout_desc_imp>(); } /// Setting a dropout descriptor with given parameters. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); /// Getting parameters from a dropout descriptor. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void get(float *p, void **states, unsigned long long *seed) const noexcept { *seed = _imp->_seed; *states = _imp->_state; *p = _imp->_p; } /// Getting the probability of value set to zero. /// \returns Probability. float get_probability() const noexcept { return _imp->_p; } /// Restoreing a dropout descriptor from stored state. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); friend class engine_ext; }; namespace detail { typedef std::string primitive_cache_key_type; typedef std::list<primitive_cache_key_type> usage_list_type; typedef struct { ::dnnl::primitive *primitive; usage_list_type::iterator usage_it; std::function<void(::dnnl::primitive *)> destructor; sycl::event e; } primitive_cache_value_type; typedef std::unordered_map<primitive_cache_key_type, primitive_cache_value_type> cache_map_type; // The primitive cache uses LRU replacement policy, and the default cache // capacity is 1024. class primitive_cache { int _capacity = 1024; usage_list_type usage; cache_map_type cache_map; void touch(cache_map_type::iterator it, sycl::event e = {}, bool update_event = false) { if (it->second.usage_it != usage.begin()) { const primitive_cache_key_type &key = it->first; usage.erase(it->second.usage_it); usage.push_front(key); it->second.usage_it = usage.begin(); } if (update_event) { it->second.e = e; } } void async_destruct_primitive(const primitive_cache_value_type &value) { dpct::get_current_device().default_queue().submit([&](sycl::handler &cgh) { cgh.depends_on(value.e); cgh.host_task([=] { value.destructor(value.primitive); }); }); } public: ::dnnl::primitive *get(const primitive_cache_key_type &key) { auto it = cache_map.find(key); if (it == cache_map.end()) { return nullptr; } touch(it); return it->second.primitive; } void put(const primitive_cache_key_type &key, ::dnnl::primitive *value, std::function<void(::dnnl::primitive *)> destructor, sycl::event e) { auto it = cache_map.find(key); if (it != cache_map.end()) { touch(it, e, true); } else { if (cache_map.size() == _capacity) { auto last_primitive = cache_map.find(usage.back()); async_destruct_primitive(last_primitive->second); cache_map.erase(usage.back()); usage.pop_back(); } usage.push_front(key); cache_map[key] = {value, usage.begin(), destructor, e}; } } ~primitive_cache() { for (auto &v : cache_map) { async_destruct_primitive(v.second); } } }; } // namespace detail /// A class holding the oneDNN engine. class engine_ext { struct output_argument_info { float _alpha; float _beta; int _name; memory_desc_ext _desc; void *_data; output_argument_info(float alpha, float beta, int name, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(name), _desc(desc), _data(data) {} output_argument_info(float alpha, float beta, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(0), _desc(desc), _data(data) {} }; ::dnnl::engine _eng; ::dnnl::stream _s; sycl::queue *_q = nullptr; std::map<void *, ::dnnl::memory> workspace_map; std::int64_t _random_engine_state_size = -1; detail::primitive_cache _primitive_cache; ::dnnl::memory &get_workspace(void *key) { return workspace_map[key]; } void insert_workspace(void *key, ::dnnl::memory workspace) { workspace_map[key] = workspace; } const ::dnnl::stream &get_stream() const { return _s; } const ::dnnl::engine &get_engine() const { return _eng; } void *allocate(const memory_desc_ext &desc, int count = 1) const; ::dnnl::memory::desc compress_spatial_dimensions_to_channel(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode); sycl::event batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var); sycl::event batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var); ::dnnl::memory::desc transfer_memory_desc_to_channel_major_format(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc bn_reorder_memory_to_channel_major_format(bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches); ::dnnl::memory::desc transfer_memory_desc_to_format_tag_any(const ::dnnl::memory::desc &desc){ return ::dnnl::memory::desc(desc.get_dims(), desc.get_data_type(), ::dnnl::memory::format_tag::any); } void allocate_and_reorder_memory_to_optimal(::dnnl::memory::desc &from_desc, void *&from, ::dnnl::memory::desc &to_desc, void *&to, std::vector<void *> &caches) { if (from_desc != to_desc) { to = allocate(to_desc); caches.push_back(to); async_reorder(1.f, from_desc, from, 0.f, to_desc, to); } } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive(args_type &&...args); template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive_with_pd(const typename primitive_type::primitive_desc &pd); template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc create_primitive_desc(args_type &&...args); template <typename primitive_desc_type> std::string generate_cache_key(const primitive_desc_type &pd); void serialize_dims(std::stringstream &ss, const std::vector<int64_t> &dims) { ss.write((char *)dims.data(), dims.size() * sizeof(int64_t)); }; void serialize_mem_desc(std::stringstream &ss, const ::dnnl::memory::desc &desc) { if (desc.is_zero()) { return; } auto format_kind = desc.get_format_kind(); ss << desc.get_ndims() << (std::uint8_t)desc.get_data_type() << (std::uint8_t)format_kind; serialize_dims(ss, desc.get_dims()); serialize_dims(ss, desc.get_strides()); if (format_kind == ::dnnl::memory::format_kind::blocked) { ss << desc.get_inner_nblks(); serialize_dims(ss, desc.get_inner_blks()); serialize_dims(ss, desc.get_inner_idxs()); } }; sycl::event execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size = nullptr, size_t *workspace_size = nullptr, size_t *scratchpad_size = nullptr); sycl::event rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query); sycl::event execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num); void async_free(sycl::queue *q, sycl::event e, std::unordered_map<int, ::dnnl::memory> *args, std::vector<void *> device_ptrs = {}) { q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { if (args) { delete args; } for (auto ptr : device_ptrs) { if (ptr) { sycl::free(ptr, *_q); } } }); }); }; bool scale_parameter_preprocess(const std::vector<output_argument_info> &args); template <typename primitive_type> sycl::event execute_primitive(const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &extra_args = {}, const std::vector<void *> &device_ptrs = {}); template <typename T> sycl::event fill_with_type(sycl::queue *q, void *src, const void *value, size_t size_with_byte) { return q->fill<T>(static_cast<T *>(src), *static_cast<const T *>(value), size_with_byte / sizeof(T)); } template <typename T> struct no_zero_op { T operator()(T e) { if (!e) { return 1; } return e; } }; template <typename T> void transform_no_zero_with_type(sycl::queue *q, void *src, void *dst, size_t num) { std::transform(oneapi::dpl::execution::make_device_policy(*q), static_cast<T *>(src), static_cast<T *>(src) + num, static_cast<T *>(dst), no_zero_op<T>()); } void transform_no_zero(const memory_desc_ext &desc, void *src, void *dst); ::dnnl::memory::desc get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc); void get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num); public: engine_ext() {} operator bool() const { return bool(_eng) && bool(_s) && bool(_q); } engine_ext &operator=(std::nullptr_t) { _eng.reset(nullptr); _s.reset(nullptr); _q = nullptr; return *this; } /// Creating oneDNN engine. void create_engine() { _eng = ::dnnl::sycl_interop::make_engine( dpct::get_current_device(), dpct::get_current_device().get_context()); _s = ::dnnl::sycl_interop::make_stream( _eng, dpct::get_current_device().default_queue()); _q = &dpct::get_current_device().default_queue(); } /// Setting the user's SYCL queue for an oneDNN engine. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { if (!q) { throw std::runtime_error("set_queue: pointer must not be nullptr."); } if (!_eng) { throw std::runtime_error("set_queue: current engine is invalid."); } if (q->get_context() != ::dnnl::sycl_interop::get_context(_eng)) { throw std::runtime_error( "set_queue: queue is mismatch with current engine context."); } _q = q; _s = ::dnnl::sycl_interop::make_stream(_eng, *q); } /// Retrieving the user's SYCL queue set in the oneDNN engine. /// \returns Pointer to the SYCL queue. sycl::queue *get_queue() const { return _q; } /// Setting all elements of a memory to a given value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. void fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. void scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. void pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. void pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. void lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. void lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Setting all elements of a memory to a given value asynchronously. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. /// \returns An event representing the fill operations. sycl::event async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reorder operations. sycl::event async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor asynchronously. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. /// \returns An event representing the scale operations. sycl::event async_scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the sum operations. sycl::event async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified binary operation. /// \param [in] alpha_0 Value to scaling factors used to scale the src_0 /// value. /// \param [in] src_desc_0 Source 0 memory descriptor. /// \param [in] src_0 Pointer to source 0 data. /// \param [in] alpha_1 Value to scaling factors used to scale the src_1 /// value. /// \param [in] src_desc_1 Source 1 memory descriptor. /// \param [in] src_1 Pointer to source 1 data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the binary operations. sycl::event async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified reduction operation. /// \param [in] alpha Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reduction operations. sycl::event async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the activation forward operations. sycl::event async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the activation backward operations. sycl::event async_activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value asynchronously. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. /// \returns An event representing the pooling forward operations. sycl::event async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. /// \returns An event representing the pooling backward operations. sycl::event async_pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the softmax forward operations. sycl::event async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the softmax backward operations. sycl::event async_softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value /// asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the lrn forward operations. sycl::event async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the lrn backward operations. sycl::event async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] desc Derived memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] scale_bias_desc Derived scale and bias memory descriptor. /// \param [out] mean_var_desc Derived mean and var memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Get the size of workspace that needed by batch normalization. The data stored /// in workspace must be preserved between forward and backward. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] src_desc Source memory descriptor. /// \returns Size of workspace. size_t get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [in] diff_scale Pointer to differential scale data. /// \param [in] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_desc Differential scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] mean_var_desc Differential mean, variance memory descriptor. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] adesc Activation operation descriptor. /// \param [in] alpha_0 Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] alpha_1 Value to scaling factors used to scale the summand /// value. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] bias_desc Bias memory descriptor. /// \param [in] bias Pointer to bias data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst); /// Computing the data gradient of a specified convolution function asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the convolution backward data operations. sycl::event async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing the weight gradient of a specified convolution function /// asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_weight_desc Differential weight memory descriptor. /// \param [out] diff_weight Pointer to differential weight data. /// \returns An event representing the convolution backward weight operations. sycl::event async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight); /// Computing the bias gradient of a specified convolution function /// asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_bias_desc Differential bias memory descriptor. /// \param [out] diff_bias Pointer to differential bias data. /// \returns An event representing the convolution backward bias operations. sycl::event async_convolution_backward_bias(float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias); /// Getting the required weight space size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [out] weight_space_size Size of required weight space. void rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size); /// Getting the required scratchpad size and workspace size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [out] scratchpad_size Size of required scratchpad. /// \param [out] workspace_size Size of required workspace. void rnn_get_scratchpad_workspace_size(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size); /// Computing a specified rnn function value asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] dst_iter Pointer to output recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] dst_c_iter Pointer to output recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn forward operations. sycl::event async_rnn_forward(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Computing the data and weight gradient of a specified rnn function /// asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [out] diff_src Pointer to differential source data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] diff_dst_iter Pointer to differential output recurrent hidden state data. /// \param [out] diff_src_iter Pointer to differential input recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] diff_dst_c_iter Pointer to differential output recurrent cell state data. /// \param [out] diff_src_c_iter Pointer to differential input recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [out] diff_weight Pointer to differential weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn backward operations. sycl::event async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Getting the required state size for specified dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of state. size_t get_dropout_state_size(); /// Getting the required workspace size for dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of workspace. static size_t get_dropout_workspace_size(const memory_desc_ext &src_desc); /// Computing a specified dropout function value asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout forward operations. sycl::event async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size); /// Computing the gradient of a specified dropout function asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout backward operations. sycl::event async_dropout_backward(dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size); }; inline void dropout_desc::restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("restore: state_size less than required state size."); } sycl::queue *q = engine.get_queue(); _imp->_p = p; _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); q->memcpy(_imp->_host_state.data(), _imp->_state, required_state_size).wait(); _imp->_rng_engine = oneapi::mkl::rng::load_state<rng_engine_t>( *q, _imp->_host_state.data()); } #endif } inline void dropout_desc::set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else _imp->_p = p; if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("set: no sufficient memory to save states."); } sycl::queue *q = engine.get_queue(); _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); _imp->_rng_engine = rng_engine_t(*q, seed); oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size).wait(); } #endif } inline ::dnnl::memory::data_type memory_desc_ext::to_dnnl_data_type(dpct::library_data_t dt) { using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dpct::library_data_t::real_half: return dnnl_dt::f16; case dpct::library_data_t::real_bfloat16: return dnnl_dt::bf16; case dpct::library_data_t::real_float: return dnnl_dt::f32; case dpct::library_data_t::real_int32: return dnnl_dt::s32; case dpct::library_data_t::real_int8: return dnnl_dt::s8; case dpct::library_data_t::real_uint8: return dnnl_dt::u8; case dpct::library_data_t::real_int8_4: return dnnl_dt::s8; case dpct::library_data_t::real_int8_32: return dnnl_dt::s8; case dpct::library_data_t::real_uint8_4: return dnnl_dt::u8; default: throw std::runtime_error("to_dnnl_data_type: unsupported data type."); } } inline dpct::library_data_t memory_desc_ext::to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size) { using dpct_dt = dpct::library_data_t; using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dnnl_dt::f16: return dpct_dt::real_half; case dnnl_dt::bf16: return dpct_dt::real_bfloat16; case dnnl_dt::f32: return dpct_dt::real_float; case dnnl_dt::s32: return dpct_dt::real_int32; case dnnl_dt::s8: if (block_size == 4) { return dpct_dt::real_int8_4; } else if (block_size == 32) { return dpct_dt::real_int8_32; } else { return dpct_dt::real_int8; } case dnnl_dt::u8: if (block_size == 4) { return dpct_dt::real_uint8_4; } else { return dpct_dt::real_uint8; } default: throw std::runtime_error("to_dpct_library_data_t: unsupported data type " "dnnl::memory::data_type::undef."); } } inline ::dnnl::memory::format_tag memory_desc_ext::to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag) { using dpct_dt = dpct::library_data_t; using dpct_tag = memory_format_tag; using dnnl_tag = ::dnnl::memory::format_tag; switch (tag) { case dpct_tag::nchw: return dnnl_tag::nchw; case dpct_tag::nhwc: return dnnl_tag::nhwc; default: if (dt == dpct_dt::real_int8_32) { return dnnl_tag::nChw32c; } else { return dnnl_tag::nChw4c; } } } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), {n_stride, c_stride, h_stride, w_stride}); } inline void memory_desc_ext::set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), {strides, strides + ndims}); } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c) { if (tag == rnn_memory_format_tag::tnc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::tnc); } else if(tag == rnn_memory_format_tag::ntc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::ntc); } else { throw std::runtime_error("set: unsupported memory format tag."); } } inline void memory_desc_ext::get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const { unsigned block_size = 1; auto dims = _desc.get_dims(); auto inner_blks = _desc.get_inner_blks(); auto strides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; *n_stride = strides[0] / block_size; *c_stride = strides[1] / block_size; *h_stride = strides[2] / block_size; *w_stride = strides[3] / block_size; } inline void memory_desc_ext::get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); auto inner_blks = _desc.get_inner_blks(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (strides[1] == 1 && dims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; } inline void memory_desc_ext::get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const { auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); if (strides[0] >= strides[1]) { *tag = rnn_memory_format_tag::tnc; } else { *tag = rnn_memory_format_tag::ntc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), 1); *t = dims[0]; *n = dims[1]; *c = dims[2]; } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const { unsigned block_size = 1; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; strides[index] = astrides[index] / block_size; } } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (astrides[1] == 1 && adims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; } } inline void engine_ext::get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num) { if (!desc.is_zero()) { auto dims = desc.get_dims(); auto strides = desc.get_strides(); if (strides[0] >= strides[1]) { *tag = ::dnnl::memory::format_tag::tnc; *seq_length = dims[0]; *batch_size = dims[1]; } else { *tag = ::dnnl::memory::format_tag::ntc; *seq_length = dims[1]; *batch_size = dims[0]; } } if (direction == rnn_direction::bidirectional) { *direction_num = 2; } else { *direction_num = 1; } if (mode == rnn_mode::lstm) { *gate_num = 4; } else if (mode == rnn_mode::gru) { *gate_num = 3; } else { *gate_num = 1; } if (*projection_size != hidden_size) { *output_size = *projection_size; } else { *projection_size = 0; *output_size = hidden_size; } *dnnl_dt = memory_desc_ext::to_dnnl_data_type(dt); } inline void *engine_ext::allocate(const memory_desc_ext &data_desc, int count) const { size_t mem_size = data_desc.get_size(); void *mem = sycl::malloc_device(mem_size * count, *_q); return mem; } inline void engine_ext::transform_no_zero(const memory_desc_ext &desc, void *src, void *dst) { ::dnnl::memory::data_type dt = desc.get_desc().get_data_type(); size_t element_num = desc.get_element_num(); switch (dt) { case ::dnnl::memory::data_type::f32: transform_no_zero_with_type<float>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::f16: transform_no_zero_with_type<sycl::half>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s32: transform_no_zero_with_type<int32_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s8: transform_no_zero_with_type<int8_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::u8: transform_no_zero_with_type<uint8_t>(_q, src, dst, element_num); break; default: throw std::runtime_error("transform_no_zero: unsupported data type."); } } inline ::dnnl::memory::desc engine_ext::get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc) { if (group_count == 1) { return weight_desc.get_desc(); } auto help_weight_desc = weight_desc.get_desc(); int ndims = help_weight_desc.get_ndims(); if (!help_weight_desc.get_inner_blks().empty()) { throw std::runtime_error("get_group_weight_desc: group convolution with " "blocked weight memory unimplemented."); } std::vector<int64_t> new_size; auto old_size = weight_desc.get_dims(); new_size.push_back(group_count); new_size.push_back(old_size[0] / group_count); for (int index = 1; index < old_size.size(); index++) { new_size.push_back(old_size[index]); } std::vector<int64_t> strides = help_weight_desc.get_strides(); ::dnnl::memory::format_tag tag; bool is_nhwc = (strides[1] == 1 && old_size[1] != 1); if (ndims == 4) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::gohwi; } else { tag = ::dnnl::memory::format_tag::goihw; } } else if (ndims == 5) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::godhwi; } else { tag = ::dnnl::memory::format_tag::goidhw; } } help_weight_desc = ::dnnl::memory::desc(new_size, weight_desc.get_desc().get_data_type(), tag); return help_weight_desc; } inline ::dnnl::memory::desc engine_ext::compress_spatial_dimensions_to_channel( const ::dnnl::memory::desc &desc) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); auto inner_blks = desc.get_inner_blks(); assert(ndims >= 4 && "ndims is at least 4."); std::vector<int64_t> compressed_dims(ndims); compressed_dims[0] = dims[0]; compressed_dims[1] = dims[1]; for (int index = 2; index < ndims; index++) { compressed_dims[1] = compressed_dims[1] * dims[index]; compressed_dims[index] = 1; } if (!inner_blks.empty() && inner_blks[0] == 4) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw4c); } else if (!inner_blks.empty() && inner_blks[0] == 32) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw32c); } std::vector<int64_t> strides(ndims, 1); strides[0] = compressed_dims[1]; return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), strides); } inline ::dnnl::memory::desc engine_ext::get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); assert(ndims >= 4 && "ndims is at least 4."); int channel_num = 1; if (mode == batch_normalization_mode::spatial) { channel_num = dims[1]; } else { for (int index = 1; index < ndims; index++) { channel_num = channel_num * dims[index]; } } return ::dnnl::memory::desc({channel_num}, desc.get_data_type(), ::dnnl::memory::format_tag::a); } inline ::dnnl::memory::desc engine_ext::transfer_memory_desc_to_channel_major_format( const ::dnnl::memory::desc &desc) { if (!desc.get_inner_blks().empty()) { return desc; } int ndims = desc.get_ndims(); auto dims = desc.get_dims(); if (ndims == 4) { return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::nchw); } return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::ncdhw); } /// If the alpha = 0 and beta = 1, then the destination (dst = alpha * out + /// beta * prior_dst) have no change. In this case this function returns true /// means the operation can exit directly. inline bool engine_ext::scale_parameter_preprocess( const std::vector<output_argument_info> &args) { bool direct_exit = true; for (auto &arg : args) { if (arg._alpha == 0.f) { if (arg._beta != 1.f) { async_scale(arg._beta, arg._desc, arg._data); } } else { direct_exit = false; } } return direct_exit; } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { derive_batch_normalization_memory_desc(scale_bias_desc, src_desc, mode); derive_batch_normalization_memory_desc(mean_var_desc, src_desc, mode); } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { int src_ndims = src_desc.get_desc().get_ndims(); auto inner_blks = src_desc.get_desc().get_inner_blks(); if (src_desc.get_desc().get_ndims() != 4 || src_desc.get_desc().get_ndims() != 5) { throw std::runtime_error("derive_batch_normalization_memory_desc: only 4d " "and 5d memory descriptor supported."); } std::vector<int64_t> dims = src_desc.get_dims(); dims[0] = 1; if (mode == batch_normalization_mode::spatial) { dims[2] = 1; dims[3] = 1; if (src_ndims == 5) { dims[4] = 1; } } auto data_type = src_desc.get_desc().get_data_type(); if (data_type == ::dnnl::memory::data_type::f16) { data_type = ::dnnl::memory::data_type::f32; } if (!inner_blks.empty() && inner_blks[0] == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw4c)); } else if (!inner_blks.empty() && inner_blks[0] == 32) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw32c)); } else { if (src_ndims == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nchw)); } else { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::ncdhw)); } } } template <typename primitive_type> sycl::event engine_ext::execute_primitive( const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &output_args, const std::vector<void *> &device_ptrs) { std::vector<void *> caches; int output_arg_num = output_args.size(); for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { auto cache = allocate(output_args[i]._desc); caches.push_back(cache); args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, cache)}); } else { args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, output_args[i]._data)}); } } auto e = ::dnnl::sycl_interop::execute( *(static_cast<primitive_type *>(primitive.second)), _s, *args); _primitive_cache.put( primitive.first, primitive.second, [](::dnnl::primitive *p) { delete static_cast<primitive_type *>(p); }, e); int cache_index = 0; for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { e = async_sum(output_args[i]._alpha, output_args[i]._desc, caches[cache_index++], output_args[i]._beta, output_args[i]._desc, output_args[i]._data); } else { if (output_args[i]._alpha != 1.f) { e = async_scale(output_args[i]._alpha, output_args[i]._desc, output_args[i]._data); } } } caches.insert(caches.end(), device_ptrs.begin(), device_ptrs.end()); async_free(_q, e, args, caches); return e; } inline ::dnnl::memory::desc engine_ext::bn_reorder_memory_to_channel_major_format( bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches) { ::dnnl::memory::desc result; result = transfer_memory_desc_to_channel_major_format(desc); if ((result != desc) || !src) { *cache = allocate(desc); if (is_input && src) { async_reorder(1.f, desc, src, 0.f, result, *cache); } caches.push_back(*cache); } return result; } inline sycl::event engine_ext::batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var) { if (scale_parameter_preprocess( {{alpha_data, beta_data, diff_src_desc, diff_src}, {alpha_param, beta_param, diff_scale_bias_desc, diff_scale}, {alpha_param, beta_param, diff_scale_bias_desc, diff_bias}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_diff_dst = nullptr, *reordered_diff_src = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_diff_scale = nullptr, *reordered_diff_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_diff_scale_bias_desc = diff_scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_diff_src_desc = help_diff_src_desc; ::dnnl::memory::desc actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; help_diff_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_scale_bias_desc, scale, &reordered_scale, caches); actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (bias) { bn_reorder_memory_to_channel_major_format(true, help_diff_scale_bias_desc, bias, &reordered_bias, caches); } bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_scale, &reordered_diff_scale, caches); bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_bias, &reordered_diff_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( true, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); bn_reorder_memory_to_channel_major_format(true, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } else { if ((help_src_desc != help_diff_dst_desc) || (help_src_desc != help_diff_src_desc) || (help_diff_dst_desc != help_diff_src_desc)) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; } } help_diff_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_diff_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); auto forward_primitive = create_primitive_desc<::dnnl::batch_normalization_forward>( ::dnnl::prop_kind::forward_training, help_src_desc, help_diff_dst_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift); auto primitive = create_primitive<::dnnl::batch_normalization_backward>( ::dnnl::prop_kind::backward, help_diff_src_desc, help_diff_dst_desc, help_src_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift, forward_primitive); void *dst_cache = nullptr; if (!saved_mean && !saved_var) { dst_cache = allocate(diff_dst_desc); if (!reordered_saved_mean) { reordered_saved_mean = allocate(mean_var_desc); caches.push_back(reordered_saved_mean); } if (!reordered_saved_var) { reordered_saved_var = allocate(mean_var_desc); caches.push_back(reordered_saved_var); } if (!bias) { _q->fill(reordered_bias, 0, diff_scale_bias_desc.get_size()); } batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, diff_dst_desc, dst_cache, diff_scale_bias_desc, scale, bias ? bias : reordered_bias, mean_var_desc, reordered_saved_mean, reordered_saved_var, nullptr, nullptr); caches.push_back(dst_cache); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_diff_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_src_desc, _eng, reordered_diff_dst ? reordered_diff_dst : diff_dst)}}}; sycl::event e = execute_primitive( primitive, execution_args, {{alpha_data, beta_data, DNNL_ARG_DIFF_SRC, help_diff_src_desc, reordered_diff_src ? reordered_diff_src : diff_src}, {alpha_param, beta_param, DNNL_ARG_DIFF_SCALE, help_diff_scale_bias_desc, reordered_diff_scale ? reordered_diff_scale : diff_scale}, {alpha_param, beta_param, DNNL_ARG_DIFF_SHIFT, help_diff_scale_bias_desc, reordered_diff_bias ? reordered_diff_bias : diff_bias}}); if (actual_diff_src_desc != diff_src_desc.get_desc() && reordered_diff_src) { e = async_reorder(1.f, actual_diff_src_desc, reordered_diff_src, 0.f, diff_src_desc, diff_src); } if (actual_diff_scale_bias_desc != diff_scale_bias_desc.get_desc() && reordered_diff_scale && reordered_diff_bias) { async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_scale, 0.f, diff_scale_bias_desc, diff_scale); e = async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_bias, 0.f, diff_scale_bias_desc, diff_bias); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_dst = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_scale_bias_desc = scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_dst_desc = help_dst_desc; ::dnnl::memory::desc actual_mean_var_desc = help_mean_var_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; help_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_scale_bias_desc, scale, &reordered_scale, caches); bn_reorder_memory_to_channel_major_format(true, help_scale_bias_desc, bias, &reordered_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( is_infer, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); actual_mean_var_desc = help_mean_var_desc; bn_reorder_memory_to_channel_major_format(is_infer, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } else { if (help_src_desc != help_dst_desc) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; } } help_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); ::dnnl::prop_kind kind; ::dnnl::normalization_flags flag = ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift; if (is_infer) { kind = ::dnnl::prop_kind::forward_inference; flag = ::dnnl::normalization_flags::use_global_stats | flag; } else { kind = ::dnnl::prop_kind::forward_training; } auto primitive = create_primitive<::dnnl::batch_normalization_forward>( kind, help_src_desc, help_dst_desc, epsilon, flag); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_SHIFT, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_bias ? reordered_bias : bias)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}}; sycl::event e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, help_dst_desc, reordered_dst ? reordered_dst : dst}}); if (!is_infer && running_var) { auto src_ndim = src_desc.get_desc().get_ndims(); auto src_dims = src_desc.get_dims(); int element_num = src_dims[0]; if (mode == batch_normalization_mode::spatial) { for (int index = 2; index < src_ndim; index++) { element_num *= src_dims[index]; } } float unbias_factor = element_num / (element_num - 1.f); async_scale(1.f - factor, mean_var_desc, running_var); e = async_sum(factor * unbias_factor, mean_var_desc, reordered_saved_var ? reordered_saved_var : saved_var, 1.f, mean_var_desc, running_var); } if (!is_infer && running_mean) { e = async_sum(factor, mean_var_desc, reordered_saved_mean ? reordered_saved_mean : saved_mean, (1.f - factor), mean_var_desc, running_mean); } if (reordered_dst && (actual_dst_desc != dst_desc.get_desc())) { e = async_reorder(1.f, actual_dst_desc, reordered_dst, 0.f, dst_desc, dst); } if (!is_infer && reordered_saved_mean && reordered_saved_var && saved_mean && saved_var && (actual_mean_var_desc != mean_var_desc.get_desc())) { e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_mean, 0.f, mean_var_desc, saved_mean); e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_var, 0.f, mean_var_desc, saved_var); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; std::vector<void *> data = {src, dst, src_iter, dst_iter, src_iter_c, dst_iter_c, weight, workspace, scratchpad}; std::vector<int> offset(6, 0); void *input_layer_cache = nullptr, *hidden_layer_cache = nullptr; sycl::event e; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { // Here to combine the oneDNN bidirectional_sum and // bidirectional_concat config, so call execute_rnn_forward_primitive // twice. if (layer_size > 1) { if (!is_get_execution_args) { input_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); _q->memcpy(input_layer_cache, src, src_desc.get_size()); } data[0] = input_layer_cache; data[1] = hidden_layer_cache; e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1, weight_size_query, workspace_size_query, scratchpad_size_query); data[0] = ((layer_size - 1) % 2 == 0) ? input_layer_cache : hidden_layer_cache; data[1] = dst; } e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } else { e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } if (is_get_execution_args) { return e; } if (input_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(input_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline sycl::event engine_ext::execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size, size_t *workspace_size, size_t *scratchpad_size) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; std::unordered_map<int, ::dnnl::memory> *execution_args; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); } if (weight_size) { *weight_size += (weight_layer_desc.get_size() + weight_iter_desc.get_size() + projection_desc.get_size() + bias_desc.get_size()) * iter_num; return e; } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto pd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( kind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::gru) { auto pd = create_primitive_desc<::dnnl::gru_forward>( kind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::gru_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::lstm) { auto pd = create_primitive_desc<::dnnl::lstm_forward>( kind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::lstm_forward>(pd); key = r.first; p = r.second; } } for (int i = 0; i < iter_num; i++) { void *in_cache = data[0], *out_cache = data[1], *dst_iter_c_cache = nullptr, *dst_iter_cache = ((uint8_t *)(data[3]) + offset[1]); if (mode == rnn_mode::lstm) { dst_iter_c_cache = (uint8_t *)(data[4]) + offset[2]; } if (!workspace_size) { execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[0])}}, {DNNL_ARG_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[1])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[8])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data + offset)}}); offset += d.get_size(); }; insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[0]); insert_args(DNNL_ARG_DST_ITER, iter_desc, data[3], offset[1]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[5], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_LAYER, weight_layer_desc, data[6], offset[4]); insert_args(DNNL_ARG_WEIGHTS_ITER, weight_iter_desc, data[6], offset[4]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, projection_desc, data[6], offset[4]); } if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[6]) + offset[4], 0, bias_desc.get_size()); } insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[4]); if (kind == ::dnnl::prop_kind::forward_training) { insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[5]); } if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { execute_primitive<::dnnl::vanilla_rnn_forward>( {key, static_cast<::dnnl::vanilla_rnn_forward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { execute_primitive<::dnnl::gru_forward>( {key, static_cast<::dnnl::gru_forward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { execute_primitive<::dnnl::lstm_forward>( {key, static_cast<::dnnl::lstm_forward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[0], data[1]); } } if (kind == ::dnnl::prop_kind::forward_training) { if (workspace_size) { *workspace_size += (src_desc.get_size() + dst_desc.get_size() + iter_desc.get_size()); if (mode == rnn_mode::lstm) { *workspace_size += iter_c_desc.get_size(); } } else { _q->memcpy((uint8_t *)(data[7]) + offset[5], in_cache, src_desc.get_size()); offset[5] += src_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], out_cache, dst_desc.get_size()); offset[5] += dst_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_cache, iter_desc.get_size()); offset[5] += iter_desc.get_size(); if (mode == rnn_mode::lstm) { _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_c_cache, iter_c_desc.get_size()); offset[5] += iter_c_desc.get_size(); } } } } return e; } inline sycl::event engine_ext::execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; ::dnnl::prop_kind fkind = ::dnnl::prop_kind::forward_training; ::dnnl::prop_kind bkind = ::dnnl::prop_kind::backward; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc diff_weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc diff_weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc projection_desc, diff_projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); diff_projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldoi); } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto fpd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( fkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::vanilla_rnn_backward>( bkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::gru) { auto fpd = create_primitive_desc<::dnnl::gru_forward>( fkind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::gru_backward>( bkind, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::gru_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::lstm) { auto fpd = create_primitive_desc<::dnnl::lstm_forward>( fkind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); auto pd = create_primitive_desc<::dnnl::lstm_backward>( bkind, direction, src_desc, iter_desc, iter_c_desc, diff_weight_layer_desc, diff_weight_iter_desc, ::dnnl::memory::desc(), diff_projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::lstm_backward>(pd); key = r.first; p = r.second; } for (int i = 0; i < iter_num; i++) { auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[8])}}, {DNNL_ARG_DIFF_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[9])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[15])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { offset += d.get_size(); execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data - offset)}}); }; if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); } insert_args(DNNL_ARG_DST_ITER, iter_desc, data[7], offset[0]); insert_args(DNNL_ARG_DST_LAYER, dst_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_LAYER, src_desc, data[7], offset[0]); insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[1]); insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[3]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, diff_projection_desc, data[6], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_ITER, diff_weight_iter_desc, data[6], offset[3]); insert_args(DNNL_ARG_WEIGHTS_LAYER, diff_weight_layer_desc, data[6], offset[3]); insert_args(DNNL_ARG_DIFF_SRC_ITER, iter_desc, data[10], offset[4]); insert_args(DNNL_ARG_DIFF_DST_ITER, iter_desc, data[11], offset[5]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DIFF_SRC_ITER_C, iter_c_desc, data[12], offset[6]); insert_args(DNNL_ARG_DIFF_DST_ITER_C, iter_c_desc, data[13], offset[7]); } insert_args(DNNL_ARG_DIFF_BIAS, bias_desc, data[14], offset[8]); if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[14]) - offset[8], 0, bias_desc.get_size()); } if (projection_size) { insert_args(DNNL_ARG_DIFF_WEIGHTS_PROJECTION, projection_desc, data[14], offset[8]); } insert_args(DNNL_ARG_DIFF_WEIGHTS_ITER, weight_iter_desc, data[14], offset[8]); insert_args(DNNL_ARG_DIFF_WEIGHTS_LAYER, weight_layer_desc, data[14], offset[8]); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { e = execute_primitive<::dnnl::vanilla_rnn_backward>( {key, static_cast<::dnnl::vanilla_rnn_backward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { e = execute_primitive<::dnnl::gru_backward>( {key, static_cast<::dnnl::gru_backward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { e = execute_primitive<::dnnl::lstm_backward>( {key, static_cast<::dnnl::lstm_backward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[8], data[9]); } } return e; } #define GENERATE_RNN_PRIMITIVE_KEY(name) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_cell_kind() << (std::uint8_t)pd.get_direction() \ << (std::uint8_t)pd.get_algorithm(); \ serialize_mem_desc(ss, pd.src_layer_desc()); \ serialize_mem_desc(ss, pd.src_iter_desc()); \ serialize_mem_desc(ss, pd.dst_layer_desc()); \ serialize_mem_desc(ss, pd.dst_iter_desc()); \ serialize_mem_desc(ss, pd.diff_src_layer_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_desc()); \ serialize_mem_desc(ss, pd.diff_dst_layer_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_desc()); \ serialize_mem_desc(ss, pd.src_iter_c_desc()); \ serialize_mem_desc(ss, pd.dst_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_c_desc()); \ return ss.str(); \ } #define GENERATE_CONVOLUTION_PRIMITIVE_KEY(name, query_type) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_algorithm() \ << (std::uint8_t)pd.get_primitive_attr().get_fpmath_mode() \ << (std::uint8_t)pd.get_group_size(); \ serialize_dims(ss, pd.get_strides()); \ serialize_dims(ss, pd.get_dilations()); \ serialize_dims(ss, pd.get_padding_l()); \ serialize_mem_desc(ss, pd.src_desc()); \ serialize_mem_desc(ss, pd.diff_src_desc()); \ serialize_mem_desc(ss, pd.dst_desc()); \ serialize_mem_desc(ss, pd.diff_dst_desc()); \ serialize_mem_desc(ss, pd.query_type()); \ serialize_mem_desc(ss, pd.weights_desc()); \ serialize_mem_desc(ss, pd.diff_weights_desc()); \ return ss.str(); \ } GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_forward) GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_backward) GENERATE_RNN_PRIMITIVE_KEY(lstm_forward) GENERATE_RNN_PRIMITIVE_KEY(lstm_backward) GENERATE_RNN_PRIMITIVE_KEY(gru_forward) GENERATE_RNN_PRIMITIVE_KEY(gru_backward) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_forward, bias_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_data, scratchpad_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_weights, diff_bias_desc) template <typename primitive_desc_type> std::string engine_ext::generate_cache_key(const primitive_desc_type &pd) { std::stringstream ss; auto kind = pd.get_kind(); ss << (std::uint8_t)kind << (std::uint8_t)pd.get_prop_kind() << (std::uint8_t)pd.get_algorithm(); serialize_mem_desc(ss, pd.src_desc()); serialize_mem_desc(ss, pd.diff_src_desc()); serialize_mem_desc(ss, pd.dst_desc()); serialize_mem_desc(ss, pd.diff_dst_desc()); switch (kind) { case ::dnnl::primitive::kind::batch_normalization: ss << pd.get_epsilon() << (std::uint8_t)pd.get_flags(); case ::dnnl::primitive::kind::reduction: ss << pd.get_p(); break; case ::dnnl::primitive::kind::eltwise: ss << pd.get_alpha() << pd.get_beta(); case ::dnnl::primitive::kind::lrn: ss << pd.get_k(); break; case ::dnnl::primitive::kind::pooling: serialize_dims(ss, pd.get_strides()); serialize_dims(ss, pd.get_dilations()); serialize_dims(ss, pd.get_padding_l()); serialize_dims(ss, pd.get_kernel()); break; case ::dnnl::primitive::kind::softmax: ss << pd.get_axis(); break; default: break; } return ss.str(); } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive(args_type &&...args) { auto pd = create_primitive_desc<primitive_type>(std::forward<args_type>(args)...); return create_primitive_with_pd<primitive_type>(pd); } template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive_with_pd( const typename primitive_type::primitive_desc &pd) { detail::primitive_cache_key_type key = generate_cache_key(pd); primitive_type *p = (primitive_type *)_primitive_cache.get(key); if (!p) { p = new primitive_type(pd); } return {key, p}; } template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc engine_ext::create_primitive_desc(args_type &&...args) { return typename primitive_type::primitive_desc( _eng, std::forward<args_type>(args)...); } inline void engine_ext::fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { async_fill(src_desc, src, valuePtr).wait(); } inline void engine_ext::reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_reorder(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::scale(float alpha, const memory_desc_ext &src_desc, void *src) { async_scale(alpha, src_desc, src).wait(); } inline void engine_ext::sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_sum(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_activation_forward(desc, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_activation_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_pooling_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace).wait(); } inline void engine_ext::pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_pooling_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline void engine_ext::softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_softmax_forward(alg, mode, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_softmax_backward(alg, mode, alpha, dst_desc, dst, diff_dst_desc, diff_dst, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_lrn_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace) .wait(); } inline void engine_ext::lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_lrn_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline sycl::event engine_ext::async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { ::dnnl::memory::data_type dt = src_desc.get_desc().get_data_type(); unsigned mem_size = src_desc.get_size(); switch (dt) { case ::dnnl::memory::data_type::f32: return fill_with_type<float>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::f16: return fill_with_type<sycl::half>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s32: return fill_with_type<int32_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s8: return fill_with_type<int8_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::u8: return fill_with_type<uint8_t>(_q, src, valuePtr, mem_size); default: throw std::runtime_error("async_fill: unsupported data type."); } } inline sycl::event engine_ext::async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto pd = ::dnnl::reorder::primitive_desc(_eng, src_desc.get_desc(), _eng, dst_desc.get_desc()); auto primitive = create_primitive_with_pd<::dnnl::reorder>(pd); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_scale(float alpha, const memory_desc_ext &src_desc, void *src) { if (alpha == 1.f) { return sycl::event(); } void *src_cache = allocate(src_desc); _q->memcpy(src_cache, src, src_desc.get_size()); auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, ::dnnl::algorithm::eltwise_linear, src_desc.get_desc(), src_desc.get_desc(), alpha, 0.f); auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src_cache)}}; return execute_primitive(primitive, args, {}, {src_cache}); } inline sycl::event engine_ext::async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } void *dst_cache = allocate(dst_desc); _q->memcpy(dst_cache, dst, dst_desc.get_size()); auto pd = create_primitive_desc<::dnnl::sum>( std::vector<float>{alpha, beta}, std::vector<::dnnl::memory::desc>{src_desc.get_desc(), dst_desc.get_desc()}); std::stringstream ss; ss << (std::uint8_t)pd.get_kind() << alpha << beta; serialize_mem_desc(ss, pd.src_desc(0)); serialize_mem_desc(ss, pd.src_desc(1)); detail::primitive_cache_key_type key = ss.str(); ::dnnl::sum *p = (::dnnl::sum *)_primitive_cache.get(key); if (!p) { p = new ::dnnl::sum(pd); } auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}, {DNNL_ARG_MULTIPLE_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_MULTIPLE_SRC + 1, ::dnnl::memory(dst_desc.get_desc(), _eng, dst_cache)}}; return execute_primitive<::dnnl::sum>({key, p}, args, {}, {dst_cache}); } inline sycl::event engine_ext::async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst) { ::dnnl::algorithm onednn_algorithm; switch (op) { case binary_op::max: onednn_algorithm = ::dnnl::algorithm::binary_max; break; case binary_op::min: onednn_algorithm = ::dnnl::algorithm::binary_min; break; case binary_op::add: onednn_algorithm = ::dnnl::algorithm::binary_add; break; case binary_op::sub: onednn_algorithm = ::dnnl::algorithm::binary_sub; break; case binary_op::mul: onednn_algorithm = ::dnnl::algorithm::binary_mul; break; case binary_op::div: onednn_algorithm = ::dnnl::algorithm::binary_div; break; case binary_op::sqrt: onednn_algorithm = ::dnnl::algorithm::eltwise_sqrt; break; case binary_op::neg: onednn_algorithm = ::dnnl::algorithm::eltwise_linear; break; } if (onednn_algorithm == ::dnnl::algorithm::eltwise_sqrt || onednn_algorithm == ::dnnl::algorithm::eltwise_linear) { void *src_cache = nullptr, *dst_cache = nullptr; src_cache = allocate(src_desc_0); dst_cache = allocate(dst_desc); _q->memcpy(src_cache, src_0, src_desc_0.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_cache); async_scale(beta, dst_desc, dst_cache); // Let the output = 1 - input to simulate the behavior of neg. auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, onednn_algorithm, src_desc_0.get_desc(), dst_desc.get_desc(), -1.f, 1.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc_0.get_desc(), _eng, src_cache)}}}; execute_primitive( primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); auto e = async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(src_cache, *_q); sycl::free(dst_cache, *_q); }); }); return e; } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{}; void *src_0_cache = nullptr, *src_1_cache = nullptr, *dst_cache = nullptr; src_0_cache = allocate(src_desc_0); src_1_cache = allocate(src_desc_1); dst_cache = allocate(dst_desc); _q->memcpy(src_0_cache, src_0, src_desc_0.get_size()); _q->memcpy(src_1_cache, src_1, src_desc_1.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_0_cache); async_scale(alpha_1, src_desc_1, src_1_cache); async_scale(beta, dst_desc, dst_cache); execution_args->insert({DNNL_ARG_SRC_0, ::dnnl::memory(src_desc_0.get_desc(), _eng, src_0_cache)}); execution_args->insert({DNNL_ARG_SRC_1, ::dnnl::memory(src_desc_1.get_desc(), _eng, src_1_cache)}); auto primitive = create_primitive<::dnnl::binary>( onednn_algorithm, src_desc_0.get_desc(), src_desc_1.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(dst_cache, *_q); sycl::free(src_0_cache, *_q); sycl::free(src_1_cache, *_q); }); }); return e; } inline sycl::event engine_ext::async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } float p = 2.f; ::dnnl::algorithm onednn_algorithm; void *cache = nullptr; switch (op) { case reduction_op::amax: cache = allocate(src_desc); activation_desc adesc; adesc.set_algorithm(::dnnl::algorithm::eltwise_abs); async_activation_forward(adesc, 1.f, src_desc, src, 0.f, src_desc, cache); onednn_algorithm = ::dnnl::algorithm::reduction_max; src = cache; break; case reduction_op::max: onednn_algorithm = ::dnnl::algorithm::reduction_max; break; case reduction_op::min: onednn_algorithm = ::dnnl::algorithm::reduction_min; break; case reduction_op::sum: onednn_algorithm = ::dnnl::algorithm::reduction_sum; break; case reduction_op::mean: onednn_algorithm = ::dnnl::algorithm::reduction_mean; break; case reduction_op::mul: onednn_algorithm = ::dnnl::algorithm::reduction_mul; break; case reduction_op::mul_no_zeros: cache = allocate(src_desc); transform_no_zero(src_desc, src, cache); onednn_algorithm = ::dnnl::algorithm::reduction_mul; src = cache; break; case reduction_op::norm1: p = 1.f; onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_power_p_sum; break; case reduction_op::norm2: onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_sum; break; } auto primitive = create_primitive<::dnnl::reduction>( onednn_algorithm, src_desc.get_desc(), dst_desc.get_desc(), p, 0.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}}; if (cache) { return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc data_desc = dst_desc.get_desc(); auto alg = desc.get_algorithm(); if ((alg == ::dnnl::algorithm::eltwise_clip) || (alg == ::dnnl::algorithm::eltwise_linear) || (alg == ::dnnl::algorithm::eltwise_swish)) { data_desc = src_desc.get_desc(); } auto primitive = create_primitive<::dnnl::eltwise_backward>( alg, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), data_desc, desc.get_alpha(), desc.get_beta(), create_primitive_desc<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, alg, src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive_desc = create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::pooling_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive = create_primitive<::dnnl::pooling_backward>( desc.get_algorithm(), diff_src_desc.get_desc(), diff_dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding(), create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, src)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_src_desc, help_dst_desc, 1); return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, memory_desc_ext(help_dst_desc), dst}}); } inline sycl::event engine_ext::async_softmax_backward( softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(help_dst_desc, _eng, dst)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_dst_desc, _eng, diff_dst)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_backward>( softmax_alg, help_diff_src_desc, help_diff_dst_desc, help_dst_desc, 1, create_primitive_desc<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_diff_src_desc, help_dst_desc, 1)); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, memory_desc_ext(help_diff_src_desc), diff_src}}); } inline sycl::event engine_ext::async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive_desc = create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::lrn_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::lrn_backward>( ::dnnl::algorithm::lrn_across_channels, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), src_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k(), create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline size_t engine_ext::get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc) { if(ops == batch_normalization_ops::none) { return 0; } return src_desc.get_size(); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var) { return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; std::vector<void *> caches; if (has_post_op) { void *dst_cache = allocate(dst_desc); caches.push_back(dst_cache); batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, dst_desc, dst_cache, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, dst_cache); } async_activation_forward(adesc, 1.f, dst_desc, dst_cache, 0.f, dst_desc, dst_cache); e = async_sum(alpha, dst_desc, dst_cache, beta, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var) { return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; if (has_post_op) { if(workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_forward_training_ex: " "no sufficient workspace."); } batch_normalization_forward_internal( false, mode, epsilon, factor, 1.f, src_desc, src, 0.f, dst_desc, workspace, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, workspace); } return async_activation_forward(adesc, alpha, dst_desc, workspace, beta, dst_desc, dst); } return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_forward_training( mode, ops, adesc, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, summand_desc, summand, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, running_mean, running_var, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var) { return batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_mean_var_desc, scale, nullptr, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { std::vector<void *> caches; ::dnnl::memory::desc real_diff_dst_desc = diff_dst_desc.get_desc(); void *real_diff_dst = diff_dst; if (ops != batch_normalization_ops::none && workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_backward_ex: " "no sufficient workspace."); } if (ops == batch_normalization_ops::add_activation) { void *diff_summand_cache = allocate(diff_summand_desc); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_summand_desc, diff_summand_cache); caches.push_back(diff_summand_cache); async_sum(alpha_data, diff_summand_desc, diff_summand_cache, beta_data, diff_summand_desc, diff_summand); real_diff_dst_desc = diff_summand_desc.get_desc(); real_diff_dst = diff_summand_cache; } else if (ops == batch_normalization_ops::activation) { void *diff_dst_cache = allocate(diff_dst_desc); caches.push_back(diff_dst_cache); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_dst_desc, diff_dst_cache); real_diff_dst = diff_dst_cache; } sycl::event e = batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, real_diff_dst_desc, real_diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_desc, scale, bias, beta_param, diff_scale, diff_bias, mean_var_desc, saved_mean, saved_var); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_backward( mode, ops, adesc, epsilon, alpha_data, src_desc, src, dst_desc, dst, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, diff_summand_desc, diff_summand, alpha_param, diff_scale_bias_mean_var_desc, scale, bias, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto origin_src_md = src_desc.get_desc(); auto origin_dst_md = dst_desc.get_desc(); auto origin_weight_md = help_weight_desc; auto src_md = transfer_memory_desc_to_format_tag_any(origin_src_md); auto dst_md = transfer_memory_desc_to_format_tag_any(origin_dst_md); auto weight_md = transfer_memory_desc_to_format_tag_any(origin_weight_md); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_md, weight_md, dst_md, desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); ::dnnl::convolution_forward::primitive_desc pd = ::dnnl::convolution_forward::primitive_desc( const_cast<dnnl_primitive_desc_t>( primitive.second->get_primitive_desc())); auto optimal_src_md = pd.src_desc(); auto optimal_dst_md = pd.dst_desc(); auto optimal_weight_md = pd.weights_desc(); void *optimal_src = src, *optimal_dst = dst, *optimal_weight = weight; std::vector<void *> input_caches, output_caches; allocate_and_reorder_memory_to_optimal(origin_src_md, src, optimal_src_md, optimal_src, input_caches); allocate_and_reorder_memory_to_optimal(origin_dst_md, dst, optimal_dst_md, optimal_dst, output_caches); allocate_and_reorder_memory_to_optimal(origin_weight_md, weight, optimal_weight_md, optimal_weight, input_caches); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(optimal_src_md, _eng, optimal_src)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(optimal_weight_md, _eng, optimal_weight)}}}; auto e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, optimal_dst_md, optimal_dst}}, input_caches); if(origin_dst_md != optimal_dst_md){ e = async_reorder(1.f, optimal_dst_md, optimal_dst, 0.f, origin_dst_md, dst); } async_free(_q, e, nullptr, output_caches); return e; } inline sycl::event engine_ext::async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst) { int channel_num = bias_desc.get_element_num(); auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::memory::desc help_bias_desc = {{channel_num}, bias_desc.get_desc().get_data_type(), ::dnnl::memory::format_tag::a}; ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_desc.get_desc(), help_weight_desc, help_bias_desc, dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_BIAS, {::dnnl::memory(help_bias_desc, _eng, bias)}}}; void *cache = nullptr; if (alpha_0 != 1.f) { cache = allocate(help_weight_desc); _q->memcpy(cache, weight, weight_desc.get_size()); async_scale(alpha_0, help_weight_desc, cache); execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, cache)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } else { execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); } async_sum(alpha_1, summand_desc, summand, 1.f, dst_desc, dst); return async_activation_forward(adesc, 1.f, dst_desc, dst, 0.f, dst_desc, dst); } inline sycl::event engine_ext::async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_dst_desc, diff_dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_data>( ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight) { if (scale_parameter_preprocess( {{alpha, beta, diff_weight_desc, diff_weight}})) { return sycl::event(); } auto help_diff_weight_desc = get_group_weight_desc(desc.get_group_count(), diff_weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_weights>( ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_WEIGHTS, help_diff_weight_desc, diff_weight}}); } inline sycl::event engine_ext::async_convolution_backward_bias( float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias) { return async_reduction(reduction_op::sum, alpha, diff_dst_desc, diff_dst, beta, diff_bias_desc, diff_bias); } inline void engine_ext::rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size) { *weight_space_size = 0; rnn_forward_internal(desc, ::dnnl::prop_kind::forward_inference, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, weight_space_size, nullptr, nullptr); return; } inline void engine_ext::rnn_get_scratchpad_workspace_size( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size) { *workspace_size = 0; *scratchpad_size = 0; rnn_forward_internal(desc, kind, src_desc, nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, nullptr, workspace_size, scratchpad_size); return; } inline sycl::event engine_ext::async_rnn_forward( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { return rnn_forward_internal( desc, kind, src_desc, src, dst_desc, dst, iter_desc, src_iter, dst_iter, iter_c_desc, src_iter_c, dst_iter_c, weight_size, weight, workspace_size, workspace, scratchpad_size, scratchpad, false, nullptr, nullptr, nullptr); } inline sycl::event engine_ext::async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_memory_format_tag format_tag; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; void *last_layer_cache = nullptr; void *hidden_layer_cache = nullptr; sycl::event e; std::vector<int> offset(9, 0); std::vector<void *> data = { src, dst, (uint8_t *)src_iter + iter_desc.get_size(), nullptr, (uint8_t *)src_iter_c + iter_c_desc.get_size(), nullptr, (uint8_t *)weight + weight_size, (uint8_t *)workspace + workspace_size, diff_src, diff_dst, (uint8_t *)diff_src_iter + iter_desc.get_size(), (uint8_t *)diff_dst_iter + iter_desc.get_size(), (uint8_t *)diff_src_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_dst_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_weight + weight_size, scratchpad}; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { if (layer_size > 1) { last_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); data[8] = last_layer_cache; } e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); if (layer_size > 1) { data[8] = hidden_layer_cache; data[9] = last_layer_cache; e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1); _q->memcpy(diff_src, ((layer_size - 1) % 2 == 0) ? last_layer_cache : hidden_layer_cache, src_desc.get_size()); } } else { e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); } if (last_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(last_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline size_t engine_ext::get_dropout_state_size(){ #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::queue q; if(_random_engine_state_size == -1) { if(_q){ q = *_q; } else { q = dpct::get_current_device().default_queue(); } auto rand_engine = rng_engine_t(q, 0); _random_engine_state_size = oneapi::mkl::rng::get_state_size(rand_engine); } return _random_engine_state_size; #endif } inline size_t engine_ext::get_dropout_workspace_size(const memory_desc_ext &src_desc) { return src_desc.get_size(); } inline sycl::event engine_ext::async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size) { if (workspace_size < src_desc.get_size()) { throw std::runtime_error("async_dropout_forward: no sufficient workspace."); } float p = desc.get_probability(); if (p == 1.f) { return _q->memset(dst, 0, dst_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, src_desc, src, 0.f, dst_desc, dst); } float scale_factor = 1.f / (1.f - p); void *cache = workspace; memory_desc_ext rng_data_desc( ::dnnl::memory::desc(src_desc.get_dims(), ::dnnl::memory::data_type::s32, src_desc.get_strides())); if (src_desc.get_desc().get_data_type() != ::dnnl::memory::data_type::s32) { cache = allocate(rng_data_desc); } desc.generate(_q, _random_engine_state_size, rng_data_desc.get_element_num(), (std::int32_t *)cache); if (cache == workspace) { async_scale(scale_factor, src_desc, workspace); } else { async_reorder(scale_factor, rng_data_desc, cache, 0.f, src_desc, workspace); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC_1, ::dnnl::memory(src_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, src_desc.get_desc(), src_desc.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args); if (cache != workspace) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(cache, *_q); }); }); } return e; } inline sycl::event engine_ext::async_dropout_backward( dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size) { float p = desc.get_probability(); if (p == 1.f) { return _q->memset(diff_src, 0, diff_src_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, diff_dst_desc, diff_dst, 0.f, diff_src_desc, diff_src); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}, {DNNL_ARG_SRC_1, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(diff_src_desc.get_desc(), _eng, diff_src)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, diff_dst_desc.get_desc(), diff_dst_desc.get_desc(), diff_src_desc.get_desc()); return execute_primitive(primitive, execution_args); } } // namespace dnnl } // namespace dpct #endif // __DPCT_DNNL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/lapack_utils.hpp
//==---- lapack_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LAPACK_UTILS_HPP__ #define __DPCT_LAPACK_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace lapack { /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The symmetric matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The symmetric matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T> inline int sygvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, T *w, T *scratchpad, int scratchpad_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<T>(a); auto b_buffer = get_buffer<T>(b); auto w_buffer = get_buffer<T>(w); auto scratchpad_buffer = get_buffer<T>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class sygvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a, lda, b, ldb, w, scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes all the eigenvalues, and optionally, the eigenvectors of a complex /// generalized Hermitian positive-definite eigenproblem using a divide and /// conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The Hermitian matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The Hermitian matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [in] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename Tw> inline int hegvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, Tw *w, T *scratchpad, int scratchpad_size, int *info) { using Ty = typename DataType<T>::T2; #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<Ty>(a); auto b_buffer = get_buffer<Ty>(b); auto w_buffer = get_buffer<Tw>(w); auto scratchpad_buffer = get_buffer<Ty>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class hegvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, (Ty *)a, lda, (Ty *)b, ldb, w, (Ty *)scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes the Cholesky factorizations of a batch of symmetric (or Hermitian, /// for complex data) positive-definite matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrf_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, T *a[], int lda, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t lda_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->lda_info = lda; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrf_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->lda_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrf_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), (Ty **)a, &(matrix_info->lda_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrf_batch_scratchpad_size/potrf_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } /// Solves a batch of systems of linear equations with a Cholesky-factored /// symmetric (Hermitian) positive-definite coefficient matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] nrhs The number of right-hand sides. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b Array of pointers to matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrs_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, int nrhs, T *a[], int lda, T *b[], int ldb, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t nrhs_info; std::int64_t lda_info; std::int64_t ldb_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->nrhs_info = nrhs; matrix_info->lda_info = lda; matrix_info->ldb_info = ldb; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrs_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), &(matrix_info->lda_info), &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrs_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), (Ty **)a, &(matrix_info->lda_info), (Ty **)b, &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrs_batch_scratchpad_size/potrs_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } namespace detail { template <template <typename> typename functor_t, typename... args_t> inline int lapack_shim(sycl::queue &q, library_data_t a_type, int *info, std::string const &lapack_api_name, args_t &&...args) { auto handle_lapack_exception = [&](const oneapi::mkl::lapack::exception &e) { std::cerr << "Unexpected exception caught during call to LAPACK API: " << lapack_api_name << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl << "detail: " << e.detail() << std::endl; if (e.info() < std::numeric_limits<int>::min() || e.info() > std::numeric_limits<int>::max()) { throw std::runtime_error("e.info() exceeds the limit of int type"); } int info_val = static_cast<int>(e.info()); if (info) dpct::detail::dpct_memcpy(q, info, &info_val, sizeof(int), memcpy_direction::host_to_device) .wait(); return 1; }; try { switch (a_type) { case library_data_t::real_float: { functor_t<float>()(std::forward<args_t>(args)...); break; } case library_data_t::real_double: { functor_t<double>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_float: { functor_t<std::complex<float>>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_double: { functor_t<std::complex<double>>()(std::forward<args_t>(args)...); break; } default: throw std::runtime_error("the data type is unsupported"); } } catch (oneapi::mkl::lapack::batch_error const &be) { try { std::rethrow_exception(be.exceptions()[0]); } catch (oneapi::mkl::lapack::exception &e) { return handle_lapack_exception(e); } } catch (oneapi::mkl::lapack::exception const &e) { return handle_lapack_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; if (info) dpct::detail::dpct_memset(q, info, 0, sizeof(int)).wait(); return 1; } return 0; } template <typename T> class working_memory { public: working_memory(std::size_t element_number, const sycl::queue &q) : _q(q) { _ptr = dpct::detail::dpct_malloc(element_number * sizeof(T), _q); } auto get_memory() { return dpct::detail::get_memory(reinterpret_cast<T *>(_ptr)); } auto get_ptr() { return _ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_ptr) { dpct::async_dpct_free({_ptr}, {_e}, _q); } } private: void *_ptr = nullptr; sycl::event _e; sycl::queue _q; }; std::size_t byte_to_element_number(std::size_t size_in_byte, dpct::library_data_t element_type) { auto dv = std::lldiv( size_in_byte, dpct::detail::library_data_size[static_cast<unsigned int>(element_type)] / 8); if (dv.rem) { throw std::runtime_error( "size_in_byte is not divisible by the size of element (in bytes)"); } return dv.quot; } std::size_t element_number_to_byte(std::size_t size_in_element, dpct::library_data_t element_type) { auto dv = std::lldiv( dpct::detail::library_data_size[static_cast<unsigned int>(element_type)], 8); if (dv.rem) { throw std::runtime_error( "the size of element (in bits) is not divisible by 8"); } return size_in_element * dv.quot; } inline oneapi::mkl::jobsvd char2jobsvd(signed char job) { switch (job) { case 'A': return oneapi::mkl::jobsvd::vectors; case 'S': return oneapi::mkl::jobsvd::somevec; case 'O': return oneapi::mkl::jobsvd::vectorsina; case 'N': return oneapi::mkl::jobsvd::novec; default: throw std::runtime_error("the job type is unsupported"); } } template <typename T> struct getrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::getrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct getrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrf(q, m, n, a_data, lda, ipiv_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrs_impl { void operator()(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); std::int64_t device_ws_size = oneapi::mkl::lapack::getrs_scratchpad_size<T>( q, trans, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::getrs(q, trans, n, nrhs, a_data, lda, ipiv_data, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct geqrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::geqrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct geqrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto tau_data = dpct::detail::get_memory(reinterpret_cast<T *>(tau)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::geqrf(q, m, n, a_data, lda, tau_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrfnp_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::int64_t a_stride = m * lda; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrfnp_batch(q, m, n, a_data, lda, a_stride, 1, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct gesvd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::gesvd_scratchpad_size<T>( q, jobu, jobvt, m, n, lda, ldu, ldvt); } }; template <typename T> struct ElementType { using value_tpye = T; }; template <typename T> struct ElementType<std::complex<T>> { using value_tpye = T; }; template <typename T> struct gesvd_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto s_data = dpct::detail::get_memory( reinterpret_cast<typename ElementType<T>::value_tpye *>(s)); auto u_data = dpct::detail::get_memory(reinterpret_cast<T *>(u)); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::gesvd(q, jobu, jobvt, m, n, a_data, lda, s_data, u_data, ldu, vt_data, ldvt, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct gesvd_conj_impl : public gesvd_impl<T> { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using base = gesvd_impl<T>; base::operator()(q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); oneapi::mkl::blas::row_major::imatcopy(q, oneapi::mkl::transpose::conjtrans, n, n, T(1.0f), vt_data, ldvt, ldvt); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct potrf_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::potrf_scratchpad_size<T>(q, uplo, n, lda); } }; template <typename T> struct potrf_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::potrf(q, uplo, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct potrs_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { std::int64_t device_ws_size = oneapi::mkl::lapack::potrs_scratchpad_size<T>( q, uplo, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::potrs(q, uplo, n, nrhs, a_data, lda, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct value_type_trait { using value_type = T; }; template <typename T> struct value_type_trait<std::complex<T>> { using value_type = T; }; template <typename T> auto lamch_s() { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else if constexpr (std::is_same_v<T, float>) { return slamch("S"); } else if constexpr (std::is_same_v<T, double>) { return dlamch("S"); } throw std::runtime_error("the type is unsupported"); #endif } #define DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ device_ws_size = oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ device_ws_size = oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) #define DISPATCH_FLOAT_FOR_CALCULATION(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) template <typename T> struct syheevx_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evx_scratchpad_size<T>, q, jobz, range, uplo, n, lda, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> constexpr library_data_t get_library_data_t_from_type() { if constexpr (std::is_same_v<T, float>) { return library_data_t::real_float; } else if constexpr (std::is_same_v<T, double>) { return library_data_t::real_double; } else if constexpr (std::is_same_v<T, sycl::float2> || std::is_same_v<T, std::complex<float>>) { return library_data_t::complex_float; } else if constexpr (std::is_same_v<T, sycl::double2> || std::is_same_v<T, std::complex<double>>) { return library_data_t::complex_double; } throw std::runtime_error("the type is unsupported"); } template <typename T> struct syheevx_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(evx, q, jobz, range, uplo, n, a_data, lda, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvx_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvx_scratchpad_size<T>, q, itype, jobz, range, uplo, n, lda, ldb, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> struct syhegvx_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(gvx, q, itype, jobz, range, uplo, n, a_data, lda, b_data, ldb, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvd_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvd_scratchpad_size<T>, q, itype, jobz, uplo, n, lda, ldb); } }; template <typename T> struct syhegvd_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(gvd, q, itype, jobz, uplo, n, a_data, lda, b_data, ldb, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; oneapi::mkl::compz job2compz(const oneapi::mkl::job &job) { oneapi::mkl::compz ret; if (job == oneapi::mkl::job::novec) { ret = oneapi::mkl::compz::novectors; } else if (job == oneapi::mkl::job::vec) { ret = oneapi::mkl::compz::vectors; } else { throw std::runtime_error("the job type is unsupported"); } return ret; } template <typename T> struct syheev_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(ev_scratchpad_size<T>, q, jobz, uplo, n, lda); #endif } }; template <typename T> struct syheev_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(ev, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct syheevd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evd_scratchpad_size<T>, q, jobz, uplo, n, lda); } }; template <typename T> struct syheevd_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(evd, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; #undef DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE #undef DISPATCH_FLOAT_FOR_CALCULATION template <typename T> struct trtri_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else device_ws_size = oneapi::mkl::lapack::trtri_scratchpad_size<T>(q, uplo, diag, n, lda); #endif } }; template <typename T> struct trtri_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::trtri(q, uplo, diag, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; } // namespace detail /// Computes the size of workspace memory of getrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int getrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::getrf_scratchpad_size_impl>( q, a_type, nullptr, "getrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the LU factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by L and U. The unit /// diagonal elements of L are not stored. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] ipiv The pivot indices. If \p ipiv is nullptr, non-pivoting /// LU factorization is computed. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); if (ipiv == nullptr) { return detail::lapack_shim<detail::getrfnp_impl>( q, a_type, info, "getrfnp_batch", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); } return detail::lapack_shim<detail::getrf_impl>( q, a_type, info, "getrf", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); #endif } /// Solves a system of linear equations with a LU-factored square coefficient /// matrix, with multiple right-hand sides. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] trans Indicates the form of the linear equation. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in] a The input matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ipiv The pivot indices. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrs(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::getrs_impl>( q, a_type, info, "getrs_scratchpad_size/getrs", q, trans, n, nrhs, a_type, a, lda, ipiv, b_type, b, ldb, info); } /// Computes the size of workspace memory of geqrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int geqrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::geqrf_scratchpad_size_impl>( q, a_type, nullptr, "geqrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the QR factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] tau_type The data type of the array tau. /// \param [in] tau The array contains scalars that define elementary reflectors /// for the matrix Q in its decomposition in a product of elementary reflectors. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int geqrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::geqrf_impl>( q, a_type, info, "geqrf", q, m, n, a_type, a, lda, tau_type, tau, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu_enum, jobvt_enum, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] host_ws_size The host workspace size as a number of elements /// of type \param a_type. Currently the value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, int *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } std::size_t device_ws_size_64; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu, jobvt, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_64); *device_ws_size = device_ws_size_64; return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::gesvd_impl>( q, a_type, info, "gesvd", q, jobu_enum, jobvt_enum, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec. /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } detail::lapack_shim<detail::gesvd_conj_impl>( q, a_type, info, "gesvd", q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); return 0; } /// Computes the size of workspace memory of potrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int potrf_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::potrf_scratchpad_size_impl>( q, a_type, nullptr, "potrf_scratchpad_size", q, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the Cholesky factorization of a symmetric (Hermitian) /// positive-definite matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrf(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::potrf_impl>( q, a_type, info, "potrf", q, uplo, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); } /// Solves a system of linear equations with a Cholesky-factored symmetric /// (Hermitian) positive-definite coefficient matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrs(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::potrs_impl>( q, a_type, info, "potrs_scratchpad_size/potrs", q, uplo, n, nrhs, a_type, a, lda, b_type, b, ldb, info); } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, a_type, nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, vl, vu, il, iu, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheevx_impl>( q, a_type, info, "syevx/heevx", q, compz_jobz, range, uplo, n, a_type, a, lda, vl, vu, il, iu, m, w_type, w, device_ws, device_ws_size_in_element_number, info); q.wait(); return ret; } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syheevx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevx/heevx", q, compz_jobz, range, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, &vl, &vu, il, iu, &m64, detail::get_library_data_t_from_type<ValueT>(), w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvx/hegvx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syhegvx_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, int ldb, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvx_scratchpad_size/hegvx_scratchpad_size", q, itype, compz_jobz, range, uplo, n, lda, ldb, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a real /// generalized symmetric/Hermitian definite eigenproblem. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvx(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syhegvx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvx/hegvx", q, itype, compz_jobz, range, uplo, n, a, lda, b, ldb, &vl, &vu, il, iu, &m64, w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvd/hegvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syhegvd_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int ldb, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvd_scratchpad_size/hegvd_scratchpad_size", q, itype, jobz, uplo, n, lda, ldb, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric/Hermitian definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvd(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syhegvd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvd/hegvd", q, itype, jobz, uplo, n, a, lda, b, ldb, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syev/heev function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheev_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int *device_ws_size) { std::size_t device_ws_size_tmp; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheev_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syev_scratchpad_size/heev_scratchpad_size", q, compz_jobz, uplo, n, lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /// or Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheev(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); return detail::lapack_shim<detail::syheev_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syev/heev", q, compz_jobz, uplo, n, a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, a_type, nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::syheevd_impl>( q, a_type, info, "syevd/heevd", q, jobz, uplo, n, a_type, a, lda, w, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, T *a, std::int64_t lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syheevd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevd/heevd", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of trtri function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int trtri_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::trtri_scratchpad_size_impl>( q, a_type, nullptr, "trtri_scratchpad_size", q, uplo, diag, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the inverse of a triangular matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// the inverse matrix of A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int trtri(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::trtri_impl>( q, a_type, info, "trtri", q, uplo, diag, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); #endif } } // namespace lapack } // namespace dpct #endif // __DPCT_LAPACK_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/fft_utils.hpp
//==---- fft_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FFT_UTILS_HPP__ #define __DPCT_FFT_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <optional> #include <utility> #include "lib_common_utils.hpp" namespace dpct { namespace fft { /// An enumeration type to describe the FFT direction is forward or backward. enum fft_direction : int { forward = 0, backward }; /// An enumeration type to describe the types of FFT input and output data. enum fft_type : int { real_float_to_complex_float = 0, complex_float_to_real_float, real_double_to_complex_double, complex_double_to_real_double, complex_float_to_complex_float, complex_double_to_complex_double, }; /// A class to perform FFT calculation. class fft_engine { public: /// Default constructor. fft_engine() {} /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, library_data_t input_type, long long *onembed, long long ostride, long long odist, library_data_t output_type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<long long>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, library_data_t input_type, int *onembed, int ostride, int odist, library_data_t output_type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<int>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n1, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(1); _n[0] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 1; _batch = batch; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(2); _n[0] = n2; _n[1] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 2; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(3); _n[0] = n3; _n[1] = n2; _n[2] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 3; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Create the class for calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n1, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n1, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n3, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, dim, n, inembed, istride, idist, onembed, ostride, odist, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate FFT without commit any config. static fft_engine *create() { fft_engine *engine = new fft_engine(); return engine; } /// Destroy the class for calculate FFT. /// \param [in] engine Pointer returned from fft_engine::craete. static void destroy(fft_engine *engine) { delete engine; } #ifdef __INTEL_MKL__ /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 1-D FFT. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If it is not set, forward direction(if current FFT is /// complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n1, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n1, type, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 2-D FFT. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 3-D FFT. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n3, int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n3, n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } #endif /// Execute the FFT calculation. /// \param [in] input Pointer to the input data. /// \param [out] output Pointer to the output data. /// \param [in] direction The FFT direction. template <typename input_t, typename output_t> void compute(input_t *input, output_t *output, fft_direction direction) { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } else if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } } template <> void compute(float *input, sycl::float2 *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(sycl::float2 *input, float *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(double *input, sycl::double2 *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::double2 *input, double *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::float2 *input, sycl::float2 *output, fft_direction direction) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } template <> void compute(sycl::double2 *input, sycl::double2 *output, fft_direction direction) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } /// Setting the user's SYCL queue for calculation. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { _q = q; } #ifdef __INTEL_MKL__ /// Setting whether to use external or internal workspace. /// \param [in] flag True means using internal workspace. False means using /// external workspace. void use_internal_workspace(bool flag = true) { _use_external_workspace = !flag; } /// Specify the external workspace. /// \param [in] ptr Pointer to the workspace. void set_workspace(void *ptr) { if (!_use_external_workspace) { return; } if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sc->set_workspace(data); } } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dc->set_workspace(data); } } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sr->set_workspace(data); } } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dr->set_workspace(data); } } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } #endif /// Get the workspace size. /// \param [out] scratchpad_size Workspace size in bytes. void get_workspace_size(size_t *scratchpad_size) { if (scratchpad_size) { *scratchpad_size = _workspace_bytes; } } private: static std::pair<library_data_t, library_data_t> fft_type_to_data_type(fft_type type) { switch (type) { case fft_type::real_float_to_complex_float: { return std::make_pair(library_data_t::real_float, library_data_t::complex_float); } case fft_type::complex_float_to_real_float: { return std::make_pair(library_data_t::complex_float, library_data_t::real_float); } case fft_type::real_double_to_complex_double: { return std::make_pair(library_data_t::real_double, library_data_t::complex_double); } case fft_type::complex_double_to_real_double: { return std::make_pair(library_data_t::complex_double, library_data_t::real_double); } case fft_type::complex_float_to_complex_float: { return std::make_pair(library_data_t::complex_float, library_data_t::complex_float); } case fft_type::complex_double_to_complex_double: { return std::make_pair(library_data_t::complex_double, library_data_t::complex_double); } } } void config_and_commit_basic() { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { _desc_sc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_sc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_sc->commit(*_q); #endif } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { _desc_dc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_dc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_dc->commit(*_q); #endif } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { _desc_sr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_sr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); #endif } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { _desc_dr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_dr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); #endif } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } void config_and_commit_advanced() { #ifdef __INTEL_MKL__ #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); \ if (_use_external_workspace) { \ DESC->set_value(oneapi::mkl::dft::config_param::WORKSPACE, \ oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); \ } \ if (_is_estimate_call) { \ if (_q->get_device().is_gpu()) { \ DESC->get_value( \ oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, \ &_workspace_estimate_bytes); \ } \ } else { \ DESC->commit(*_q); \ if (_is_estimate_call) { \ DESC->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, \ &_workspace_bytes); \ } \ } \ } #else #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::NOT_INPLACE); \ DESC->commit(*_q); \ } #endif if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { CONFIG_AND_COMMIT(_desc_sc, SINGLE, COMPLEX, float); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { CONFIG_AND_COMMIT(_desc_dc, DOUBLE, COMPLEX, double); } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { CONFIG_AND_COMMIT(_desc_sr, SINGLE, REAL, float); } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { CONFIG_AND_COMMIT(_desc_dr, DOUBLE, REAL, double); } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } #undef CONFIG_AND_COMMIT } template <typename T> void init(int dim, T *n, T *inembed, T istride, T idist, library_data_t input_type, T *onembed, T ostride, T odist, library_data_t output_type, T batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement) { if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } _n.resize(dim); _inembed.resize(dim); _onembed.resize(dim); _input_type = input_type; _output_type = output_type; for (int i = 0; i < dim; i++) { _n[i] = n[i]; } if (inembed && onembed) { for (int i = 0; i < dim; i++) { _inembed[i] = inembed[i]; _onembed[i] = onembed[i]; } _istride = istride; _ostride = ostride; if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double)) { _fwd_dist = idist; _bwd_dist = odist; } else if ((_output_type == library_data_t::real_float && _input_type == library_data_t::complex_float) || (_output_type == library_data_t::real_double && _input_type == library_data_t::complex_double)) { _fwd_dist = odist; _bwd_dist = idist; } else { if (_is_user_specified_dir_and_placement && (_direction == fft_direction::backward)) { _fwd_dist = odist; _bwd_dist = idist; } else { _fwd_dist = idist; _bwd_dist = odist; } } } else { _is_basic = true; } _batch = batch; _dim = dim; if (_is_basic) config_and_commit_basic(); else config_and_commit_advanced(); } template <class Desc_t> void set_stride_advanced(std::shared_ptr<Desc_t> desc) { if (_dim == 1) { std::int64_t input_stride[2] = {0, _istride}; std::int64_t output_stride[2] = {0, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 2) { std::int64_t input_stride[3] = {0, _inembed[1] * _istride, _istride}; std::int64_t output_stride[3] = {0, _onembed[1] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 3) { std::int64_t input_stride[4] = {0, _inembed[2] * _inembed[1] * _istride, _inembed[2] * _istride, _istride}; std::int64_t output_stride[4] = {0, _onembed[2] * _onembed[1] * _ostride, _onembed[2] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } } template <class Desc_t> void swap_distance(std::shared_ptr<Desc_t> desc) { desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _bwd_dist); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _fwd_dist); std::int64_t temp = _bwd_dist; _bwd_dist = _fwd_dist; _fwd_dist = temp; } template <bool Is_inplace, class Desc_t> void set_stride_and_distance_basic(std::shared_ptr<Desc_t> desc) { std::int64_t forward_distance = 0; std::int64_t backward_distance = 0; #define SET_STRIDE \ { \ if (_direction == fft_direction::forward) { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ real_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ complex_stride); \ } else { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ complex_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ real_stride); \ } \ } if (_dim == 1) { if constexpr (Is_inplace) { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = 2 * (_n[0] / 2 + 1); backward_distance = _n[0] / 2 + 1; } else { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = _n[0]; backward_distance = _n[0] / 2 + 1; } } else if (_dim == 2) { if constexpr (Is_inplace) { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, 2 * (_n[1] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * 2 * (_n[1] / 2 + 1); backward_distance = _n[0] * (_n[1] / 2 + 1); } else { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, _n[1], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1]; backward_distance = _n[0] * (_n[1] / 2 + 1); } } else if (_dim == 3) { if constexpr (Is_inplace) { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * 2 * (_n[2] / 2 + 1), 2 * (_n[2] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * 2 * (_n[2] / 2 + 1); backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } else { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * _n[2], _n[2], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * _n[2]; backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } } #undef SET_STRIDE desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, forward_distance); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, backward_distance); } #define COMPUTE(DESC) \ { \ if (_is_inplace) { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input); \ } \ } else { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ auto data_output = \ dpct::detail::get_memory(reinterpret_cast<T *>(output)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input, data_output); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input, data_output); \ } \ } \ } template <class T, oneapi::mkl::dft::precision Precision> void compute_complex(T *input, T *output, fft_direction direction) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The complex domain descriptor need different config values if the // FFT direction or placement is different. // Here we check the conditions, and new config values are set and // re-committed if needed. if (direction != _direction || is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { if (direction != _direction) { swap_distance(_desc_sc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_sc->commit(*_q); } else { if (direction != _direction) { swap_distance(_desc_dc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_dc->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sc); } else { COMPUTE(_desc_dc); } } template <class T, oneapi::mkl::dft::precision Precision> void compute_real(T *input, T *output) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The real domain descriptor need different config values if the // FFT placement is different. // Here we check the condition, and new config values are set and // re-committed if needed. if (is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_sr); } else { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); } else { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_dr); } else { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sr); } else { COMPUTE(_desc_dr); } } #undef COMPUTE private: sycl::queue *_q = nullptr; int _dim; std::vector<std::int64_t> _n; std::vector<std::int64_t> _inembed; std::int64_t _istride; std::int64_t _fwd_dist; library_data_t _input_type; std::vector<std::int64_t> _onembed; std::int64_t _ostride; std::int64_t _bwd_dist; library_data_t _output_type; std::int64_t _batch = 1; bool _is_basic = false; bool _is_inplace = false; fft_direction _direction = fft_direction::forward; bool _is_user_specified_dir_and_placement = false; bool _use_external_workspace = false; void *_external_workspace_ptr = nullptr; size_t _workspace_bytes = 0; bool _is_estimate_call = false; size_t _workspace_estimate_bytes = 0; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>> _desc_sr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>> _desc_dr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_sc; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_dc; }; using fft_engine_ptr = fft_engine *; } // namespace fft } // namespace dpct #endif // __DPCT_FFT_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/lib_common_utils.hpp
//==---- lib_common_utils.hpp ---------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LIB_COMMON_UTILS_HPP__ #define __DPCT_LIB_COMMON_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { namespace detail { template <typename T> inline auto get_memory(T *x) { #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<std::remove_cv_t<T>>(x); #else return x; #endif } template <typename T> inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) { using Ty = typename DataType<T>::T2; Ty s_h; detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), automatic).wait(); return s_h; } } enum class version_field : int { major, minor, update, patch }; /// Returns the requested field of Intel(R) oneAPI Math Kernel Library version. /// \param field The version information field (major, minor, update or patch). /// \param result The result value. inline void mkl_get_version(version_field field, int *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else MKLVersion version; mkl_get_version(&version); if (version_field::major == field) { *result = version.MajorVersion; } else if (version_field::minor == field) { *result = version.MinorVersion; } else if (version_field::update == field) { *result = version.UpdateVersion; } else if (version_field::patch == field) { *result = 0; } else { throw std::runtime_error("unknown field"); } #endif } enum class library_data_t : unsigned char { real_float = 0, complex_float, real_double, complex_double, real_half, complex_half, real_bfloat16, complex_bfloat16, real_int4, complex_int4, real_uint4, complex_uint4, real_int8, complex_int8, real_uint8, complex_uint8, real_int16, complex_int16, real_uint16, complex_uint16, real_int32, complex_int32, real_uint32, complex_uint32, real_int64, complex_int64, real_uint64, complex_uint64, real_int8_4, real_int8_32, real_uint8_4, library_data_t_size }; namespace detail { template <typename ArgT> inline constexpr std::uint64_t get_type_combination_id(ArgT Val) { static_assert((unsigned char)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT"); return (std::uint64_t)Val; } template <typename FirstT, typename... RestT> inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal, RestT... RestVal) { static_assert((std::uint8_t)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(sizeof...(RestT) <= 8 && "Too many parameters"); static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT"); return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal); } inline constexpr std::size_t library_data_size[] = { 8 * sizeof(float), // real_float 8 * sizeof(std::complex<float>), // complex_float 8 * sizeof(double), // real_double 8 * sizeof(std::complex<double>), // complex_double 8 * sizeof(sycl::half), // real_half 8 * sizeof(std::complex<sycl::half>), // complex_half 16, // real_bfloat16 16 * 2, // complex_bfloat16 4, // real_int4 4 * 2, // complex_int4 4, // real_uint4 4 * 2, // complex_uint4 8, // real_int8 8 * 2, // complex_int8 8, // real_uint8 8 * 2, // complex_uint8 16, // real_int16 16 * 2, // complex_int16 16, // real_uint16 16 * 2, // complex_uint16 32, // real_int32 32 * 2, // complex_int32 32, // real_uint32 32 * 2, // complex_uint32 64, // real_int64 64 * 2, // complex_int64 64, // real_uint64 64 * 2, // complex_uint64 8, // real_int8_4 8, // real_int8_32 8 // real_uint8_4 }; } // namespace detail } // namespace dpct #endif // __DPCT_LIB_COMMON_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/sparse_utils.hpp
//==---- sparse_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_SPARSE_UTILS_HPP__ #define __DPCT_SPARSE_UTILS_HPP__ #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace sparse { /// Describes properties of a sparse matrix. /// The properties are matrix type, diag, uplo and index base. class matrix_info { public: /// Matrix types are: /// ge: General matrix /// sy: Symmetric matrix /// he: Hermitian matrix /// tr: Triangular matrix enum class matrix_type : int { ge = 0, sy, he, tr }; auto get_matrix_type() const { return _matrix_type; } auto get_diag() const { return _diag; } auto get_uplo() const { return _uplo; } auto get_index_base() const { return _index_base; } void set_matrix_type(matrix_type mt) { _matrix_type = mt; } void set_diag(oneapi::mkl::diag d) { _diag = d; } void set_uplo(oneapi::mkl::uplo u) { _uplo = u; } void set_index_base(oneapi::mkl::index_base ib) { _index_base = ib; } private: matrix_type _matrix_type = matrix_type::ge; oneapi::mkl::diag _diag = oneapi::mkl::diag::nonunit; oneapi::mkl::uplo _uplo = oneapi::mkl::uplo::upper; oneapi::mkl::index_base _index_base = oneapi::mkl::index_base::zero; }; /// Computes a CSR format sparse matrix-dense vector product. /// y = alpha * op(A) * x + beta * y /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] num_rows Number of rows of the matrix A. /// \param [in] num_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] x Data of the vector x. /// \param [in] beta Scaling factor for the vector x. /// \param [in, out] y Data of the vector y. template <typename T> void csrmv(sycl::queue &queue, oneapi::mkl::transpose trans, int num_rows, int num_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *x, const T *beta, T *y) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, num_rows, num_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(x))); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::optimize_gemv(queue, trans, *sparse_matrix_handle); oneapi::mkl::sparse::gemv(queue, trans, alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::sy: { oneapi::mkl::sparse::symv(queue, info->get_uplo(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::tr: { oneapi::mkl::sparse::optimize_trmv(queue, info->get_uplo(), trans, info->get_diag(), *sparse_matrix_handle); oneapi::mkl::sparse::trmv(queue, info->get_uplo(), trans, info->get_diag(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } default: throw std::runtime_error( "the spmv does not support matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } /// Computes a CSR format sparse matrix-dense matrix product. /// C = alpha * op(A) * B + beta * C /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] sparse_rows Number of rows of the matrix A. /// \param [in] dense_cols Number of columns of the matrix B or C. /// \param [in] sparse_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] b Data of the matrix B. /// \param [in] ldb Leading dimension of the matrix B. /// \param [in] beta Scaling factor for the matrix B. /// \param [in, out] c Data of the matrix C. /// \param [in] ldc Leading dimension of the matrix C. template <typename T> void csrmm(sycl::queue &queue, oneapi::mkl::transpose trans, int sparse_rows, int dense_cols, int sparse_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *b, int ldb, const T *beta, T *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, sparse_rows, sparse_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(b))); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::gemm(queue, oneapi::mkl::layout::row_major, trans, oneapi::mkl::transpose::nontrans, alpha_value, *sparse_matrix_handle, data_b, dense_cols, ldb, beta_value, data_c, ldc); break; } default: throw std::runtime_error( "the csrmm does not support matrix_info::matrix_type::sy, " "matrix_info::matrix_type::tr and matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Saving the optimization information for solving a system of linear /// equations. class optimize_info { public: /// Constructor optimize_info() { oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); } /// Destructor ~optimize_info() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destructor. /// \param [in] e The event which the destructor depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } private: oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; }; #endif #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Performs internal optimizations for solving a system of linear equations for /// a CSR format sparse matrix. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the sparse matrix. /// \param [in] row_col Number of rows of the sparse matrix. /// \param [in] info Matrix info of the sparse matrix. /// \param [in] val An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] optimize_info The result of the optimizations. template <typename T> void optimize_csrsv(sycl::queue &queue, oneapi::mkl::transpose trans, int row_col, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, std::shared_ptr<optimize_info> optimize_info) { using Ty = typename dpct::DataType<T>::T2; auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, optimize_info->get_matrix_handle(), row_col, row_col, info->get_index_base(), data_row_ptr, data_col_ind, data_val); if (info->get_matrix_type() != matrix_info::matrix_type::tr) return; #ifndef DPCT_USM_LEVEL_NONE sycl::event e; e = #endif oneapi::mkl::sparse::optimize_trsv(queue, info->get_uplo(), trans, info->get_diag(), optimize_info->get_matrix_handle()); #ifndef DPCT_USM_LEVEL_NONE optimize_info->add_dependency(e); #endif } #endif class sparse_matrix_desc; using sparse_matrix_desc_t = std::shared_ptr<sparse_matrix_desc>; /// Structure for describe a dense vector class dense_vector_desc { public: dense_vector_desc(std::int64_t ele_num, void *value, library_data_t value_type) : _ele_num(ele_num), _value(value), _value_type(value_type) {} void get_desc(std::int64_t *ele_num, const void **value, library_data_t *value_type) const noexcept { *ele_num = _ele_num; *value = _value; *value_type = _value_type; } void get_desc(std::int64_t *ele_num, void **value, library_data_t *value_type) const noexcept { get_desc(ele_num, const_cast<const void **>(value), value_type); } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } private: std::int64_t _ele_num; void *_value; library_data_t _value_type; }; /// Structure for describe a dense matrix class dense_matrix_desc { public: dense_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t leading_dim, void *value, library_data_t value_type, oneapi::mkl::layout layout) : _row_num(row_num), _col_num(col_num), _leading_dim(leading_dim), _value(value), _value_type(value_type), _layout(layout) {} void get_desc(std::int64_t *row_num, std::int64_t *col_num, std::int64_t *leading_dim, void **value, library_data_t *value_type, oneapi::mkl::layout *layout) const noexcept { *row_num = _row_num; *col_num = _col_num; *leading_dim = _leading_dim; *value = _value; *value_type = _value_type; *layout = _layout; } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } std::int64_t get_col_num() const noexcept { return _col_num; } std::int64_t get_leading_dim() const noexcept { return _leading_dim; } oneapi::mkl::layout get_layout() const noexcept { return _layout; } private: std::int64_t _row_num; std::int64_t _col_num; std::int64_t _leading_dim; void *_value; library_data_t _value_type; oneapi::mkl::layout _layout; }; /// Sparse matrix data format enum matrix_format : int { csr = 1, }; /// Sparse matrix attribute enum matrix_attribute : int { uplo = 0, diag }; #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Structure for describe a sparse matrix class sparse_matrix_desc { public: /// Constructor /// \param [out] desc The descriptor to be created /// \param [in] row_num Number of rows of the sparse matrix. /// \param [in] col_num Number of colums of the sparse matrix. /// \param [in] nnz Non-zero elements in the sparse matrix. /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr_type Data type of the \p row_ptr . /// \param [in] col_ind_type Data type of the \p col_ind . /// \param [in] base Indicates how input arrays are indexed. /// \param [in] value_type Data type of the \p value . /// \param [in] data_format The matrix data format. sparse_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t nnz, void *row_ptr, void *col_ind, void *value, library_data_t row_ptr_type, library_data_t col_ind_type, oneapi::mkl::index_base base, library_data_t value_type, matrix_format data_format) : _row_num(row_num), _col_num(col_num), _nnz(nnz), _row_ptr(row_ptr), _col_ind(col_ind), _value(value), _row_ptr_type(row_ptr_type), _col_ind_type(col_ind_type), _base(base), _value_type(value_type), _data_format(data_format) { if (_data_format != matrix_format::csr) { throw std::runtime_error("the sparse matrix data format is unsupported"); } oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); construct(); } /// Destructor ~sparse_matrix_desc() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destroy method. /// \param [in] e The event which the destroy method depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } /// Get the values saved in the descriptor /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. /// \param [out] row_ptr An array of length \p row_num + 1. /// \param [out] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] value An array containing the non-zero elements of the sparse matrix. /// \param [out] row_ptr_type Data type of the \p row_ptr . /// \param [out] col_ind_type Data type of the \p col_ind . /// \param [out] base Indicates how input arrays are indexed. /// \param [out] value_type Data type of the \p value . void get_desc(int64_t *row_num, int64_t *col_num, int64_t *nnz, void **row_ptr, void **col_ind, void **value, library_data_t *row_ptr_type, library_data_t *col_ind_type, oneapi::mkl::index_base *base, library_data_t *value_type) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; *row_ptr = _row_ptr; *col_ind = _col_ind; *value = _value; *row_ptr_type = _row_ptr_type; *col_ind_type = _col_ind_type; *base = _base; *value_type = _value_type; } /// Get the sparse matrix data format of this descriptor /// \param [out] format The matrix data format result void get_format(matrix_format *data_format) const noexcept { *data_format = _data_format; } /// Get the index base of this descriptor /// \param [out] base The index base result void get_base(oneapi::mkl::index_base *base) const noexcept { *base = _base; } /// Get the value pointer of this descriptor /// \param [out] value The value pointer result void get_value(void **value) const noexcept { *value = _value; } /// Set the value pointer of this descriptor /// \param [in] value The input value pointer void set_value(void *value) { // Assume the new data is different from the old data _value = value; construct(); } /// Get the size of the sparse matrix /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. void get_size(int64_t *row_num, int64_t *col_num, int64_t *nnz) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; } /// Set the sparse matrix attribute /// \param [in] attribute The attribute type /// \param [in] data The attribute value /// \param [in] data_size The data size of the attribute value void set_attribute(matrix_attribute attribute, const void *data, size_t data_size) { if (attribute == matrix_attribute::diag) { const oneapi::mkl::diag *diag_ptr = reinterpret_cast<const oneapi::mkl::diag *>(data); if (*diag_ptr == oneapi::mkl::diag::unit) { _diag = oneapi::mkl::diag::unit; } else if (*diag_ptr == oneapi::mkl::diag::nonunit) { _diag = oneapi::mkl::diag::nonunit; } else { throw std::runtime_error("unsupported diag value"); } } else if (attribute == matrix_attribute::uplo) { const oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<const oneapi::mkl::uplo *>(data); if (*uplo_ptr == oneapi::mkl::uplo::upper) { _uplo = oneapi::mkl::uplo::upper; } else if (*uplo_ptr == oneapi::mkl::uplo::lower) { _uplo = oneapi::mkl::uplo::lower; } else { throw std::runtime_error("unsupported uplo value"); } } else { throw std::runtime_error("unsupported attribute"); } } /// Get the sparse matrix attribute /// \param [out] attribute The attribute type /// \param [out] data The attribute value /// \param [out] data_size The data size of the attribute value void get_attribute(matrix_attribute attribute, void *data, size_t data_size) const { if (attribute == matrix_attribute::diag) { oneapi::mkl::diag *diag_ptr = reinterpret_cast<oneapi::mkl::diag *>(data); if (_diag.has_value()) { *diag_ptr = _diag.value(); } else { *diag_ptr = oneapi::mkl::diag::nonunit; } } else if (attribute == matrix_attribute::uplo) { oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<oneapi::mkl::uplo *>(data); if (_uplo.has_value()) { *uplo_ptr = _uplo.value(); } else { *uplo_ptr = oneapi::mkl::uplo::lower; } } else { throw std::runtime_error("unsupported attribute"); } } /// Set the pointers for describing the sparse matrix /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. void set_pointers(void *row_ptr, void *col_ind, void *value) { // Assume the new data is different from the old data _row_ptr = row_ptr; _col_ind = col_ind; _value = value; construct(); } /// Get the diag attribute /// \return diag value std::optional<oneapi::mkl::diag> get_diag() const noexcept { return _diag; } /// Get the uplo attribute /// \return uplo value std::optional<oneapi::mkl::uplo> get_uplo() const noexcept { return _uplo; } private: template <typename index_t, typename value_t> void set_data() { auto data_row_ptr = dpct::detail::get_memory(reinterpret_cast<index_t *>(_row_ptr)); auto data_col_ind = dpct::detail::get_memory(reinterpret_cast<index_t *>(_col_ind)); auto data_value = dpct::detail::get_memory(reinterpret_cast<value_t *>(_value)); oneapi::mkl::sparse::set_csr_data(get_default_queue(), _matrix_handle, _row_num, _col_num, _base, data_row_ptr, data_col_ind, data_value); get_default_queue().wait(); } void construct() { std::uint64_t key = dpct::detail::get_type_combination_id( _row_ptr_type, _col_ind_type, _value_type); switch (key) { case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_float): { set_data<std::int32_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_double): { set_data<std::int32_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_float): { set_data<std::int32_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_double): { set_data<std::int32_t, std::complex<double>>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_float): { set_data<std::int64_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_double): { set_data<std::int64_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_float): { set_data<std::int64_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_double): { set_data<std::int64_t, std::complex<double>>(); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } std::int64_t _row_num; std::int64_t _col_num; std::int64_t _nnz; void *_row_ptr; void *_col_ind; void *_value; library_data_t _row_ptr_type; library_data_t _col_ind_type; oneapi::mkl::index_base _base; library_data_t _value_type; oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; matrix_format _data_format; std::optional<oneapi::mkl::uplo> _uplo; std::optional<oneapi::mkl::diag> _diag; }; namespace detail { #ifdef DPCT_USM_LEVEL_NONE #define SPARSE_CALL(X) \ do { \ X; \ } while (0) #else #define SPARSE_CALL(X) \ do { \ sycl::event e = X; \ a->add_dependency(e); \ } while (0) #endif template <typename Ty> inline void spmv_impl(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(x->get_value())); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y->get_value())); if (a->get_diag().has_value() && a->get_uplo().has_value()) { oneapi::mkl::sparse::optimize_trmv(queue, a->get_uplo().value(), trans, a->get_diag().value(), a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::trmv( queue, a->get_uplo().value(), trans, a->get_diag().value(), alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } else { oneapi::mkl::sparse::optimize_gemv(queue, trans, a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::gemv(queue, trans, alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } } template <typename Ty> inline void spmm_impl(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(b->get_value())); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c->get_value())); SPARSE_CALL(oneapi::mkl::sparse::gemm( queue, b->get_layout(), trans_a, trans_b, alpha_value, a->get_matrix_handle(), data_b, b->get_col_num(), b->get_leading_dim(), beta_value, data_c, c->get_leading_dim())); } #undef SPARSE_CALL } // namespace detail /// Computes a sparse matrix-dense vector product: y = alpha * op(a) * x + beta * y. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans Specifies operation on input matrix. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] x Specifies the dense vector x. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] y Specifies the dense vector y. /// \param [in] data_type Specifies the data type of \param a, \param x and \param y . inline void spmv(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y, library_data_t data_type) { switch (data_type) { case library_data_t::real_float: { detail::spmv_impl<float>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::real_double: { detail::spmv_impl<double>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_float: { detail::spmv_impl<std::complex<float>>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_double: { detail::spmv_impl<std::complex<double>>(queue, trans, alpha, a, x, beta, y); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a sparse matrix-dense matrix product: c = alpha * op(a) * op(b) + beta * c. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans_a Specifies operation on input matrix a. /// \param [in] trans_b Specifies operation on input matrix b. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] b Specifies the dense matrix b. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] c Specifies the dense matrix c. /// \param [in] data_type Specifies the data type of \param a, \param b and \param c . inline void spmm(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c, library_data_t data_type) { if (b->get_layout() != c->get_layout()) throw std::runtime_error("the layout of b and c are different"); switch (data_type) { case library_data_t::real_float: { detail::spmm_impl<float>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::real_double: { detail::spmm_impl<double>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_float: { detail::spmm_impl<std::complex<float>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_double: { detail::spmm_impl<std::complex<double>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } #endif } // namespace sparse } // namespace dpct #endif // __DPCT_SPARSE_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/device.hpp
//==---- device.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DEVICE_HPP__ #define __DPCT_DEVICE_HPP__ #include <sycl/sycl.hpp> #include <algorithm> #include <array> #include <cstring> #include <iostream> #include <mutex> #include <set> #include <sstream> #include <map> #include <vector> #include <thread> #if defined(__linux__) #include <unistd.h> #include <sys/syscall.h> #endif #if defined(_WIN64) #define NOMINMAX #include <windows.h> #endif namespace dpct { /// SYCL default exception handler inline auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught asynchronous SYCL exception:" << std::endl << e.what() << std::endl << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; } } }; typedef sycl::event *event_ptr; typedef sycl::queue *queue_ptr; typedef char *device_ptr; /// Destroy \p event pointed memory. /// /// \param event Pointer to the sycl::event address. static void destroy_event(event_ptr event) { delete event; } class device_info { public: // get interface const char *get_name() const { return _name; } char *get_name() { return _name; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() const { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } bool get_host_unified_memory() const { return _host_unified_memory; } int get_major_version() const { return _major; } int get_minor_version() const { return _minor; } int get_integrated() const { return _integrated; } int get_max_clock_frequency() const { return _frequency; } int get_max_compute_units() const { return _max_compute_units; } int get_max_work_group_size() const { return _max_work_group_size; } int get_max_sub_group_size() const { return _max_sub_group_size; } int get_max_work_items_per_compute_unit() const { return _max_work_items_per_compute_unit; } int get_max_register_size_per_work_group() const { return _max_register_size_per_work_group; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() const { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } size_t get_global_mem_size() const { return _global_mem_size; } size_t get_local_mem_size() const { return _local_mem_size; } /// Returns the maximum clock rate of device's global memory in kHz. If /// compiler does not support this API then returns default value 3200000 kHz. unsigned int get_memory_clock_rate() const { return _memory_clock_rate; } /// Returns the maximum bus width between device and memory in bits. If /// compiler does not support this API then returns default value 64 bits. unsigned int get_memory_bus_width() const { return _memory_bus_width; } uint32_t get_device_id() const { return _device_id; } std::array<unsigned char, 16> get_uuid() const { return _uuid; } // set interface void set_name(const char* name) { size_t length = strlen(name); if (length < 256) { std::memcpy(_name, name, length + 1); } else { std::memcpy(_name, name, 255); _name[255] = '\0'; } } void set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) { _max_work_item_sizes = max_work_item_sizes; for (int i = 0; i < 3; ++i) _max_work_item_sizes_i[i] = max_work_item_sizes[i]; } void set_host_unified_memory(bool host_unified_memory) { _host_unified_memory = host_unified_memory; } void set_major_version(int major) { _major = major; } void set_minor_version(int minor) { _minor = minor; } void set_integrated(int integrated) { _integrated = integrated; } void set_max_clock_frequency(int frequency) { _frequency = frequency; } void set_max_compute_units(int max_compute_units) { _max_compute_units = max_compute_units; } void set_global_mem_size(size_t global_mem_size) { _global_mem_size = global_mem_size; } void set_local_mem_size(size_t local_mem_size) { _local_mem_size = local_mem_size; } void set_max_work_group_size(int max_work_group_size) { _max_work_group_size = max_work_group_size; } void set_max_sub_group_size(int max_sub_group_size) { _max_sub_group_size = max_sub_group_size; } void set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) { _max_work_items_per_compute_unit = max_work_items_per_compute_unit; } void set_max_nd_range_size(int max_nd_range_size[]) { for (int i = 0; i < 3; i++) { _max_nd_range_size[i] = max_nd_range_size[i]; _max_nd_range_size_i[i] = max_nd_range_size[i]; } } void set_memory_clock_rate(unsigned int memory_clock_rate) { _memory_clock_rate = memory_clock_rate; } void set_memory_bus_width(unsigned int memory_bus_width) { _memory_bus_width = memory_bus_width; } void set_max_register_size_per_work_group(int max_register_size_per_work_group) { _max_register_size_per_work_group = max_register_size_per_work_group; } void set_device_id(uint32_t device_id) { _device_id = device_id; } void set_uuid(std::array<unsigned char, 16> uuid) { _uuid = std::move(uuid); } private: char _name[256]; sycl::id<3> _max_work_item_sizes; int _max_work_item_sizes_i[3]; bool _host_unified_memory = false; int _major; int _minor; int _integrated = 0; int _frequency; // Set estimated value 3200000 kHz as default value. unsigned int _memory_clock_rate = 3200000; // Set estimated value 64 bits as default value. unsigned int _memory_bus_width = 64; int _max_compute_units; int _max_work_group_size; int _max_sub_group_size; int _max_work_items_per_compute_unit; int _max_register_size_per_work_group; size_t _global_mem_size; size_t _local_mem_size; size_t _max_nd_range_size[3]; int _max_nd_range_size_i[3]; uint32_t _device_id; std::array<unsigned char, 16> _uuid; }; /// dpct device extension class device_ext : public sycl::device { typedef std::mutex mutex_type; public: device_ext() : sycl::device(), _ctx(*this) {} ~device_ext() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); } device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) { std::lock_guard<mutex_type> lock(m_mutex); init_queues(); } int is_native_atomic_supported() { return 0; } int get_major_version() const { int major, minor; get_version(major, minor); return major; } int get_minor_version() const { int major, minor; get_version(major, minor); return minor; } int get_max_compute_units() const { return get_device_info().get_max_compute_units(); } /// Return the maximum clock frequency of this device in KHz. int get_max_clock_frequency() const { return get_device_info().get_max_clock_frequency(); } int get_integrated() const { return get_device_info().get_integrated(); } int get_max_sub_group_size() const { return get_device_info().get_max_sub_group_size(); } int get_max_register_size_per_work_group() const { return get_device_info().get_max_register_size_per_work_group(); } int get_max_work_group_size() const { return get_device_info().get_max_work_group_size(); } int get_mem_base_addr_align() const { return get_info<sycl::info::device::mem_base_addr_align>(); } size_t get_global_mem_size() const { return get_device_info().get_global_mem_size(); } /// Get the number of bytes of free and total memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; } else { free_memory = get_info<sycl::ext::intel::info::device::free_memory>(); } #else std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const { device_info prop; prop.set_name(get_info<sycl::info::device::name>().c_str()); int major, minor; get_version(major, minor); prop.set_major_version(major); prop.set_minor_version(minor); prop.set_max_work_item_sizes( #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION<20220902) // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes is an enum class element get_info<sycl::info::device::max_work_item_sizes>()); #else // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by an int get_info<sycl::info::device::max_work_item_sizes<3>>()); #endif prop.set_host_unified_memory( this->has(sycl::aspect::usm_host_allocations)); prop.set_max_clock_frequency( get_info<sycl::info::device::max_clock_frequency>() * 1000); prop.set_max_compute_units( get_info<sycl::info::device::max_compute_units>()); prop.set_max_work_group_size( get_info<sycl::info::device::max_work_group_size>()); prop.set_global_mem_size( get_info<sycl::info::device::global_mem_size>()); prop.set_local_mem_size(get_info<sycl::info::device::local_mem_size>()); #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6) if (this->has(sycl::aspect::ext_intel_memory_clock_rate)) { unsigned int tmp = this->get_info<sycl::ext::intel::info::device::memory_clock_rate>(); if (tmp != 0) prop.set_memory_clock_rate(1000 * tmp); } if (this->has(sycl::aspect::ext_intel_memory_bus_width)) { prop.set_memory_bus_width( this->get_info<sycl::ext::intel::info::device::memory_bus_width>()); } if (this->has(sycl::aspect::ext_intel_device_id)) { prop.set_device_id( this->get_info<sycl::ext::intel::info::device::device_id>()); } if (this->has(sycl::aspect::ext_intel_device_info_uuid)) { prop.set_uuid( this->get_info<sycl::ext::intel::info::device::uuid>()); } #elif defined(_MSC_VER) && !defined(__clang__) #pragma message("get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value.") #else #warning "get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value." #endif size_t max_sub_group_size = 1; std::vector<size_t> sub_group_sizes = get_info<sycl::info::device::sub_group_sizes>(); for (const auto &sub_group_size : sub_group_sizes) { if (max_sub_group_size < sub_group_size) max_sub_group_size = sub_group_size; } prop.set_max_sub_group_size(max_sub_group_size); prop.set_max_work_items_per_compute_unit( get_info<sycl::info::device::max_work_group_size>()); int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; prop.set_max_nd_range_size(max_nd_range_size); // Estimates max register size per work group, feel free to update the value // according to device properties. prop.set_max_register_size_per_work_group(65536); out = prop; } device_info get_device_info() const { device_info prop; get_device_info(prop); return prop; } void reset() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); init_queues(); } sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue &out_of_order_queue() { return *_q_out_of_order; } sycl::queue &default_queue() { #ifdef DPCT_USM_LEVEL_NONE return out_of_order_queue(); #else return in_order_queue(); #endif // DPCT_USM_LEVEL_NONE } void queues_wait_and_throw() { std::unique_lock<mutex_type> lock(m_mutex); std::vector<std::shared_ptr<sycl::queue>> current_queues( _queues); lock.unlock(); for (const auto &q : current_queues) { q->wait_and_throw(); } // Guard the destruct of current_queues to make sure the ref count is safe. lock.lock(); } sycl::queue *create_queue(bool enable_exception_handler = false) { #ifdef DPCT_USM_LEVEL_NONE return create_out_of_order_queue(enable_exception_handler); #else return create_in_order_queue(enable_exception_handler); #endif // DPCT_USM_LEVEL_NONE } sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler, sycl::property::queue::in_order()); } sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler); } void destroy_queue(sycl::queue *&queue) { std::lock_guard<mutex_type> lock(m_mutex); _queues.erase(std::remove_if(_queues.begin(), _queues.end(), [=](const std::shared_ptr<sycl::queue> &q) -> bool { return q.get() == queue; }), _queues.end()); queue = nullptr; } void set_saved_queue(sycl::queue* q) { std::lock_guard<mutex_type> lock(m_mutex); _saved_queue = q; } sycl::queue *get_saved_queue() const { std::lock_guard<mutex_type> lock(m_mutex); return _saved_queue; } sycl::context get_context() const { return _ctx; } private: void clear_queues() { _queues.clear(); _q_in_order = _q_out_of_order = _saved_queue = nullptr; } void init_queues() { _q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); _q_out_of_order = create_queue_impl(true); _saved_queue = &default_queue(); } /// Caller should acquire resource \p m_mutex before calling this function. template <class... Properties> sycl::queue *create_queue_impl(bool enable_exception_handler, Properties... properties) { sycl::async_handler eh = {}; if (enable_exception_handler) { eh = exception_handler; } _queues.push_back(std::make_shared<sycl::queue>( _ctx, *this, eh, sycl::property_list( #ifdef DPCT_PROFILING_ENABLED sycl::property::queue::enable_profiling(), #endif properties...))); return _queues.back().get(); } void get_version(int &major, int &minor) const { // Version string has the following format: // a. OpenCL<space><major.minor><space><vendor-specific-information> // b. <major.minor> std::string ver; ver = get_info<sycl::info::device::version>(); std::string::size_type i = 0; while (i < ver.size()) { if (isdigit(ver[i])) break; i++; } major = std::stoi(&(ver[i])); while (i < ver.size()) { if (ver[i] == '.') break; i++; } i++; minor = std::stoi(&(ver[i])); } sycl::queue *_q_in_order, *_q_out_of_order; sycl::queue *_saved_queue; sycl::context _ctx; std::vector<std::shared_ptr<sycl::queue>> _queues; mutable mutex_type m_mutex; }; static inline unsigned int get_tid() { #if defined(__linux__) return syscall(SYS_gettid); #elif defined(_WIN64) return GetCurrentThreadId(); #else #error "Only support Windows and Linux." #endif } /// device manager class dev_mgr { public: device_ext &current_device() { unsigned int dev_id=current_device_id(); check_id(dev_id); return *_devs[dev_id]; } device_ext &cpu_device() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); if (_cpu_device == -1) { throw std::runtime_error("no valid cpu device"); } else { return *_devs[_cpu_device]; } } device_ext &get_device(unsigned int id) const { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); return *_devs[id]; } unsigned int current_device_id() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); auto it=_thread2dev_map.find(get_tid()); if(it != _thread2dev_map.end()) return it->second; return DEFAULT_DEVICE_ID; } /// Select device with a device ID. /// \param [in] id The id of the device which can /// be obtained through get_device_id(const sycl::device). void select_device(unsigned int id) { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); _thread2dev_map[get_tid()]=id; } unsigned int device_count() { return _devs.size(); } unsigned int get_device_id(const sycl::device &dev) { unsigned int id = 0; for(auto dev_item : _devs) { if (*dev_item == dev) { break; } id++; } return id; } template <class DeviceSelector> std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { sycl::device selected_device = sycl::device(selector); unsigned int selected_device_id = get_device_id(selected_device); select_device(selected_device_id); } /// Returns the instance of device manager singleton. static dev_mgr &instance() { static dev_mgr d_m; return d_m; } dev_mgr(const dev_mgr &) = delete; dev_mgr &operator=(const dev_mgr &) = delete; dev_mgr(dev_mgr &&) = delete; dev_mgr &operator=(dev_mgr &&) = delete; private: mutable std::recursive_mutex m_mutex; dev_mgr() { sycl::device default_device = sycl::device(sycl::default_selector_v); _devs.push_back(std::make_shared<device_ext>(default_device)); std::vector<sycl::device> sycl_all_devs = sycl::device::get_devices(sycl::info::device_type::all); // Collect other devices except for the default device. if (default_device.is_cpu()) _cpu_device = 0; for (auto &dev : sycl_all_devs) { if (dev == default_device) { continue; } _devs.push_back(std::make_shared<device_ext>(dev)); if (_cpu_device == -1 && dev.is_cpu()) { _cpu_device = _devs.size() - 1; } } } void check_id(unsigned int id) const { if (id >= _devs.size()) { throw std::runtime_error("invalid device id"); } } std::vector<std::shared_ptr<device_ext>> _devs; /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current /// thread id in _thread2dev_map, which means default device should be used /// for the current thread. const unsigned int DEFAULT_DEVICE_ID = 0; /// thread-id to device-id map. std::map<unsigned int, unsigned int> _thread2dev_map; int _cpu_device = -1; }; /// Util function to get the default queue of current selected device depends on /// the USM config. Return the default out-of-ordered queue when USM-none is /// enabled, otherwise return the default in-ordered queue. static inline sycl::queue &get_default_queue() { return dev_mgr::instance().current_device().default_queue(); } /// Util function to get the default in-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_in_order_queue() { return dev_mgr::instance().current_device().in_order_queue(); } /// Util function to get the default out-of-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_out_of_order_queue() { return dev_mgr::instance().current_device().out_of_order_queue(); } /// Util function to get the id of current device in /// dpct device manager. static inline unsigned int get_current_device_id() { return dev_mgr::instance().current_device_id(); } /// Util function to get the current device. static inline device_ext &get_current_device() { return dev_mgr::instance().current_device(); } /// Util function to get a device by id. static inline device_ext &get_device(unsigned int id) { return dev_mgr::instance().get_device(id); } /// Util function to get the context of the default queue of current /// device in dpct device manager. static inline sycl::context get_default_context() { return dpct::get_current_device().get_context(); } /// Util function to get a CPU device. static inline device_ext &cpu_device() { return dev_mgr::instance().cpu_device(); } static inline unsigned int select_device(unsigned int id) { dev_mgr::instance().select_device(id); return id; } template <class DeviceSelector> static inline std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { dev_mgr::instance().select_device(selector); } static inline unsigned int get_device_id(const sycl::device &dev){ return dev_mgr::instance().get_device_id(dev); } /// Util function to check whether a device supports some kinds of sycl::aspect. inline void has_capability_or_fail(const sycl::device &dev, const std::initializer_list<sycl::aspect> &props) { for (const auto &it : props) { if (dev.has(it)) continue; switch (it) { case sycl::aspect::fp64: throw std::runtime_error("'double' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; case sycl::aspect::fp16: throw std::runtime_error("'half' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; default: #define __SYCL_ASPECT(ASPECT, ID) \ case sycl::aspect::ASPECT: \ return #ASPECT; #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID) #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE) auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string { switch (AspectNum) { #include <sycl/info/aspects.def> #include <sycl/info/aspects_deprecated.def> default: return "unknown aspect"; } }; #undef __SYCL_ASPECT_DEPRECATED_ALIAS #undef __SYCL_ASPECT_DEPRECATED #undef __SYCL_ASPECT throw std::runtime_error( "'" + getAspectNameStr(it) + "' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); } break; } } } // namespace dpct #endif // __DPCT_DEVICE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/memory.hpp
//==---- memory.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_HPP__ #define __DPCT_MEMORY_HPP__ #include "device.hpp" #include <sycl/sycl.hpp> #include <cassert> #include <cstdint> #include <cstring> #include <mutex> #include <unordered_map> #include <map> #include <utility> #include <thread> #include <type_traits> #if defined(__linux__) #include <sys/mman.h> #elif defined(_WIN64) #define NOMINMAX #include <windows.h> #else #error "Only support Windows and Linux." #endif namespace dpct { enum memcpy_direction { host_to_host, host_to_device, device_to_host, device_to_device, automatic }; enum memory_region { global = 0, // device global memory constant, // device constant memory local, // device local memory shared, // memory which can be accessed by host and device }; typedef uint8_t byte_t; /// Buffer type to be used in Memory Management runtime. typedef sycl::buffer<byte_t> buffer_t; /// Pitched 2D/3D memory data. class pitched_data { public: pitched_data() : pitched_data(nullptr, 0, 0, 0) {} pitched_data(void *data, size_t pitch, size_t x, size_t y) : _data(data), _pitch(pitch), _x(x), _y(y) {} void *get_data_ptr() { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_pitch() { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } size_t get_x() { return _x; } void set_x(size_t x) { _x = x; }; size_t get_y() { return _y; } void set_y(size_t y) { _y = y; } private: void *_data; size_t _pitch, _x, _y; }; namespace detail { class mem_mgr { mem_mgr() { // Reserved address space, no real memory allocation happens here. #if defined(__linux__) mapped_address_space = (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif defined(_WIN64) mapped_address_space = (byte_t *)VirtualAlloc( NULL, // NULL specified as the base address parameter mapped_region_size, // Size of allocation MEM_RESERVE, // Allocate reserved pages PAGE_NOACCESS); // Protection = no access #else #error "Only support Windows and Linux." #endif next_free = mapped_address_space; }; public: using buffer_id_t = int; struct allocation { buffer_t buffer; byte_t *alloc_ptr; size_t size; }; ~mem_mgr() { #if defined(__linux__) munmap(mapped_address_space, mapped_region_size); #elif defined(_WIN64) VirtualFree(mapped_address_space, 0, MEM_RELEASE); #else #error "Only support Windows and Linux." #endif }; mem_mgr(const mem_mgr &) = delete; mem_mgr &operator=(const mem_mgr &) = delete; mem_mgr(mem_mgr &&) = delete; mem_mgr &operator=(mem_mgr &&) = delete; /// Allocate void *mem_alloc(size_t size) { if (!size) return nullptr; std::lock_guard<std::mutex> lock(m_mutex); if (next_free + size > mapped_address_space + mapped_region_size) { throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool"); } // Allocation sycl::range<1> r(size); buffer_t buf(r); allocation A{buf, next_free, size}; // Map allocation to device pointer void *result = next_free; m_map.emplace(next_free + size, A); // Update pointer to the next free space. next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1); return result; } /// Deallocate void mem_free(const void *ptr) { if (!ptr) return; std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); m_map.erase(it); } /// map: device pointer -> allocation(buffer, alloc_ptr, size) allocation translate_ptr(const void *ptr) { std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); return it->second; } /// Check if the pointer represents device pointer or not. bool is_device_ptr(const void *ptr) const { std::lock_guard<std::mutex> lock(m_mutex); return (mapped_address_space <= ptr) && (ptr < mapped_address_space + mapped_region_size); } /// Returns the instance of memory manager singleton. static mem_mgr &instance() { static mem_mgr m; return m; } private: std::map<byte_t *, allocation> m_map; mutable std::mutex m_mutex; byte_t *mapped_address_space; byte_t *next_free; const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024; const size_t alignment = 256; /// This padding may be defined to some positive value to debug /// out of bound accesses. const size_t extra_padding = 0; std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr) { auto it = m_map.upper_bound((byte_t *)ptr); if (it == m_map.end()) { // Not a virtual pointer. throw std::runtime_error("can not get buffer from non-virtual pointer"); } const allocation &alloc = it->second; if (ptr < alloc.alloc_ptr) { // Out of bound. // This may happen if there's a gap between allocations due to alignment // or extra padding and pointer points to this gap. throw std::runtime_error("invalid virtual pointer"); } return it; } }; template <class T, memory_region Memory, size_t Dimension> class accessor; template <memory_region Memory, class T = byte_t> class memory_traits { public: static constexpr sycl::access::target target = sycl::access::target::device; static constexpr sycl::access_mode mode = (Memory == constant) ? sycl::access_mode::read : sycl::access_mode::read_write; static constexpr size_t type_size = sizeof(T); using element_t = typename std::conditional<Memory == constant, const T, T>::type; using value_t = typename std::remove_cv<T>::type; template <size_t Dimension = 1> using accessor_t = typename std::conditional< Memory == local, sycl::local_accessor<value_t, Dimension>, sycl::accessor<T, Dimension, mode, target>>::type; using pointer_t = T *; }; static inline void *dpct_malloc(size_t size, sycl::queue &q) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().mem_alloc(size * sizeof(byte_t)); #else return sycl::malloc_device(size, q.get_device(), q.get_context()); #endif // DPCT_USM_LEVEL_NONE } #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F)) static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z, sycl::queue &q) { pitch = PITCH_DEFAULT_ALIGN(x); return dpct_malloc(pitch * y * z, q); } /// Set \p value to the first \p size bytes starting from \p dev_ptr in \p q. /// /// \param q The queue in which the operation is done. /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns An event representing the memset operation. static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr, int value, size_t size) { #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); assert(mm.is_device_ptr(dev_ptr)); auto alloc = mm.translate_ptr(dev_ptr); size_t offset = (byte_t *)dev_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.fill(acc, (byte_t)value); }); #else return q.memset(dev_ptr, value, size); #endif // DPCT_USM_LEVEL_NONE } /// Set \p value to the 3D memory region pointed by \p data in \p q. \p size /// specifies the 3D memory size to set. /// /// \param q The queue in which the operation is done. /// \param data Pointer to the device memory region. /// \param value Value to be set. /// \param size Memory region size. /// \returns An event list representing the memset operations. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, pitched_data data, int value, sycl::range<3> size) { std::vector<sycl::event> event_list; size_t slice = data.get_pitch() * data.get_y(); unsigned char *data_surface = (unsigned char *)data.get_data_ptr(); for (size_t z = 0; z < size.get(2); ++z) { unsigned char *data_ptr = data_surface; for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0))); data_ptr += data.get_pitch(); } data_surface += slice; } return event_list; } /// memset 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, void *ptr, size_t pitch, int val, size_t x, size_t y) { return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val, sycl::range<3>(x, y, 1)); } enum class pointer_access_attribute { host_only = 0, device_only, host_device, end }; static pointer_access_attribute get_pointer_attribute(sycl::queue &q, const void *ptr) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().is_device_ptr(ptr) ? pointer_access_attribute::device_only : pointer_access_attribute::host_only; #else switch (sycl::get_pointer_type(ptr, q.get_context())) { case sycl::usm::alloc::unknown: return pointer_access_attribute::host_only; case sycl::usm::alloc::device: return pointer_access_attribute::device_only; case sycl::usm::alloc::shared: case sycl::usm::alloc::host: return pointer_access_attribute::host_device; } #endif } static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr, const void *from_ptr, memcpy_direction dir) { switch (dir) { case memcpy_direction::host_to_host: case memcpy_direction::host_to_device: case memcpy_direction::device_to_host: case memcpy_direction::device_to_device: return dir; case memcpy_direction::automatic: { // table[to_attribute][from_attribute] static const memcpy_direction direction_table[static_cast<unsigned>(pointer_access_attribute::end)] [static_cast<unsigned>(pointer_access_attribute::end)] = {{memcpy_direction::host_to_host, memcpy_direction::device_to_host, memcpy_direction::host_to_host}, {memcpy_direction::host_to_device, memcpy_direction::device_to_device, memcpy_direction::device_to_device}, {memcpy_direction::host_to_host, memcpy_direction::device_to_device, memcpy_direction::device_to_device}}; return direction_table[static_cast<unsigned>(get_pointer_attribute( q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))]; } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } } static sycl::event dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { if (!size) return sycl::event{}; #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); switch (real_direction) { case host_to_host: return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); }); case host_to_device: { auto alloc = mm.translate_ptr(to_ptr); size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(from_ptr, acc); }); } case device_to_host: { auto alloc = mm.translate_ptr(from_ptr); size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(acc, to_ptr); }); } case device_to_device: { auto to_alloc = mm.translate_ptr(to_ptr); auto from_alloc = mm.translate_ptr(from_ptr); size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, r, to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, r, from_o); cgh.copy(from_acc, to_acc); }); } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } #else return q.memcpy(to_ptr, from_ptr, size, dep_events); #endif // DPCT_USM_LEVEL_NONE } // Get actual copy range and make sure it will not exceed range. static inline size_t get_copy_range(sycl::range<3> size, size_t slice, size_t pitch) { return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0); } static inline size_t get_offset(sycl::id<3> id, size_t slice, size_t pitch) { return slice * id.get(2) + pitch * id.get(1) + id.get(0); } /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr /// and \p from_range to another specified by \p to_ptr and \p to_range. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, sycl::range<3> to_range, sycl::range<3> from_range, sycl::id<3> to_id, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { // RAII for host pointer class host_buffer { void *_buf; size_t _size; sycl::queue &_q; const std::vector<sycl::event> &_deps; // free operation depends public: host_buffer(size_t size, sycl::queue &q, const std::vector<sycl::event> &deps) : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {} void *get_ptr() const { return _buf; } size_t get_size() const { return _size; } ~host_buffer() { if (_buf) { _q.submit([&](sycl::handler &cgh) { cgh.depends_on(_deps); cgh.host_task([buf = _buf] { std::free(buf); }); }); } } }; std::vector<sycl::event> event_list; size_t to_slice = to_range.get(1) * to_range.get(0), from_slice = from_range.get(1) * from_range.get(0); unsigned char *to_surface = (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0)); const unsigned char *from_surface = (const unsigned char *)from_ptr + get_offset(from_id, from_slice, from_range.get(0)); if (to_slice == from_slice && to_slice == size.get(1) * size.get(0)) { return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2), direction, dep_events)}; } direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); size_t size_slice = size.get(1) * size.get(0); switch (direction) { case host_to_host: for (size_t z = 0; z < size.get(2); ++z) { unsigned char *to_ptr = to_surface; const unsigned char *from_ptr = from_surface; if (to_range.get(0) == from_range.get(0) && to_range.get(0) == size.get(0)) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice, direction, dep_events)); } else { for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0), direction, dep_events)); to_ptr += to_range.get(0); from_ptr += from_range.get(0); } } to_surface += to_slice; from_surface += from_slice; } break; case host_to_device: { host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q, event_list); std::vector<sycl::event> host_events; if (to_slice == size_slice) { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, dep_events); } else { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy( q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // If has padding data, not sure whether it is useless. So fill temp // buffer with it. std::vector<sycl::event>{ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(), device_to_host, dep_events)}); } // Copy from temp host buffer to device with only one submit. event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(), buf.get_size(), host_to_device, host_events)); break; } case device_to_host: { host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q, event_list); // Copy from host temp buffer to host target with reshaping. event_list = dpct_memcpy( q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // Copy from device to temp host buffer with only one submit. std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface, buf.get_size(), device_to_host, dep_events)}); break; } case device_to_device: #ifdef DPCT_USM_LEVEL_NONE { auto &mm = mem_mgr::instance(); auto to_alloc = mm.translate_ptr(to_surface); auto from_alloc = mm.translate_ptr(from_surface); size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr; event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, get_copy_range(size, to_slice, to_range.get(0)), to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, get_copy_range(size, from_slice, from_range.get(0)), from_o); cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>( size, [=](sycl::id<3> id) { to_acc[get_offset(id, to_slice, to_range.get(0))] = from_acc[get_offset(id, from_slice, from_range.get(0))]; }); })); } #else event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.parallel_for<class dpct_memcpy_3d_detail>( size, [=](sycl::id<3> id) { to_surface[get_offset(id, to_slice, to_range.get(0))] = from_surface[get_offset(id, from_slice, from_range.get(0))]; }); })); #endif break; default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } return event_list; } /// memcpy 2D/3D matrix specified by pitched_data. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id, pitched_data from, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction = automatic) { return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(), sycl::range<3>(to.get_pitch(), to.get_y(), 1), sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id, size, direction); } /// memcpy 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t to_pitch, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic) { return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1), sycl::range<3>(from_pitch, y, 1), sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), sycl::range<3>(x, y, 1), direction); } namespace deprecated { template <typename T, sycl::usm::alloc AllocKind> class usm_allocator { private: using Alloc = sycl::usm_allocator<T, AllocKind>; Alloc _impl; public: using value_type = typename std::allocator_traits<Alloc>::value_type; using pointer = typename std::allocator_traits<Alloc>::pointer; using const_pointer = typename std::allocator_traits<Alloc>::const_pointer; using void_pointer = typename std::allocator_traits<Alloc>::void_pointer; using const_void_pointer = typename std::allocator_traits<Alloc>::const_void_pointer; using reference = typename std::allocator_traits<Alloc>::value_type &; using const_reference = const typename std::allocator_traits<Alloc>::value_type &; using difference_type = typename std::allocator_traits<Alloc>::difference_type; using size_type = typename std::allocator_traits<Alloc>::size_type; using propagate_on_container_copy_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_copy_assignment; using propagate_on_container_move_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_move_assignment; using propagate_on_container_swap = typename std::allocator_traits<Alloc>::propagate_on_container_swap; using is_always_equal = typename std::allocator_traits<Alloc>::is_always_equal; template <typename U> struct rebind { typedef usm_allocator<U, AllocKind> other; }; usm_allocator() : _impl(dpct::get_default_queue()) {} ~usm_allocator() {} usm_allocator(const usm_allocator &other) : _impl(other._impl) {} usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {} pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type cnt, const_void_pointer hint = nullptr) { return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint); } void deallocate(pointer p, size_type cnt) { std::allocator_traits<Alloc>::deallocate(_impl, p, cnt); } size_type max_size() const { return std::allocator_traits<Alloc>::max_size(_impl); } bool operator==(const usm_allocator &other) const { return _impl == other._impl; } bool operator!=(const usm_allocator &other) const { return _impl != other._impl; } }; } // namespace deprecated inline void dpct_free(void *ptr, const sycl::queue &q) { if (ptr) { #ifdef DPCT_USM_LEVEL_NONE detail::mem_mgr::instance().mem_free(ptr); #else sycl::free(ptr, q.get_context()); #endif // DPCT_USM_LEVEL_NONE } } } // namespace detail #ifdef DPCT_USM_LEVEL_NONE /// Check if the pointer \p ptr represents device pointer or not. /// /// \param ptr The pointer to be checked. /// \returns true if \p ptr is a device pointer. template<class T> static inline bool is_device_ptr(T ptr) { if constexpr (std::is_pointer<T>::value) { return detail::mem_mgr::instance().is_device_ptr(ptr); } return false; } #endif /// Get the buffer and the offset of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// If NULL is passed as an argument, an exception will be thrown. /// \returns a pair containing both the buffer and the offset. static std::pair<buffer_t, size_t> get_buffer_and_offset(const void *ptr) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); size_t offset = (byte_t *)ptr - alloc.alloc_ptr; return std::make_pair(alloc.buffer, offset); } else { throw std::runtime_error( "NULL pointer argument in get_buffer_and_offset function is invalid"); } } /// Get the data pointed from \p ptr as a 1D buffer reinterpreted as type T. template <typename T> static sycl::buffer<T> get_buffer(const void *ptr) { if (!ptr) return sycl::buffer<T>(sycl::range<1>(0)); auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.reinterpret<T>( sycl::range<1>(alloc.size / sizeof(T))); } /// Get the buffer of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// \returns the buffer. static buffer_t get_buffer(const void *ptr) { return detail::mem_mgr::instance().translate_ptr(ptr).buffer; } /// A wrapper class contains an accessor and an offset. template <typename dataT, sycl::access_mode accessMode = sycl::access_mode::read_write> class access_wrapper { sycl::accessor<byte_t, 1, accessMode> accessor; size_t offset; public: /// Construct the accessor wrapper for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// \param cgh The command group handler. access_wrapper(const void *ptr, sycl::handler &cgh) : accessor(get_buffer(ptr).get_access<accessMode>(cgh)), offset(0) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); offset = (byte_t *)ptr - alloc.alloc_ptr; } /// Get the device pointer. /// /// \returns a device pointer with offset. dataT get_raw_pointer() const { return (dataT)(&accessor[0] + offset); } }; /// Get the accessor for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// If NULL is passed as an argument, an exception will be thrown. /// \param cgh The command group handler. /// \returns an accessor. template <sycl::access_mode accessMode = sycl::access_mode::read_write> static sycl::accessor<byte_t, 1, accessMode> get_access(const void *ptr, sycl::handler &cgh) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.get_access<accessMode>(cgh); } else { throw std::runtime_error( "NULL pointer argument in get_access function is invalid"); } } /// Allocate memory block on the device. /// \param num_bytes Number of bytes to allocate. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. template <typename T> static inline void *dpct_malloc(T num_bytes, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(static_cast<size_t>(num_bytes), q); } /// Get the host pointer from a buffer that is mapped to virtual pointer ptr. /// \param ptr Virtual Pointer mapped to device buffer /// \returns A host pointer template <typename T> static inline T *get_host_ptr(const void *ptr) { auto BufferOffset = get_buffer_and_offset(ptr); auto host_ptr = BufferOffset.first.get_host_access() .get_pointer(); return (T *)(host_ptr + BufferOffset.second); } /// Allocate memory block for 3D array on the device. /// \param size Size of the memory block, in bytes. /// \param q Queue to execute the allocate task. /// \returns A pitched_data object which stores the memory info. static inline pitched_data dpct_malloc(sycl::range<3> size, sycl::queue &q = get_default_queue()) { pitched_data pitch(nullptr, 0, size.get(0), size.get(1)); size_t pitch_size; pitch.set_data_ptr(detail::dpct_malloc(pitch_size, size.get(0), size.get(1), size.get(2), q)); pitch.set_pitch(pitch_size); return pitch; } /// Allocate memory block for 2D array on the device. /// \param [out] pitch Aligned size of x in bytes. /// \param x Range in dim x. /// \param y Range in dim y. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(pitch, x, y, 1, q); } /// free /// \param ptr Point to free. /// \param q Queue to execute the free task. /// \returns no return value. static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) { detail::dpct_free(ptr, q); } /// Free the device memory pointed by a batch of pointers in \p pointers which /// are related to \p q after \p events completed. /// /// \param pointers The pointers point to the device memory requested to be freed. /// \param events The events to be waited. /// \param q The sycl::queue the memory relates to. inline void async_dpct_free(const std::vector<void *> &pointers, const std::vector<sycl::event> &events, sycl::queue &q = get_default_queue()) { q.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { for (auto p : pointers) if (p) { detail::dpct_free(p, q); } }); }); } /// Synchronously copies \p size bytes from the address specified by \p from_ptr /// to the address specified by \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, /// \a device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction).wait(); } /// Asynchronously copies \p size bytes from the address specified by \p /// from_ptr to the address specified by \p to_ptr. The value of \p direction is /// used to set the copy direction, it can be \a host_to_host, \a /// host_to_device, \a device_to_host, \a device_to_device or \a automatic. The /// return of the function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction); } /// Synchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait(detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction)); } /// Asynchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// \p from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The return of the /// function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction); } /// Synchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The function will return after the copy is completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait( detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction)); } /// Asynchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The return of the function does NOT guarantee the copy is /// completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction); } /// Synchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The function will return after the memset operation is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \param q The queue in which the operation is done. /// \returns no return value. static void dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size).wait(); } /// Asynchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The return of the function does NOT guarantee the memset operation /// is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns no return value. static void async_dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The function will return after the /// memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, ptr, pitch, val, x, y)); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, ptr, pitch, val, x, y); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The function will return after the /// memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, pitch, val, size)); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, pitch, val, size); } /// dpct accessor used as device function parameter. template <class T, memory_region Memory, size_t Dimension> class accessor; template <class T, memory_region Memory> class accessor<T, Memory, 3> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<3>; accessor(pointer_t data, const sycl::range<3> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<3> &in_range) : accessor(acc.get_pointer(), in_range) {} accessor<T, Memory, 2> operator[](size_t index) const { sycl::range<2> sub(_range.get(1), _range.get(2)); return accessor<T, Memory, 2>(_data + index * sub.size(), sub); } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<3> _range; }; template <class T, memory_region Memory> class accessor<T, Memory, 2> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<2>; accessor(pointer_t data, const sycl::range<2> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<2> &in_range) : accessor(acc.get_pointer(), in_range) {} pointer_t operator[](size_t index) const { return _data + _range.get(1) * index; } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<2> _range; }; namespace detail { /// Device variable with address space of shared, global or constant. template <class T, memory_region Memory, size_t Dimension> class device_memory { public: using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<Dimension>; using value_t = typename detail::memory_traits<Memory, T>::value_t; using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>; device_memory() : device_memory(sycl::range<Dimension>(1)) {} /// Constructor of 1-D array with initializer list device_memory( const sycl::range<Dimension> &in_range, std::initializer_list<value_t> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range.size()); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T)); } /// Constructor of 2-D array with initializer list template <size_t D = Dimension> device_memory( const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range, std::initializer_list<std::initializer_list<value_t>> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range[0]); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); auto tmp_data = _host_ptr; for (auto sub_list : init_list) { assert(sub_list.size() <= in_range[1]); std::memcpy(tmp_data, sub_list.begin(), sub_list.size() * sizeof(T)); tmp_data += in_range[1]; } } /// Constructor with range device_memory(const sycl::range<Dimension> &range_in) : _size(range_in.size() * sizeof(T)), _range(range_in), _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) { static_assert( (Memory == global) || (Memory == constant) || (Memory == shared), "device memory region should be global, constant or shared"); // Make sure that singleton class mem_mgr and dev_mgr will destruct later // than this. detail::mem_mgr::instance(); dev_mgr::instance(); } /// Constructor with range template <class... Args> device_memory(Args... Arguments) : device_memory(sycl::range<Dimension>(Arguments...)) {} ~device_memory() { if (_device_ptr && !_reference) dpct::dpct_free(_device_ptr); if (_host_ptr) std::free(_host_ptr); } /// Allocate memory with default queue, and init memory if has initial value. void init() { init(dpct::get_default_queue()); } /// Allocate memory with specified queue, and init memory if has initial value. void init(sycl::queue &q) { if (_device_ptr) return; if (!_size) return; allocate_device(q); if (_host_ptr) detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size, host_to_device); } /// The variable is assigned to a device pointer. void assign(value_t *src, size_t size) { this->~device_memory(); new (this) device_memory(src, size); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr() { return get_ptr(get_default_queue()); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr(sycl::queue &q) { init(q); return _device_ptr; } /// Get the device memory object size in bytes. size_t get_size() { return _size; } template <size_t D = Dimension> typename std::enable_if<D == 1, T>::type &operator[](size_t index) { init(); #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>( _device_ptr) .template get_access<sycl::access_mode::read_write>()[index]; #else return _device_ptr[index]; #endif // DPCT_USM_LEVEL_NONE } #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { return get_buffer(_device_ptr) .template reinterpret<T, Dimension>(_range) .template get_access<detail::memory_traits<Memory, T>::mode, detail::memory_traits<Memory, T>::target>(cgh); } #else /// Get dpct::accessor with dimension info for the device memory object /// when usm is used and dimension is greater than 1. template <size_t D = Dimension> typename std::enable_if<D != 1, dpct_accessor_t>::type get_access(sycl::handler &cgh) { return dpct_accessor_t((T *)_device_ptr, _range); } #endif // DPCT_USM_LEVEL_NONE private: device_memory(value_t *memory_ptr, size_t size) : _size(size), _range(size / sizeof(T)), _reference(true), _device_ptr(memory_ptr) {} void allocate_device(sycl::queue &q) { #ifndef DPCT_USM_LEVEL_NONE if (Memory == shared) { _device_ptr = (value_t *)sycl::malloc_shared( _size, q.get_device(), q.get_context()); return; } #endif _device_ptr = (value_t *)detail::dpct_malloc(_size, q); } size_t _size; sycl::range<Dimension> _range; bool _reference; value_t *_host_ptr; value_t *_device_ptr; }; template <class T, memory_region Memory> class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> { public: using base = device_memory<T, Memory, 1>; using value_t = typename base::value_t; using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<0>; /// Constructor with initial value. device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {} /// Default constructor device_memory() : base(1) {} #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { auto buf = get_buffer(base::get_ptr()) .template reinterpret<T, 1>(sycl::range<1>(1)); return accessor_t(buf, cgh); } #endif // DPCT_USM_LEVEL_NONE }; } template <class T, size_t Dimension> using global_memory = detail::device_memory<T, global, Dimension>; template <class T, size_t Dimension> using constant_memory = detail::device_memory<T, constant, Dimension>; template <class T, size_t Dimension> using shared_memory = detail::device_memory<T, shared, Dimension>; // dpct::deprecated:: is for functionality that was introduced for compatibility // purpose, but relies on deprecated C++ features, which are either removed or // will be removed in the future standards. // Direct use of deprecated functionality in this namespace should be avoided. namespace deprecated { template <typename T> using usm_host_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::host>; template <typename T> using usm_device_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::shared>; } // namespace deprecated class pointer_attributes { public: void init(const void *ptr, sycl::queue &q = dpct::get_default_queue()) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error( "dpct::pointer_attributes: only works for USM pointer."); #else memory_type = sycl::get_pointer_type(ptr, q.get_context()); device_pointer = (memory_type != sycl::usm::alloc::unknown) ? ptr : nullptr; host_pointer = (memory_type != sycl::usm::alloc::unknown) && (memory_type != sycl::usm::alloc::device) ? ptr : nullptr; sycl::device device_obj = sycl::get_pointer_device(ptr, q.get_context()); device_id = dpct::dev_mgr::instance().get_device_id(device_obj); #endif } sycl::usm::alloc get_memory_type() { return memory_type; } const void *get_device_pointer() { return device_pointer; } const void *get_host_pointer() { return host_pointer; } bool is_memory_shared() { return memory_type == sycl::usm::alloc::shared; } unsigned int get_device_id() { return device_id; } private: sycl::usm::alloc memory_type = sycl::usm::alloc::unknown; const void *device_pointer = nullptr; const void *host_pointer = nullptr; unsigned int device_id = 0; }; } // namespace dpct #endif // __DPCT_MEMORY_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_utils.hpp
//==---- dpl_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DPL_UTILS_HPP__ #define __DPCT_DPL_UTILS_HPP__ #define ONEDPL_USE_DPCPP_BACKEND 1 #define __USE_DPCT 1 #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "dpl_extras/memory.h" #include "dpl_extras/algorithm.h" #include "dpl_extras/numeric.h" #include "dpl_extras/iterators.h" #include "dpl_extras/vector.h" #include "dpl_extras/dpcpp_extensions.h" #endif // __DPCT_DPL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/math.hpp
//==---- math.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MATH_HPP__ #define __DPCT_MATH_HPP__ #include <sycl/sycl.hpp> namespace dpct { namespace detail { template <typename VecT, class BinaryOperation, class = void> class vectorized_binary { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { VecT v4; for (size_t i = 0; i < v4.size(); ++i) { v4[i] = binary_op(a[i], b[i]); } return v4; } }; template <typename VecT, class BinaryOperation> class vectorized_binary< VecT, BinaryOperation, std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { return binary_op(a, b).template as<VecT>(); } }; template <typename T> bool isnan(const T a) { return sycl::isnan(a); } // TODO: Need add more specialization such as bfloat16 version. } // namespace detail /// Compute fast_length for variable-length array /// \param [in] a The array /// \param [in] len Length of the array /// \returns The computed fast_length inline float fast_length(const float *a, int len) { switch (len) { case 1: return a[0]; case 2: return sycl::fast_length(sycl::float2(a[0], a[1])); case 3: return sycl::fast_length(sycl::float3(a[0], a[1], a[2])); case 4: return sycl::fast_length(sycl::float4(a[0], a[1], a[2], a[3])); case 0: return 0; default: float f = 0; for (int i = 0; i < len; ++i) f += a[i] * a[i]; return sycl::sqrt(f); } } /// Calculate the square root of the input array. /// \param [in] a The array pointer /// \param [in] len Length of the array /// \returns The square root template <typename T> inline T length(const T *a, const int len) { switch (len) { case 1: return a[0]; case 2: return sycl::length(sycl::vec<T, 2>(a[0], a[1])); case 3: return sycl::length(sycl::vec<T, 3>(a[0], a[1], a[2])); case 4: return sycl::length(sycl::vec<T, 4>(a[0], a[1], a[2], a[3])); default: T ret = 0; for (int i = 0; i < len; ++i) ret += a[i] * a[i]; return sycl::sqrt(ret); } } /// Performs comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> compare(const T a, const T b, const BinaryOperation binary_op) { return binary_op(a, b); } template <typename T> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<std::not_equal_to<>, T, T>, bool>, bool> compare(const T a, const T b, const std::not_equal_to<> binary_op) { return !detail::isnan(a) && !detail::isnan(b) && binary_op(a, b); } /// Performs unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return detail::isnan(a) || detail::isnan(b) || binary_op(a, b); } /// Performs 2 element comparison and return true if both results are true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> compare_both(const T a, const T b, const BinaryOperation binary_op) { return compare(a[0], b[0], binary_op) && compare(a[1], b[1], binary_op); } /// Performs 2 element unordered comparison and return true if both results are /// true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> unordered_compare_both(const T a, const T b, const BinaryOperation binary_op) { return unordered_compare(a[0], b[0], binary_op) && unordered_compare(a[1], b[1], binary_op); } /// Performs 2 element comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> compare(const T a, const T b, const BinaryOperation binary_op) { return {compare(a[0], b[0], binary_op), compare(a[1], b[1], binary_op)}; } /// Performs 2 elements comparison, compare result of each element is 0 (false) /// or 0xffff (true), returns an unsigned int by composing compare result of two /// elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-compare(a[0], b[0], binary_op), -compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Performs 2 element unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return {unordered_compare(a[0], b[0], binary_op), unordered_compare(a[1], b[1], binary_op)}; } /// Performs 2 elements unordered comparison, compare result of each element is /// 0 (false) or 0xffff (true), returns an unsigned int by composing compare /// result of two elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned unordered_compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-unordered_compare(a[0], b[0], binary_op), -unordered_compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Determine whether 2 element value is NaN. /// \param [in] a The input value /// \returns the comparison result template <typename T> inline std::enable_if_t<T::size() == 2, T> isnan(const T a) { return {detail::isnan(a[0]), detail::isnan(a[1])}; } // min function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double min(const double a, const float b) { return sycl::fmin(a, static_cast<double>(b)); } inline double min(const float a, const double b) { return sycl::fmin(static_cast<double>(a), b); } inline float min(const float a, const float b) { return sycl::fmin(a, b); } inline double min(const double a, const double b) { return sycl::fmin(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) { return sycl::min(static_cast<std::uint32_t>(a), b); } inline std::int32_t min(const std::int32_t a, const std::int32_t b) { return sycl::min(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::int64_t min(const std::int64_t a, const std::int64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } // max function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double max(const double a, const float b) { return sycl::fmax(a, static_cast<double>(b)); } inline double max(const float a, const double b) { return sycl::fmax(static_cast<double>(a), b); } inline float max(const float a, const float b) { return sycl::fmax(a, b); } inline double max(const double a, const double b) { return sycl::fmax(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) { return sycl::max(static_cast<std::uint32_t>(a), b); } inline std::int32_t max(const std::int32_t a, const std::int32_t b) { return sycl::max(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::int64_t max(const std::int64_t a, const std::int64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } /// Performs relu saturation. /// \param [in] a The input value /// \returns the relu saturation result template <typename T> inline T relu(const T a) { if (!detail::isnan(a) && a < 0.f) return 0.f; return a; } template <class T> inline sycl::vec<T, 2> relu(const sycl::vec<T, 2> a) { return {relu(a[0]), relu(a[1])}; } /// Performs complex number multiply addition. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] c The third value /// \returns the operation result template <typename T> inline sycl::vec<T, 2> complex_mul_add(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const sycl::vec<T, 2> c) { return sycl::vec<T, 2>{a[0] * b[0] - a[1] * b[1] + c[0], a[0] * b[1] + a[1] * b[0] + c[1]}; } /// Performs 2 elements comparison and returns the bigger one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the bigger value template <typename T> inline T fmax_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmax(a, b); } template <typename T> inline sycl::vec<T, 2> fmax_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmax_nan(a[0], b[0]), fmax_nan(a[1], b[1])}; } /// Performs 2 elements comparison and returns the smaller one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the smaller value template <typename T> inline T fmin_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmin(a, b); } template <typename T> inline sycl::vec<T, 2> fmin_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmin_nan(a[0], b[0]), fmin_nan(a[1], b[1])}; } /// A sycl::abs wrapper functors. struct abs { template <typename T> auto operator()(const T x) const { return sycl::abs(x); } }; /// A sycl::abs_diff wrapper functors. struct abs_diff { template <typename T> auto operator()(const T x, const T y) const { return sycl::abs_diff(x, y); } }; /// A sycl::add_sat wrapper functors. struct add_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::add_sat(x, y); } }; /// A sycl::rhadd wrapper functors. struct rhadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::rhadd(x, y); } }; /// A sycl::hadd wrapper functors. struct hadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::hadd(x, y); } }; /// A sycl::max wrapper functors. struct maximum { template <typename T> auto operator()(const T x, const T y) const { return sycl::max(x, y); } }; /// A sycl::min wrapper functors. struct minimum { template <typename T> auto operator()(const T x, const T y) const { return sycl::min(x, y); } }; /// A sycl::sub_sat wrapper functors. struct sub_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::sub_sat(x, y); } }; /// Compute vectorized binary operation value for two values, with each value /// treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] BinaryOperation The binary operation class /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized binary operation value of the two values template <typename VecT, class BinaryOperation> inline unsigned vectorized_binary(unsigned a, unsigned b, const BinaryOperation binary_op) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op); v0 = v4.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized isgreater for two values, with each value treated as a /// vector type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized greater than of the two values template <typename S, typename T> inline T vectorized_isgreater(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = v2 > v3; v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized max for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized max of the two values template <typename S, typename T> inline T vectorized_max(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::max(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized min for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized min of the two values template <typename S, typename T> inline T vectorized_min(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::min(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized unary operation for a value, with the value treated as a /// vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] UnaryOperation The unary operation class /// \param [in] a The input value /// \returns The vectorized unary operation value of the input value template <typename VecT, class UnaryOperation> inline unsigned vectorized_unary(unsigned a, const UnaryOperation unary_op) { sycl::vec<unsigned, 1> v0{a}; auto v1 = v0.as<VecT>(); auto v2 = unary_op(v1); v0 = v2.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized absolute difference for two values without modulo /// overflow, with each value treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized absolute difference of the two values template <typename VecT> inline unsigned vectorized_sum_abs_diff(unsigned a, unsigned b) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = sycl::abs_diff(v2, v3); unsigned sum = 0; for (size_t i = 0; i < v4.size(); ++i) { sum += v4[i]; } return sum; } } // namespace dpct #endif // __DPCT_MATH_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/blas_utils.hpp
//==---- blas_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_BLAS_UTILS_HPP__ #define __DPCT_BLAS_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <utility> #include <vector> #include <thread> namespace dpct { /// Get the value of \p s. /// Copy the data to host synchronously, then return the data. /// \param [in] p The pointer points the data. /// \param [in] q The queue where the memory copy should be executed. template <typename T> inline auto get_value(const T *s, sycl::queue &q) { return detail::get_value(s, q); } namespace detail { inline void mem_free(sycl::queue *exec_queue, std::vector<void *> pointers_array, sycl::event e) { e.wait(); for (auto p : pointers_array) sycl::free(p, *exec_queue); } inline int stride_for(int num_elems, int mem_align_in_elems) { return ((num_elems - 1) / mem_align_in_elems + 1) * mem_align_in_elems; } #ifndef DPCT_USM_LEVEL_NONE template<typename T> class working_memory { T *_input_ptr; T *_temp_ptr; bool _is_sycl_malloced = false; bool _is_scalar_value = false; sycl::queue _q; sycl::event _e; public: working_memory(size_t size, sycl::queue q) : _q(q) { _is_scalar_value = false; _temp_ptr = (T *)sycl::malloc_device(size, q); } working_memory(T *result_ptr, sycl::queue q) : _input_ptr(result_ptr), _q(q) { _is_scalar_value = true; _is_sycl_malloced = sycl::get_pointer_type(_input_ptr, _q.get_context()) != sycl::usm::alloc::unknown; if (!_is_sycl_malloced) _temp_ptr = sycl::malloc_shared<T>(1, _q); } auto get_ptr() { if (_is_scalar_value && _is_sycl_malloced) return _input_ptr; return _temp_ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_is_scalar_value) { if (!_is_sycl_malloced) { _q.memcpy(_input_ptr, _temp_ptr, sizeof(T)).wait(); sycl::free(_temp_ptr, _q); } } else { std::vector<void *> ptrs{_temp_ptr}; dpct::async_dpct_free(ptrs, {_e}); } } }; #endif template <typename Tx, typename Tr> inline void nrm2_impl(sycl::queue &q, int n, const void *x, int incx, void *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Tx>(x); auto r_buffer = sycl::buffer<Tr, 1>(reinterpret_cast<Tr *>(result), sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); oneapi::mkl::blas::column_major::nrm2(q, n, x_buffer, incx, r_buffer); #else working_memory<Tr> res_mem(reinterpret_cast<Tr *>(result), q); oneapi::mkl::blas::column_major::nrm2(q, n, reinterpret_cast<const Tx *>(x), incx, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate, class Txy, class Tr> inline void dotuc_impl(sycl::queue &q, int n, const Txy *x, int incx, const Txy *y, int incy, Tr *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Txy>(x); auto y_buffer = dpct::get_buffer<Txy>(y); auto r_buffer = sycl::buffer<Tr, 1>((Tr *)result, sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x_buffer, incx, y_buffer, incy, r_buffer); else oneapi::mkl::blas::column_major::dotu(q, n, x_buffer, incx, y_buffer, incy, r_buffer); } else oneapi::mkl::blas::column_major::dot(q, n, x_buffer, incx, y_buffer, incy, r_buffer); #else working_memory<Tr> res_mem(result, q); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x, incx, y, incy, res_mem.get_ptr()); else oneapi::mkl::blas::column_major::dotu(q, n, x, incx, y, incy, res_mem.get_ptr()); } else oneapi::mkl::blas::column_major::dot(q, n, x, incx, y, incy, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate> inline void dotuc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, y_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const float *>(x), incx, reinterpret_cast<const float *>(y), incy, reinterpret_cast<float *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const double *>(x), incx, reinterpret_cast<const double *>(y), incy, reinterpret_cast<double *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<float> *>(x), incx, reinterpret_cast<const std::complex<float> *>(y), incy, reinterpret_cast<std::complex<float> *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<double> *>(x), incx, reinterpret_cast<const std::complex<double> *>(y), incy, reinterpret_cast<std::complex<double> *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const sycl::half *>(x), incx, reinterpret_cast<const sycl::half *>(y), incy, reinterpret_cast<sycl::half *>(result)); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } template <class Tx, class Te> inline void scal_impl(sycl::queue &q, int n, const void *alpha, void *x, int incx) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<Tx *>(x)); oneapi::mkl::blas::column_major::scal(q, n, alpha_val, data_x, incx); #endif } template <class Txy, class Te> inline void axpy_impl(sycl::queue &q, int n, const void *alpha, const void *x, int incx, void *y, int incy) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<const Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::axpy(q, n, alpha_val, data_x, incx, data_y, incy); #endif } template <class Txy, class Tc, class Ts> inline void rot_impl(sycl::queue &q, int n, void *x, int incx, void *y, int incy, const void *c, const void *s) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Tc c_value = dpct::get_value(reinterpret_cast<const Tc *>(c), q); Ts s_value = dpct::get_value(reinterpret_cast<const Ts *>(s), q); auto data_x = get_memory(reinterpret_cast<Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::rot(q, n, data_x, incx, data_y, incy, c_value, s_value); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, const void *b, int ldb, const void *beta, void *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void **a, int lda, const void **b, int ldb, const void *beta, void **c, int ldc, int batch_size) { struct matrix_info_t { oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; matrix_info->value_info[1] = beta_value; matrix_info->size_info[0] = m; matrix_info->size_info[1] = n; matrix_info->size_info[2] = k; matrix_info->ld_info[0] = lda; matrix_info->ld_info[1] = ldb; matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); }); }); } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, long long int stride_a, const void *b, int ldb, long long int stride_b, const void *beta, void *c, int ldc, long long int stride_c, int batch_size) { Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm_batch( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } template <bool is_hermitian, class T, class Tbeta> inline void rk_impl(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { // For symmetric matrix, this function performs: C = alpha*OP(A)*(OP(B))^T + beta*C // For Hermitian matrix, this function performs: C = alpha*OP(A)*(OP(B))^H + beta*C // The gemmt() function performs: C = alpha*OPA(A)*OPB(B) + beta*C // So the OPB need be updated before we call gemmt(). using Ty = typename dpct::DataType<T>::T2; using Ts = typename dpct::DataType<Tbeta>::T2; Ty alpha_value = dpct::get_value(reinterpret_cast<const Ty *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); oneapi::mkl::transpose trans_A = trans, trans_B = trans; int origin_b_rows = trans == oneapi::mkl::transpose::nontrans ? n : k; int origin_b_cols = trans == oneapi::mkl::transpose::nontrans ? k : n; if ((is_hermitian && trans == oneapi::mkl::transpose::trans) || (!is_hermitian && !std::is_floating_point_v<Ty> && trans == oneapi::mkl::transpose::conjtrans)) { // In this case, OPB need be a conjugate operation, // but only notrans, conjtrans and trans are available. // So we need do a conjtrans operation first, then do a trans operation. trans_B = oneapi::mkl::transpose::trans; auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); #ifdef DPCT_USM_LEVEL_NONE auto new_B_buffer = sycl::buffer<Ty, 1>(sycl::range<1>(origin_b_rows * origin_b_cols)); auto from_buffer = dpct::get_buffer<Ty>(b); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), from_buffer, ldb, origin_b_rows * ldb, new_B_buffer, origin_b_cols, origin_b_rows * origin_b_cols, 1); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, new_B_buffer, origin_b_cols, beta_value, data_c, ldc); #else working_memory<T> new_B(origin_b_rows * origin_b_cols * sizeof(T), q); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), reinterpret_cast<const Ty *>(b), ldb, origin_b_rows * ldb, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, origin_b_rows * origin_b_cols, 1); sycl::event e = oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, beta_value, data_c, ldc); new_B.set_event(e); #endif } else { if constexpr (is_hermitian) { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::conjtrans : oneapi::mkl::transpose::nontrans; } else { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans; } auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_b = get_memory(reinterpret_cast<const Ty *>(b)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } } template <class Ta, class Tb, class Ts> inline void trsm_batch_impl(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, int lda, void **b, int ldb, int batch_size) { struct matrix_info_t { matrix_info_t(oneapi::mkl::side side_info, oneapi::mkl::uplo uplo_info, oneapi::mkl::transpose transpose_info, oneapi::mkl::diag diag_info, Ts value_info, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::int64_t groupsize_info) : side_info(side_info), uplo_info(uplo_info), transpose_info(transpose_info), diag_info(diag_info), value_info(value_info), groupsize_info(groupsize_info) { size_info[0] = m; size_info[1] = n; ld_info[0] = lda; ld_info[1] = ldb; } oneapi::mkl::side side_info; oneapi::mkl::uplo uplo_info; oneapi::mkl::transpose transpose_info; oneapi::mkl::diag diag_info; Ts value_info; std::int64_t size_info[2]; std::int64_t ld_info[2]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); matrix_info_t *matrix_info = new matrix_info_t(left_right, upper_lower, trans, unit_diag, alpha_value, m, n, lda, ldb, batch_size); sycl::event e = oneapi::mkl::blas::column_major::trsm_batch( q, &(matrix_info->side_info), &(matrix_info->uplo_info), &(matrix_info->transpose_info), &(matrix_info->diag_info), matrix_info->size_info, matrix_info->size_info + 1, &(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<Tb **>(b), matrix_info->ld_info + 1, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete matrix_info; }); }); } template <typename T> inline void getrfnp_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *info, int batch_size) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); std::int64_t stride_a = n * lda; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrfnp_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, batch_size); Ty *a_strided_mem = (Ty *)dpct::dpct_malloc(stride_a * batch_size * sizeof(Ty), exec_queue); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct::dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct::dpct_memcpy(a_strided_mem + i * stride_a, host_a[i], n * lda * sizeof(T)); #ifdef DPCT_USM_LEVEL_NONE { sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_strided_mem); oneapi::mkl::lapack::getrfnp_batch(exec_queue, n, n, a_buffer, lda, stride_a, batch_size, scratchpad, scratchpad_size); } std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic)); #else Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); sycl::event e = oneapi::mkl::lapack::getrfnp_batch( exec_queue, n, n, a_strided_mem, lda, stride_a, batch_size, scratchpad, scratchpad_size); std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic, {e})); std::vector<void *> ptrs{scratchpad, a_strided_mem}; dpct::async_dpct_free(ptrs, events, exec_queue); #endif exec_queue.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { free(host_a); }); }); #endif } } // namespace detail inline oneapi::mkl::transpose get_transpose(int t) { if (t == 0) { return oneapi::mkl::transpose::nontrans; } else if (t == 1) { return oneapi::mkl::transpose::trans; } else { return oneapi::mkl::transpose::conjtrans; } } /// Computes the LU factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in, out] a Array of pointers to matrices. These matrices will be /// overwritten by lower triangulars with unit diagonal elements and upper /// triangulars. /// \param [in] lda The leading dimension of the matrices. /// \param [out] ipiv An array stores the pivot indices. If \p ipiv is nullptr, /// non-pivoting LU factorization is computed. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrf_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *ipiv, int *info, int batch_size) { if (ipiv == nullptr) { detail::getrfnp_batch_wrapper(exec_queue, n, a, lda, info, batch_size); return; } using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, stride_ipiv, batch_size); T *a_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_buffer_ptr); oneapi::mkl::lapack::getrf_batch(exec_queue, n, n, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); auto to_buffer = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = ipiv_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = to_buffer.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * n + id.get(1)] = static_cast<int>(from_acc[id.get(0) * stride_ipiv + id.get(1)]); }); }); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); std::vector<void *> ptrs{host_a}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; oneapi::mkl::lapack::getrf_batch(exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); sycl::event e = exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv[idx] = static_cast<int>(ipiv_int64[idx]); }); }); std::vector<void *> ptrs{scratchpad, ipiv_int64, ipiv_int64_ptr, a_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Solves a system of linear equations with a batch of LU-factored square /// coefficient matrices, with multiple right-hand sides. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] trans Indicates the form of the linear equations. /// \param [in] n The order of the matrices. /// \param [in] nrhs The number of right hand sides. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [in, out] b Array of pointers to matrices, whose columns are /// the right-hand sides for the systems of equations. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrs_batch_wrapper(sycl::queue &exec_queue, oneapi::mkl::transpose trans, int n, int nrhs, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_b = nrhs * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, trans, n, nrhs, lda, stride_a, stride_ipiv, ldb, stride_b, batch_size); T *a_buffer_ptr, *b_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); dpct_memcpy(b_buffer_ptr + i * stride_b, host_b[i], nrhs * ldb * sizeof(T)); } { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getrs_batch(exec_queue, trans, n, nrhs, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, b_buffer, ldb, stride_b, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, nrhs * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t nrhs_int64 = nrhs; std::int64_t lda_int64 = lda; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, &trans, &n_int64, &nrhs_int64, &lda_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; sycl::event e = oneapi::mkl::lapack::getrs_batch( exec_queue, &trans, &n_int64, &nrhs_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, (Ty **)b_shared, &ldb_int64, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the inverses of a batch of LU-factored matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [out] b Array of pointers to inverse matrices. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getri_batch_wrapper(sycl::queue &exec_queue, int n, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_b = n * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, n, ldb, stride_b, stride_ipiv, batch_size); T *b_buffer_ptr; b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_buffer_ptr + i * stride_b, host_a[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } { auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getri_batch(exec_queue, n, b_buffer, ldb, stride_b, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, n * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, &n_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) { ipiv_int64_ptr[i] = ipiv_int64 + n * i; // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_shared[i], a_shared[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } sycl::event e = oneapi::mkl::lapack::getri_batch( exec_queue, &n_int64, (Ty **)b_shared, &ldb_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the QR factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] m The number of rows in the matrices. /// \param [in] n The number of columns in the matrices. /// \param [in, out] a Array of pointers to matrices. These /// matrices will be overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [out] tau An array stores the scalars. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void geqrf_batch_wrapper(sycl::queue exec_queue, int m, int n, T *a[], int lda, T *tau[], int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_tau = std::max(1, std::min(m, n)); std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, m, n, lda, stride_a, stride_tau, batch_size); T *a_buffer_ptr, *tau_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); tau_buffer_ptr = (T *)dpct_malloc(stride_tau * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_tau = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_tau, tau, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto tau_buffer = get_buffer<Ty>(tau_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; oneapi::mkl::lapack::geqrf_batch(exec_queue, m, n, a_buffer, lda, stride_a, tau_buffer, stride_tau, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events_a; std::vector<sycl::event> events_tau; for (std::int64_t i = 0; i < batch_size; ++i) { events_a.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); events_tau.push_back(detail::dpct_memcpy( exec_queue, host_tau[i], tau_buffer_ptr + i * stride_tau, std::max(1, std::min(m, n)) * sizeof(T), automatic)); } std::vector<void *> ptr_a{host_a}; std::vector<void *> ptr_tau{host_tau}; std::thread mem_free_thread_a( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_a, events_a); std::thread mem_free_thread_tau( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_tau, events_tau); mem_free_thread_a.detach(); mem_free_thread_tau.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **tau_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(tau_shared, tau, batch_size * sizeof(T *)).wait(); sycl::event e = oneapi::mkl::lapack::geqrf_batch( exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, (Ty **)tau_shared, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, a_shared, tau_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the Euclidean norm of a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void nrm2(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::nrm2_impl<float, float>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::nrm2_impl<double, double>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::nrm2_impl<std::complex<float>, float>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::nrm2_impl<std::complex<double>, double>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::nrm2_impl<sycl::half, sycl::half>( q, n, x, incx, result); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes the dot product of two vectors. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dot(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<false>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the dot product of two vectors, conjugating the first vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dotc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<true>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the product of a vector by a scalar. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. inline void scal(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, void *x, library_data_t x_type, int incx) { std::uint64_t key = detail::get_type_combination_id(x_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float): { detail::scal_impl<float, float>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_double): { detail::scal_impl<double, double>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_float): { detail::scal_impl<std::complex<float>, std::complex<float>>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_double): { detail::scal_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_half): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::scal_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a vector-scalar product and adds the result to a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. inline void axpy(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, const void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy) { std::uint64_t key = detail::get_type_combination_id(x_type, alpha_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::axpy_impl<float, float>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::axpy_impl<double, double>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::axpy_impl<std::complex<float>, std::complex<float>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::axpy_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::axpy_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx, y, incy); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Performs rotation of points in the plane. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [in] c Scaling factor. /// \param [in] s Scaling factor. /// \param [in] cs_type Data type of the scaling factors. inline void rot(sycl::queue &q, int n, void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy, const void *c, const void *s, library_data_t cs_type) { std::uint64_t key = detail::get_type_combination_id(x_type, cs_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::rot_impl<float, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::rot_impl<double, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::rot_impl<std::complex<float>, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::rot_impl<std::complex<double>, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::rot_impl<std::complex<float>, float, std::complex<float>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::rot_impl<std::complex<double>, double, std::complex<double>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::rot_impl<sycl::half, sycl::half, sycl::half>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_bfloat16, library_data_t::real_bfloat16): { detail::rot_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16>(q, n, x, incx, y, incy, c, s); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, const void *b, library_data_t b_type, int ldb, const void *beta, void *c, library_data_t c_type, int ldc, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>( q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a[], library_data_t a_type, int lda, const void *b[], library_data_t b_type, int ldb, const void *beta, void *c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] stride_a Stride between the different A matrices. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] stride_b Stride between the different B matrices. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, long long int stride_a, const void *b, library_data_t b_type, int ldb, long long int stride_b, const void *beta, void *c, library_data_t c_type, int ldc, long long int stride_c, int batch_size, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, std::int32_t>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b, &beta_half, c, ldc, stride_c, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// This routines perform a special rank-k update of a symmetric matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T> inline void syrk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const T *beta, T *c, int ldc) { detail::rk_impl<false, T, T>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routines perform a special rank-k update of a Hermitian matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T, class Tbeta> inline void herk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { detail::rk_impl<true, T, Tbeta>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routine performs a group of trsm operations. Each trsm solves an /// equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A multiplies X on the left or on the right. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of the B matrices. /// \param [in] n Number of columns of the B matrices. /// \param [in] alpha Scaling factor for the solutions. /// \param [in] a Input matrices A. /// \param [in] a_type Data type of the matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in, out] b Input and output matrices B. /// \param [in] b_type Data type of the matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [in] batch_size Specifies the number of trsm operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void trsm_batch(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, library_data_t a_type, int lda, void **b, library_data_t b_type, int ldb, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::uint64_t key = detail::get_type_combination_id(a_type, b_type, scaling_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::trsm_batch_impl<float, float, float>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::trsm_batch_impl<double, double, double>( q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::trsm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::trsm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a triangular matrix-general matrix product. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A is on the left or right side of the /// multiplication. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of B. /// \param [in] n Number of columns of B. /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in] b Input matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [out] c Output matrices C. /// \param [in] ldc Leading dimension of the matrices C. template <class T> inline void trmm(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const T *alpha, const T *a, int lda, const T *b, int ldb, T *c, int ldc) { using Ty = typename DataType<T>::T2; auto alpha_val = dpct::get_value(alpha, q); if (b != c) { dpct::matrix_mem_copy(c, b, ldc, ldb, m, n, dpct::device_to_device, q); } auto data_a = detail::get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = detail::get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::trmm(q, left_right, upper_lower, trans, unit_diag, m, n, alpha_val, data_a, lda, data_c, ldc); } } // namespace dpct #endif // __DPCT_BLAS_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/atomic.hpp
//==---- atomic.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ATOMIC_HPP__ #define __DPCT_ATOMIC_HPP__ #include <sycl/sycl.hpp> namespace dpct { /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_add(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_add(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_sub(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_sub(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_sub<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_and(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_and(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_and<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_and<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_and<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_and<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_or(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_or(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_or<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_or<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_or<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_or<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_xor(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_xor(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_xor<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_min(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_min(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_min<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_min<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_min<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_min<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_max(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_max(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_max<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_max<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_max<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_max<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically set \p operand to the value stored in \p addr, if old value stored in /// \p addr is equal to zero or greater than \p operand, else decrease the value stored /// in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_dec(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old == 0 || old > operand) { if (atm.compare_exchange_strong(old, operand)) break; } else if (atm.compare_exchange_strong(old, old - 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old >= operand) { if (atm.compare_exchange_strong(old, 0)) break; } else if (atm.compare_exchange_strong(old, old + 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_exchange(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_exchange(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_exchange<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_exchange<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_exchange<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_exchange<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in, out] addr Multi_ptr. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( sycl::multi_ptr<T, addressSpace> addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(*addr); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( sycl::multi_ptr<T1, addressSpace> addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(*addr); T1 expected_value = expected; atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in] addr The pointer to the data. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( T *addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( T1 *addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { T1 expected_value = expected; auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomic extension to implement standard APIs in std::atomic namespace detail{ template <typename T> struct IsValidAtomicType { static constexpr bool value = (std::is_same<T, int>::value || std::is_same<T, unsigned int>::value || std::is_same<T, long>::value || std::is_same<T, unsigned long>::value || std::is_same<T, long long>::value || std::is_same<T, unsigned long long>::value || std::is_same<T, float>::value || std::is_same<T, double>::value || std::is_pointer<T>::value); }; } // namespace detail template <typename T, sycl::memory_scope DefaultScope = sycl::memory_scope::system, sycl::memory_order DefaultOrder = sycl::memory_order::seq_cst, sycl::access::address_space Space = sycl::access::address_space::generic_space> class atomic{ static_assert( detail::IsValidAtomicType<T>::value, "Invalid atomic type. Valid types are int, unsigned int, long, " "unsigned long, long long, unsigned long long, float, double " "and pointer types"); T __d; public: /// default memory synchronization order static constexpr sycl::memory_order default_read_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_read_order; static constexpr sycl::memory_order default_write_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_write_order; static constexpr sycl::memory_scope default_scope = DefaultScope; static constexpr sycl::memory_order default_read_modify_write_order = DefaultOrder; /// Default constructor. constexpr atomic() noexcept = default; /// Constructor with initialize value. constexpr atomic(T d) noexcept : __d(d){}; /// atomically replaces the value of the referenced object with a non-atomic argument /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. void store(T operand, sycl::memory_order memoryOrder = default_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); atm.store(operand, memoryOrder, memoryScope); } /// atomically obtains the value of the referenced object /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object T load(sycl::memory_order memoryOrder = default_read_order, sycl::memory_scope memoryScope = default_scope) const noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm( const_cast<T &>(__d)); return atm.load(memoryOrder, memoryScope); } /// atomically replaces the value of the referenced object and obtains the value held previously /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T exchange(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.exchange(operand, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, memoryOrder, memoryScope); } /// atomically adds the argument to the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic addition /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_add(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_add(operand, memoryOrder, memoryScope); } /// atomically subtracts the argument from the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic subtraction /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_sub(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_sub(operand, memoryOrder, memoryScope); } }; } // namespace dpct #endif // __DPCT_ATOMIC_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/rng_utils.hpp
//==---- rng_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_RNG_UTILS_HPP__ #define __DPCT_RNG_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. #include <oneapi/mkl/rng/device.hpp> #endif #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace rng { #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. namespace device { /// The random number generator on device. /// \tparam engine_t The device random number generator engine. It can only be /// oneapi::mkl::rng::device::mrg32k3a<1> or /// oneapi::mkl::rng::device::mrg32k3a<4> or /// oneapi::mkl::rng::device::philox4x32x10<1> or /// oneapi::mkl::rng::device::philox4x32x10<4>. template <typename engine_t> class rng_generator { static_assert( std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>, "engine_t can only be oneapi::mkl::rng::device::mrg32k3a<1> or " "oneapi::mkl::rng::device::mrg32k3a<4> or " "oneapi::mkl::rng::device::philox4x32x10<1> or " "oneapi::mkl::rng::device::philox4x32x10<4> or " "oneapi::mkl::rng::device::mcg59<1>."); static constexpr bool _is_engine_vec_size_one = std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>; static constexpr std::uint64_t default_seed = 0; oneapi::mkl::rng::device::bits<std::uint32_t> _distr_bits; oneapi::mkl::rng::device::uniform_bits<std::uint32_t> _distr_uniform_bits; oneapi::mkl::rng::device::gaussian<float> _distr_gaussian_float; oneapi::mkl::rng::device::gaussian<double> _distr_gaussian_double; oneapi::mkl::rng::device::lognormal<float> _distr_lognormal_float; oneapi::mkl::rng::device::lognormal<double> _distr_lognormal_double; oneapi::mkl::rng::device::poisson<std::uint32_t> _distr_poisson; oneapi::mkl::rng::device::uniform<float> _distr_uniform_float; oneapi::mkl::rng::device::uniform<double> _distr_uniform_double; engine_t _engine; public: /// Default constructor of rng_generator rng_generator() { _engine = engine_t(default_seed); } /// Constructor of rng_generator if engine type is not mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. /// The number is calculated as: num_to_skip[0] + num_to_skip[1] * 2^64 + /// num_to_skip[2] * 2^128 + ... + num_to_skip[n-1] * 2^(64*(n-1)) template <typename T = engine_t, typename std::enable_if<!std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::initializer_list<std::uint64_t> num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Constructor of rng_generator if engine type is mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. template <typename T = engine_t, typename std::enable_if<std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::uint64_t num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Generate random number(s) obeys distribution \tparam distr_t. /// \tparam T The distribution of the random number. It can only be /// oneapi::mkl::rng::device::bits<std::uint32_t>, /// oneapi::mkl::rng::device::uniform_bits<std::uint32_t>, /// oneapi::mkl::rng::device::gaussian<float>, /// oneapi::mkl::rng::device::gaussian<double>, /// oneapi::mkl::rng::device::lognormal<float>, /// oneapi::mkl::rng::device::lognormal<double>, /// oneapi::mkl::rng::device::poisson<std::uint32_t>, /// oneapi::mkl::rng::device::uniform<float> or /// oneapi::mkl::rng::device::uniform<double> /// \tparam vec_size The length of the return vector. It can only be 1, 2 /// or 4. /// \param distr_params The parameter(s) for lognormal or poisson /// distribution. /// \return The vector of the random number(s). template <typename distr_t, int vec_size, class... distr_params_t> auto generate(distr_params_t... distr_params) { static_assert(vec_size == 1 || vec_size == 2 || vec_size == 4, "vec_size is not supported."); static_assert( std::disjunction_v< std::is_same<distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::poisson<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<double>>>, "distribution is not supported."); if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_bits); } if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_uniform_bits); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<float>>) { return generate_vec<vec_size>(_distr_gaussian_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<double>>) { return generate_vec<vec_size>(_distr_gaussian_double); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<float>>) { return generate_vec<vec_size>(_distr_lognormal_float, distr_params..., 0.0f, 1.0f); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<double>>) { return generate_vec<vec_size>(_distr_lognormal_double, distr_params..., 0.0, 1.0); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::poisson< std::uint32_t>>) { return generate_vec<vec_size>(_distr_poisson, distr_params...); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<float>>) { return generate_vec<vec_size>(_distr_uniform_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<double>>) { return generate_vec<vec_size>(_distr_uniform_double); } } /// Get the random number generator engine. /// \return The reference of the internal random number generator engine. engine_t &get_engine() { return _engine; } private: template <int vec_size, typename distr_t, class... distr_params_t> auto generate_vec(distr_t &distr, distr_params_t... distr_params) { if constexpr (sizeof...(distr_params_t)) { typename distr_t::param_type pt(distr_params...); distr.param(pt); } if constexpr (vec_size == 4) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 4> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); res.z() = oneapi::mkl::rng::device::generate(distr, _engine); res.w() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { return oneapi::mkl::rng::device::generate(distr, _engine); } } else if constexpr (vec_size == 1) { if constexpr (_is_engine_vec_size_one) { return oneapi::mkl::rng::device::generate(distr, _engine); } else { return oneapi::mkl::rng::device::generate_single(distr, _engine); } } else if constexpr (vec_size == 2) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate_single(distr, _engine); res.y() = oneapi::mkl::rng::device::generate_single(distr, _engine); return res; } } } }; } // namespace device #endif namespace host { namespace detail { class rng_generator_base { public: /// Set the seed of host rng_generator. /// \param seed The engine seed. virtual void set_seed(const std::uint64_t seed) = 0; /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. virtual void set_dimensions(const std::uint32_t dimensions) = 0; /// Set the queue of host rng_generator. /// \param queue The engine queue. virtual void set_queue(sycl::queue *queue) = 0; /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned int *output, std::int64_t n) = 0; /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) = 0; /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(float *output, std::int64_t n, float m, float s) = 0; /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(double *output, std::int64_t n, double m, double s) = 0; /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) = 0; /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) = 0; /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. virtual inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) = 0; /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(float *output, std::int64_t n) = 0; /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(double *output, std::int64_t n) = 0; /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. virtual void skip_ahead(const std::uint64_t num_to_skip) = 0; protected: sycl::queue *_queue{&dpct::get_default_queue()}; std::uint64_t _seed{0}; std::uint32_t _dimensions{1}; }; /// The random number generator on host. template <typename engine_t = oneapi::mkl::rng::philox4x32x10> class rng_generator : public rng_generator_base { public: /// Constructor of rng_generator. rng_generator() : _engine(create_engine(_queue, _seed, _dimensions)) {} /// Set the seed of host rng_generator. /// \param seed The engine seed. void set_seed(const std::uint64_t seed) { if (seed == _seed) { return; } _seed = seed; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. void set_dimensions(const std::uint32_t dimensions) { if (dimensions == _dimensions) { return; } _dimensions = dimensions; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the queue of host rng_generator. /// \param queue The engine queue. void set_queue(sycl::queue *queue) { if (queue == _queue) { return; } _queue = queue; _engine = create_engine(_queue, _seed, _dimensions); } /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned int *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned int) == sizeof(std::uint32_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint32_t>>( (std::uint32_t *)output, n); #endif } /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned long long) == sizeof(std::uint64_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint64_t>>( (std::uint64_t *)output, n); #endif } /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(float *output, std::int64_t n, float m, float s) { generate<oneapi::mkl::rng::lognormal<float>>(output, n, m, s); } /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(double *output, std::int64_t n, double m, double s) { generate<oneapi::mkl::rng::lognormal<double>>(output, n, m, s); } /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) { generate<oneapi::mkl::rng::gaussian<float>>(output, n, mean, stddev); } /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) { generate<oneapi::mkl::rng::gaussian<double>>(output, n, mean, stddev); } /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) { generate<oneapi::mkl::rng::poisson<unsigned int>>(output, n, lambda); } /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(float *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<float>>(output, n); } /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(double *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<double>>(output, n); } /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. void skip_ahead(const std::uint64_t num_to_skip) { #ifndef __INTEL_MKL__ oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #else if constexpr (std::is_same_v<engine_t, oneapi::mkl::rng::mt2203>) throw std::runtime_error("no skip_ahead method of mt2203 engine."); else oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #endif } private: static inline engine_t create_engine(sycl::queue *queue, const std::uint64_t seed, const std::uint32_t dimensions) { #ifdef __INTEL_MKL__ return std::is_same_v<engine_t, oneapi::mkl::rng::sobol> ? engine_t(*queue, dimensions) : engine_t(*queue, seed); #else return engine_t(*queue, seed); #endif } template <typename distr_t, typename buffer_t, class... distr_params_t> void generate(buffer_t *output, const std::int64_t n, const distr_params_t... distr_params) { auto output_buf = dpct::detail::get_memory(output); oneapi::mkl::rng::generate(distr_t(distr_params...), _engine, n, output_buf); } engine_t _engine{}; }; } // namespace detail } // namespace host enum class random_engine_type { philox4x32x10, mrg32k3a, mt2203, mt19937, sobol, mcg59 }; typedef std::shared_ptr<rng::host::detail::rng_generator_base> host_rng_ptr; /// Create a host random number generator. /// \param type The random engine type. /// \return The pointer of random number generator. inline host_rng_ptr create_host_rng(const random_engine_type type) { switch (type) { case random_engine_type::philox4x32x10: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::philox4x32x10>>(); case random_engine_type::mrg32k3a: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mrg32k3a>>(); #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else case random_engine_type::mt2203: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt2203>>(); case random_engine_type::mt19937: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt19937>>(); case random_engine_type::sobol: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::sobol>>(); case random_engine_type::mcg59: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mcg59>>(); #endif } } } // namespace rng } // namespace dpct #endif // __DPCT_RNG_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/numeric.h
//==---- numeric.h --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_NUMERIC_H__ #define __DPCT_NUMERIC_H__ namespace dpct { template <typename Policy, typename InputIt1, typename InputIt2, typename T> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init); } template <typename Policy, typename InputIt1, typename InputIt2, typename T, typename BinaryOperation1, typename BinaryOperation2> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1, BinaryOperation2 op2) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init, op1, op2); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/iterators.h
//==---- iterators.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ITERATORS_H__ #define __DPCT_ITERATORS_H__ #include <oneapi/dpl/iterator> #include "functional.h" namespace dpct { namespace internal { // Wrapper class returned from a dereferenced transform_iterator which was // created using // make_transform_output_iterator(). Used to apply the supplied transform // function when writing into an object of this class. // // Example: // int a[] = {0, 1, 2, 3, 4}; // int* p = a; // auto f = [](auto v) {return v*v;}; // auto tr_out = dpct::make_transform_output_iterator(p+1, f); // auto wrap = *tr_out; // wrap is a transform_output_ref_wrapper // std::cout<<*(p+1)<<std::endl; // '1' // wrap = 2; // apply function, store 2*2=4 // std::cout<<*(p+1)<<std::endl; // '4' template <typename T, typename _UnaryFunc> class transform_output_ref_wrapper { private: T __my_reference_; _UnaryFunc __my_unary_func_; public: template <typename U> transform_output_ref_wrapper(U &&__reference, _UnaryFunc __unary_func) : __my_reference_(std::forward<U>(__reference)), __my_unary_func_(__unary_func) {} // When writing to an object of this type, apply the supplied unary function, // then write to the wrapped reference template <typename UnaryInputType> transform_output_ref_wrapper &operator=(const UnaryInputType &e) { __my_reference_ = __my_unary_func_(e); return *this; } }; // Unary functor to create a transform_output_reference_wrapper when a // transform_iterator is dereferenced, so that a // the supplied unary function may be applied on write, resulting in a // transform_output_iterator template <typename _UnaryFunc> struct _Unary_Out { _Unary_Out(_UnaryFunc __f_) : __f(__f_) {} _UnaryFunc __f; template <typename T> auto operator()(T &&val) const { return transform_output_ref_wrapper<T, _UnaryFunc>(std::forward<T>(val), __f); } }; } // end namespace internal using std::advance; using std::distance; template <typename T> oneapi::dpl::counting_iterator<T> make_counting_iterator(const T &input) { return oneapi::dpl::counting_iterator<T>(input); } template <typename _Tp> class constant_iterator { public: typedef std::false_type is_hetero; typedef std::true_type is_passed_directly; typedef std::ptrdiff_t difference_type; typedef _Tp value_type; typedef _Tp *pointer; // There is no storage behind the iterator, so we return a value instead of // reference. typedef const _Tp reference; typedef const _Tp const_reference; typedef std::random_access_iterator_tag iterator_category; explicit constant_iterator(_Tp __init) : __my_value_(__init), __my_counter_(0) {} private: // used to construct iterator instances with different counter values required // by arithmetic operators constant_iterator(const _Tp &__value, const difference_type &__offset) : __my_value_(__value), __my_counter_(__offset) {} public: // non-const variants of access operators are not provided so unintended // writes are caught at compile time. const_reference operator*() const { return __my_value_; } const_reference operator[](difference_type) const { return __my_value_; } difference_type operator-(const constant_iterator &__it) const { return __my_counter_ - __it.__my_counter_; } constant_iterator &operator+=(difference_type __forward) { __my_counter_ += __forward; return *this; } constant_iterator &operator-=(difference_type __backward) { return *this += -__backward; } constant_iterator &operator++() { return *this += 1; } constant_iterator &operator--() { return *this -= 1; } constant_iterator operator++(int) { constant_iterator __it(*this); ++(*this); return __it; } constant_iterator operator--(int) { constant_iterator __it(*this); --(*this); return __it; } constant_iterator operator-(difference_type __backward) const { return constant_iterator(__my_value_, __my_counter_ - __backward); } constant_iterator operator+(difference_type __forward) const { return constant_iterator(__my_value_, __my_counter_ + __forward); } friend constant_iterator operator+(difference_type __forward, const constant_iterator __it) { return __it + __forward; } bool operator==(const constant_iterator &__it) const { return __my_value_ == __it.__my_value_ && this->__my_counter_ == __it.__my_counter_; } bool operator!=(const constant_iterator &__it) const { return !(*this == __it); } bool operator<(const constant_iterator &__it) const { return *this - __it < 0; } bool operator>(const constant_iterator &__it) const { return __it < *this; } bool operator<=(const constant_iterator &__it) const { return !(*this > __it); } bool operator>=(const constant_iterator &__it) const { return !(*this < __it); } private: _Tp __my_value_; uint64_t __my_counter_; }; template <typename _Tp> constant_iterator<_Tp> make_constant_iterator(_Tp __value) { return constant_iterator<_Tp>(__value); } // key_value_pair class to represent a key and value, specifically a // dereferenced arg_index_input_iterator template <typename _KeyTp, typename _ValueTp> class key_value_pair { public: key_value_pair() = default; key_value_pair(const _KeyTp &_key, const _ValueTp &_value) : key(_key), value(_value) {} bool operator==(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key == _kvp.key) && (value == _kvp.value); } bool operator!=(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key != _kvp.key) || (value != _kvp.value); } _KeyTp key; _ValueTp value; }; namespace detail { template <typename KeyTp, typename _ValueTp> struct make_key_value_pair { template <typename ValRefTp> key_value_pair<KeyTp, _ValueTp> operator()(const oneapi::dpl::__internal::tuple<KeyTp, ValRefTp> &tup) const { return ::dpct::key_value_pair<KeyTp, _ValueTp>(::std::get<0>(tup), ::std::get<1>(tup)); } }; template <class T> struct __zip_iterator_impl; template <class... Ts> struct __zip_iterator_impl<std::tuple<Ts...>> { using type = oneapi::dpl::zip_iterator<Ts...>; }; } // end namespace detail // dpct::zip_iterator can only accept std::tuple type as template argument for // compatibility purpose. Please use oneapi::dpl::zip_iterator if you want to // pass iterator's types directly. template <typename... Ts> using zip_iterator = typename detail::__zip_iterator_impl<Ts...>::type; // arg_index_input_iterator is an iterator over a input iterator, with a index. // When dereferenced, it returns a key_value_pair, which can be interrogated for // the index key or the value from the input iterator template <typename InputIteratorT, typename OffsetT = ptrdiff_t, typename OutputValueT = typename ::std::iterator_traits<InputIteratorT>::value_type> class arg_index_input_iterator : public oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>> { using arg_index_input_iterator_wrap = oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>>; public: typedef OffsetT difference_type; // signal to __get_sycl_range that this iterator is as a direct pass iterator using is_zip = ::std::true_type; arg_index_input_iterator(const arg_index_input_iterator_wrap &__arg_wrap) : arg_index_input_iterator_wrap(__arg_wrap) {} arg_index_input_iterator(InputIteratorT __iter) : arg_index_input_iterator_wrap( oneapi::dpl::make_zip_iterator( oneapi::dpl::counting_iterator(OffsetT(0)), __iter), detail::make_key_value_pair<OffsetT, OutputValueT>()) {} arg_index_input_iterator &operator=(const arg_index_input_iterator &__input) { arg_index_input_iterator_wrap::operator=(__input); return *this; } arg_index_input_iterator &operator++() { arg_index_input_iterator_wrap::operator++(); return *this; } arg_index_input_iterator &operator--() { arg_index_input_iterator_wrap::operator--(); return *this; } arg_index_input_iterator operator++(int) { arg_index_input_iterator __it(*this); ++(*this); return __it; } arg_index_input_iterator operator--(int) { arg_index_input_iterator __it(*this); --(*this); return __it; } arg_index_input_iterator operator+(difference_type __forward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator+(__forward)); } arg_index_input_iterator operator-(difference_type __backward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator-(__backward)); } arg_index_input_iterator &operator+=(difference_type __forward) { arg_index_input_iterator_wrap::operator+=(__forward); return *this; } arg_index_input_iterator &operator-=(difference_type __backward) { arg_index_input_iterator_wrap::operator-=(__backward); return *this; } friend arg_index_input_iterator operator+(difference_type __forward, const arg_index_input_iterator &__it) { return __it + __forward; } difference_type operator-(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator-(__it); } bool operator==(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator==(__it); } bool operator!=(const arg_index_input_iterator &__it) const { return !(*this == __it); } bool operator<(const arg_index_input_iterator &__it) const { return *this - __it < 0; } bool operator>(const arg_index_input_iterator &__it) const { return __it < *this; } bool operator<=(const arg_index_input_iterator &__it) const { return !(*this > __it); } bool operator>=(const arg_index_input_iterator &__it) const { return !(*this < __it); } // returns an arg_index_input_iterator with the same iter position, but a // count reset to 0 arg_index_input_iterator create_normalized() { return arg_index_input_iterator( ::std::get<1>(arg_index_input_iterator_wrap::base().base())); } }; template <typename IterT> struct io_iterator_pair { inline io_iterator_pair() : selector(false) {} inline io_iterator_pair(const IterT &first, const IterT &second) : selector(false) { iter[0] = first; iter[1] = second; } inline IterT first() const { return selector ? iter[1] : iter[0]; } inline IterT second() const { return selector ? iter[0] : iter[1]; } inline void swap() { selector = !selector; } bool selector; IterT iter[2]; }; template <typename _Iter, typename _UnaryFunc> auto make_transform_output_iterator(_Iter __it, _UnaryFunc __unary_func) { return oneapi::dpl::transform_iterator( __it, internal::_Unary_Out<_UnaryFunc>(__unary_func)); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/algorithm.h
//==---- algorithm.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ALGORITHM_H__ #define __DPCT_ALGORITHM_H__ #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "functional.h" #include "iterators.h" #include "vector.h" namespace dpct { template <typename Policy, typename Iter1, typename Iter2, typename Pred, typename T> void replace_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::transform(std::forward<Policy>(policy), first, last, mask, first, internal::replace_if_fun<typename std::iterator_traits<Iter1>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred, typename T> Iter3 replace_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::transform(std::forward<Policy>(policy), first, last, mask, result, internal::replace_if_fun<typename std::iterator_traits<Iter3>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using internal::__buffer; using ValueType = typename std::iterator_traits<Iter1>::value_type; __buffer<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.get(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(std::forward<Policy>(policy), _tmp.get(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using ValueType = typename std::iterator_traits<Iter1>::value_type; std::vector<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( policy, make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.begin(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(policy, _tmp.begin(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 remove_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; auto ret_val = std::remove_copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class BinaryPred> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_first, values_first), ret_val); return std::make_pair(keys_first + n1, values_first + n1); } template <class Policy, class Iter1, class Iter2> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; return unique(std::forward<Policy>(policy), keys_first, keys_last, values_first, std::equal_to<T>()); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryPred> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::unique_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; auto comp = std::equal_to<T>(); return unique_copy(std::forward<Policy>(policy), keys_first, keys_last, values_first, keys_result, values_result, comp); } template <typename Policy, typename Iter, typename Pred> Iter partition_point(Policy &&policy, Iter first, Iter last, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); if (std::is_partitioned(std::forward<Policy>(policy), first, last, p)) return std::find_if_not(std::forward<Policy>(policy), first, last, p); else return first; } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::copy_if( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(pred)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class UnaryOperation, class Pred> Iter2 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, result), oneapi::dpl::make_zip_iterator(first, result) + n, internal::transform_if_fun<T, Pred, UnaryOperation>(pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class UnaryOperation, class Pred> Iter3 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; using Ref1 = typename std::iterator_traits<Iter1>::reference; using Ref2 = typename std::iterator_traits<Iter2>::reference; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask, result), oneapi::dpl::make_zip_iterator(first, mask, result) + n, internal::transform_if_unary_zip_mask_fun<T, Pred, UnaryOperation>( pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryOperation, class Pred> Iter4 transform_if(Policy &&policy, Iter1 first1, Iter1 last1, Iter2 first2, Iter3 mask, Iter4 result, BinaryOperation binary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); const auto n = std::distance(first1, last1); using ZipIterator = typename oneapi::dpl::zip_iterator<Iter1, Iter2, Iter3, Iter4>; using T = typename std::iterator_traits<ZipIterator>::value_type; std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first1, first2, mask, result), oneapi::dpl::make_zip_iterator(last1, first2 + n, mask + n, result + n), internal::transform_if_zip_mask_fun<T, Pred, BinaryOperation>(pred, binary_op)); return result + n; } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> void scatter(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); oneapi::dpl::copy(policy, first, last, oneapi::dpl::make_permutation_iterator(result, map)); } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> OutputIter gather(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 input_first, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = ::std::distance(map_first, map_last); return oneapi::dpl::copy(policy, perm_begin, perm_begin + n, result); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> void scatter_if(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, InputIter3 mask, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); transform_if(policy, first, last, mask, oneapi::dpl::make_permutation_iterator(result, map), [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> OutputIter gather_if(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 mask, InputIter3 input_first, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = std::distance(map_first, map_last); return transform_if(policy, perm_begin, perm_begin + n, mask, result, [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6, typename Comp> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init, T step) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, internal::sequence_fun<T>(init, step)); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); iota(std::forward<Policy>(policy), first, last, init, T(1)); } template <class Policy, class Iter> void iota(Policy &&policy, Iter first, Iter last) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; iota(std::forward<Policy>(policy), first, last, DiffSize(0), DiffSize(1)); } template <class Policy, class Iter1, class Iter2, class Comp> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto first = oneapi::dpl::make_zip_iterator(keys_first, values_first); auto last = first + std::distance(keys_first, keys_last); std::sort(std::forward<Policy>(policy), first, last, internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter1, class Iter2, class Comp> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::stable_sort( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); stable_sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter, class Operator> void for_each_index(Policy &&policy, Iter first, Iter last, Operator unary_op) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, unary_op); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Comp> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::partition_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(out_true, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(out_false, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::make_pair(std::get<0>(ret_val.first.base()), std::get<0>(ret_val.second.base())); } template <typename Policy, typename Iter1, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::partition_copy(std::forward<Policy>(policy), first, last, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition_copy(std::forward<Policy>(policy), first, last, mask, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; internal::__buffer<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.get()); auto ret_val = std::stable_partition(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.get()), oneapi::dpl::make_zip_iterator( last, _tmp.get() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; std::vector<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.begin()); auto ret_val = std::stable_partition( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.begin()), oneapi::dpl::make_zip_iterator(last, _tmp.begin() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_execution_policy<Policy, Iter1> partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition(std::forward<Policy>(policy), first, last, mask, p); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); namespace internal { // Transforms key to a specific bit range and sorts the transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transformed_key_t> inline void transform_and_sort(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto trans_key = translate_key<key_t_value_t, transformed_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange // desired. auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, [=](const auto a, const auto b) { return comp(trans_key(a), trans_key(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<transformed_key_t>()); else partial_sort_with_comp(::std::less<transformed_key_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline void sort_only(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; if constexpr (::std::is_floating_point<key_t_value_t>::value) { if (descending) { // Comparison operator that is not std::greater() ensures stability of // -0.0 and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_descending = [=](const auto a, const auto b) { return a > b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_descending); } else { // Comparison operator that is not std::less() ensures stability of -0.0 // and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_ascending = [=](const auto a, const auto b) { return a < b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_ascending); } } else { if (descending) { oneapi::dpl::partial_sort_copy( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, ::std::greater<key_t_value_t>()); } else { oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n); } } } // Transforms key from a pair to a specific bit range and sorts the pairs by the // transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transform_key_t, typename value_t, typename value_out_t> inline void transform_and_sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); auto trans_key = translate_key<key_t_value_t, transform_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange desired // and also to select the key from the zipped pair. auto load_val = [=](const auto a) { return trans_key(std::get<0>(a)); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline void sort_only_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to select the key from the zipped pair. auto load_val = [=](const auto a) { return std::get<0>(a); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } // overload for key_out_t != std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<!::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_pairs_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort_pairs<decltype(policy), key_t, key_out_t, T, value_t, value_out_t>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_pairs_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_pairs_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_pairs_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_pairs_f.template operator()<uint64_t>(0); } } // overload for key_out_t == std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { // create temporary keys_out to discard, memory footprint could be improved by // a specialized iterator with a single // unchanging dummy key_t element using key_t_value_t = typename std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> temp_keys_out{sycl::range<1>(n)}; internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(temp_keys_out), values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_keys(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_pairs(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_keys(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename OffsetIteratorT> inline void mark_segments(_ExecutionPolicy &&policy, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, int64_t n, int64_t nsegments, sycl::buffer<::std::size_t, 1> segments) { ::std::size_t work_group_size = policy.queue() .get_device() .template get_info<sycl::info::device::max_work_group_size>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); ::std::size_t sub_group_size = sg_sizes.empty() ? 0 : sg_sizes.back(); float avg_seg_size = (float)n / (float)nsegments; if (avg_seg_size > work_group_size) { // If average segment size is larger than workgroup, use workgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(work_group_size, ([=](sycl::id<1> id) { for (::std::size_t seg = 0; seg < nsegments; seg++) { ::std::size_t i = begin_offsets[seg]; ::std::size_t end = end_offsets[seg]; while (i + id < end) { segments_acc[i + id] = seg; i += work_group_size; } } })); }) .wait(); } else if (sub_group_size > 0 && avg_seg_size > sub_group_size / 2) { // If average segment size is larger than half a subgroup, use subgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for( sycl::nd_range<1>{work_group_size, work_group_size}, ([=](sycl::nd_item<1> item) { auto sub_group = item.get_sub_group(); ::std::size_t num_subgroups = sub_group.get_group_range().size(); ::std::size_t local_size = sub_group.get_local_range().size(); ::std::size_t sub_group_id = sub_group.get_group_id(); while (sub_group_id < nsegments) { ::std::size_t subgroup_local_id = sub_group.get_local_id(); ::std::size_t i = begin_offsets[sub_group_id]; ::std::size_t end = end_offsets[sub_group_id]; while (i + subgroup_local_id < end) { segments_acc[i + subgroup_local_id] = sub_group_id; i += local_size; } sub_group_id += num_subgroups; } })); }) .wait(); } else { // If average segment size is small as compared to subgroup, use single // work item to mark each segment policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(nsegments, ([=](sycl::id<1> seg) { for (::std::size_t i = begin_offsets[seg]; i < end_offsets[seg]; i++) { segments_acc[i] = seg; } })); }) .wait(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(segments), oneapi::dpl::begin(segments_sorted), n, descending); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), oneapi::dpl::begin(keys_temp), keys_out, n, false); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; using value_t_value_t = typename ::std::iterator_traits<value_t>::value_type; sycl::buffer<value_t_value_t, 1> values_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); auto zip_seg_vals = oneapi::dpl::make_zip_iterator(oneapi::dpl::begin(segments), values_in); auto zip_seg_vals_out = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(values_temp)); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), zip_seg_vals, zip_seg_vals_out, n, descending); auto zip_keys_vals = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(values_temp)); auto zip_keys_vals_out = oneapi::dpl::make_zip_iterator(keys_out, values_out); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), zip_keys_vals, zip_keys_vals_out, n, false); } } // end namespace internal template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename value_t> inline void sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort<decltype(policy), key_t, key_out_t, T>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_f.template operator()<uint64_t>(0); } } template <typename _ExecutionPolicy, typename key_t> inline void sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_keys(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) keys.swap(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> segmented_sort_keys( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_keys_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_keys_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_keys_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename OffsetIteratorT> inline void segmented_sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_keys(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> segmented_sort_pairs( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_pairs_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_pairs_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_pairs_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename value_t, typename OffsetIteratorT> inline void segmented_sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_pairs(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmax(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::max_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmin(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::min_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable, typename StrictWeakOrdering> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value, StrictWeakOrdering comp) { ::std::vector<::std::int64_t> res_lower(1); ::std::vector<::std::int64_t> res_upper(1); ::std::vector<ValueLessComparable> value_vec(1, value); ::oneapi::dpl::lower_bound(policy, start, end, value_vec.begin(), value_vec.end(), res_lower.begin(), comp); ::oneapi::dpl::upper_bound(::std::forward<_ExecutionPolicy>(policy), start, end, value_vec.begin(), value_vec.end(), res_upper.begin(), comp); auto result = ::std::make_pair(start + res_lower[0], start + res_upper[0]); return result; } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value) { return equal_range(::std::forward<_ExecutionPolicy>(policy), start, end, value, internal::__less()); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmin(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::max()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::min_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmax(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::lowest()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::max_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/memory.h
//==---- memory.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_H__ #define __DPCT_MEMORY_H__ #include <sycl/sycl.hpp> // Memory management section: // device_pointer, device_reference, swap, device_iterator, malloc_device, // device_new, free_device, device_delete namespace dpct { namespace detail { template <typename T> struct make_allocatable { using type = T; }; template <> struct make_allocatable<void> { using type = dpct::byte_t; }; #if defined(__LIBSYCL_MAJOR_VERSION) && defined(__LIBSYCL_MINOR_VERSION) && \ defined(__LIBSYCL_PATCH_VERSION) #define _DPCT_LIBSYCL_VERSION \ (__LIBSYCL_MAJOR_VERSION * 10000 + __LIBSYCL_MINOR_VERSION * 100 + \ __LIBSYCL_PATCH_VERSION) #else #define _DPCT_LIBSYCL_VERSION 0 #endif template <typename _DataT> using __buffer_allocator = #if _DPCT_LIBSYCL_VERSION >= 60000 sycl::buffer_allocator<typename make_allocatable<_DataT>::type>; #else sycl::buffer_allocator; #endif } // namespace detail #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_pointer; #else template <typename T> class device_pointer; #endif template <typename T> struct device_reference { using pointer = device_pointer<T>; using value_type = T; template <typename OtherT> device_reference(const device_reference<OtherT> &input) : value(input.value) {} device_reference(const pointer &input) : value((*input).value) {} device_reference(value_type &input) : value(input) {} template <typename OtherT> device_reference &operator=(const device_reference<OtherT> &input) { value = input; return *this; }; device_reference &operator=(const device_reference &input) { T val = input.value; value = val; return *this; }; device_reference &operator=(const value_type &x) { value = x; return *this; }; pointer operator&() const { return pointer(&value); }; operator value_type() const { return T(value); } device_reference &operator++() { ++value; return *this; }; device_reference &operator--() { --value; return *this; }; device_reference operator++(int) { device_reference ref(*this); ++(*this); return ref; }; device_reference operator--(int) { device_reference ref(*this); --(*this); return ref; }; device_reference &operator+=(const T &input) { value += input; return *this; }; device_reference &operator-=(const T &input) { value -= input; return *this; }; device_reference &operator*=(const T &input) { value *= input; return *this; }; device_reference &operator/=(const T &input) { value /= input; return *this; }; device_reference &operator%=(const T &input) { value %= input; return *this; }; device_reference &operator&=(const T &input) { value &= input; return *this; }; device_reference &operator|=(const T &input) { value |= input; return *this; }; device_reference &operator^=(const T &input) { value ^= input; return *this; }; device_reference &operator<<=(const T &input) { value <<= input; return *this; }; device_reference &operator>>=(const T &input) { value >>= input; return *this; }; void swap(device_reference &input) { T tmp = (*this); *this = (input); input = (tmp); } T &value; }; template <typename T> void swap(device_reference<T> &x, device_reference<T> &y) { x.swap(y); } template <typename T> void swap(T &x, T &y) { T tmp = x; x = y; y = tmp; } namespace internal { // struct for checking if iterator is heterogeneous or not template <typename Iter, typename Void = void> // for non-heterogeneous iterators struct is_hetero_iterator : std::false_type {}; template <typename Iter> // for heterogeneous iterators struct is_hetero_iterator< Iter, typename std::enable_if<Iter::is_hetero::value, void>::type> : std::true_type {}; } // namespace internal #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode, typename Allocator> class device_iterator; template <typename ValueType, typename Allocator, typename Derived> class device_pointer_base { protected: sycl::buffer<ValueType, 1, Allocator> buffer; std::size_t idx; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(sycl::buffer<ValueType, 1> in, std::size_t i = 0) : buffer(in), idx(i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer_base(OtherT *ptr) : buffer( dpct::detail::mem_mgr::instance() .translate_ptr(ptr) .buffer.template reinterpret<ValueType, 1>(sycl::range<1>( dpct::detail::mem_mgr::instance().translate_ptr(ptr).size / sizeof(ValueType)))), idx(ptr - (ValueType*)dpct::detail::mem_mgr::instance() .translate_ptr(ptr).alloc_ptr) {} #endif device_pointer_base(const std::size_t count) : buffer(sycl::range<1>(count / sizeof(ValueType))), idx() {} // buffer has no default ctor we pass zero-range to create an empty buffer device_pointer_base() : buffer(sycl::range<1>(0)) {} device_pointer_base(const device_pointer_base &in) : buffer(in.buffer), idx(in.idx) {} pointer get() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() { auto res = (buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } Derived operator+(difference_type forward) const { return Derived{buffer, idx + forward}; } Derived operator-(difference_type backward) const { return Derived{buffer, idx - backward}; } Derived operator++(int) { Derived p(buffer, idx); idx += 1; return p; } Derived operator--(int) { Derived p(buffer, idx); idx -= 1; return p; } difference_type operator-(const Derived &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - std::distance(oneapi::dpl::begin(buffer), it); } std::size_t get_idx() const { return idx; } // required sycl::buffer<ValueType, 1, Allocator> get_buffer() { return buffer; } // required }; template <typename T, sycl::access_mode Mode, typename Allocator> class device_pointer : public device_pointer_base<T, Allocator, device_pointer<T, Mode, Allocator>> { private: using base_type = device_pointer_base<T, Allocator, device_pointer>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<T, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; template <sycl::access_mode Mode, typename Allocator> class device_pointer<void, Mode, Allocator> : public device_pointer_base<dpct::byte_t, Allocator, device_pointer<void, Mode, Allocator>> { private: using base_type = device_pointer_base<dpct::byte_t, Allocator, device_pointer>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<value_type, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; #else template <typename T> class device_iterator; template <typename ValueType, typename Derived> class device_pointer_base { protected: ValueType *ptr; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(ValueType *p) : ptr(p) {} device_pointer_base(const std::size_t count) { sycl::queue default_queue = dpct::get_default_queue(); ptr = static_cast<ValueType *>(sycl::malloc_shared( count, default_queue.get_device(), default_queue.get_context())); } device_pointer_base() {} pointer get() const { return ptr; } operator ValueType *() { return ptr; } operator ValueType *() const { return ptr; } ValueType &operator[](difference_type idx) { return ptr[idx]; } ValueType &operator[](difference_type idx) const { return ptr[idx]; } Derived operator+(difference_type forward) const { return Derived{ptr + forward}; } Derived operator-(difference_type backward) const { return Derived{ptr - backward}; } Derived operator++(int) { Derived p(ptr); ++ptr; return p; } Derived operator--(int) { Derived p(ptr); --ptr; return p; } difference_type operator-(const Derived &it) const { return ptr - it.ptr; } }; template <typename T> class device_pointer : public device_pointer_base<T, device_pointer<T>> { private: using base_type = device_pointer_base<T, device_pointer<T>>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using const_reference = const T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(T *p) : base_type(p) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer &operator=(const device_iterator<T> &in) { this->ptr = static_cast<device_pointer<T>>(in).ptr; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; template <> class device_pointer<void> : public device_pointer_base<dpct::byte_t, device_pointer<void>> { private: using base_type = device_pointer_base<dpct::byte_t, device_pointer<void>>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using const_reference = const value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(void *p) : base_type(static_cast<value_type *>(p)) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} pointer get() const { return static_cast<pointer>(this->ptr); } operator void *() { return this->ptr; } operator void *() const { return this->ptr; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; #endif #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_iterator : public device_pointer<T, Mode, Allocator> { using Base = device_pointer<T, Mode, Allocator>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; // required static constexpr sycl::access_mode mode = Mode; // required device_iterator() : Base() {} device_iterator(sycl::buffer<T, 1, Allocator> vec, std::size_t index) : Base(vec, index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T, inMode, Allocator> &in) : Base(in.buffer, in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::buffer = in.buffer; Base::idx = in.idx; return *this; } reference operator*() const { return const_cast<device_iterator *>(this) ->buffer.template get_access<mode>()[Base::idx]; } reference operator[](difference_type i) const { return *(*this + i); } device_iterator &operator++() { ++Base::idx; return *this; } device_iterator &operator--() { --Base::idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = Base::idx + forward; return {Base::buffer, new_idx}; } device_iterator &operator+=(difference_type forward) { Base::idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::buffer, Base::idx - backward}; } device_iterator &operator-=(difference_type backward) { Base::idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return Base::idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return Base::idx - std::distance(oneapi::dpl::begin(Base::buffer), it); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return Base::idx; } // required sycl::buffer<T, 1, Allocator> get_buffer() { return Base::buffer; } // required }; #else template <typename T> class device_iterator : public device_pointer<T> { using Base = device_pointer<T>; protected: std::size_t idx; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = typename Base::pointer; using reference = typename Base::reference; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required static constexpr sycl::access_mode mode = sycl::access_mode::read_write; // required device_iterator() : Base(nullptr), idx(0) {} device_iterator(T *vec, std::size_t index) : Base(vec), idx(index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T> &in) : Base(in.ptr), idx(in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::operator=(in); idx = in.idx; return *this; } reference operator*() const { return *(Base::ptr + idx); } reference operator[](difference_type i) { return Base::ptr[idx + i]; } reference operator[](difference_type i) const { return Base::ptr[idx + i]; } device_iterator &operator++() { ++idx; return *this; } device_iterator &operator--() { --idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = idx + forward; return {Base::ptr, new_idx}; } device_iterator &operator+=(difference_type forward) { idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::ptr, idx - backward}; } device_iterator &operator-=(difference_type backward) { idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - it.get_idx(); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return idx; } // required device_iterator &get_buffer() { return *this; } // required std::size_t size() const { return idx; } }; #endif template <typename T> device_pointer<T> malloc_device(const std::size_t num_elements) { return device_pointer<T>(num_elements * sizeof(T)); } static inline device_pointer<void> malloc_device(const std::size_t num_bytes) { return device_pointer<void>(num_bytes); } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const T &value, const std::size_t count = 1) { std::vector<T> result(count, value); p.buffer = sycl::buffer<T, 1>(result.begin(), result.end()); return p + count; } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const std::size_t count = 1) { return device_new(p, T{}, count); } template <typename T> device_pointer<T> device_new(const std::size_t count = 1) { return device_pointer<T>(count); } template <typename T> void free_device(device_pointer<T> ptr) {} template <typename T> typename std::enable_if<!std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T> p, const std::size_t count = 1) { for (std::size_t i = 0; i < count; ++i) { p[i].~T(); } } template <typename T> typename std::enable_if<std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T>, const std::size_t count = 1) {} template <typename T> device_pointer<T> get_device_pointer(T *ptr) { return device_pointer<T>(ptr); } template <typename T> device_pointer<T> get_device_pointer(const device_pointer<T> &ptr) { return device_pointer<T>(ptr); } template <typename T> T *get_raw_pointer(const device_pointer<T> &ptr) { return ptr.get(); } template <typename Pointer> Pointer get_raw_pointer(const Pointer &ptr) { return ptr; } template <typename T> const T &get_raw_reference(const device_reference<T> &ref) { return ref.value; } template <typename T> T &get_raw_reference(device_reference<T> &ref) { return ref.value; } template <typename T> const T &get_raw_reference(const T &ref) { return ref; } template <typename T> T &get_raw_reference(T &ref) { return ref; } } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/vector.h
//==---- vector.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_VECTOR_H__ #define __DPCT_VECTOR_H__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <sycl/sycl.hpp> #include "memory.h" #include <algorithm> #include <iterator> #include <vector> #include "../device.hpp" namespace dpct { namespace internal { template <typename Iter, typename Void = void> // for non-iterators struct is_iterator : std::false_type {}; template <typename Iter> // For iterators struct is_iterator< Iter, typename std::enable_if< !std::is_void<typename Iter::iterator_category>::value, void>::type> : std::true_type {}; template <typename T> // For pointers struct is_iterator<T *> : std::true_type {}; } // end namespace internal #ifndef DPCT_USM_LEVEL_NONE template <typename T, typename Allocator = sycl::usm_allocator<T, sycl::usm::alloc::shared>> class device_vector { public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename ::std::iterator_traits<iterator>::difference_type; using size_type = ::std::size_t; private: Allocator _alloc; size_type _size; size_type _capacity; pointer _storage; size_type _min_capacity() const { return size_type(1); } void _set_capacity_and_alloc() { _capacity = ::std::max(_size * 2, _min_capacity()); _storage = _alloc.allocate(_capacity); } public: template <typename OtherA> operator ::std::vector<T, OtherA>() const { auto __tmp = ::std::vector<T, OtherA>(this->size()); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _alloc(get_default_queue()), _size(0), _capacity(_min_capacity()) { _set_capacity_and_alloc(); } ~device_vector() /*= default*/ { _alloc.deallocate(_storage, _capacity); }; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _alloc(get_default_queue()), _size(n) { _set_capacity_and_alloc(); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), T(value)); } } device_vector(const device_vector &other) : _alloc(get_default_queue()) { _size = other.size(); _capacity = other.capacity(); _storage = _alloc.allocate(_capacity); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } device_vector(device_vector &&other) : _alloc(get_default_queue()), _size(other.size()), _capacity(other.capacity()), _storage(other._storage) { other._size = 0; other._capacity = 0; other._storage = nullptr; } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && ::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if<::std::is_pointer<InputIterator>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { auto ptr_type = sycl::get_pointer_type(first, get_default_context()); if (ptr_type != sycl::usm::alloc::host && ptr_type != sycl::usm::alloc::unknown) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } else { sycl::buffer<T, 1> buf(first, last); auto buf_first = oneapi::dpl::begin(buf); auto buf_last = oneapi::dpl::end(buf); ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), buf_first, buf_last, begin()); } } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && !::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()), _size(::std::distance(first, last)) { _set_capacity_and_alloc(); ::std::vector<T> _tmp(first, last); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), _tmp.begin(), _tmp.end(), this->begin()); } } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _storage(v.real_begin()), _size(v.size()), _capacity(v.capacity()) {} template <typename OtherAllocator> device_vector(::std::vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _size(v.size()) { _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), this->begin()); } } template <typename OtherAllocator> device_vector &operator=(const ::std::vector<T, OtherAllocator> &v) { resize(v.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), begin()); } return *this; } device_vector &operator=(const device_vector &other) { // Copy assignment operator: resize(other.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: device_vector dummy(::std::move(other)); this->swap(dummy); return *this; } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(_storage, 0); } iterator end() { return device_iterator<T>(_storage, size()); } const_iterator begin() const noexcept { return device_iterator<T>(_storage, 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(_storage, size()); } const_iterator cend() const { return end(); } T *real_begin() { return _storage; } const T *real_begin() const { return _storage; } void swap(device_vector &v) { ::std::swap(_size, v._size); ::std::swap(_capacity, v._capacity); ::std::swap(_storage, v._storage); ::std::swap(_alloc, v._alloc); } reference operator[](size_type n) { return _storage[n]; } const_reference operator[](size_type n) const { return _storage[n]; } void reserve(size_type n) { if (n > capacity()) { // allocate buffer for new size auto tmp = _alloc.allocate(2 * n); // copy content (old buffer to new buffer) ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); // deallocate old memory _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = 2 * n; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin() + _size, begin() + new_size, x); } _size = new_size; } size_type max_size(void) const { return ::std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _capacity; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return _storage; } const_pointer data(void) const { return _storage; } void shrink_to_fit(void) { if (_size != capacity()) { size_type tmp_capacity = ::std::max(_size, _min_capacity()); auto tmp = _alloc.allocate(tmp_capacity); if (_size > 0) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); } _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = tmp_capacity; } } void assign(size_type n, const T &x) { resize(n); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), begin() + n, x); } } template <typename InputIterator> void assign(InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); resize(n); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } void clear(void) { _size = 0; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = ::std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } auto m = ::std::distance(last, end()); if (m <= 0) { return end(); } auto tmp = _alloc.allocate(m); // copy remainder to temporary buffer. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), last, end(), tmp); // override (erase) subsequence in storage. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, first); _alloc.deallocate(tmp, m); _size -= n; return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = ::std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), end() - n, end(), x); } else { auto i_n = ::std::distance(begin(), position); // allocate temporary storage auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); // copy remainder ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, position + n, x); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); if (position == end()) { resize(size() + n); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, end()); } else { auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, position); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } Allocator get_allocator() const { return _alloc; } }; #else template <typename T, typename Allocator = detail::__buffer_allocator<T>> class device_vector { static_assert( std::is_same<Allocator, detail::__buffer_allocator<T>>::value, "device_vector doesn't support custom allocator when USM is not used."); public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename std::iterator_traits<iterator>::difference_type; using size_type = std::size_t; private: using Buffer = sycl::buffer<T, 1>; using Range = sycl::range<1>; // Using mem_mgr to handle memory allocation void *_storage; size_type _size; size_type _min_capacity() const { return size_type(1); } void *alloc_store(size_type num_bytes) { return detail::mem_mgr::instance().mem_alloc(num_bytes); } public: template <typename OtherA> operator std::vector<T, OtherA>() const { auto __tmp = std::vector<T, OtherA>(this->size()); std::copy(oneapi::dpl::execution::dpcpp_default, this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _storage(alloc_store(_min_capacity() * sizeof(T))), _size(0) {} ~device_vector() = default; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _storage(alloc_store(std::max(n, _min_capacity()) * sizeof(T))), _size(n) { auto buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(buf), oneapi::dpl::begin(buf) + n, T(value)); } device_vector(const device_vector &other) : _storage(other._storage), _size(other.size()) {} device_vector(device_vector &&other) : _storage(std::move(other._storage)), _size(other.size()) {} template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value && std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if<std::is_pointer<InputIterator>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); Buffer tmp_buf(first, last); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); std::vector<T> tmp(first, last); Buffer tmp_buf(tmp); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.real_begin(), v.real_begin() + v.size(), dst); } template <typename OtherAllocator> device_vector(std::vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { std::copy(oneapi::dpl::execution::dpcpp_default, v.begin(), v.end(), oneapi::dpl::begin(get_buffer())); } device_vector &operator=(const device_vector &other) { // Copy assignment operator: _size = other.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(other.get_buffer()), oneapi::dpl::end(other.get_buffer()), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: _size = other.size(); this->_storage = std::move(other._storage); return *this; } template <typename OtherAllocator> device_vector &operator=(const std::vector<T, OtherAllocator> &v) { Buffer data(v.begin(), v.end()); _size = v.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(data), oneapi::dpl::end(data), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } Buffer get_buffer() const { return detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template reinterpret<T, 1>(sycl::range<1>(capacity())); } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(get_buffer(), 0); } iterator end() { return device_iterator<T>(get_buffer(), _size); } const_iterator begin() const noexcept { return device_iterator<T>(get_buffer(), 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(get_buffer(), _size); } const_iterator cend() const { return end(); } T *real_begin() { return (detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); } const T *real_begin() const { return const_cast<device_vector *>(this) ->detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>() .get_pointer(); } void swap(device_vector &v) { void *temp = v._storage; v._storage = this->_storage; this->_storage = temp; std::swap(_size, v._size); } reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } void reserve(size_type n) { if (n > capacity()) { // create new buffer (allocate for new size) void *a = alloc_store(n * sizeof(T)); // copy content (old buffer to new buffer) if (_storage != nullptr) { auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(n)); auto src_buf = get_buffer(); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf), oneapi::dpl::end(src_buf), oneapi::dpl::begin(tmp)); // deallocate old memory detail::mem_mgr::instance().mem_free(_storage); } _storage = a; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { auto src_buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf) + _size, oneapi::dpl::begin(src_buf) + new_size, x); } _size = new_size; } size_type max_size(void) const { return std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _storage != nullptr ? detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.size() / sizeof(T) : 0; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return reinterpret_cast<pointer>(_storage); } const_pointer data(void) const { return reinterpret_cast<const_pointer>(_storage); } void shrink_to_fit(void) { if (_size != capacity()) { void *a = alloc_store(_size * sizeof(T)); auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(get_buffer()), oneapi::dpl::begin(get_buffer()) + _size, oneapi::dpl::begin(tmp)); detail::mem_mgr::instance().mem_free(_storage); _storage = a; } } void assign(size_type n, const T &x) { resize(n); std::fill(oneapi::dpl::execution::dpcpp_default, begin(), begin() + n, x); } template <typename InputIterator> void assign(InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); resize(n); if (internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value) std::copy(oneapi::dpl::execution::dpcpp_default, first, last, begin()); else { Buffer tmp(first, last); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), begin()); } } void clear(void) { _size = 0; detail::mem_mgr::instance().mem_free(_storage); _storage = nullptr; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } Buffer tmp{Range(std::distance(last, end()))}; // copy remainder to temporary buffer. std::copy(oneapi::dpl::execution::dpcpp_default, last, end(), oneapi::dpl::begin(tmp)); // override (erase) subsequence in storage. std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), first); resize(_size - n); return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); std::fill(oneapi::dpl::execution::dpcpp_default, end() - n, end(), x); } else { auto i_n = std::distance(begin(), position); // allocate temporary storage Buffer tmp{Range(std::distance(position, end()))}; // copy remainder std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::fill(oneapi::dpl::execution::dpcpp_default, position, position + n, x); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); if (position == end()) { resize(size() + n); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, end()); } else { Buffer tmp{Range(std::distance(position, end()))}; std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, position); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } }; #endif } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/dpcpp_extensions.h
//==---- dpcpp_extensions.h ------------------*- C++ -*---------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------===// #ifndef __DPCT_DPCPP_EXTENSIONS_H__ #define __DPCT_DPCPP_EXTENSIONS_H__ #include <sycl/sycl.hpp> #include <stdexcept> #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS #include <sycl/ext/oneapi/experimental/user_defined_reductions.hpp> #endif #include "../dpct.hpp" namespace dpct { namespace group { namespace detail { template <typename... _Args> constexpr auto __reduce_over_group(_Args... __args) { return sycl::reduce_over_group(__args...); } template <typename... _Args> constexpr auto __group_broadcast(_Args... __args) { return sycl::group_broadcast(__args...); } template <typename... _Args> constexpr auto __exclusive_scan_over_group(_Args... __args) { return sycl::exclusive_scan_over_group(__args...); } template <typename... _Args> constexpr auto __inclusive_scan_over_group(_Args... __args) { return sycl::inclusive_scan_over_group(__args...); } } // end namespace detail /// Perform an exclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void exclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], T init, BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); T input = inputs[0]; if (item.get_local_linear_id() == 0) { outputs[0] = init; } else { outputs[0] = exclusive_result; } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { T output = binary_op(input, outputs[i - 1]); input = inputs[i]; outputs[i] = output; } } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns exclusive scan of the first i /// work-items where item is the i-th work item. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, T init, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__exclusive_scan_over_group(item.get_group(), input, init, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns exclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = detail::__exclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); T group_prefix = prefix_callback_op(group_aggregate); if (item.get_local_linear_id() == 0) { output = group_prefix; } else { output = binary_op(group_prefix, output); } return output; } namespace detail { typedef uint16_t digit_counter_type; typedef uint32_t packed_counter_type; template <int N, int CURRENT_VAL = N, int COUNT = 0> struct log2 { enum { VALUE = log2<N, (CURRENT_VAL >> 1), COUNT + 1>::VALUE }; }; template <int N, int COUNT> struct log2<N, 0, COUNT> { enum { VALUE = (1 << (COUNT - 1) < N) ? COUNT : COUNT - 1 }; }; __dpct_inline__ uint32_t bfe(uint32_t source, uint32_t bit_start, uint32_t num_bits) { const uint32_t MASK = (1 << num_bits) - 1; return (source >> bit_start) & MASK; } template <int RADIX_BITS, bool DESCENDING = false> class radix_rank { public: static size_t get_local_memory_size(size_t group_threads) { return group_threads * PADDED_COUNTER_LANES * sizeof(packed_counter_type); } radix_rank(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item, int VALUES_PER_THREAD> __dpct_inline__ void rank_keys(const Item &item, uint32_t (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD], int current_bit, int num_bits) { digit_counter_type thread_prefixes[VALUES_PER_THREAD]; digit_counter_type *digit_counters[VALUES_PER_THREAD]; digit_counter_type *buffer = reinterpret_cast<digit_counter_type *>(_local_memory); reset_local_memory(item); item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { uint32_t digit = bfe(keys[i], current_bit, num_bits); uint32_t sub_counter = digit >> LOG_COUNTER_LANES; uint32_t counter_lane = digit & (COUNTER_LANES - 1); if (DESCENDING) { sub_counter = PACKING_RATIO - 1 - sub_counter; counter_lane = COUNTER_LANES - 1 - counter_lane; } digit_counters[i] = &buffer[counter_lane * item.get_local_range().size() * PACKING_RATIO + item.get_local_linear_id() * PACKING_RATIO + sub_counter]; thread_prefixes[i] = *digit_counters[i]; *digit_counters[i] = thread_prefixes[i] + 1; } item.barrier(sycl::access::fence_space::local_space); scan_counters(item); item.barrier(sycl::access::fence_space::local_space); for (int i = 0; i < VALUES_PER_THREAD; ++i) { ranks[i] = thread_prefixes[i] + *digit_counters[i]; } } private: template <typename Item> __dpct_inline__ void reset_local_memory(const Item &item) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[i * item.get_local_range().size() + item.get_local_linear_id()] = 0; } } template <typename Item> __dpct_inline__ packed_counter_type upsweep(const Item &item) { packed_counter_type sum = 0; packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; i++) { cached_segment[i] = ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i]; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { sum += cached_segment[i]; } return sum; } template <typename Item> __dpct_inline__ void exclusive_downsweep(const Item &item, packed_counter_type raking_partial) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); packed_counter_type sum = raking_partial; #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { packed_counter_type value = cached_segment[i]; cached_segment[i] = sum; sum += value; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i] = cached_segment[i]; } } struct prefix_callback { __dpct_inline__ packed_counter_type operator()(packed_counter_type block_aggregate) { packed_counter_type block_prefix = 0; #pragma unroll for (int packed = 1; packed < PACKING_RATIO; packed++) { block_prefix += block_aggregate << (sizeof(digit_counter_type) * 8 * packed); } return block_prefix; } }; template <typename Item> __dpct_inline__ void scan_counters(const Item &item) { packed_counter_type raking_partial = upsweep(item); prefix_callback callback; packed_counter_type exclusive_partial = exclusive_scan( item, raking_partial, sycl::ext::oneapi::plus<packed_counter_type>(), callback); exclusive_downsweep(item, exclusive_partial); } private: static constexpr int PACKING_RATIO = sizeof(packed_counter_type) / sizeof(digit_counter_type); static constexpr int LOG_PACKING_RATIO = log2<PACKING_RATIO>::VALUE; static constexpr int LOG_COUNTER_LANES = RADIX_BITS - LOG_PACKING_RATIO; static constexpr int COUNTER_LANES = 1 << LOG_COUNTER_LANES; static constexpr int PADDED_COUNTER_LANES = COUNTER_LANES + 1; packed_counter_type cached_segment[PADDED_COUNTER_LANES]; uint8_t *_local_memory; }; template <typename T, typename U> struct base_traits { static __dpct_inline__ U twiddle_in(U key) { throw std::runtime_error("Not implemented"); } static __dpct_inline__ U twiddle_out(U key) { throw std::runtime_error("Not implemented"); } }; template <typename U> struct base_traits<uint32_t, U> { static __dpct_inline__ U twiddle_in(U key) { return key; } static __dpct_inline__ U twiddle_out(U key) { return key; } }; template <typename U> struct base_traits<int, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { return key ^ HIGH_BIT; } static __dpct_inline__ U twiddle_out(U key) { return key ^ HIGH_BIT; } }; template <typename U> struct base_traits<float, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { U mask = (key & HIGH_BIT) ? U(-1) : HIGH_BIT; return key ^ mask; } static __dpct_inline__ U twiddle_out(U key) { U mask = (key & HIGH_BIT) ? HIGH_BIT : U(-1); return key ^ mask; } }; template <typename T> struct traits : base_traits<T, T> {}; template <> struct traits<uint32_t> : base_traits<uint32_t, uint32_t> {}; template <> struct traits<int> : base_traits<int, uint32_t> {}; template <> struct traits<float> : base_traits<float, uint32_t> {}; } // namespace detail namespace detail { template <int N> struct power_of_two { enum { VALUE = ((N & (N - 1)) == 0) }; }; __dpct_inline__ uint32_t shr_add(uint32_t x, uint32_t shift, uint32_t addend) { return (x >> shift) + addend; } } // namespace detail /// Implements scatter to blocked exchange pattern used in radix sort algorithm. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread template <typename T, int VALUES_PER_THREAD> class exchange { public: static size_t get_local_memory_size(size_t group_threads) { size_t padding_values = (INSERT_PADDING) ? ((group_threads * VALUES_PER_THREAD) >> LOG_LOCAL_MEMORY_BANKS) : 0; return (group_threads * VALUES_PER_THREAD + padding_values) * sizeof(T); } exchange(uint8_t *local_memory) : _local_memory(local_memory) {} /// Rearrange elements from rank order to blocked order template <typename Item> __dpct_inline__ void scatter_to_blocked(Item item, T (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD]) { T *buffer = reinterpret_cast<T *>(_local_memory); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = ranks[i]; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); buffer[offset] = keys[i]; } item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = (item.get_local_id(0) * VALUES_PER_THREAD) + i; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); keys[i] = buffer[offset]; } } private: static constexpr int LOG_LOCAL_MEMORY_BANKS = 5; static constexpr bool INSERT_PADDING = (VALUES_PER_THREAD > 4) && (detail::power_of_two<VALUES_PER_THREAD>::VALUE); uint8_t *_local_memory; }; /// Implements radix sort to sort integer data elements assigned to all threads /// in the group. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread /// \tparam DECENDING boolean value indicating if data elements are sorted in /// decending order. template <typename T, int VALUES_PER_THREAD, bool DESCENDING = false> class radix_sort { public: static size_t get_local_memory_size(size_t group_threads) { size_t ranks_size = detail::radix_rank<RADIX_BITS>::get_local_memory_size(group_threads); size_t exchange_size = exchange<T, VALUES_PER_THREAD>::get_local_memory_size(group_threads); return sycl::max(ranks_size, exchange_size); } radix_sort(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item> __dpct_inline__ void sort(const Item &item, T (&keys)[VALUES_PER_THREAD], int begin_bit = 0, int end_bit = 8 * sizeof(T)) { uint32_t(&unsigned_keys)[VALUES_PER_THREAD] = reinterpret_cast<uint32_t(&)[VALUES_PER_THREAD]>(keys); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_in(unsigned_keys[i]); } while (true) { int pass_bits = sycl::min(RADIX_BITS, end_bit - begin_bit); int ranks[VALUES_PER_THREAD]; detail::radix_rank<RADIX_BITS, DESCENDING>(_local_memory) .template rank_keys(item, unsigned_keys, ranks, begin_bit, pass_bits); begin_bit += RADIX_BITS; item.barrier(sycl::access::fence_space::local_space); exchange<T, VALUES_PER_THREAD>(_local_memory) .scatter_to_blocked(item, keys, ranks); item.barrier(sycl::access::fence_space::local_space); if (begin_bit >= end_bit) break; } #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_out(unsigned_keys[i]); } } private: static constexpr int RADIX_BITS = 4; uint8_t *_local_memory; }; /// Perform a reduction of the data elements assigned to all threads in the /// group. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the reduce operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ T reduce(Item item, T (&inputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; i++) { result = binary_op(result, inputs[i]); } return detail::__reduce_over_group(item.get_group(), result, binary_op); } /// Perform a reduction on a limited number of the work items in a subgroup /// /// \param item A work-item in a group. /// \param value value per work item which is to be reduced /// \param items_to_reduce num work items at the start of the subgroup to reduce /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation> __dpct_inline__ typename ::std::enable_if_t<sycl::has_known_identity_v<BinaryOperation, T>, T> reduce_over_partial_group(const Item &item, const T &value, const ::std::uint16_t &items_to_reduce, BinaryOperation binary_op) { T value_temp = (item.get_local_linear_id() < items_to_reduce) ? value : sycl::known_identity_v<BinaryOperation, T>; return detail::__reduce_over_group(item.get_sub_group(), value_temp, binary_op); } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns inclusive scan of the input elements assigned to /// work-items in the group. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void inclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); if (item.get_local_linear_id() == 0) { outputs[0] = inputs[0]; } else { outputs[0] = binary_op(inputs[0], exclusive_result); } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { outputs[i] = binary_op(inputs[i], outputs[i - 1]); } } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Pointer to the input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns inclusive scan of the input /// elements assigned to work-items in the group. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__inclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = output; } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an inclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns inclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = inclusive_scan(item, input, binary_op, group_aggregate); T group_prefix = prefix_callback_op(group_aggregate); return binary_op(group_prefix, output); } } // namespace group namespace device { namespace detail { template <typename... _Args> constexpr auto __joint_reduce(_Args... __args) { return sycl::joint_reduce(__args...); } } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); queue.submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } sycl::multi_ptr<T, sycl::access::address_space::global_space> input_ptr = inputs; T group_aggregate = detail::__joint_reduce( item.get_group(), input_ptr + segment_begin, input_ptr + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS namespace experimental { namespace detail { template <typename _Tp, typename... _Ts> struct __is_any { constexpr static bool value = std::disjunction_v< std::is_same<std::remove_cv_t<_Tp>, std::remove_cv_t<_Ts>>...>; }; template <typename _Tp, typename _Bp> struct __in_native_op_list { constexpr static bool value = __is_any<_Bp, sycl::plus<_Tp>, sycl::bit_or<_Tp>, sycl::bit_xor<_Tp>, sycl::bit_and<_Tp>, sycl::maximum<_Tp>, sycl::minimum<_Tp>, sycl::multiplies<_Tp>>::value; }; template <typename _Tp, typename _Bp> struct __is_native_op { constexpr static bool value = __in_native_op_list<_Tp, _Bp>::value || __in_native_op_list<void, _Bp>::value; }; } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. Compared with dpct::device::segmented_reduce, this experimental /// feature support user define reductions. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); if constexpr (!detail::__is_native_op<T, BinaryOperation>::value) { queue.submit([&](sycl::handler &cgh) { size_t temp_memory_size = GROUP_SIZE * sizeof(T); auto scratch = sycl::local_accessor<std::byte, 1>(temp_memory_size, cgh); cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } // Create a handle that associates the group with an allocation it // can use auto handle = sycl::ext::oneapi::experimental::group_with_scratchpad( item.get_group(), sycl::span(&scratch[0], temp_memory_size)); T group_aggregate = sycl::ext::oneapi::experimental::joint_reduce( handle, inputs + segment_begin, inputs + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } else { dpct::device::segmented_reduce<GROUP_SIZE>(queue, inputs, outputs, segment_count, begin_offsets, end_offsets, binary_op, init); } } } // namespace experimental #endif // SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS } // namespace device } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_quasirandomGenerator_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/functional.h
//==---- functional.h -----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FUNCTIONAL_H__ #define __DPCT_FUNCTIONAL_H__ #include <functional> #include <oneapi/dpl/functional> #include <oneapi/dpl/iterator> #if ONEDPL_USE_DPCPP_BACKEND #include <oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_utils.h> #endif #include <tuple> #include <utility> namespace dpct { struct null_type {}; namespace internal { template <class _ExecPolicy, class _T> using enable_if_execution_policy = typename std::enable_if<oneapi::dpl::execution::is_execution_policy< typename std::decay<_ExecPolicy>::type>::value, _T>::type; template <typename _T> struct is_hetero_execution_policy : ::std::false_type {}; template <typename... PolicyParams> struct is_hetero_execution_policy< oneapi::dpl::execution::device_policy<PolicyParams...>> : ::std::true_type { }; template <typename _T> struct is_fpga_execution_policy : ::std::false_type {}; #if _ONEDPL_FPGA_DEVICE template <unsigned int unroll_factor, typename... PolicyParams> struct is_hetero_execution_policy< execution::fpga_policy<unroll_factor, PolicyParams...>> : ::std::true_type { }; #endif template <class _ExecPolicy, class _T> using enable_if_hetero_execution_policy = typename std::enable_if< is_hetero_execution_policy<typename std::decay<_ExecPolicy>::type>::value, _T>::type; #if _ONEDPL_CPP14_INTEGER_SEQUENCE_PRESENT template <std::size_t... _Sp> using index_sequence = std::index_sequence<_Sp...>; template <std::size_t _Np> using make_index_sequence = std::make_index_sequence<_Np>; #else template <std::size_t... _Sp> class index_sequence {}; template <std::size_t _Np, std::size_t... _Sp> struct make_index_sequence_impl : make_index_sequence_impl<_Np - 1, _Np - 1, _Sp...> {}; template <std::size_t... _Sp> struct make_index_sequence_impl<0, _Sp...> { using type = index_sequence<_Sp...>; }; template <std::size_t _Np> using make_index_sequence = typename make_index_sequence_impl<_Np>::type; #endif // Minimal buffer implementations for temporary storage in mapping rules // Some of our algorithms need to start with raw memory buffer, // not an initialized array, because initialization/destruction // would make the span be at least O(N). #if ONEDPL_USE_DPCPP_BACKEND template <typename _Tp> class __buffer { sycl::buffer<_Tp, 1> __buf; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t __n) : __buf(sycl::range<1>(__n)) {} // Return pointer to buffer, or NULL if buffer could not be obtained. auto get() -> decltype(oneapi::dpl::begin(__buf)) const { return oneapi::dpl::begin(__buf); } }; #else template <typename _Tp> class __buffer { std::unique_ptr<_Tp> _M_ptr; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(const std::size_t __n) : _M_ptr(new _Tp[__n]) {} // Return pointer to buffer, or NULL if buffer could not be obtained. _Tp *get() const { return _M_ptr.get(); } }; #endif // Implements C++14 std::less<void> specialization to allow parameter type // deduction. class __less { public: template <typename _Xp, typename _Yp> bool operator()(_Xp &&__x, _Yp &&__y) const { return std::forward<_Xp>(__x) < std::forward<_Yp>(__y); } }; template <typename Policy, typename NewName> struct rebind_policy { using type = Policy; }; template <typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::device_policy<KernelName>, NewName> { using type = oneapi::dpl::execution::device_policy<NewName>; }; #if _ONEDPL_FPGA_DEVICE template <unsigned int factor, typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::fpga_policy<factor, KernelName>, NewName> { using type = oneapi::dpl::execution::fpga_policy<factor, NewName>; }; #endif template <typename T1, typename T2, typename R1 = typename std::iterator_traits<T1>::reference, typename R2 = typename std::iterator_traits<T2>::reference> struct perm_fun { typedef R2 result_of; perm_fun(T1 input) : source(input) {} R2 operator()(R1 x) const { return *(source + x); } private: T1 source; }; // Functor compares first element (key) from tied sequence. template <typename Compare = class internal::__less> struct compare_key_fun { typedef bool result_of; compare_key_fun(Compare _comp = internal::__less()) : comp(_comp) {} template <typename _T1, typename _T2> result_of operator()(_T1 &&a, _T2 &&b) const { using std::get; return comp(get<0>(a), get<0>(b)); } private: mutable Compare comp; }; // Functor evaluates second element of tied sequence with predicate. // Used by: copy_if, remove_copy_if, stable_partition_copy // Lambda: template <typename Predicate> struct predicate_key_fun { typedef bool result_of; predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return pred(get<1>(a)); } private: mutable Predicate pred; }; // Used by: remove_if template <typename Predicate> struct negate_predicate_key_fun { typedef bool result_of; negate_predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return !pred(get<1>(a)); } private: mutable Predicate pred; }; template <typename T> struct sequence_fun { using result_type = T; sequence_fun(T _init, T _step) : init(_init), step(_step) {} template <typename _T> result_type operator()(_T &&i) const { return static_cast<T>(init + step * i); } private: const T init; const T step; }; //[binary_pred](Ref a, Ref b){ return(binary_pred(get<0>(a),get<0>(b))); template <typename Predicate> struct unique_fun { typedef bool result_of; unique_fun(Predicate _pred) : pred(_pred) {} template <typename _T> result_of operator()(_T &&a, _T &&b) const { using std::get; return pred(get<0>(a), get<0>(b)); } private: mutable Predicate pred; }; // Lambda: [pred, &new_value](Ref1 a, Ref2 s) {return pred(s) ? new_value : a; // }); template <typename T, typename Predicate> struct replace_if_fun { public: typedef T result_of; replace_if_fun(Predicate _pred, T _new_value) : pred(_pred), new_value(_new_value) {} template <typename _T1, typename _T2> T operator()(_T1 &&a, _T2 &&s) const { return pred(s) ? new_value : a; } private: mutable Predicate pred; const T new_value; }; //[pred,op](Ref a){return pred(a) ? op(a) : a; } template <typename T, typename Predicate, typename Operator> struct transform_if_fun { transform_if_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<0>(t))) get<1>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; //[pred, op](Ref1 a, Ref2 s) { return pred(s) ? op(a) : a; }); template <typename T, typename Predicate, typename Operator> struct transform_if_unary_zip_mask_fun { transform_if_unary_zip_mask_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<1>(t))) get<2>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; template <typename T, typename Predicate, typename BinaryOperation> class transform_if_zip_mask_fun { public: transform_if_zip_mask_fun(Predicate _pred = oneapi::dpl::identity(), BinaryOperation _op = oneapi::dpl::identity()) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T &&t) const { using std::get; if (pred(get<2>(t))) get<3>(t) = op(get<0>(t), get<1>(t)); } private: mutable Predicate pred; mutable BinaryOperation op; }; // This following code is similar to a section of code in // oneDPL/include/oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_radix_sort.h // It has a similar approach, and could be consolidated. // Outside of some differences in approach, there are two significant // differences in function. // // 1) This code allows the output type of the bit range translation to be fit // into to the minimal type required to provide that many bits. The code in // oneDPL to calculate the bucket for the radix is similar but its output is // always std::uint32_t. The assumption that the bit range desired will fit in // 32 bits is not true for this code. // // 2) This code ensures that for floating point type, -0.0f and 0.0f map to the // same value. This allows the output of this translation to be used to provide // a sort which ensures the stability of these values for floating point types. template <int N> struct uint_byte_map {}; template <> struct uint_byte_map<1> { using type = uint8_t; }; template <> struct uint_byte_map<2> { using type = uint16_t; }; template <> struct uint_byte_map<4> { using type = uint32_t; }; template <> struct uint_byte_map<8> { using type = uint64_t; }; template <typename T> struct uint_map { using type = typename uint_byte_map<sizeof(T)>::type; }; template <typename T, typename OutKeyT> class translate_key { using uint_type_t = typename uint_map<T>::type; public: translate_key(int begin_bit, int end_bit) { shift = begin_bit; mask = ~OutKeyT(0); // all ones mask = mask >> (sizeof(OutKeyT) * 8 - (end_bit - begin_bit)); // setup appropriate mask flip_sign = uint_type_t(1) << (sizeof(uint_type_t) * 8 - 1); // sign bit flip_key = ~uint_type_t(0); // 0xF...F } inline OutKeyT operator()(const T &key) const { uint_type_t intermediate; if constexpr (std::is_floating_point<T>::value) { // normal case (both -0.0f and 0.0f equal -0.0f) if (key != T(-0.0f)) { uint_type_t is_negative = reinterpret_cast<const uint_type_t &>(key) >> (sizeof(uint_type_t) * 8 - 1); intermediate = reinterpret_cast<const uint_type_t &>(key) ^ ((is_negative * flip_key) | flip_sign); } else // special case for -0.0f to keep stability with 0.0f { T negzero = T(-0.0f); intermediate = reinterpret_cast<const uint_type_t &>(negzero); } } else if constexpr (std::is_signed<T>::value) { intermediate = reinterpret_cast<const uint_type_t &>(key) ^ flip_sign; } else { intermediate = key; } return static_cast<OutKeyT>(intermediate >> shift) & mask; // shift, cast, and mask } private: uint8_t shift; OutKeyT mask; uint_type_t flip_sign; uint_type_t flip_key; }; } // end namespace internal } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/helper_timer.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Helper Timing Functions #ifndef COMMON_HELPER_TIMER_H_ #define COMMON_HELPER_TIMER_H_ #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // includes, system #include <vector> // includes, project #include <exception.h> // Definition of the StopWatch Interface, this is used if we don't want to use // the CUT functions But rather in a self contained class interface class StopWatchInterface { public: StopWatchInterface() {} virtual ~StopWatchInterface() {} public: //! Start time measurement virtual void start() = 0; //! Stop time measurement virtual void stop() = 0; //! Reset time counters to zero virtual void reset() = 0; //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned virtual float getTime() = 0; //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time virtual float getAverageTime() = 0; }; ////////////////////////////////////////////////////////////////// // Begin Stopwatch timer class definitions for all OS platforms // ////////////////////////////////////////////////////////////////// #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // includes, system #define WINDOWS_LEAN_AND_MEAN #include <windows.h> #undef min #undef max //! Windows specific implementation of StopWatch class StopWatchWin : public StopWatchInterface { public: //! Constructor, default StopWatchWin() : start_time(), end_time(), diff_time(0.0f), total_time(0.0f), running(false), clock_sessions(0), freq(0), freq_set(false) { if (!freq_set) { // helper variable LARGE_INTEGER temp; // get the tick frequency from the OS QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER *>(&temp)); // convert to type in which it is needed freq = (static_cast<double>(temp.QuadPart)) / 1000.0; // rememeber query freq_set = true; } } // Destructor ~StopWatchWin() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // member variables //! Start of measurement LARGE_INTEGER start_time; //! End of measurement LARGE_INTEGER end_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; //! tick frequency double freq; //! flag if the frequency has been set bool freq_set; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::start() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::stop() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&end_time)); diff_time = static_cast<float>(((static_cast<double>(end_time.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); total_time += diff_time; clock_sessions++; running = false; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { LARGE_INTEGER temp; QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&temp)); retval += static_cast<float>(((static_cast<double>(temp.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } #else // Declarations for Stopwatch on Linux and Mac OSX // includes, system #include <sys/time.h> #include <ctime> //! Windows specific implementation of StopWatch class StopWatchLinux : public StopWatchInterface { public: //! Constructor, default StopWatchLinux() : start_time(), diff_time(0.0), total_time(0.0), running(false), clock_sessions(0) {} // Destructor virtual ~StopWatchLinux() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // helper functions //! Get difference between start time and current time inline float getDiffTime(); private: // member variables //! Start of measurement struct timeval start_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::start() { gettimeofday(&start_time, 0); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::stop() { diff_time = getDiffTime(); total_time += diff_time; running = false; clock_sessions++; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { gettimeofday(&start_time, 0); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { retval += getDiffTime(); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getDiffTime() { struct timeval t_time; gettimeofday(&t_time, 0); // time difference in milli-seconds return static_cast<float>(1000.0 * (t_time.tv_sec - start_time.tv_sec) + (0.001 * (t_time.tv_usec - start_time.tv_usec))); } #endif // WIN32 //////////////////////////////////////////////////////////////////////////////// //! Timer functionality exported //////////////////////////////////////////////////////////////////////////////// //! Create a new timer //! @return true if a time has been created, otherwise false //! @param name of the new timer, 0 if the creation failed //////////////////////////////////////////////////////////////////////////////// inline bool sdkCreateTimer(StopWatchInterface **timer_interface) { // printf("sdkCreateTimer called object %08x\n", (void *)*timer_interface); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchWin()); #else *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchLinux()); #endif return (*timer_interface != NULL) ? true : false; } //////////////////////////////////////////////////////////////////////////////// //! Delete a timer //! @return true if a time has been deleted, otherwise false //! @param name of the timer to delete //////////////////////////////////////////////////////////////////////////////// inline bool sdkDeleteTimer(StopWatchInterface **timer_interface) { // printf("sdkDeleteTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { delete *timer_interface; *timer_interface = NULL; } return true; } //////////////////////////////////////////////////////////////////////////////// //! Start the time with name \a name //! @param name name of the timer to start //////////////////////////////////////////////////////////////////////////////// inline bool sdkStartTimer(StopWatchInterface **timer_interface) { // printf("sdkStartTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->start(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Stop the time with name \a name. Does not reset. //! @param name name of the timer to stop //////////////////////////////////////////////////////////////////////////////// inline bool sdkStopTimer(StopWatchInterface **timer_interface) { // printf("sdkStopTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->stop(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Resets the timer's counter. //! @param name name of the timer to reset. //////////////////////////////////////////////////////////////////////////////// inline bool sdkResetTimer(StopWatchInterface **timer_interface) { // printf("sdkResetTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->reset(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Return the average time for timer execution as the total time //! for the timer dividied by the number of completed (stopped) runs the timer //! has made. //! Excludes the current running time if the timer is currently running. //! @param name name of the timer to return the time of //////////////////////////////////////////////////////////////////////////////// inline float sdkGetAverageTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetAverageTimerValue called object %08x\n", (void // *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getAverageTime(); } else { return 0.0f; } } //////////////////////////////////////////////////////////////////////////////// //! Total execution time for the timer over all runs since the last reset //! or timer creation. //! @param name name of the timer to obtain the value of. //////////////////////////////////////////////////////////////////////////////// inline float sdkGetTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetTimerValue called object %08x\n", (void *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getTime(); } else { return 0.0f; } } #endif // COMMON_HELPER_TIMER_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/helper_string.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, timers, etc) #ifndef COMMON_HELPER_STRING_H_ #define COMMON_HELPER_STRING_H_ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <string> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE #endif #ifndef STRCASECMP #define STRCASECMP _stricmp #endif #ifndef STRNCASECMP #define STRNCASECMP _strnicmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy_s(sFilePath, nLength, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #ifndef SPRINTF #define SPRINTF sprintf_s #endif #else // Linux Includes #include <string.h> #include <strings.h> #ifndef STRCASECMP #define STRCASECMP strcasecmp #endif #ifndef STRNCASECMP #define STRNCASECMP strncasecmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy(sFilePath, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #ifndef SPRINTF #define SPRINTF sprintf #endif #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // CUDA Utility Helper Functions inline int stringRemoveDelimiter(char delimiter, const char *string) { int string_start = 0; while (string[string_start] == delimiter) { string_start++; } if (string_start >= static_cast<int>(strlen(string) - 1)) { return 0; } return string_start; } inline int getFileExtension(char *filename, char **extension) { int string_length = static_cast<int>(strlen(filename)); while (filename[string_length--] != '.') { if (string_length == 0) break; } if (string_length > 0) string_length += 2; if (string_length == 0) *extension = NULL; else *extension = &filename[string_length]; return string_length; } inline bool checkCmdLineFlag(const int argc, const char **argv, const char *string_ref) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; const char *equal_pos = strchr(string_argv, '='); int argv_length = static_cast<int>( equal_pos == 0 ? strlen(string_argv) : equal_pos - string_argv); int length = static_cast<int>(strlen(string_ref)); if (length == argv_length && !STRNCASECMP(string_argv, string_ref, length)) { bFound = true; continue; } } } return bFound; } // This function wraps the CUDA Driver API into a template function template <class T> inline bool getCmdLineArgumentValue(const int argc, const char **argv, const char *string_ref, T *value) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; *value = (T)atoi(&string_argv[length + auto_inc]); } bFound = true; i = argc; } } } return bFound; } inline int getCmdLineArgumentInt(const int argc, const char **argv, const char *string_ref) { bool bFound = false; int value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = atoi(&string_argv[length + auto_inc]); } else { value = 0; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline float getCmdLineArgumentFloat(const int argc, const char **argv, const char *string_ref) { bool bFound = false; float value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = static_cast<float>(atof(&string_argv[length + auto_inc])); } else { value = 0.f; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline bool getCmdLineArgumentString(const int argc, const char **argv, const char *string_ref, char **string_retval) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); char *string_argv = const_cast<char *>(&argv[i][string_start]); int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { *string_retval = &string_argv[length + 1]; bFound = true; continue; } } } if (!bFound) { *string_retval = NULL; } return bFound; } ////////////////////////////////////////////////////////////////////////////// //! Find the path for a file assuming that //! files are found in the searchPath. //! //! @return the path if succeeded, otherwise 0 //! @param filename name of the file //! @param executable_path optional absolute path of the executable ////////////////////////////////////////////////////////////////////////////// inline char *sdkFindFilePath(const char *filename, const char *executable_path) { // <executable_name> defines a variable that is replaced with the name of the // executable // Typical relative search paths to locate needed companion files (e.g. sample // input data, or JIT source files) The origin for the relative search may be // the .exe file, a .bat file launching an .exe, a browser .exe launching the // .exe or .bat, etc const char *searchPath[] = { "./", // same dir "./data/", // same dir "../../../../Samples/<executable_name>/", // up 4 in tree "../../../Samples/<executable_name>/", // up 3 in tree "../../Samples/<executable_name>/", // up 2 in tree "../../../../Samples/<executable_name>/data/", // up 4 in tree "../../../Samples/<executable_name>/data/", // up 3 in tree "../../Samples/<executable_name>/data/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/data/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/data/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/data/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/data/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/data/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/data/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/data/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/data/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/data/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/data/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/data/", // up 2 in tree "../../../../Common/data/", // up 4 in tree "../../../Common/data/", // up 3 in tree "../../Common/data/" // up 2 in tree }; // Extract the executable name std::string executable_name; if (executable_path != 0) { executable_name = std::string(executable_path); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Windows path delimiter size_t delimiter_pos = executable_name.find_last_of('\\'); executable_name.erase(0, delimiter_pos + 1); if (executable_name.rfind(".exe") != std::string::npos) { // we strip .exe, only if the .exe is found executable_name.resize(executable_name.size() - 4); } #else // Linux & OSX path delimiter size_t delimiter_pos = executable_name.find_last_of('/'); executable_name.erase(0, delimiter_pos + 1); #endif } // Loop over all search paths and return the first hit for (unsigned int i = 0; i < sizeof(searchPath) / sizeof(char *); ++i) { std::string path(searchPath[i]); size_t executable_name_pos = path.find("<executable_name>"); // If there is executable_name variable in the searchPath // replace it with the value if (executable_name_pos != std::string::npos) { if (executable_path != 0) { path.replace(executable_name_pos, strlen("<executable_name>"), executable_name); } else { // Skip this path entry if no executable argument is given continue; } } #ifdef _DEBUG printf("sdkFindFilePath <%s> in %s\n", filename, path.c_str()); #endif // Test if the file exists path.append(filename); FILE *fp; FOPEN(fp, path.c_str(), "rb"); if (fp != NULL) { fclose(fp); // File found // returning an allocated array here for backwards compatibility reasons char *file_path = reinterpret_cast<char *>(malloc(path.length() + 1)); STRCPY(file_path, path.length() + 1, path.c_str()); return file_path; } if (fp) { fclose(fp); } } // File not found printf("\nerror: sdkFindFilePath: file <%s> not found!\n", filename); return 0; } #endif // COMMON_HELPER_STRING_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/helper_image.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (image,bitmap) #ifndef COMMON_HELPER_IMAGE_H_ #define COMMON_HELPER_IMAGE_H_ #include <assert.h> #include <exception.h> #include <math.h> #include <stdint.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> #ifndef MIN #define MIN(a, b) ((a < b) ? a : b) #endif #ifndef MAX #define MAX(a, b) ((a > b) ? a : b) #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #include <helper_string.h> // namespace unnamed (internal) namespace helper_image_internal { //! size of PGM file header const unsigned int PGMHeaderSize = 0x40; // types //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterFromUByte; //! Data converter from unsigned char / unsigned byte template <> struct ConverterFromUByte<unsigned char> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<unsigned char>(val); } }; //! Data converter from unsigned char / unsigned byte to float template <> struct ConverterFromUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<float>(val) / 255.0f; } }; //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterToUByte; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<unsigned char> { //! Conversion operator (essentially a passthru //! @return converted value //! @param val value to convert unsigned char operator()(const unsigned char &val) { return val; } }; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert unsigned char operator()(const float &val) { return static_cast<unsigned char>(val * 255.0f); } }; } // namespace helper_image_internal #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #else #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #endif inline bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels) { FILE *fp = NULL; if (FOPEN_FAIL(FOPEN(fp, file, "rb"))) { std::cerr << "__LoadPPM() : Failed to open file: " << file << std::endl; return false; } // check header char header[helper_image_internal::PGMHeaderSize]; if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (strncmp(header, "P5", 2) == 0) { *channels = 1; } else if (strncmp(header, "P6", 2) == 0) { *channels = 3; } else { std::cerr << "__LoadPPM() : File is not a PPM or PGM image" << std::endl; *channels = 0; return false; } // parse header, read maxval, width and height unsigned int width = 0; unsigned int height = 0; unsigned int maxval = 0; unsigned int i = 0; while (i < 3) { if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (header[0] == '#') { continue; } if (i == 0) { i += SSCANF(header, "%u %u %u", &width, &height, &maxval); } else if (i == 1) { i += SSCANF(header, "%u %u", &height, &maxval); } else if (i == 2) { i += SSCANF(header, "%u", &maxval); } } // check if given handle for the data is initialized if (NULL != *data) { if (*w != width || *h != height) { std::cerr << "__LoadPPM() : Invalid image dimensions." << std::endl; } } else { *data = (unsigned char *)malloc(sizeof(unsigned char) * width * height * *channels); *w = width; *h = height; } // read and close file if (fread(*data, sizeof(unsigned char), width * height * *channels, fp) == 0) { std::cerr << "__LoadPPM() read data returned error." << std::endl; } fclose(fp); return true; } template <class T> inline bool sdkLoadPGM(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = NULL; unsigned int channels; if (true != __loadPPM(file, &idata, w, h, &channels)) { return false; } unsigned int size = *w * *h * channels; // initialize mem if necessary // the correct size is checked / set in loadPGMc() if (NULL == *data) { *data = reinterpret_cast<T *>(malloc(sizeof(T) * size)); } // copy and cast data std::transform(idata, idata + size, *data, helper_image_internal::ConverterFromUByte<T>()); free(idata); return true; } template <class T> inline bool sdkLoadPPM4(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = reinterpret_cast<T *>(malloc(sizeof(T) * size * 4)); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels) { assert(NULL != data); assert(w > 0); assert(h > 0); std::fstream fh(file, std::fstream::out | std::fstream::binary); if (fh.bad()) { std::cerr << "__savePPM() : Opening file failed." << std::endl; return false; } if (channels == 1) { fh << "P5\n"; } else if (channels == 3) { fh << "P6\n"; } else { std::cerr << "__savePPM() : Invalid number of channels." << std::endl; return false; } fh << w << "\n" << h << "\n" << 0xff << std::endl; for (unsigned int i = 0; (i < (w * h * channels)) && fh.good(); ++i) { fh << data[i]; } fh.flush(); if (fh.bad()) { std::cerr << "__savePPM() : Writing data failed." << std::endl; return false; } fh.close(); return true; } template <class T> inline bool sdkSavePGM(const char *file, T *data, unsigned int w, unsigned int h) { unsigned int size = w * h; unsigned char *idata = (unsigned char *)malloc(sizeof(unsigned char) * size); std::transform(data, data + size, idata, helper_image_internal::ConverterToUByte<T>()); // write file bool result = __savePPM(file, idata, w, h, 1); // cleanup free(idata); return result; } inline bool sdkSavePPM4ub(const char *file, unsigned char *data, unsigned int w, unsigned int h) { // strip 4th component int size = w * h; unsigned char *ndata = (unsigned char *)malloc(sizeof(unsigned char) * size * 3); unsigned char *ptr = ndata; for (int i = 0; i < size; i++) { *ptr++ = *data++; *ptr++ = *data++; *ptr++ = *data++; data++; } bool result = __savePPM(file, ndata, w, h, 3); free(ndata); return result; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFile(const char *filename, T **data, unsigned int *len, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // intermediate storage for the data read std::vector<T> data_read; // open file for reading FILE *fh = NULL; // check if filestream is valid if (FOPEN_FAIL(FOPEN(fh, filename, "r"))) { printf("Unable to open input file: %s\n", filename); return false; } // read all data elements T token; while (!feof(fh)) { fscanf(fh, "%f", &token); data_read.push_back(token); } // the last element is read twice data_read.pop_back(); fclose(fh); // check if the given handle is already initialized if (NULL != *data) { if (*len != data_read.size()) { std::cerr << "sdkReadFile() : Initialized memory given but " << "size mismatch with signal read " << "(data read / data init = " << (unsigned int)data_read.size() << " / " << *len << ")" << std::endl; return false; } } else { // allocate storage for the data read *data = reinterpret_cast<T *>(malloc(sizeof(T) * data_read.size())); // store signal size *len = static_cast<unsigned int>(data_read.size()); } // copy data memcpy(*data, &data_read.front(), sizeof(T) * data_read.size()); return true; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFileBlocks(const char *filename, T **data, unsigned int *len, unsigned int block_num, unsigned int block_size, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // open file for reading FILE *fh = fopen(filename, "rb"); if (fh == NULL && verbose) { std::cerr << "sdkReadFile() : Opening file failed." << std::endl; return false; } // check if the given handle is already initialized // allocate storage for the data read data[block_num] = reinterpret_cast<T *>(malloc(block_size)); // read all data elements fseek(fh, block_num * block_size, SEEK_SET); *len = fread(data[block_num], sizeof(T), block_size / sizeof(T), fh); fclose(fh); return true; } ////////////////////////////////////////////////////////////////////////////// //! Write a data file \filename //! @return true if writing the file succeeded, otherwise false //! @param filename name of the source file //! @param data data to write //! @param len number of data elements in data, -1 on error //! @param epsilon epsilon for comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool sdkWriteFile(const char *filename, const T *data, unsigned int len, const S epsilon, bool verbose, bool append = false) { assert(NULL != filename); assert(NULL != data); // open file for writing // if (append) { std::fstream fh(filename, std::fstream::out | std::fstream::ate); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write/append." << std::endl; } /* } else { std::fstream fh(filename, std::fstream::out); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write." << std::endl; } } */ // check if filestream is valid if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Opening file failed." << std::endl; } return false; } // first write epsilon fh << "# " << epsilon << "\n"; // write data for (unsigned int i = 0; (i < len) && (fh.good()); ++i) { fh << data[i] << ' '; } // Check if writing succeeded if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Writing file failed." << std::endl; } return false; } // file ends with nl fh << std::endl; return true; } ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference timer_interface to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareData(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); bool result = true; unsigned int error_count = 0; for (unsigned int i = 0; i < len; ++i) { float diff = static_cast<float>(reference[i]) - static_cast<float>(data[i]); bool comp = (diff <= epsilon) && (diff >= -epsilon); result &= comp; error_count += !comp; #if 0 if (!comp) { std::cerr << "ERROR, i = " << i << ",\t " << reference[i] << " / " << data[i] << " (reference / data)\n"; } #endif } if (threshold == 0.0f) { return (result) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return (len * threshold > error_count) ? true : false; } } #ifndef __MIN_EPSILON_ERROR #define __MIN_EPSILON_ERROR 1e-3f #endif ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference handle to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison //! @param epsilon threshold % of (# of bytes) for pass/fail ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareDataAsFloatThreshold(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); // If we set epsilon to be 0, let's set a minimum threshold float max_error = MAX((float)epsilon, __MIN_EPSILON_ERROR); int error_count = 0; bool result = true; for (unsigned int i = 0; i < len; ++i) { float diff = fabs(static_cast<float>(reference[i]) - static_cast<float>(data[i])); bool comp = (diff < max_error); result &= comp; if (!comp) { error_count++; } } if (threshold == 0.0f) { if (error_count) { printf("total # of errors = %d\n", error_count); } return (error_count == 0) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return ((len * threshold > error_count) ? true : false); } } inline void sdkDumpBin(void *data, unsigned int bytes, const char *filename) { printf("sdkDumpBin: <%s>\n", filename); FILE *fp; FOPEN(fp, filename, "wb"); fwrite(data, bytes, 1, fp); fflush(fp); fclose(fp); } inline bool sdkCompareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { unsigned int *src_buffer, *ref_buffer; FILE *src_fp = NULL, *ref_fp = NULL; uint64_t error_count = 0; size_t fsize = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file); error_count++; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <unsigned int> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf( "compareBin2Bin <unsigned int>" " unable to open ref_file: %s\n", ref_file_path); error_count++; } if (src_fp && ref_fp) { src_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); ref_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); fsize = fread(src_buffer, nelements, sizeof(unsigned int), src_fp); fsize = fread(ref_buffer, nelements, sizeof(unsigned int), ref_fp); printf( "> compareBin2Bin <unsigned int> nelements=%d," " epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize)); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize)); if (!compareData<unsigned int, float>(ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { float *src_buffer = NULL, *ref_buffer = NULL; FILE *src_fp = NULL, *ref_fp = NULL; size_t fsize = 0; uint64_t error_count = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <float> unable to open src_file: %s\n", src_file); error_count = 1; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", exec_path); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path); error_count = 1; } if (src_fp && ref_fp) { src_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); ref_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); printf( "> compareBin2Bin <float> nelements=%d, epsilon=%4.2f," " threshold=%4.2f\n", nelements, epsilon, threshold); fsize = fread(src_buffer, sizeof(float), nelements, src_fp); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize * sizeof(float))); fsize = fread(ref_buffer, sizeof(float), nelements, ref_fp); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize * sizeof(float))); if (!compareDataAsFloatThreshold<float, float>( ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareL2fe(const float *reference, const float *data, const unsigned int len, const float epsilon) { assert(epsilon >= 0); float error = 0; float ref = 0; for (unsigned int i = 0; i < len; ++i) { float diff = reference[i] - data[i]; error += diff * diff; ref += reference[i] * reference[i]; } float normRef = sqrtf(ref); if (fabs(ref) < 1e-7) { #ifdef _DEBUG std::cerr << "ERROR, reference l2-norm is 0\n"; #endif return false; } float normError = sqrtf(error); error = normError / normRef; bool result = error < epsilon; #ifdef _DEBUG if (!result) { std::cerr << "ERROR, l2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; } #endif return result; } inline bool sdkLoadPPMub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned int channels; return __loadPPM(file, data, w, h, &channels); } inline bool sdkLoadPPM4ub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = (unsigned char *)malloc(sizeof(unsigned char) * size * 4); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool sdkComparePPM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data, *ref_data; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PPMvsPPM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPM4ub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PPMvsPPM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPM4ub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PPMvsPPM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PPMvsPPM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) { std::cerr << "PPMvsPPM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; } if (compareData(ref_data, src_data, src_width * src_height * 4, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } inline bool sdkComparePGM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data = 0, *ref_data = 0; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PGMvsPGM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPMub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PGMvsPGM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPMub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PGMvsPGM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PGMvsPGM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) std::cerr << "PGMvsPGM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; if (compareData(ref_data, src_data, src_width * src_height, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } #endif // COMMON_HELPER_IMAGE_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/exception.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CUda UTility Library */ #ifndef COMMON_EXCEPTION_H_ #define COMMON_EXCEPTION_H_ // includes, system #include <stdlib.h> #include <exception> #include <iostream> #include <stdexcept> #include <string> //! Exception wrapper. //! @param Std_Exception Exception out of namespace std for easy typing. template <class Std_Exception> class Exception : public Std_Exception { public: //! @brief Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const char *detailed = "-"); //! Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const std::string &detailed); //! Destructor virtual ~Exception() throw(); private: //! Constructor, default (private) Exception(); //! Constructor, standard //! @param str string returned by what() explicit Exception(const std::string &str); }; //////////////////////////////////////////////////////////////////////////////// //! Exception handler function for arbitrary exceptions //! @param ex exception to handle //////////////////////////////////////////////////////////////////////////////// template <class Exception_Typ> inline void handleException(const Exception_Typ &ex) { std::cerr << ex.what() << std::endl; exit(EXIT_FAILURE); } //! Convenience macros //! Exception caused by dynamic program behavior, e.g. file does not exist #define RUNTIME_EXCEPTION(msg) \ Exception<std::runtime_error>::throw_it(__FILE__, __LINE__, msg) //! Logic exception in program, e.g. an assert failed #define LOGIC_EXCEPTION(msg) \ Exception<std::logic_error>::throw_it(__FILE__, __LINE__, msg) //! Out of range exception #define RANGE_EXCEPTION(msg) \ Exception<std::range_error>::throw_it(__FILE__, __LINE__, msg) //////////////////////////////////////////////////////////////////////////////// //! Implementation // includes, system #include <sstream> //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const char *detailed) { std::stringstream s; // Quiet heavy-weight but exceptions are not for // performance / release versions s << "Exception in file '" << file << "' in line " << line << "\n" << "Detailed description: " << detailed << "\n"; throw Exception(s.str()); } //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const std::string &msg) { throw_it(file, line, msg.c_str()); } //////////////////////////////////////////////////////////////////////////////// //! Constructor, default (private). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception() : Std_Exception("Unknown Exception.\n") {} //////////////////////////////////////////////////////////////////////////////// //! Constructor, standard (private). //! String returned by what(). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception(const std::string &s) : Std_Exception(s) {} //////////////////////////////////////////////////////////////////////////////// //! Destructor //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::~Exception() throw() {} // functions, exported #endif // COMMON_EXCEPTION_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/helper_cuda.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // These are CUDA Helper functions for initialization and error checking #ifndef COMMON_HELPER_CUDA_H_ #define COMMON_HELPER_CUDA_H_ #pragma once #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <helper_string.h> #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // Note, it is required that your SDK sample to include the proper header // files, please refer the CUDA examples for examples of the needed CUDA // headers, which may change depending on which CUDA functions are used. // CUDA Runtime error messages #ifdef __DPCT_HPP__ static const char *_cudaGetErrorEnum(dpct::err0 error) { /* DPCT1009:5: SYCL uses exceptions to report errors and does not use the error codes. The original code was commented out and a warning string was inserted. You need to rewrite this code. */ return "cudaGetErrorName is not supported" /*cudaGetErrorName(error)*/; } #endif #ifdef CUDA_DRIVER_API // CUDA Driver API errors static const char *_cudaGetErrorEnum(CUresult error) { static char unknown[] = "<unknown>"; const char *ret = NULL; cuGetErrorName(error, &ret); return ret ? ret : unknown; } #endif #ifdef CUBLAS_API_H_ // cuBLAS API errors static const char *_cudaGetErrorEnum(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "<unknown>"; } #endif #ifdef _CUFFT_H_ // cuFFT API errors static const char *_cudaGetErrorEnum(cufftResult error) { switch (error) { case CUFFT_SUCCESS: return "CUFFT_SUCCESS"; case CUFFT_INVALID_PLAN: return "CUFFT_INVALID_PLAN"; case CUFFT_ALLOC_FAILED: return "CUFFT_ALLOC_FAILED"; case CUFFT_INVALID_TYPE: return "CUFFT_INVALID_TYPE"; case CUFFT_INVALID_VALUE: return "CUFFT_INVALID_VALUE"; case CUFFT_INTERNAL_ERROR: return "CUFFT_INTERNAL_ERROR"; case CUFFT_EXEC_FAILED: return "CUFFT_EXEC_FAILED"; case CUFFT_SETUP_FAILED: return "CUFFT_SETUP_FAILED"; case CUFFT_INVALID_SIZE: return "CUFFT_INVALID_SIZE"; case CUFFT_UNALIGNED_DATA: return "CUFFT_UNALIGNED_DATA"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "CUFFT_INCOMPLETE_PARAMETER_LIST"; case CUFFT_INVALID_DEVICE: return "CUFFT_INVALID_DEVICE"; case CUFFT_PARSE_ERROR: return "CUFFT_PARSE_ERROR"; case CUFFT_NO_WORKSPACE: return "CUFFT_NO_WORKSPACE"; case CUFFT_NOT_IMPLEMENTED: return "CUFFT_NOT_IMPLEMENTED"; case CUFFT_LICENSE_ERROR: return "CUFFT_LICENSE_ERROR"; case CUFFT_NOT_SUPPORTED: return "CUFFT_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSPARSEAPI // cuSPARSE API errors static const char *_cudaGetErrorEnum(cusparseStatus_t error) { switch (error) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSOLVER_COMMON_H_ // cuSOLVER API errors static const char *_cudaGetErrorEnum(cusolverStatus_t error) { switch (error) { case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCESS"; case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; case CUSOLVER_STATUS_MAPPING_ERROR: return "CUSOLVER_STATUS_MAPPING_ERROR"; case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSOLVER_STATUS_NOT_SUPPORTED: return "CUSOLVER_STATUS_NOT_SUPPORTED "; case CUSOLVER_STATUS_ZERO_PIVOT: return "CUSOLVER_STATUS_ZERO_PIVOT"; case CUSOLVER_STATUS_INVALID_LICENSE: return "CUSOLVER_STATUS_INVALID_LICENSE"; } return "<unknown>"; } #endif #ifdef CURAND_H_ // cuRAND API errors static const char *_cudaGetErrorEnum(int error) { switch (error) { case 0: return "CURAND_STATUS_SUCCESS"; case 100: return "CURAND_STATUS_VERSION_MISMATCH"; case 101: return "CURAND_STATUS_NOT_INITIALIZED"; case 102: return "CURAND_STATUS_ALLOCATION_FAILED"; case 103: return "CURAND_STATUS_TYPE_ERROR"; case 104: return "CURAND_STATUS_OUT_OF_RANGE"; case 105: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case 106: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case 201: return "CURAND_STATUS_LAUNCH_FAILURE"; case 202: return "CURAND_STATUS_PREEXISTING_FAILURE"; case 203: return "CURAND_STATUS_INITIALIZATION_FAILED"; case 204: return "CURAND_STATUS_ARCH_MISMATCH"; case 999: return "CURAND_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NVJPEGAPI // nvJPEG API errors static const char *_cudaGetErrorEnum(nvjpegStatus_t error) { switch (error) { case NVJPEG_STATUS_SUCCESS: return "NVJPEG_STATUS_SUCCESS"; case NVJPEG_STATUS_NOT_INITIALIZED: return "NVJPEG_STATUS_NOT_INITIALIZED"; case NVJPEG_STATUS_INVALID_PARAMETER: return "NVJPEG_STATUS_INVALID_PARAMETER"; case NVJPEG_STATUS_BAD_JPEG: return "NVJPEG_STATUS_BAD_JPEG"; case NVJPEG_STATUS_JPEG_NOT_SUPPORTED: return "NVJPEG_STATUS_JPEG_NOT_SUPPORTED"; case NVJPEG_STATUS_ALLOCATOR_FAILURE: return "NVJPEG_STATUS_ALLOCATOR_FAILURE"; case NVJPEG_STATUS_EXECUTION_FAILED: return "NVJPEG_STATUS_EXECUTION_FAILED"; case NVJPEG_STATUS_ARCH_MISMATCH: return "NVJPEG_STATUS_ARCH_MISMATCH"; case NVJPEG_STATUS_INTERNAL_ERROR: return "NVJPEG_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NV_NPPIDEFS_H // NPP API errors static const char *_cudaGetErrorEnum(NppStatus error) { switch (error) { case NPP_NOT_SUPPORTED_MODE_ERROR: return "NPP_NOT_SUPPORTED_MODE_ERROR"; case NPP_ROUND_MODE_NOT_SUPPORTED_ERROR: return "NPP_ROUND_MODE_NOT_SUPPORTED_ERROR"; case NPP_RESIZE_NO_OPERATION_ERROR: return "NPP_RESIZE_NO_OPERATION_ERROR"; case NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY: return "NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_BAD_ARG_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFF_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECT_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUAD_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEM_ALLOC_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTO_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_INPUT: return "NPP_INVALID_INPUT"; case NPP_POINTER_ERROR: return "NPP_POINTER_ERROR"; case NPP_WARNING: return "NPP_WARNING"; case NPP_ODD_ROI_WARNING: return "NPP_ODD_ROI_WARNING"; #else // These are for CUDA 5.5 or higher case NPP_BAD_ARGUMENT_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFFICIENT_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECTANGLE_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUADRANGLE_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEMORY_ALLOCATION_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_HOST_POINTER_ERROR: return "NPP_INVALID_HOST_POINTER_ERROR"; case NPP_INVALID_DEVICE_POINTER_ERROR: return "NPP_INVALID_DEVICE_POINTER_ERROR"; #endif case NPP_LUT_NUMBER_OF_LEVELS_ERROR: return "NPP_LUT_NUMBER_OF_LEVELS_ERROR"; case NPP_TEXTURE_BIND_ERROR: return "NPP_TEXTURE_BIND_ERROR"; case NPP_WRONG_INTERSECTION_ROI_ERROR: return "NPP_WRONG_INTERSECTION_ROI_ERROR"; case NPP_NOT_EVEN_STEP_ERROR: return "NPP_NOT_EVEN_STEP_ERROR"; case NPP_INTERPOLATION_ERROR: return "NPP_INTERPOLATION_ERROR"; case NPP_RESIZE_FACTOR_ERROR: return "NPP_RESIZE_FACTOR_ERROR"; case NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR: return "NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_MEMFREE_ERR: return "NPP_MEMFREE_ERR"; case NPP_MEMSET_ERR: return "NPP_MEMSET_ERR"; case NPP_MEMCPY_ERR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERR: return "NPP_MIRROR_FLIP_ERR"; #else case NPP_MEMFREE_ERROR: return "NPP_MEMFREE_ERROR"; case NPP_MEMSET_ERROR: return "NPP_MEMSET_ERROR"; case NPP_MEMCPY_ERROR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERROR: return "NPP_MIRROR_FLIP_ERROR"; #endif case NPP_ALIGNMENT_ERROR: return "NPP_ALIGNMENT_ERROR"; case NPP_STEP_ERROR: return "NPP_STEP_ERROR"; case NPP_SIZE_ERROR: return "NPP_SIZE_ERROR"; case NPP_NULL_POINTER_ERROR: return "NPP_NULL_POINTER_ERROR"; case NPP_CUDA_KERNEL_EXECUTION_ERROR: return "NPP_CUDA_KERNEL_EXECUTION_ERROR"; case NPP_NOT_IMPLEMENTED_ERROR: return "NPP_NOT_IMPLEMENTED_ERROR"; case NPP_ERROR: return "NPP_ERROR"; case NPP_SUCCESS: return "NPP_SUCCESS"; case NPP_WRONG_INTERSECTION_QUAD_WARNING: return "NPP_WRONG_INTERSECTION_QUAD_WARNING"; case NPP_MISALIGNED_DST_ROI_WARNING: return "NPP_MISALIGNED_DST_ROI_WARNING"; case NPP_AFFINE_QUAD_INCORRECT_WARNING: return "NPP_AFFINE_QUAD_INCORRECT_WARNING"; case NPP_DOUBLE_SIZE_WARNING: return "NPP_DOUBLE_SIZE_WARNING"; case NPP_WRONG_INTERSECTION_ROI_WARNING: return "NPP_WRONG_INTERSECTION_ROI_WARNING"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x6000 /* These are 6.0 or higher */ case NPP_LUT_PALETTE_BITSIZE_ERROR: return "NPP_LUT_PALETTE_BITSIZE_ERROR"; case NPP_ZC_MODE_NOT_SUPPORTED_ERROR: return "NPP_ZC_MODE_NOT_SUPPORTED_ERROR"; case NPP_QUALITY_INDEX_ERROR: return "NPP_QUALITY_INDEX_ERROR"; case NPP_CHANNEL_ORDER_ERROR: return "NPP_CHANNEL_ORDER_ERROR"; case NPP_ZERO_MASK_VALUE_ERROR: return "NPP_ZERO_MASK_VALUE_ERROR"; case NPP_NUMBER_OF_CHANNELS_ERROR: return "NPP_NUMBER_OF_CHANNELS_ERROR"; case NPP_COI_ERROR: return "NPP_COI_ERROR"; case NPP_DIVISOR_ERROR: return "NPP_DIVISOR_ERROR"; case NPP_CHANNEL_ERROR: return "NPP_CHANNEL_ERROR"; case NPP_STRIDE_ERROR: return "NPP_STRIDE_ERROR"; case NPP_ANCHOR_ERROR: return "NPP_ANCHOR_ERROR"; case NPP_MASK_SIZE_ERROR: return "NPP_MASK_SIZE_ERROR"; case NPP_MOMENT_00_ZERO_ERROR: return "NPP_MOMENT_00_ZERO_ERROR"; case NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR: return "NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR"; case NPP_THRESHOLD_ERROR: return "NPP_THRESHOLD_ERROR"; case NPP_CONTEXT_MATCH_ERROR: return "NPP_CONTEXT_MATCH_ERROR"; case NPP_FFT_FLAG_ERROR: return "NPP_FFT_FLAG_ERROR"; case NPP_FFT_ORDER_ERROR: return "NPP_FFT_ORDER_ERROR"; case NPP_SCALE_RANGE_ERROR: return "NPP_SCALE_RANGE_ERROR"; case NPP_DATA_TYPE_ERROR: return "NPP_DATA_TYPE_ERROR"; case NPP_OUT_OFF_RANGE_ERROR: return "NPP_OUT_OFF_RANGE_ERROR"; case NPP_DIVIDE_BY_ZERO_ERROR: return "NPP_DIVIDE_BY_ZERO_ERROR"; case NPP_RANGE_ERROR: return "NPP_RANGE_ERROR"; case NPP_NO_MEMORY_ERROR: return "NPP_NO_MEMORY_ERROR"; case NPP_ERROR_RESERVED: return "NPP_ERROR_RESERVED"; case NPP_NO_OPERATION_WARNING: return "NPP_NO_OPERATION_WARNING"; case NPP_DIVIDE_BY_ZERO_WARNING: return "NPP_DIVIDE_BY_ZERO_WARNING"; #endif #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x7000 /* These are 7.0 or higher */ case NPP_OVERFLOW_ERROR: return "NPP_OVERFLOW_ERROR"; case NPP_CORRUPTED_DATA_ERROR: return "NPP_CORRUPTED_DATA_ERROR"; #endif } return "<unknown>"; } #endif template <typename T> void check(T result, char const *const func, const char *const file, int const line) { } #ifdef __DPCT_HPP__ // This will output the proper CUDA error strings in the event // that a CUDA host call returns an error #define checkCudaErrors(val) check((val), #val, __FILE__, __LINE__) // This will output the proper error string when calling cudaGetLastError #define getLastCudaError(msg) __getLastCudaError(msg, __FILE__, __LINE__) inline void __getLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:6: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } // This will only print the proper error string when calling cudaGetLastError // but not exit program incase error detected. #define printLastCudaError(msg) __printLastCudaError(msg, __FILE__, __LINE__) inline void __printLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:8: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } #endif #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // Float To Int conversion inline int ftoi(float value) { return (value >= 0 ? static_cast<int>(value + 0.5) : static_cast<int>(value - 0.5)); } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the # of cores per SM typedef struct dpct_type_554348 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { {0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128}, {0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128}, {0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128}, {0x87, 128}, {0x89, 128}, {0x90, 128}, {-1, -1}}; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoCores for SM %d.%d is undefined." " Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index - 1].Cores); return nGpuArchCoresPerSM[index - 1].Cores; } inline const char* _ConvertSMVer2ArchName(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the GPU Arch name) typedef struct dpct_type_876740 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version const char* name; } sSMtoArchName; sSMtoArchName nGpuArchNameSM[] = { {0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"}, {0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"}, {0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"}, {0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"}, {0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"}, {0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"}, {-1, "Graphics Device"}}; int index = 0; while (nGpuArchNameSM[index].SM != -1) { if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) { return nGpuArchNameSM[index].name; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoArchName for SM %d.%d is undefined." " Default to use %s\n", major, minor, nGpuArchNameSM[index - 1].name); return nGpuArchNameSM[index - 1].name; } // end of GPU Architecture definitions #ifdef __DPCT_HPP__ // General GPU Device CUDA Initialization inline int gpuDeviceInit(int devID) { int device_count; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuDeviceInit() CUDA error: " "no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } if (devID < 0) { devID = 0; } if (devID > device_count - 1) { fprintf(stderr, "\n"); fprintf(stderr, ">> %d CUDA capable GPU device(s) detected. <<\n", device_count); fprintf(stderr, ">> gpuDeviceInit (-device=%d) is not a valid" " GPU device. <<\n", devID); fprintf(stderr, "\n"); return -devID; } int computeMode = -1, major = 0, minor = 0; /* DPCT1035:10: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); /* DPCT1035:11: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode == 0) { fprintf(stderr, "Error: device is running in <Compute Mode " "Prohibited>, no threads can use cudaSetDevice().\n"); return -1; } if (major < 1) { fprintf(stderr, "gpuDeviceInit(): GPU device does not support CUDA.\n"); exit(EXIT_FAILURE); } /* DPCT1093:12: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); printf("gpuDeviceInit() CUDA Device [%d]: \"%s\n", devID, _ConvertSMVer2ArchName(major, minor)); return devID; } // This function returns the best GPU (with maximum GFLOPS) inline int gpuGetMaxGflopsDeviceId() try { int current_device = 0, sm_per_multiproc = 0; int max_perf_device = 0; int device_count = 0; int devices_prohibited = 0; uint64_t max_compute_perf = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the best CUDA capable GPU device current_device = 0; while (current_device < device_count) { int computeMode = -1, major = 0, minor = 0; /* DPCT1035:13: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list /* DPCT1035:14: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode != 0) { if (major == 9999 && minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(major, minor); } int multiProcessorCount = 0, clockRate = 0; checkCudaErrors( DPCT_CHECK_ERROR(multiProcessorCount = dpct::dev_mgr::instance() .get_device(current_device) .get_max_compute_units())); dpct::err0 result = DPCT_CHECK_ERROR(clockRate = dpct::dev_mgr::instance() .get_device(current_device) .get_max_clock_frequency()); uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate; if (compute_perf > max_compute_perf) { max_compute_perf = compute_perf; max_perf_device = current_device; } } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } return max_perf_device; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } // Initialization code to find the best CUDA Device inline int findCudaDevice(int argc, const char **argv) { int devID = 0; // If the command-line has a device number specified, use it if (checkCmdLineFlag(argc, argv, "device")) { devID = getCmdLineArgumentInt(argc, argv, "device="); if (devID < 0) { printf("Invalid command line parameter\n "); exit(EXIT_FAILURE); } else { devID = gpuDeviceInit(devID); if (devID < 0) { printf("exiting...\n"); exit(EXIT_FAILURE); } } } else { // Otherwise pick the device with highest Gflops/s devID = gpuGetMaxGflopsDeviceId(); /* DPCT1093:15: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, _ConvertSMVer2ArchName(major, minor), major, minor); } return devID; } inline int findIntegratedGPU() { int current_device = 0; int device_count = 0; int devices_prohibited = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the integrated GPU which is compute capable while (current_device < device_count) { int computeMode = -1, integrated = -1; /* DPCT1035:16: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors( DPCT_CHECK_ERROR(integrated = dpct::dev_mgr::instance() .get_device(current_device) .get_integrated())); // If GPU is integrated and is not running on Compute Mode prohibited, // then cuda can map to GLES resource /* DPCT1035:17: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (integrated && (computeMode != 0)) { /* DPCT1093:18: The "current_device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(current_device))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, _ConvertSMVer2ArchName(major, minor), major, minor); return current_device; } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No GLES-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } // General check for CUDA GPU SM Capabilities inline bool checkCudaCapabilities(int major_version, int minor_version) { int dev; int major = 0, minor = 0; checkCudaErrors(dev = dpct::dev_mgr::instance().current_device_id()); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(dev).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(dev).get_minor_version())); if ((major > major_version) || (major == major_version && minor >= minor_version)) { printf(" Device %d: <%16s >, Compute SM %d.%d detected\n", dev, _ConvertSMVer2ArchName(major, minor), major, minor); return true; } else { printf( " No GPU device was found that can support " "CUDA compute capability %d.%d.\n", major_version, minor_version); return false; } } #endif // end of CUDA Helper Functions #endif // COMMON_HELPER_CUDA_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/helper_functions.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, // timers, image helpers, etc) #ifndef COMMON_HELPER_FUNCTIONS_H_ #define COMMON_HELPER_FUNCTIONS_H_ #ifdef WIN32 #pragma warning(disable : 4996) #endif // includes, project #include <assert.h> #include <exception.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> // includes, timer, string parsing, image helpers #include <helper_image.h> // helper functions for image compare, dump, data comparisons #include <helper_string.h> // helper functions for string parsing #include <helper_timer.h> // helper functions for timers #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #endif // COMMON_HELPER_FUNCTIONS_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Common/multithreading.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MULTITHREADING_H #define MULTITHREADING_H //Simple portable thread library. //Windows threads. #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #include <windows.h> typedef HANDLE CUTThread; typedef unsigned(WINAPI *CUT_THREADROUTINE)(void *); #define CUT_THREADPROC unsigned WINAPI #define CUT_THREADEND return 0 #else //POSIX threads. #include <pthread.h> typedef pthread_t CUTThread; typedef void *(*CUT_THREADROUTINE)(void *); #define CUT_THREADPROC void #define CUT_THREADEND #endif #ifdef __cplusplus extern "C" { #endif //Create thread. CUTThread cutStartThread(CUT_THREADROUTINE, void *data); //Wait for thread to finish. void cutEndThread(CUTThread thread); //Destroy thread. void cutDestroyThread(CUTThread thread); //Wait for multiple threads. void cutWaitForThreads(const CUTThread *threads, int num); #ifdef __cplusplus } //extern "C" #endif #endif //MULTITHREADING_H
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/multithreading.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <multithreading.h> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Create thread CUTThread cutStartThread(CUT_THREADROUTINE func, void *data) { return CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)func, data, 0, NULL); } // Wait for thread to finish void cutEndThread(CUTThread thread) { WaitForSingleObject(thread, INFINITE); CloseHandle(thread); } // Wait for multiple threads void cutWaitForThreads(const CUTThread *threads, int num) { WaitForMultipleObjects(num, threads, true, INFINITE); for (int i = 0; i < num; i++) { CloseHandle(threads[i]); } } #else // Create thread CUTThread cutStartThread(CUT_THREADROUTINE func, void *data) { pthread_t thread; pthread_create(&thread, NULL, func, data); return thread; } // Wait for thread to finish void cutEndThread(CUTThread thread) { pthread_join(thread, NULL); } // Wait for multiple threads void cutWaitForThreads(const CUTThread *threads, int num) { for (int i = 0; i < num; i++) { cutEndThread(threads[i]); } } #endif
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_reduction.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MONTECARLO_REDUCTION_CUH #define MONTECARLO_REDUCTION_CUH #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> //////////////////////////////////////////////////////////////////////////////// // This function calculates total sum for each of the two input arrays. // SUM_N must be power of two // Unrolling provides a bit of a performance improvement for small // to medium path counts. //////////////////////////////////////////////////////////////////////////////// template <class T, int SUM_N, int blockSize> void sumReduce(T *sum, T *sum2, sycl::group<3> &cta, sycl::sub_group &tile32, __TOptionValue *d_CallValue, const sycl::nd_item<3> &item_ct1) { const int VEC = 32; const int tid = item_ct1.get_local_linear_id(); T beta = sum[tid]; T beta2 = sum2[tid]; T temp, temp2; for (int i = VEC / 2; i > 0; i >>= 1) { if (item_ct1.get_sub_group().get_local_linear_id() < i) { temp = sum[tid + i]; temp2 = sum2[tid + i]; beta += temp; beta2 += temp2; sum[tid] = beta; sum2[tid] = beta2; } item_ct1.get_sub_group().barrier(); } item_ct1.barrier(); if (tid == 0) { beta = 0; beta2 = 0; for (int i = 0; i < item_ct1.get_local_range(2); i += VEC) { beta += sum[i]; beta2 += sum2[i]; } __TOptionValue t = {beta, beta2}; *d_CallValue = t; } item_ct1.barrier(); } #endif
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/realtype.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef REALTYPE_H #define REALTYPE_H //#define DOUBLE_PRECISION #ifndef DOUBLE_PRECISION typedef float real; #else typedef double real; #endif #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_common.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MONTECARLO_COMMON_H #define MONTECARLO_COMMON_H #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "realtype.h" #include <dpct/rng_utils.hpp> //////////////////////////////////////////////////////////////////////////////// // Global types //////////////////////////////////////////////////////////////////////////////// typedef struct dpct_type_495057 { float S; float X; float T; float R; float V; } TOptionData; typedef struct // #ifdef __CUDACC__ //__align__(8) // #endif dpct_type_363787 { float Expected; float Confidence; } TOptionValue; // GPU outputs before CPU postprocessing typedef struct dpct_type_118506 { real Expected; real Confidence; } __TOptionValue; typedef struct dpct_type_258576 { // Device ID for multi-GPU version int device; // Option count for this plan int optionCount; // Host-side data source and result destination TOptionData *optionData; TOptionValue *callValue; // Temporary Host-side pinned memory for async + faster data transfers __TOptionValue *h_CallValue; // Device- and host-side option data void *d_OptionData; void *h_OptionData; // Device-side option values void *d_CallValue; // Intermediate device-side buffers void *d_Buffer; // random number generator states oneapi::mkl::rng::device::philox4x32x10<1> *rngStates; // Pseudorandom samples count int pathN; // Time stamp float time; int gridSize; } TOptionPlan; extern "C" void initMonteCarloGPU(TOptionPlan *plan); extern "C" void MonteCarloGPU(TOptionPlan *plan, dpct::queue_ptr stream = &dpct::get_default_queue()); extern "C" void closeMonteCarloGPU(TOptionPlan *plan); #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_gold.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <dpct/rng_utils.hpp> //#include "curand_kernel.h" #include "helper_cuda.h" //////////////////////////////////////////////////////////////////////////////// // Common types //////////////////////////////////////////////////////////////////////////////// #include "MonteCarlo_common.h" //////////////////////////////////////////////////////////////////////////////// // Black-Scholes formula for Monte Carlo results validation //////////////////////////////////////////////////////////////////////////////// #define A1 0.31938153 #define A2 -0.356563782 #define A3 1.781477937 #define A4 -1.821255978 #define A5 1.330274429 #define RSQRT2PI 0.39894228040143267793994605993438 // Polynomial approximation of // cumulative normal distribution function double CND(double d) { double K = 1.0 / (1.0 + 0.2316419 * fabs(d)); double cnd = RSQRT2PI * exp(-0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = 1.0 - cnd; return cnd; } // Black-Scholes formula for call value extern "C" void BlackScholesCall(float &callValue, TOptionData optionData) { double S = optionData.S; double X = optionData.X; double T = optionData.T; double R = optionData.R; double V = optionData.V; double sqrtT = sqrt(T); double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); double d2 = d1 - V * sqrtT; double CNDD1 = CND(d1); double CNDD2 = CND(d2); double expRT = exp(-R * T); callValue = (float)(S * CNDD1 - X * expRT * CNDD2); } //////////////////////////////////////////////////////////////////////////////// // CPU Monte Carlo //////////////////////////////////////////////////////////////////////////////// static double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT) { double callValue = S * exp(MuByT + VBySqrtT * r) - X; return (callValue > 0) ? callValue : 0; } extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData, float *h_Samples, int pathN) { const double S = optionData.S; const double X = optionData.X; const double T = optionData.T; const double R = optionData.R; const double V = optionData.V; const double MuByT = (R - 0.5 * V * V) * T; const double VBySqrtT = V * sqrt(T); float *samples; dpct::rng::host_rng_ptr gen; gen = dpct::rng::create_host_rng(dpct::rng::random_engine_type::philox4x32x10); unsigned long long seed = 1234ULL; checkCudaErrors(DPCT_CHECK_ERROR(gen->set_seed(seed))); if (h_Samples != NULL) { samples = h_Samples; } else { samples = (float *)malloc(pathN * sizeof(float)); checkCudaErrors( DPCT_CHECK_ERROR(gen->generate_gaussian(samples, pathN, 0.0, 1.0))); } // for(int i=0; i<10; i++) printf("CPU sample = %f\n", samples[i]); double sum = 0, sum2 = 0; for (int pos = 0; pos < pathN; pos++) { double sample = samples[pos]; double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT); sum += callValue; sum2 += callValue * callValue; } if (h_Samples == NULL) free(samples); checkCudaErrors(DPCT_CHECK_ERROR(gen.reset())); // Derive average from the total sum and discount by riskfree rate callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN); // Standard deviation double stdDev = sqrt(((double)pathN * sum2 - sum * sum) / ((double)pathN * (double)(pathN - 1))); // Confidence width; in 95% of all cases theoretical value lies within these // borders callValue.Confidence = (float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN)); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_kernel.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // Global types //////////////////////////////////////////////////////////////////////////////// #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdlib.h> #include <stdio.h> #include <helper_cuda.h> #include <dpct/rng_utils.hpp> #include "MonteCarlo_common.h" //////////////////////////////////////////////////////////////////////////////// // Helper reduction template // Please see the "reduction" CUDA Sample for more information //////////////////////////////////////////////////////////////////////////////// #include "MonteCarlo_reduction.dp.hpp" #include <cmath> //////////////////////////////////////////////////////////////////////////////// // Internal GPU-side data structures //////////////////////////////////////////////////////////////////////////////// #define MAX_OPTIONS (1024 * 1024) // Preprocessed input option data typedef struct dpct_type_164939 { real S; real X; real MuByT; real VBySqrtT; } __TOptionData; //////////////////////////////////////////////////////////////////////////////// // Overloaded shortcut payoff functions for different precision modes //////////////////////////////////////////////////////////////////////////////// inline float endCallValue(float S, float X, float r, float MuByT, float VBySqrtT) { float callValue = S * sycl::native::exp(MuByT + VBySqrtT * r) - X; return (callValue > 0.0F) ? callValue : 0.0F; } inline double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT) { double callValue = S * sycl::exp(MuByT + VBySqrtT * r) - X; return (callValue > 0.0) ? callValue : 0.0; } #define THREAD_N 256 //////////////////////////////////////////////////////////////////////////////// // This kernel computes the integral over all paths using a single thread block // per option. It is fastest when the number of thread blocks times the work per // block is high enough to keep the GPU busy. //////////////////////////////////////////////////////////////////////////////// static void MonteCarloOneBlockPerOption( oneapi::mkl::rng::device::philox4x32x10<1> *__restrict rngStates, const __TOptionData *__restrict d_OptionData, __TOptionValue *__restrict d_CallValue, int pathN, int optionN, const sycl::nd_item<3> &item_ct1, real *s_SumCall, real *s_Sum2Call) { // Handle to thread block group auto cta = item_ct1.get_group(); sycl::sub_group tile32 = item_ct1.get_sub_group(); const int SUM_N = THREAD_N; // determine global thread id int tid = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); // Copy random number state to local memory for efficiency oneapi::mkl::rng::device::philox4x32x10<1> localState = rngStates[tid]; for (int optionIndex = item_ct1.get_group(2); optionIndex < optionN; optionIndex += item_ct1.get_group_range(2)) { const real S = d_OptionData[optionIndex].S; const real X = d_OptionData[optionIndex].X; const real MuByT = d_OptionData[optionIndex].MuByT; const real VBySqrtT = d_OptionData[optionIndex].VBySqrtT; oneapi::mkl::rng::device::gaussian<real> dist; // Cycle through the entire samples array: // derive end stock price for each path // accumulate partial integrals into intermediate shared memory buffer for (int iSum = item_ct1.get_local_id(2); iSum < SUM_N; iSum += item_ct1.get_local_range(2)) { __TOptionValue sumCall = {0, 0}; #pragma unroll 8 for (int i = iSum; i < pathN; i += SUM_N) { auto r = oneapi::mkl::rng::device::generate(dist, localState); real callValue = endCallValue(S, X, r, MuByT, VBySqrtT); sumCall.Expected += callValue; sumCall.Confidence += callValue * callValue; } s_SumCall[iSum] = sumCall.Expected; s_Sum2Call[iSum] = sumCall.Confidence; } // Reduce shared memory accumulators // and write final result to global memory item_ct1.barrier(); sumReduce<real, SUM_N, THREAD_N>(s_SumCall, s_Sum2Call, cta, tile32, &d_CallValue[optionIndex], item_ct1); } } static void rngSetupStates(oneapi::mkl::rng::device::philox4x32x10<1> *rngState, int device_id, const sycl::nd_item<3> &item_ct1) { // determine global thread id int tid = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); // Each threadblock gets different seed, // Threads within a threadblock get different sequence numbers rngState[tid] = oneapi::mkl::rng::device::philox4x32x10<1>( item_ct1.get_group(2) + item_ct1.get_group_range(2) * device_id, {0, static_cast<std::uint64_t>((item_ct1.get_local_id(2)) * 8)}); } //////////////////////////////////////////////////////////////////////////////// // Host-side interface to GPU Monte Carlo //////////////////////////////////////////////////////////////////////////////// extern "C" void initMonteCarloGPU(TOptionPlan *plan) { checkCudaErrors( DPCT_CHECK_ERROR(plan->d_OptionData = (void *)sycl::malloc_device( sizeof(__TOptionData) * (plan->optionCount), dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(plan->d_CallValue = (void *)sycl::malloc_device( sizeof(__TOptionValue) * (plan->optionCount), dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( plan->h_OptionData = (void *)sycl::malloc_host(sizeof(__TOptionData) * (plan->optionCount), dpct::get_default_queue()))); // Allocate internal device memory checkCudaErrors( DPCT_CHECK_ERROR(plan->h_CallValue = sycl::malloc_host<__TOptionValue>( (plan->optionCount), dpct::get_default_queue()))); // Allocate states for pseudo random number generators checkCudaErrors(DPCT_CHECK_ERROR( plan->rngStates = sycl::malloc_device<oneapi::mkl::rng::device::philox4x32x10<1>>( plan->gridSize * THREAD_N, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue() .memset(plan->rngStates, 0, /* DPCT1032:36: A different random number generator is used. You may need to adjust the code. */ plan->gridSize * THREAD_N * sizeof(oneapi::mkl::rng::device::philox4x32x10<1>)) .wait())); // place each device pathN random numbers apart on the random number sequence dpct::get_default_queue().submit([&](sycl::handler &cgh) { auto plan_rngStates_ct0 = plan->rngStates; int plan_device_ct1 = plan->device; cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, plan->gridSize) * sycl::range<3>(1, 1, THREAD_N), sycl::range<3>(1, 1, THREAD_N)), [=](sycl::nd_item<3> item_ct1) { rngSetupStates(plan_rngStates_ct0, plan_device_ct1, item_ct1); }); }); getLastCudaError("rngSetupStates kernel failed.\n"); } // Compute statistics and deallocate internal device memory extern "C" void closeMonteCarloGPU(TOptionPlan *plan) { for (int i = 0; i < plan->optionCount; i++) { const double RT = plan->optionData[i].R * plan->optionData[i].T; const double sum = plan->h_CallValue[i].Expected; const double sum2 = plan->h_CallValue[i].Confidence; const double pathN = plan->pathN; // Derive average from the total sum and discount by riskfree rate plan->callValue[i].Expected = (float)(exp(-RT) * sum / pathN); // Standard deviation double stdDev = sqrt((pathN * sum2 - sum * sum) / (pathN * (pathN - 1))); // Confidence width; in 95% of all cases theoretical value lies within these // borders plan->callValue[i].Confidence = (float)(exp(-RT) * 1.96 * stdDev / sqrt(pathN)); } checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(plan->rngStates, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->h_CallValue, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->h_OptionData, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->d_CallValue, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->d_OptionData, dpct::get_default_queue()))); } // Main computations extern "C" void MonteCarloGPU(TOptionPlan *plan, dpct::queue_ptr stream) { __TOptionValue *h_CallValue = plan->h_CallValue; if (plan->optionCount <= 0 || plan->optionCount > MAX_OPTIONS) { printf("MonteCarloGPU(): bad option count.\n"); return; } __TOptionData *h_OptionData = (__TOptionData *)plan->h_OptionData; for (int i = 0; i < plan->optionCount; i++) { const double T = plan->optionData[i].T; const double R = plan->optionData[i].R; const double V = plan->optionData[i].V; const double MuByT = (R - 0.5 * V * V) * T; const double VBySqrtT = V * sqrt(T); h_OptionData[i].S = (real)plan->optionData[i].S; h_OptionData[i].X = (real)plan->optionData[i].X; h_OptionData[i].MuByT = (real)MuByT; h_OptionData[i].VBySqrtT = (real)VBySqrtT; } checkCudaErrors(DPCT_CHECK_ERROR( stream->memcpy(plan->d_OptionData, h_OptionData, plan->optionCount * sizeof(__TOptionData)))); stream->submit([&](sycl::handler &cgh) { sycl::local_accessor<real, 1> s_SumCall_acc_ct1( sycl::range<1>(256 /*SUM_N*/), cgh); sycl::local_accessor<real, 1> s_Sum2Call_acc_ct1( sycl::range<1>(256 /*SUM_N*/), cgh); //dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> // *plan_rngStates_ct0 = plan->rngStates; auto plan_rngStates_ct0 = plan->rngStates; const __TOptionData *plan_d_OptionData_ct1 = (__TOptionData *)(plan->d_OptionData); __TOptionValue *plan_d_CallValue_ct2 = (__TOptionValue *)(plan->d_CallValue); int plan_pathN_ct3 = plan->pathN; int plan_optionCount_ct4 = plan->optionCount; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, plan->gridSize) * sycl::range<3>(1, 1, THREAD_N), sycl::range<3>(1, 1, THREAD_N)), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { MonteCarloOneBlockPerOption(plan_rngStates_ct0, plan_d_OptionData_ct1, plan_d_CallValue_ct2, plan_pathN_ct3, plan_optionCount_ct4, item_ct1, s_SumCall_acc_ct1.get_pointer(), s_Sum2Call_acc_ct1.get_pointer()); }); }); getLastCudaError("MonteCarloOneBlockPerOption() execution failed\n"); checkCudaErrors(DPCT_CHECK_ERROR( stream->memcpy(h_CallValue, plan->d_CallValue, plan->optionCount * sizeof(__TOptionValue)))); // cudaDeviceSynchronize(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarloMultiGPU.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample evaluates fair call price for a * given set of European options using Monte Carlo approach. * See supplied whitepaper for more explanations. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> // includes, project #include <helper_functions.h> // Helper functions (utilities, parsing, timing) #include <helper_cuda.h> // helper functions (cuda error checking and initialization) #include <multithreading.h> #include "MonteCarlo_common.h" #include <chrono> int *pArgc = NULL; char **pArgv = NULL; #ifdef WIN32 #define strcasecmp _strcmpi #endif //////////////////////////////////////////////////////////////////////////////// // Common functions //////////////////////////////////////////////////////////////////////////////// float randFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } /// Utility function to tweak problem size for small GPUs int adjustProblemSize(int GPU_N, int default_nOptions) { int nOptions = default_nOptions; // select problem size for (int i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR( dpct::dev_mgr::instance().get_device(i).get_device_info(deviceProp))); int cudaCores = _ConvertSMVer2Cores(deviceProp.get_major_version(), deviceProp.get_minor_version()) * deviceProp.get_max_compute_units(); if (cudaCores <= 32) { nOptions = (nOptions < cudaCores / 2 ? nOptions : cudaCores / 2); } } return nOptions; } int adjustGridSize(int GPUIndex, int defaultGridSize) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR( dpct::dev_mgr::instance().get_device(GPUIndex).get_device_info( deviceProp))); int maxGridSize = deviceProp.get_max_compute_units() * 40; return ((defaultGridSize > maxGridSize) ? maxGridSize : defaultGridSize); } /////////////////////////////////////////////////////////////////////////////// // CPU reference functions /////////////////////////////////////////////////////////////////////////////// extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData, float *h_Random, int pathN); // Black-Scholes formula for call options extern "C" void BlackScholesCall(float &CallResult, TOptionData optionData); //////////////////////////////////////////////////////////////////////////////// // GPU-driving host thread //////////////////////////////////////////////////////////////////////////////// // Timer StopWatchInterface **hTimer = NULL; static CUT_THREADPROC solverThread(TOptionPlan *plan) { // Init GPU checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan->device))); dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(plan->device) .get_device_info(deviceProp))); // Start the timer sdkStartTimer(&hTimer[plan->device]); // Allocate intermediate memory for MC integrator and initialize // RNG states initMonteCarloGPU(plan); // Main computation MonteCarloGPU(plan); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().queues_wait_and_throw())); // Stop the timer sdkStopTimer(&hTimer[plan->device]); // Shut down this GPU closeMonteCarloGPU(plan); dpct::get_default_queue().wait(); printf("solverThread() finished - GPU Device %d: %s\n", plan->device, deviceProp.get_name()); CUT_THREADEND; } static void multiSolver(TOptionPlan *plan, int nPlans) { // allocate and initialize an array of stream handles dpct::queue_ptr *streams = (dpct::queue_ptr *)malloc(nPlans * sizeof(dpct::queue_ptr)); dpct::event_ptr *events = (dpct::event_ptr *)malloc(nPlans * sizeof(dpct::event_ptr)); std::chrono::time_point<std::chrono::steady_clock> events_ct1_i; for (int i = 0; i < nPlans; i++) { checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); checkCudaErrors(DPCT_CHECK_ERROR( (streams[i]) = dpct::get_current_device().create_queue())); checkCudaErrors(DPCT_CHECK_ERROR(events[i] = new sycl::event())); } // Init Each GPU // In CUDA 4.0 we can call cudaSetDevice multiple times to target each device // Set the device desired, then perform initializations on that device for (int i = 0; i < nPlans; i++) { // set the target device to perform initialization on checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(plan[i].device) .get_device_info(deviceProp))); // Allocate intermediate memory for MC integrator // and initialize RNG state initMonteCarloGPU(&plan[i]); } for (int i = 0; i < nPlans; i++) { checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().queues_wait_and_throw())); } // Start the timer sdkResetTimer(&hTimer[0]); sdkStartTimer(&hTimer[0]); for (int i = 0; i < nPlans; i++) { checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); // Main computations MonteCarloGPU(&plan[i], streams[i]); events_ct1_i = std::chrono::steady_clock::now(); checkCudaErrors( DPCT_CHECK_ERROR(*events[i] = streams[i]->ext_oneapi_submit_barrier())); } for (int i = 0; i < nPlans; i++) { checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); events[i]->wait_and_throw(); } // Stop the timer sdkStopTimer(&hTimer[0]); for (int i = 0; i < nPlans; i++) { checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); closeMonteCarloGPU(&plan[i]); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().destroy_queue(streams[i]))); checkCudaErrors(DPCT_CHECK_ERROR(dpct::destroy_event(events[i]))); } } /////////////////////////////////////////////////////////////////////////////// // Main program /////////////////////////////////////////////////////////////////////////////// #define DO_CPU #undef DO_CPU #define PRINT_RESULTS #undef PRINT_RESULTS void usage() { printf("--method=[threaded,streamed] --scaling=[strong,weak] [--help]\n"); printf("Method=threaded: 1 CPU thread for each GPU [default]\n"); printf( " streamed: 1 CPU thread handles all GPUs (requires CUDA 4.0 or " "newer)\n"); printf("Scaling=strong : constant problem size\n"); printf( " weak : problem size scales with number of available GPUs " "[default]\n"); } int main(int argc, char **argv) { char *multiMethodChoice = NULL; char *scalingChoice = NULL; bool use_threads = true; bool bqatest = false; bool strongScaling = false; pArgc = &argc; pArgv = argv; printf("%s Starting...\n\n", argv[0]); if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) { bqatest = true; } getCmdLineArgumentString(argc, (const char **)argv, "method", &multiMethodChoice); getCmdLineArgumentString(argc, (const char **)argv, "scaling", &scalingChoice); if (checkCmdLineFlag(argc, (const char **)argv, "h") || checkCmdLineFlag(argc, (const char **)argv, "help")) { usage(); exit(EXIT_SUCCESS); } if (multiMethodChoice == NULL) { use_threads = false; } else { if (!strcasecmp(multiMethodChoice, "threaded")) { use_threads = true; } else { use_threads = false; } } if (use_threads == false) { printf("Using single CPU thread for multiple GPUs\n"); } if (scalingChoice == NULL) { strongScaling = false; } else { if (!strcasecmp(scalingChoice, "strong")) { strongScaling = true; } else { strongScaling = false; } } // GPU number present in the system int GPU_N; checkCudaErrors( DPCT_CHECK_ERROR(GPU_N = dpct::dev_mgr::instance().device_count())); int nOptions = 8 * 1024; nOptions = adjustProblemSize(GPU_N, nOptions); // select problem size int scale = (strongScaling) ? 1 : GPU_N; int OPT_N = nOptions * scale; int PATH_N = 262144; // initialize the timers hTimer = new StopWatchInterface *[GPU_N]; for (int i = 0; i < GPU_N; i++) { sdkCreateTimer(&hTimer[i]); sdkResetTimer(&hTimer[i]); } // Input data array TOptionData *optionData = new TOptionData[OPT_N]; // Final GPU MC results TOptionValue *callValueGPU = new TOptionValue[OPT_N]; //"Theoretical" call values by Black-Scholes formula float *callValueBS = new float[OPT_N]; // Solver config TOptionPlan *optionSolver = new TOptionPlan[GPU_N]; // OS thread ID CUTThread *threadID = new CUTThread[GPU_N]; int gpuBase, gpuIndex; int i; float time; double delta, ref, sumDelta, sumRef, sumReserve; printf("MonteCarloMultiGPU\n"); printf("==================\n"); printf("Parallelization method = %s\n", use_threads ? "threaded" : "streamed"); printf("Problem scaling = %s\n", strongScaling ? "strong" : "weak"); printf("Number of GPUs = %d\n", GPU_N); printf("Total number of options = %d\n", OPT_N); printf("Number of paths = %d\n", PATH_N); printf("main(): generating input data...\n"); srand(123); for (i = 0; i < OPT_N; i++) { optionData[i].S = randFloat(5.0f, 50.0f); optionData[i].X = randFloat(10.0f, 25.0f); optionData[i].T = randFloat(1.0f, 5.0f); optionData[i].R = 0.06f; optionData[i].V = 0.10f; callValueGPU[i].Expected = -1.0f; callValueGPU[i].Confidence = -1.0f; } printf("main(): starting %i host threads...\n", GPU_N); // Get option count for each GPU for (i = 0; i < GPU_N; i++) { optionSolver[i].optionCount = OPT_N / GPU_N; } // Take into account cases with "odd" option counts for (i = 0; i < (OPT_N % GPU_N); i++) { optionSolver[i].optionCount++; } // Assign GPU option ranges gpuBase = 0; for (i = 0; i < GPU_N; i++) { optionSolver[i].device = i; optionSolver[i].optionData = optionData + gpuBase; optionSolver[i].callValue = callValueGPU + gpuBase; optionSolver[i].pathN = PATH_N; optionSolver[i].gridSize = adjustGridSize(optionSolver[i].device, optionSolver[i].optionCount); gpuBase += optionSolver[i].optionCount; } if (use_threads || bqatest) { // Start CPU thread for each GPU for (gpuIndex = 0; gpuIndex < GPU_N; gpuIndex++) { threadID[gpuIndex] = cutStartThread((CUT_THREADROUTINE)solverThread, &optionSolver[gpuIndex]); } printf("main(): waiting for GPU results...\n"); cutWaitForThreads(threadID, GPU_N); printf("main(): GPU statistics, threaded\n"); for (i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(optionSolver[i].device) .get_device_info(deviceProp))); printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.get_name()); printf("Options : %i\n", optionSolver[i].optionCount); printf("Simulation paths: %i\n", optionSolver[i].pathN); time = sdkGetTimerValue(&hTimer[i]); printf("Total time (ms.): %f\n", time); printf("Options per sec.: %f\n", OPT_N / (time * 0.001)); } printf("main(): comparing Monte Carlo and Black-Scholes results...\n"); sumDelta = 0; sumRef = 0; sumReserve = 0; for (i = 0; i < OPT_N; i++) { BlackScholesCall(callValueBS[i], optionData[i]); delta = fabs(callValueBS[i] - callValueGPU[i].Expected); ref = callValueBS[i]; sumDelta += delta; sumRef += fabs(ref); if (delta > 1e-6) { sumReserve += callValueGPU[i].Confidence / delta; } #ifdef PRINT_RESULTS printf("BS: %f; delta: %E\n", callValueBS[i], delta); #endif } sumReserve /= OPT_N; } if (!use_threads || bqatest) { multiSolver(optionSolver, GPU_N); printf("main(): GPU statistics, streamed\n"); for (i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(optionSolver[i].device) .get_device_info(deviceProp))); printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.get_name()); printf("Options : %i\n", optionSolver[i].optionCount); printf("Simulation paths: %i\n", optionSolver[i].pathN); } time = sdkGetTimerValue(&hTimer[0]); printf("\nTotal time (ms.): %f\n", time); printf("\tNote: This is elapsed time for all to compute.\n"); printf("Options per sec.: %f\n", OPT_N / (time * 0.001)); printf("main(): comparing Monte Carlo and Black-Scholes results...\n"); sumDelta = 0; sumRef = 0; sumReserve = 0; for (i = 0; i < OPT_N; i++) { BlackScholesCall(callValueBS[i], optionData[i]); delta = fabs(callValueBS[i] - callValueGPU[i].Expected); ref = callValueBS[i]; sumDelta += delta; sumRef += fabs(ref); if (delta > 1e-6) { sumReserve += callValueGPU[i].Confidence / delta; } #ifdef PRINT_RESULTS printf("BS: %f; delta: %E\n", callValueBS[i], delta); #endif } sumReserve /= OPT_N; } #ifdef DO_CPU printf("main(): running CPU MonteCarlo...\n"); TOptionValue callValueCPU; sumDelta = 0; sumRef = 0; for (i = 0; i < OPT_N; i++) { MonteCarloCPU(callValueCPU, optionData[i], NULL, PATH_N); delta = fabs(callValueCPU.Expected - callValueGPU[i].Expected); ref = callValueCPU.Expected; sumDelta += delta; sumRef += fabs(ref); printf("Exp : %f | %f\t", callValueCPU.Expected, callValueGPU[i].Expected); printf("Conf: %f | %f\n", callValueCPU.Confidence, callValueGPU[i].Confidence); } printf("L1 norm: %E\n", sumDelta / sumRef); #endif printf("Shutting down...\n"); for (int i = 0; i < GPU_N; i++) { sdkStartTimer(&hTimer[i]); checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(i))); } delete[] optionSolver; delete[] callValueBS; delete[] callValueGPU; delete[] optionData; delete[] threadID; delete[] hTimer; printf("Test Summary...\n"); printf("L1 norm : %E\n", sumDelta / sumRef); printf("Average reserve: %f\n", sumReserve); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n\n"); printf(sumReserve > 1.0f ? "Test passed\n" : "Test failed!\n"); exit(sumReserve > 1.0f ? EXIT_SUCCESS : EXIT_FAILURE); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/ccl_utils.hpp
//==---- ccl_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_CCL_UTILS_HPP__ #define __DPCT_CCL_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/ccl.hpp> #include <unordered_map> #include <memory> #include "device.hpp" namespace dpct { namespace ccl { namespace detail { /// Get stored kvs with specified kvs address. inline std::shared_ptr<oneapi::ccl::kvs> & get_kvs(const oneapi::ccl::kvs::address_type &addr) { struct hash { std::size_t operator()(const oneapi::ccl::kvs::address_type &in) const { return std::hash<std::string_view>()(std::string_view(in.data(), in.size())); } }; static std::unordered_map<oneapi::ccl::kvs::address_type, std::shared_ptr<oneapi::ccl::kvs>, hash> kvs_map; return kvs_map[addr]; } /// Help class to init ccl environment. class ccl_init_helper { public: ccl_init_helper() { oneapi::ccl::init(); } }; } // namespace detail /// Get concatenated library version as an integer. static inline int get_version() { oneapi::ccl::init(); auto ver = oneapi::ccl::get_library_version(); return ver.major * 10000 + ver.minor * 100 + ver.update; } /// Create main kvs and return its address. static inline oneapi::ccl::kvs::address_type create_kvs_address() { oneapi::ccl::init(); auto ptr = oneapi::ccl::create_main_kvs(); auto addr = ptr->get_address(); detail::get_kvs(addr) = ptr; return addr; } /// Get stored kvs with /p addr if exist. Otherwise, create kvs with /p addr. static inline std::shared_ptr<oneapi::ccl::kvs> create_kvs(const oneapi::ccl::kvs::address_type &addr) { oneapi::ccl::init(); auto &ptr = detail::get_kvs(addr); if (!ptr) ptr = oneapi::ccl::create_kvs(addr); return ptr; } /// dpct communicator extension class communicator_wrapper : public dpct::ccl::detail::ccl_init_helper { public: communicator_wrapper( int size, int rank, oneapi::ccl::kvs::address_type id, const oneapi::ccl::comm_attr &attr = oneapi::ccl::default_comm_attr) : _device_comm(oneapi::ccl::create_device( static_cast<sycl::device &>(dpct::get_current_device()))), _context_comm(oneapi::ccl::create_context(dpct::get_default_context())), _comm(oneapi::ccl::create_communicator( size, rank, _device_comm, _context_comm, dpct::ccl::create_kvs(id), attr)) { _queue_init = false; _ccl_stream_ptr = nullptr; } ~communicator_wrapper() { delete _ccl_stream_ptr; }; /// Return the rank in a oneapi::ccl::communicator /// \returns The rank corresponding to communicator object int rank() const { return _comm.rank(); } /// Retrieves the number of rank in oneapi::ccl::communicator /// \returns The number of the ranks int size() const { return _comm.size(); } /// Return underlying native device, which was used in oneapi::ccl::communicator sycl::device get_device() const { return _comm.get_device().get_native(); } /// \brief allreduce is a collective communication operation that performs the global reduction operation /// on values from all ranks of communicator and distributes the result back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void allreduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::allreduce(sendbuff, recvbuff, count, dtype, rtype, _comm, stream); }, queue_ptr); } /// \brief reduce is a collective communication operation that performs the /// global reduction operation on values from all ranks of the communicator /// and returns the result to the root rank. /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, /// must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param root the rank that gets the result of reduction /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, int root, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce(sendbuff, recvbuff, count, dtype, rtype, root, _comm, stream); }, queue_ptr); } /// \brief broadcast is a collective communication operation that broadcasts data /// from one rank of communicator (denoted as root) to all other ranks. /// Only support in-place operation /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result /// \param count the number of elements of type @c dtype in @c buf /// \param dtype thedatatype of elements in @c buf /// \param root the rank that broadcasts @c buf /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void broadcast(void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, int root, sycl::queue *queue_ptr) { if (sendbuff != recvbuff) { throw std::runtime_error( "oneCCL broadcast only support in-place operation. " "send_buf and recv_buf must be same."); return; } call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::broadcast(recvbuff, count, dtype, root, _comm, stream); }, queue_ptr); } /// \brief reduce_scatter is a collective communication operation that performs the global reduction operation /// on values from all ranks of the communicator and scatters the result in blocks back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param recv_count the number of elements of type @c dtype in receive block /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce_scatter(const void *sendbuff, void *recvbuff, size_t recv_count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce_scatter(sendbuff, recvbuff, recv_count, dtype, rtype, _comm, stream); }, queue_ptr); } private: oneapi::ccl::device _device_comm; oneapi::ccl::context _context_comm; oneapi::ccl::communicator _comm; sycl::queue _queue; bool _queue_init; oneapi::ccl::stream *_ccl_stream_ptr; template <class Fn> void call_func_wrapper(Fn func, sycl::queue *qptr) { if (_queue_init && *qptr != _queue) { call_func_async(func, qptr); } else { if(!_queue_init) { _queue = *qptr; _queue_init = true; _ccl_stream_ptr = new oneapi::ccl::stream(oneapi::ccl::create_stream(_queue)); } std::invoke(func, *_ccl_stream_ptr); } } class call_func_async { sycl::queue *_q_ptr; struct call_async_impl { oneapi::ccl::stream _ccl_stream_impl; oneapi::ccl::event _ccl_event_impl; template <class Fn> explicit call_async_impl(Fn func, sycl::queue *qptr) : _ccl_stream_impl(oneapi::ccl::create_stream(*qptr)), _ccl_event_impl(std::invoke(func, _ccl_stream_impl)) {} }; call_async_impl *_imp; public: template <class Fn> explicit call_func_async(Fn func, sycl::queue *qptr) : _q_ptr(qptr), _imp(new call_async_impl(func, qptr)) {} ~call_func_async() { _q_ptr->submit([&](sycl::handler &cgh) { cgh.host_task([=] { _imp->_ccl_event_impl.wait(); delete _imp; }); }); } }; }; typedef dpct::ccl::communicator_wrapper *comm_ptr; } // namespace ccl } // namespace dpct #endif // __DPCT_CCL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/util.hpp
//==---- util.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_UTIL_HPP__ #define __DPCT_UTIL_HPP__ #include <sycl/sycl.hpp> #include <complex> #include <type_traits> #include <cassert> #include <cstdint> // TODO: Remove these function definitions once they exist in the DPC++ compiler #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffle(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleDown(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleUp(__spv::Scope::Flag, T, unsigned) noexcept; #endif namespace dpct { namespace detail { template <typename tag, typename T> class generic_error_type { public: generic_error_type() = default; generic_error_type(T value) : value{value} {} operator T() const { return value; } private: T value; }; } // namespace detail using err0 = detail::generic_error_type<struct err0_tag, int>; using err1 = detail::generic_error_type<struct err1_tag, int>; template <int... Ints> struct integer_sequence {}; template <int Size, int... Ints> struct make_index_sequence : public make_index_sequence<Size - 1, Size - 1, Ints...> {}; template <int... Ints> struct make_index_sequence<0, Ints...> : public integer_sequence<Ints...> {}; template <typename T> struct DataType { using T2 = T; }; template <typename T> struct DataType<sycl::vec<T, 2>> { using T2 = std::complex<T>; }; inline void matrix_mem_copy(void *to_ptr, const void *from_ptr, int to_ld, int from_ld, int rows, int cols, int elem_size, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { if (to_ptr == from_ptr && to_ld == from_ld) { return; } if (to_ld == from_ld) { size_t copy_size = elem_size * ((cols - 1) * (size_t)to_ld + rows); if (async) detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction); else detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction).wait(); } else { if (async) detail::dpct_memcpy(queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction); else sycl::event::wait(detail::dpct_memcpy( queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction)); } } /// Copy matrix data. The default leading dimension is column. /// \param [out] to_ptr A pointer points to the destination location. /// \param [in] from_ptr A pointer points to the source location. /// \param [in] to_ld The leading dimension the destination matrix. /// \param [in] from_ld The leading dimension the source matrix. /// \param [in] rows The number of rows of the source matrix. /// \param [in] cols The number of columns of the source matrix. /// \param [in] direction The direction of the data copy. /// \param [in] queue The queue where the routine should be executed. /// \param [in] async If this argument is true, the return of the function /// does NOT guarantee the copy is completed. template <typename T> inline void matrix_mem_copy(T *to_ptr, const T *from_ptr, int to_ld, int from_ld, int rows, int cols, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { using Ty = typename DataType<T>::T2; matrix_mem_copy((void *)to_ptr, (void *)from_ptr, to_ld, from_ld, rows, cols, sizeof(Ty), direction, queue, async); } /// Cast the high or low 32 bits of a double to an integer. /// \param [in] d The double value. /// \param [in] use_high32 Cast the high 32 bits of the double if true; /// otherwise cast the low 32 bits. inline int cast_double_to_int(double d, bool use_high32 = true) { sycl::vec<double, 1> v0{d}; auto v1 = v0.as<sycl::int2>(); if (use_high32) return v1[1]; return v1[0]; } /// Combine two integers, the first as the high 32 bits and the second /// as the low 32 bits, into a double. /// \param [in] high32 The integer as the high 32 bits /// \param [in] low32 The integer as the low 32 bits inline double cast_ints_to_double(int high32, int low32) { sycl::int2 v0{low32, high32}; auto v1 = v0.as<sycl::vec<double, 1>>(); return v1; } /// Reverse the bit order of an unsigned integer /// \param [in] a Input unsigned integer value /// \returns Value of a with the bit order reversed template <typename T> inline T reverse_bits(T a) { static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value, "unsigned integer required"); if (!a) return 0; T mask = 0; size_t count = 4 * sizeof(T); mask = ~mask >> count; while (count) { a = ((a & mask) << count) | ((a & ~mask) >> count); count = count >> 1; mask = mask ^ (mask << count); } return a; } /// \param [in] a The first value contains 4 bytes /// \param [in] b The second value contains 4 bytes /// \param [in] s The selector value, only lower 16bit used /// \returns the permutation result of 4 bytes selected in the way /// specified by \p s from \p a and \p b inline unsigned int byte_level_permute(unsigned int a, unsigned int b, unsigned int s) { unsigned int ret; ret = ((((std::uint64_t)b << 32 | a) >> (s & 0x7) * 8) & 0xff) | (((((std::uint64_t)b << 32 | a) >> ((s >> 4) & 0x7) * 8) & 0xff) << 8) | (((((std::uint64_t)b << 32 | a) >> ((s >> 8) & 0x7) * 8) & 0xff) << 16) | (((((std::uint64_t)b << 32 | a) >> ((s >> 12) & 0x7) * 8) & 0xff) << 24); return ret; } /// Find position of first least significant set bit in an integer. /// ffs(0) returns 0. /// /// \param [in] a Input integer value /// \returns The position template <typename T> inline int ffs(T a) { static_assert(std::is_integral<T>::value, "integer required"); return (sycl::ctz(a) + 1) % (sizeof(T) * 8 + 1); } /// select_from_sub_group allows work-items to obtain a copy of a value held by /// any other work-item in the sub_group. The input sub_group will be divided /// into several logical sub_groups with id range [0, \p logical_sub_group_size /// - 1]. Each work-item in logical sub_group gets value from another work-item /// whose id is \p remote_local_id. If \p remote_local_id is outside the /// logical sub_group id range, \p remote_local_id will modulo with \p /// logical_sub_group_size. The \p logical_sub_group_size must be a power of 2 /// and not exceed input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; return sycl::select_from_group( g, x, start_index + remote_local_id % logical_sub_group_size); } /// shift_sub_group_left move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the left. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is caller's id adds \p delta. If calculated id is outside the logical /// sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; T result = sycl::shift_group_left(g, x, delta); if ((id + delta) >= end_index) { result = x; } return result; } /// shift_sub_group_right move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the right. The input sub_group will be divided into /// several logical_sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical_sub_group gets value from another work-item whose /// id is caller's id subtracts \p delta. If calculated id is outside the /// logical sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; T result = sycl::shift_group_right(g, x, delta); if ((id - start_index) < delta) { result = x; } return result; } /// permute_sub_group_by_xor permutes values by exchanging values held by pairs /// of work-items identified by computing the bitwise exclusive OR of the /// work-item id and some fixed mask. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is bitwise exclusive OR of the caller's id and \p mask. If calculated id /// is outside the logical sub_group id range, the work-item will get value from /// itself. The \p logical_sub_group_size must be a power of 2 and not exceed /// input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; return sycl::select_from_group(g, x, target_offset < logical_sub_group_size ? start_index + target_offset : id); } namespace experimental { /// Masked version of select_from_sub_group, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(unsigned int member_mask, sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; unsigned logical_remote_id = start_index + remote_local_id % logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)remote_local_id; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_left, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleDown(__spv::Scope::Subgroup, x, delta); if ((id + delta) >= end_index) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_left " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_right, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleUp(__spv::Scope::Subgroup, x, delta); if ((id - start_index) < delta) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_right " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY && __INTEL_LLVM_COMPILER } /// Masked version of permute_sub_group_by_xor, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(unsigned int member_mask, sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; unsigned logical_remote_id = (target_offset < logical_sub_group_size) ? start_index + target_offset : id; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of permute_sub_group_by_xor " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)mask; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } } // namespace experimental /// Computes the multiplication of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cmul(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 * t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the division of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cdiv(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 / t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the magnitude of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> T cabs(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); return std::abs(t); } /// Computes the complex conjugate of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> sycl::vec<T, 2> conj(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); t = std::conj(t); return sycl::vec<T, 2>(t.real(), t.imag()); } inline int get_sycl_language_version() { #ifdef SYCL_LANGUAGE_VERSION return SYCL_LANGUAGE_VERSION; #else return 202000; #endif } namespace experimental { /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <int dimensions = 3> inline void nd_range_barrier(const sycl::nd_item<dimensions> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { static_assert(dimensions == 3, "dimensions must be 3."); unsigned int num_groups = item.get_group_range(2) * item.get_group_range(1) * item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(2) + item.get_group(1) + item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <> inline void nd_range_barrier(const sycl::nd_item<1> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { unsigned int num_groups = item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// The logical-group is a logical collection of some work-items within a /// work-group. /// Note: Please make sure that the logical-group size is a power of 2 in the /// range [1, current_sub_group_size]. class logical_group { sycl::nd_item<3> _item; sycl::group<3> _g; uint32_t _logical_group_size; uint32_t _group_linear_range_in_parent; public: /// Dividing \p parent_group into several logical-groups. /// \param [in] item Current work-item. /// \param [in] parent_group The group to be divided. /// \param [in] size The logical-group size. logical_group(sycl::nd_item<3> item, sycl::group<3> parent_group, uint32_t size) : _item(item), _g(parent_group), _logical_group_size(size) { _group_linear_range_in_parent = (_g.get_local_linear_range() - 1) / _logical_group_size + 1; } /// Returns the index of the work-item within the logical-group. uint32_t get_local_linear_id() const { return _item.get_local_linear_id() % _logical_group_size; } /// Returns the index of the logical-group in the parent group. uint32_t get_group_linear_id() const { return _item.get_local_linear_id() / _logical_group_size; } /// Returns the number of work-items in the logical-group. uint32_t get_local_linear_range() const { if (_g.get_local_linear_range() % _logical_group_size == 0) { return _logical_group_size; } uint32_t last_item_group_id = _g.get_local_linear_range() / _logical_group_size; uint32_t first_of_last_group = last_item_group_id * _logical_group_size; if (_item.get_local_linear_id() >= first_of_last_group) { return _g.get_local_linear_range() - first_of_last_group; } else { return _logical_group_size; } } /// Returns the number of logical-group in the parent group. uint32_t get_group_linear_range() const { return _group_linear_range_in_parent; } }; // The original source of the function calculate_max_active_wg_per_xecore was // under the license below: // // Copyright Intel Corporation // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // /// This function is used for occupancy calculation, it computes the max active /// work-group number per Xe-Core. Ref to /// https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator /// \param [out] num_wg Active work-group number. /// \param [in] wg_size Work-group size. /// \param [in] slm_size Share local memory size. /// \param [in] sg_size Sub-group size. /// \param [in] used_barrier Whether barrier is used. /// \param [in] used_large_grf Whether large General Register File is used. /// \return If no error, returns 0. /// If \p wg_size exceeds the max work-group size, the max work-group size will /// be used instead of \p wg_size and returns -1. inline int calculate_max_active_wg_per_xecore(int *num_wg, int wg_size, int slm_size = 0, int sg_size = 32, bool used_barrier = false, bool used_large_grf = false) { int ret = 0; const int slm_size_per_xe_core = 64 * 1024; const int max_barrier_registers = 32; dpct::device_ext &dev = dpct::get_current_device(); size_t max_wg_size = dev.get_info<sycl::info::device::max_work_group_size>(); if (wg_size > max_wg_size) { wg_size = max_wg_size; ret = -1; } int num_threads_ss = 56; int max_num_wg = 56; if (dev.has(sycl::aspect::ext_intel_gpu_eu_count_per_subslice) && dev.has(sycl::aspect::ext_intel_gpu_hw_threads_per_eu)) { auto eu_count = dev.get_info<sycl::info::device::ext_intel_gpu_eu_count_per_subslice>(); auto threads_count = dev.get_info<sycl::ext::intel::info::device::gpu_hw_threads_per_eu>(); num_threads_ss = eu_count * threads_count; max_num_wg = eu_count * threads_count; } if (used_barrier) { max_num_wg = max_barrier_registers; } // Calculate num_wg_slm int num_wg_slm = 0; if (slm_size == 0) { num_wg_slm = max_num_wg; } else { num_wg_slm = std::floor((float)slm_size_per_xe_core / slm_size); } // Calculate num_wg_threads if (used_large_grf) num_threads_ss = num_threads_ss / 2; int num_threads = std::ceil((float)wg_size / sg_size); int num_wg_threads = std::floor((float)num_threads_ss / num_threads); // Calculate num_wg *num_wg = std::min(num_wg_slm, num_wg_threads); *num_wg = std::min(*num_wg, max_num_wg); return ret; } } // namespace experimental /// If x <= 2, then return a pointer to the deafult queue; /// otherwise, return x reinterpreted as a dpct::queue_ptr. inline queue_ptr int_as_queue_ptr(uintptr_t x) { return x <= 2 ? &get_default_queue() : reinterpret_cast<queue_ptr>(x); } template <int n_nondefault_params, int n_default_params, typename T> class args_selector; /// args_selector is a helper class for extracting arguments from an /// array of pointers to arguments or buffer of arguments to pass to a /// kernel function. /// /// \param R(Ts...) The type of the kernel /// \param n_nondefault_params The number of nondefault parameters of the kernel /// (excluding parameters that like sycl::nd_item, etc.) /// \param n_default_params The number of default parameters of the kernel /// /// Example usage: /// With the following kernel: /// void foo(sycl::float2 *x, int n, sycl::nd_item<3> item_ct1, float f=.1) {} /// and with the declaration: /// args_selector<2, 1, decltype(foo)> selector(kernelParams, extra); /// we have: /// selector.get<0>() returns a reference to sycl::float*, /// selector.get<1>() returns a reference to int, /// selector.get<2>() returns a reference to float template <int n_nondefault_params, int n_default_params, typename R, typename... Ts> class args_selector<n_nondefault_params, n_default_params, R(Ts...)> { private: void **kernel_params; char *args_buffer; template <int i> static constexpr int account_for_default_params() { constexpr int n_total_params = sizeof...(Ts); if constexpr (i >= n_nondefault_params) { return n_total_params - n_default_params + (i - n_nondefault_params); } else { return i; } } public: /// Get the type of the ith argument of R(Ts...) /// \param [in] i Index of parameter to get /// \returns Type of ith parameter template <int i> using arg_type = std::tuple_element_t<account_for_default_params<i>(), std::tuple<Ts...>>; private: template <int i> static constexpr int get_offset() { if constexpr (i == 0) { // we can assume args_buffer is properly aligned to the // first argument return 0; } else { constexpr int prev_off = get_offset<i-1>(); constexpr int prev_past_end = prev_off + sizeof(arg_type<i-1>); using T = arg_type<i>; // is the past-the-end of the i-1st element properly aligned // with the ith element's alignment? if constexpr (prev_past_end % alignof(T) == 0) { return prev_past_end; } // otherwise bump prev_past_end to match alignment else { return prev_past_end + (alignof(T) - (prev_past_end % alignof(T))); } } } static char *get_args_buffer(void **extra) { if (!extra) return nullptr; for (; (std::size_t) *extra != 0; ++extra) { if ((std::size_t) *extra == 1) { return static_cast<char*>(*(extra+1)); } } return nullptr; } public: /// If kernel_params is nonnull, then args_selector will /// extract arguments from kernel_params. Otherwise, it /// will extract them from extra. /// \param [in] kernel_params Array of pointers to arguments /// a or null pointer. /// \param [in] extra Array containing pointer to argument buffer. args_selector(void **kernel_params, void **extra) : kernel_params(kernel_params), args_buffer(get_args_buffer(extra)) {} /// Get a reference to the ith argument extracted from kernel_params /// or extra. /// \param [in] i Index of argument to get /// \returns Reference to the ith argument template <int i> arg_type<i> &get() { if (kernel_params) { return *static_cast<arg_type<i>*>(kernel_params[i]); } else { return *reinterpret_cast<arg_type<i>*>(args_buffer + get_offset<i>()); } } }; #ifdef _WIN32 #define DPCT_EXPORT __declspec(dllexport) #else #define DPCT_EXPORT #endif } // namespace dpct #endif // __DPCT_UTIL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/image.hpp
//==---- image.hpp --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_IMAGE_HPP__ #define __DPCT_IMAGE_HPP__ #include <sycl/sycl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { enum class image_channel_data_type { signed_int, unsigned_int, fp, }; class image_channel; class image_wrapper_base; namespace detail { /// Image object type traits, with accessor type and sampled data type defined. /// The data type of an image accessor must be one of sycl::int4, sycl::uint4, /// sycl::float4 and sycl::half4. The data type of accessors with 8bits/16bits /// channel width will be 32 bits. sycl::half is an exception. template <class T> struct image_trait { using acc_data_t = sycl::vec<T, 4>; template <int dimensions> using accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image>; template <int dimensions> using array_accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image_array>; using data_t = T; using elem_t = T; static constexpr image_channel_data_type data_type = std::is_integral<T>::value ? (std::is_signed<T>::value ? image_channel_data_type::signed_int : image_channel_data_type::unsigned_int) : image_channel_data_type::fp; static constexpr int channel_num = 1; }; template <> struct image_trait<std::uint8_t> : public image_trait<std::uint32_t> { using data_t = std::uint8_t; using elem_t = data_t; }; template <> struct image_trait<std::uint16_t> : public image_trait<std::uint32_t> { using data_t = std::uint16_t; using elem_t = data_t; }; template <> struct image_trait<std::int8_t> : public image_trait<std::int32_t> { using data_t = std::int8_t; using elem_t = data_t; }; template <> struct image_trait<std::int16_t> : public image_trait<std::int32_t> { using data_t = std::int16_t; using elem_t = data_t; }; template <> struct image_trait<char> : public image_trait<typename std::conditional< std::is_signed<char>::value, signed char, unsigned char>::type> {}; template <class T> struct image_trait<sycl::vec<T, 1>> : public image_trait<T> {}; template <class T> struct image_trait<sycl::vec<T, 2>> : public image_trait<T> { using data_t = sycl::vec<T, 2>; static constexpr int channel_num = 2; }; template <class T> struct image_trait<sycl::vec<T, 3>> : public image_trait<sycl::vec<T, 4>> { static constexpr int channel_num = 3; }; template <class T> struct image_trait<sycl::vec<T, 4>> : public image_trait<T> { using data_t = sycl::vec<T, 4>; static constexpr int channel_num = 4; }; /// Functor to fetch data from read result of an image accessor. template <class T> struct fetch_data { using return_t = typename image_trait<T>::data_t; using acc_data_t = typename image_trait<T>::acc_data_t; return_t operator()(acc_data_t &&original_data) { return (return_t)original_data.r(); } }; template <class T> struct fetch_data<sycl::vec<T, 1>> : public fetch_data<T> {}; template <class T> struct fetch_data<sycl::vec<T, 2>> { using return_t = typename image_trait<sycl::vec<T, 2>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 2>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g()); } }; template <class T> struct fetch_data<sycl::vec<T, 3>> : public fetch_data<sycl::vec<T, 4>> {}; template <class T> struct fetch_data<sycl::vec<T, 4>> { using return_t = typename image_trait<sycl::vec<T, 4>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 4>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g(), origin_data.b(), origin_data.a()); } }; /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims); /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims); /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims); } // namespace detail /// Image channel info, include channel number, order, data width and type class image_channel { image_channel_data_type _type = image_channel_data_type::signed_int; /// Number of channels. unsigned _channel_num = 0; /// Total size of all channels in bytes. unsigned _total_size = 0; /// Size of each channel in bytes. unsigned _channel_size = 0; public: /// Create image channel info according to template argument \p T. template <class T> static image_channel create() { image_channel channel; channel.set_channel_size(detail::image_trait<T>::channel_num, sizeof(typename detail::image_trait<T>::elem_t) * 8); channel.set_channel_data_type(detail::image_trait<T>::data_type); return channel; } image_channel() = default; image_channel_data_type get_channel_data_type() { return _type; } void set_channel_data_type(image_channel_data_type type) { _type = type; } unsigned get_total_size() { return _total_size; } unsigned get_channel_num() { return _channel_num; } void set_channel_num(unsigned channel_num) { _channel_num = channel_num; _total_size = _channel_size * _channel_num; } /// image_channel constructor. /// \param r Channel r width in bits. /// \param g Channel g width in bits. Should be same with \p r, or zero. /// \param b Channel b width in bits. Should be same with \p g, or zero. /// \param a Channel a width in bits. Should be same with \p b, or zero. /// \param data_type Image channel data type: signed_nt, unsigned_int or fp. image_channel(int r, int g, int b, int a, image_channel_data_type data_type) { _type = data_type; if (a) { assert(r == a && "SYCL doesn't support different channel size"); assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(4, a); } else if (b) { assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(3, b); } else if (g) { assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(2, g); } else { set_channel_size(1, r); } } sycl::image_channel_type get_channel_type() const { if (_channel_size == 4) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int32; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int32; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp32; } else if (_channel_size == 2) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int16; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int16; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp16; } else { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int8; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int8; } assert(false && "unexpected channel data kind and channel size"); return sycl::image_channel_type::signed_int32; } void set_channel_type(sycl::image_channel_type type) { switch (type) { case sycl::image_channel_type::unsigned_int8: _type = image_channel_data_type::unsigned_int; _channel_size = 1; break; case sycl::image_channel_type::unsigned_int16: _type = image_channel_data_type::unsigned_int; _channel_size = 2; break; case sycl::image_channel_type::unsigned_int32: _type = image_channel_data_type::unsigned_int; _channel_size = 4; break; case sycl::image_channel_type::signed_int8: _type = image_channel_data_type::signed_int; _channel_size = 1; break; case sycl::image_channel_type::signed_int16: _type = image_channel_data_type::signed_int; _channel_size = 2; break; case sycl::image_channel_type::signed_int32: _type = image_channel_data_type::signed_int; _channel_size = 4; break; case sycl::image_channel_type::fp16: _type = image_channel_data_type::fp; _channel_size = 2; break; case sycl::image_channel_type::fp32: _type = image_channel_data_type::fp; _channel_size = 4; break; default: break; } _total_size = _channel_size * _channel_num; } sycl::image_channel_order get_channel_order() const { switch (_channel_num) { case 1: return sycl::image_channel_order::r; case 2: return sycl::image_channel_order::rg; case 3: return sycl::image_channel_order::rgb; case 4: return sycl::image_channel_order::rgba; default: return sycl::image_channel_order::r; } } /// Get the size for each channel in bits. unsigned get_channel_size() const { return _channel_size * 8; } /// Set channel size. /// \param in_channel_num Channels number to set. /// \param channel_size Size for each channel in bits. void set_channel_size(unsigned in_channel_num, unsigned channel_size) { if (in_channel_num < _channel_num) return; _channel_num = in_channel_num; _channel_size = channel_size / 8; _total_size = _channel_size * _channel_num; } }; /// 2D or 3D matrix data for image. class image_matrix { image_channel _channel; int _range[3] = {1, 1, 1}; int _dims = 0; void *_host_data = nullptr; /// Set range of each dimension. template <int dimensions> void set_range(sycl::range<dimensions> range) { for (int i = 0; i < dimensions; ++i) _range[i] = range[i]; _dims = dimensions; } template <int... DimIdx> sycl::range<sizeof...(DimIdx)> get_range(integer_sequence<DimIdx...>) { return sycl::range<sizeof...(DimIdx)>(_range[DimIdx]...); } public: /// Constructor with channel info and dimension size info. template <int dimensions> image_matrix(image_channel channel, sycl::range<dimensions> range) : _channel(channel) { set_range(range); _host_data = std::malloc(range.size() * _channel.get_total_size()); } image_matrix(sycl::image_channel_type channel_type, unsigned channel_num, size_t x, size_t y) { _channel.set_channel_type(channel_type); _channel.set_channel_num(channel_num); _dims = 1; _range[0] = x; if (y) { _dims = 2; _range[1] = y; } _host_data = std::malloc(_range[0] * _range[1] * _channel.get_total_size()); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image() { return create_image<dimensions>(_channel); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image(image_channel channel) { return new sycl::image<dimensions>( _host_data, channel.get_channel_order(), channel.get_channel_type(), get_range(make_index_sequence<dimensions>()), sycl::property::image::use_host_ptr()); } /// Get channel info. inline image_channel get_channel() { return _channel; } /// Get range of the image. sycl::range<3> get_range() { return sycl::range<3>(_range[0], _range[1], _range[2]); } /// Get matrix dims. inline int get_dims() { return _dims; } /// Convert to pitched data. pitched_data to_pitched_data() { return pitched_data(_host_data, _range[0], _range[0], _range[1]); } ~image_matrix() { if (_host_data) std::free(_host_data); _host_data = nullptr; } }; using image_matrix_p = image_matrix *; enum class image_data_type { matrix, linear, pitch, unsupport }; /// Image data info. class image_data { public: image_data() { _type = image_data_type::unsupport; } image_data(image_matrix_p matrix_data) { set_data(matrix_data); } image_data(void *data_ptr, size_t x_size, image_channel channel) { set_data(data_ptr, x_size, channel); } image_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { set_data(data_ptr, x_size, y_size, pitch_size, channel); } void set_data(image_matrix_p matrix_data) { _type = image_data_type::matrix; _data = matrix_data; _channel = matrix_data->get_channel(); } void set_data(void *data_ptr, size_t x_size, image_channel channel) { _type = image_data_type::linear; _data = data_ptr; _x = x_size; _channel = channel; } void set_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { _type = image_data_type::pitch; _data = data_ptr; _x = x_size; _y = y_size; _pitch = pitch_size; _channel = channel; } image_data_type get_data_type() const { return _type; } void set_data_type(image_data_type type) { _type = type; } void *get_data_ptr() const { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_x() const { return _x; } void set_x(size_t x) { _x = x; } size_t get_y() const { return _y; } void set_y(size_t y) { _y = y; } size_t get_pitch() const { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } image_channel get_channel() const { return _channel; } void set_channel(image_channel channel) { _channel = channel; } image_channel_data_type get_channel_data_type() { return _channel.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _channel.set_channel_data_type(type); } unsigned get_channel_size() { return _channel.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _channel.set_channel_size(channel_num, channel_size); } unsigned get_channel_num() { return _channel.get_channel_num(); } void set_channel_num(unsigned num) { return _channel.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _channel.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _channel.set_channel_type(type); } private: image_data_type _type; void *_data = nullptr; size_t _x, _y, _pitch; image_channel _channel; }; /// Image sampling info, include addressing mode, filtering mode and /// normalization info. class sampling_info { sycl::addressing_mode _addressing_mode = sycl::addressing_mode::clamp_to_edge; sycl::filtering_mode _filtering_mode = sycl::filtering_mode::nearest; sycl::coordinate_normalization_mode _coordinate_normalization_mode = sycl::coordinate_normalization_mode::unnormalized; public: sycl::addressing_mode get_addressing_mode() { return _addressing_mode; } void set(sycl::addressing_mode addressing_mode) { _addressing_mode = addressing_mode; } sycl::filtering_mode get_filtering_mode() { return _filtering_mode; } void set(sycl::filtering_mode filtering_mode) { _filtering_mode = filtering_mode; } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _coordinate_normalization_mode; } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _coordinate_normalization_mode = coordinate_normalization_mode; } bool is_coordinate_normalized() { return _coordinate_normalization_mode == sycl::coordinate_normalization_mode::normalized; } void set_coordinate_normalization_mode(int is_normalized) { _coordinate_normalization_mode = is_normalized ? sycl::coordinate_normalization_mode::normalized : sycl::coordinate_normalization_mode::unnormalized; } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } sycl::sampler get_sampler() { return sycl::sampler(_coordinate_normalization_mode, _addressing_mode, _filtering_mode); } }; /// Image base class. class image_wrapper_base { sampling_info _sampling_info; image_data _data; public: virtual ~image_wrapper_base() = 0; void attach(image_data data) { set_data(data); } /// Attach matrix data to this class. void attach(image_matrix *matrix) { detach(); image_wrapper_base::set_data(image_data(matrix)); } /// Attach matrix data to this class. void attach(image_matrix *matrix, image_channel channel) { attach(matrix); image_wrapper_base::set_channel(channel); } /// Attach linear data to this class. void attach(const void *ptr, size_t count) { attach(ptr, count, get_channel()); } /// Attach linear data to this class. void attach(const void *ptr, size_t count, image_channel channel) { detach(); image_wrapper_base::set_data(image_data(const_cast<void *>(ptr), count, channel)); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch) { attach(data, x, y, pitch, get_channel()); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch, image_channel channel) { detach(); image_wrapper_base::set_data( image_data(const_cast<void *>(data), x, y, pitch, channel)); } /// Detach data. virtual void detach() {} sampling_info get_sampling_info() { return _sampling_info; } void set_sampling_info(sampling_info info) { _sampling_info = info; } const image_data &get_data() { return _data; } void set_data(image_data data) { _data = data; } image_channel get_channel() { return _data.get_channel(); } void set_channel(image_channel channel) { _data.set_channel(channel); } image_channel_data_type get_channel_data_type() { return _data.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _data.set_channel_data_type(type); } unsigned get_channel_size() { return _data.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _data.set_channel_size(channel_num, channel_size); } sycl::addressing_mode get_addressing_mode() { return _sampling_info.get_addressing_mode(); } void set(sycl::addressing_mode addressing_mode) { _sampling_info.set(addressing_mode); } sycl::filtering_mode get_filtering_mode() { return _sampling_info.get_filtering_mode(); } void set(sycl::filtering_mode filtering_mode) { _sampling_info.set(filtering_mode); } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _sampling_info.get_coordinate_normalization_mode(); } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _sampling_info.set(coordinate_normalization_mode); } bool is_coordinate_normalized() { return _sampling_info.is_coordinate_normalized(); } void set_coordinate_normalization_mode(int is_normalized) { _sampling_info.set_coordinate_normalization_mode(is_normalized); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } unsigned get_channel_num() { return _data.get_channel_num(); } void set_channel_num(unsigned num) { return _data.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _data.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _data.set_channel_type(type); } sycl::sampler get_sampler() { return _sampling_info.get_sampler(); } }; inline image_wrapper_base::~image_wrapper_base() {} using image_wrapper_base_p = image_wrapper_base *; template <class T, int dimensions, bool IsImageArray> class image_accessor_ext; /// Image class, wrapper of sycl::image. template <class T, int dimensions, bool IsImageArray = false> class image_wrapper : public image_wrapper_base { sycl::image<dimensions> *_image = nullptr; #ifndef DPCT_USM_LEVEL_NONE std::vector<char> _host_buffer; #endif void create_image(sycl::queue q) { auto &data = get_data(); if (data.get_data_type() == image_data_type::matrix) { _image = static_cast<image_matrix_p>(data.get_data_ptr()) ->create_image<dimensions>(data.get_channel()); return; } auto ptr = data.get_data_ptr(); auto channel = data.get_channel(); if (detail::get_pointer_attribute(q, ptr) == detail::pointer_access_attribute::device_only) { #ifdef DPCT_USM_LEVEL_NONE ptr = get_buffer(ptr) .template get_access<sycl::access_mode::read_write>() .get_pointer(); #else auto sz = data.get_x(); if (data.get_data_type() == image_data_type::pitch) sz *= channel.get_total_size() * data.get_y(); _host_buffer.resize(sz); q.memcpy(_host_buffer.data(), ptr, sz).wait(); ptr = _host_buffer.data(); #endif } if constexpr (dimensions == 1) { assert(data.get_data_type() == image_data_type::linear); _image = new sycl::image<1>( ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<1>(data.get_x() / channel.get_total_size())); } else if constexpr (dimensions == 2) { assert(data.get_data_type() == image_data_type::pitch); _image = new sycl::image<2>(ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<2>(data.get_x(), data.get_y()), sycl::range<1>(data.get_pitch())); } else { throw std::runtime_error("3D image only support matrix data"); } return; } public: using acc_data_t = typename detail::image_trait<T>::acc_data_t; using accessor_t = typename image_accessor_ext<T, IsImageArray ? (dimensions - 1) : dimensions, IsImageArray>::accessor_t; image_wrapper() { set_channel(image_channel::create<T>()); } ~image_wrapper() { detach(); } /// Get image accessor. accessor_t get_access(sycl::handler &cgh, sycl::queue &q = get_default_queue()) { if (!_image) create_image(q); return accessor_t(*_image, cgh); } /// Detach data. void detach() override { if (_image) delete _image; _image = nullptr; } }; /// Wrap sampler and image accessor together. template <class T, int dimensions, bool IsImageArray = false> class image_accessor_ext { public: using accessor_t = typename detail::image_trait<T>::template accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 3> typename std::enable_if<Available, data_t>::type read(float x, float y, float z) { return detail::fetch_data<T>()( _img_acc.read(sycl::float4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, class Coord2, bool Available = dimensions == 3 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value &&std::is_integral<Coord2>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y, Coord2 z) { return detail::fetch_data<T>()( _img_acc.read(sycl::int4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(float x, float y) { return detail::fetch_data<T>()( _img_acc.read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, bool Available = dimensions == 2 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y) { return detail::fetch_data<T>()( _img_acc.read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(float x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } /// Read data from accessor. template <class CoordT, bool Available = dimensions == 1 && std::is_integral<CoordT>::value> typename std::enable_if<Available, data_t>::type read(CoordT x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } }; template <class T, int dimensions> class image_accessor_ext<T, dimensions, true> { public: using accessor_t = typename detail::image_trait<T>::template array_accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, float x, float y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, int x, int y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, float x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, int x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } }; /// Create image wrapper according to image data and sampling info. /// \return Pointer to image wrapper base class. /// \param data Image data used to create image wrapper. /// \param info Image sampling info used to create image wrapper. /// \returns Pointer to base class of created image wrapper object. static inline image_wrapper_base *create_image_wrapper(image_data data, sampling_info info) { image_channel channel; int dims = 1; if (data.get_data_type() == image_data_type::matrix) { auto matrix = (image_matrix_p)data.get_data_ptr(); channel = matrix->get_channel(); dims = matrix->get_dims(); } else { if (data.get_data_type() == image_data_type::pitch) { dims = 2; } channel = data.get_channel(); } if (auto ret = detail::create_image_wrapper(channel, dims)) { ret->set_sampling_info(info); ret->set_data(data); return ret; } return nullptr; } namespace detail { /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims) { switch (dims) { case 1: return new image_wrapper<T, 1>(); case 2: return new image_wrapper<T, 2>(); case 3: return new image_wrapper<T, 3>(); default: return nullptr; } } /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims) { switch (channel_num) { case 1: return create_image_wrapper<T>(dims); case 2: return create_image_wrapper<sycl::vec<T, 2>>(dims); case 3: return create_image_wrapper<sycl::vec<T, 3>>(dims); case 4: return create_image_wrapper<sycl::vec<T, 4>>(dims); default: return nullptr; } } /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims) { switch (channel.get_channel_type()) { case sycl::image_channel_type::fp16: return create_image_wrapper<sycl::half>(channel.get_channel_num(), dims); case sycl::image_channel_type::fp32: return create_image_wrapper<float>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int8: return create_image_wrapper<std::int8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int16: return create_image_wrapper<std::int16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int32: return create_image_wrapper<std::int32_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int8: return create_image_wrapper<std::uint8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int16: return create_image_wrapper<std::uint16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int32: return create_image_wrapper<std::uint32_t>(channel.get_channel_num(), dims); default: return nullptr; } } } // namespace detail } // namespace dpct #endif // !__DPCT_IMAGE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/kernel.hpp
//==---- kernel.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_KERNEL_HPP__ #define __DPCT_KERNEL_HPP__ #include <sycl/sycl.hpp> #ifdef _WIN32 #include <unordered_set> #include <windows.h> #else #include <dlfcn.h> #endif #if defined(__has_include) && __has_include(<filesystem>) #include <filesystem> #elif defined(__has_include) && __has_include(<experimental/filesystem>) #include <experimental/filesystem> #else #error "SYCLomatic runtime requires C++ filesystem support" #endif #include <random> #include <image.hpp> #include <fstream> namespace dpct { typedef void (*kernel_functor)(sycl::queue &, const sycl::nd_range<3> &, unsigned int, void **, void **); struct kernel_function_info { int max_work_group_size = 0; }; static inline void get_kernel_function_info(kernel_function_info *kernel_info, const void *function) { kernel_info->max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); } static inline kernel_function_info get_kernel_function_info(const void *function) { kernel_function_info kernel_info; kernel_info.max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); return kernel_info; } namespace detail { #if defined(__has_include) && __has_include(<filesystem>) namespace fs = std::filesystem; #else namespace fs = std::experimental::filesystem; #endif /// Write data to temporary file and return absolute path to temporary file. /// Temporary file is created in a temporary directory both of which have random /// names with only the user having access permissions. Only one temporary file /// will be created in the temporary directory. static inline fs::path write_data_to_file(char const *const data, size_t size) { std::error_code ec; if (sizeof(size_t) >= sizeof(std::streamsize) && size > (std::numeric_limits<std::streamsize>::max)()) throw std::runtime_error("data file too large"); // random number generator std::random_device dev; std::mt19937 prng(dev()); std::uniform_int_distribution<uint64_t> rand(0); // find temporary directory auto tmp_dir = fs::temp_directory_path(ec); if (ec) throw std::runtime_error("could not find temporary directory"); // create private directory std::stringstream directory; fs::path directory_path; constexpr int max_attempts = 5; int i; for (i = 0; i < max_attempts; i++) { directory << std::hex << rand(prng); directory_path = tmp_dir / directory.str(); if (fs::create_directory(directory_path)) { break; } } if (i == max_attempts) throw std::runtime_error("could not create directory"); // only allow owner permissions to private directory fs::permissions(directory_path, fs::perms::owner_all, ec); if (ec) throw std::runtime_error("could not set directory permissions"); // random filename in private directory std::stringstream filename; filename << std::hex << rand(prng); #ifdef _WIN32 auto filepath = directory_path / (filename.str() + ".dll"); #else auto filepath = directory_path / filename.str(); #endif // write data to temporary file auto outfile = std::ofstream(filepath, std::ios::out | std::ios::binary); if (outfile) { // only allow program to write file fs::permissions(filepath, fs::perms::owner_write, ec); if (ec) throw std::runtime_error("could not set permissions"); outfile.write(data, size); if (!outfile.good()) throw std::runtime_error("could not write data"); outfile.close(); // only allow program to read/execute file fs::permissions(filepath, fs::perms::owner_read | fs::perms::owner_exec, ec); if (ec) throw std::runtime_error("could not set permissions"); } else throw std::runtime_error("could not write data"); // check temporary file contents auto infile = std::ifstream(filepath, std::ios::in | std::ios::binary); if (infile) { bool mismatch = false; size_t cnt = 0; while (1) { char c; infile.get(c); if (infile.eof()) break; if (c != data[cnt++]) mismatch = true; } if (cnt != size || mismatch) throw std::runtime_error("file contents not written correctly"); } else throw std::runtime_error("could not validate file"); if (!filepath.is_absolute()) throw std::runtime_error("temporary filepath is not absolute"); return filepath; } static inline uint16_t extract16(unsigned char const *const ptr) { uint16_t ret = 0; ret |= static_cast<uint16_t>(ptr[0]) << 0; ret |= static_cast<uint16_t>(ptr[1]) << 8; return (ret); } static inline uint32_t extract32(unsigned char const *const ptr) { uint32_t ret = 0; ret |= static_cast<uint32_t>(ptr[0]) << 0; ret |= static_cast<uint32_t>(ptr[1]) << 8; ret |= static_cast<uint32_t>(ptr[2]) << 16; ret |= static_cast<uint32_t>(ptr[3]) << 24; return (ret); } static inline uint64_t extract64(unsigned char const *const ptr) { uint64_t ret = 0; ret |= static_cast<uint64_t>(ptr[0]) << 0; ret |= static_cast<uint64_t>(ptr[1]) << 8; ret |= static_cast<uint64_t>(ptr[2]) << 16; ret |= static_cast<uint64_t>(ptr[3]) << 24; ret |= static_cast<uint64_t>(ptr[4]) << 32; ret |= static_cast<uint64_t>(ptr[5]) << 40; ret |= static_cast<uint64_t>(ptr[6]) << 48; ret |= static_cast<uint64_t>(ptr[7]) << 56; return (ret); } static inline uint64_t get_lib_size(char const *const blob) { #ifdef _WIN32 /////////////////////////////////////////////////////////////////////// // Analyze DOS stub unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); if (ublob[0] != 0x4d || ublob[1] != 0x5a) { throw std::runtime_error("Blob is not a Windows DLL."); } uint32_t pe_header_offset = extract32(ublob + 0x3c); /////////////////////////////////////////////////////////////////////// // Ananlyze PE-header unsigned char const *const pe_header = ublob + pe_header_offset; // signature uint32_t pe_signature = extract32(pe_header + 0); if (pe_signature != 0x00004550) { throw std::runtime_error("PE-header signature is not 0x00004550"); } // machine uint16_t machine = extract16(pe_header + 4); if (machine != 0x8664) { throw std::runtime_error("Only DLLs for x64 supported"); } // number of sections uint16_t number_of_sections = extract16(pe_header + 6); // sizeof optional header uint16_t sizeof_optional_header = extract16(pe_header + 20); // magic uint16_t magic = extract16(pe_header + 24); if (magic != 0x10b && magic != 0x20b) { throw std::runtime_error("MAGIC is not 0x010b or 0x020b"); } /////////////////////////////////////////////////////////////////////// // Analyze tail of optional header constexpr int coff_header_size = 24; unsigned char const *const tail_of_optional_header = pe_header + coff_header_size + sizeof_optional_header; if (extract64(tail_of_optional_header - 8) != 0) { throw std::runtime_error("Optional header not zero-padded"); } /////////////////////////////////////////////////////////////////////// // Analyze last section header constexpr int section_header_size = 40; unsigned char const *const last_section_header = tail_of_optional_header + section_header_size * (number_of_sections - 1); uint32_t sizeof_raw_data = extract32(last_section_header + 16); uint32_t pointer_to_raw_data = extract32(last_section_header + 20); return sizeof_raw_data + pointer_to_raw_data; #else if (blob[0] != 0x7F || blob[1] != 'E' || blob[2] != 'L' || blob[3] != 'F') throw std::runtime_error("Blob is not in ELF format"); if (blob[4] != 0x02) throw std::runtime_error("Only 64-bit headers are supported"); if (blob[5] != 0x01) throw std::runtime_error("Only little-endian headers are supported"); unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); uint64_t e_shoff = extract64(ublob + 0x28); uint16_t e_shentsize = extract16(ublob + 0x3A); uint16_t e_shnum = extract16(ublob + 0x3C); return e_shoff + (e_shentsize * e_shnum); #endif } #ifdef _WIN32 class path_lib_record { public: void operator=(const path_lib_record &) = delete; ~path_lib_record() { for (auto entry : lib_to_path) { FreeLibrary(static_cast<HMODULE>(entry.first)); fs::permissions(entry.second, fs::perms::owner_all); fs::remove_all(entry.second.remove_filename()); } } static void record_lib_path(fs::path path, void *library) { lib_to_path[library] = path; } static void remove_lib(void *library) { auto path = lib_to_path[library]; std::error_code ec; FreeLibrary(static_cast<HMODULE>(library)); fs::permissions(path, fs::perms::owner_all); if (fs::remove_all(path.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); lib_to_path.erase(library); } private: static inline std::unordered_map<void *, fs::path> lib_to_path; }; #endif } // namespace detail class kernel_library { public: kernel_library() : ptr{nullptr} {} kernel_library(void *ptr) : ptr{ptr} {} operator void *() const { return ptr; } private: void *ptr; #ifdef _WIN32 static inline detail::path_lib_record single_instance_to_trigger_destructor; #endif }; namespace detail { static inline kernel_library load_dl_from_data(char const *const data, size_t size) { fs::path filename = write_data_to_file(data, size); #ifdef _WIN32 void *so = LoadLibraryW(filename.wstring().c_str()); #else void *so = dlopen(filename.c_str(), RTLD_LAZY); #endif if (so == nullptr) throw std::runtime_error("Failed to load kernel library"); #ifdef _WIN32 detail::path_lib_record::record_lib_path(filename, so); #else std::error_code ec; // Windows DLL cannot be deleted while in use if (fs::remove_all(filename.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); #endif return so; } } // namespace detail /// Load kernel library and return a handle to use the library. /// \param [in] name The name of the library. static inline kernel_library load_kernel_library(const std::string &name) { std::ifstream ifs; ifs.open(name, std::ios::in | std::ios::binary); std::stringstream buffer; buffer << ifs.rdbuf(); const std::string buffer_string = buffer.str(); return detail::load_dl_from_data(buffer_string.c_str(), buffer_string.size()); } /// Load kernel library whose image is alreay in memory and return a handle to /// use the library. /// \param [in] image A pointer to the image in memory. static inline kernel_library load_kernel_library_mem(char const *const image) { const size_t size = detail::get_lib_size(image); return detail::load_dl_from_data(image, size); } /// Unload kernel library. /// \param [in,out] library Handle to the library to be closed. static inline void unload_kernel_library(const kernel_library &library) { #ifdef _WIN32 detail::path_lib_record::remove_lib(library); #else dlclose(library); #endif } class kernel_function { public: kernel_function() : ptr{nullptr} {} kernel_function(dpct::kernel_functor ptr) : ptr{ptr} {} operator void *() const { return ((void *)ptr); } void operator()(sycl::queue &q, const sycl::nd_range<3> &range, unsigned int a, void **args, void **extra) { ptr(q, range, a, args, extra); } private: dpct::kernel_functor ptr; }; /// Find kernel function in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the kernel function. static inline dpct::kernel_function get_kernel_function(kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( GetProcAddress(static_cast<HMODULE>(static_cast<void *>(library)), (name + std::string("_wrapper")).c_str())); #else dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( dlsym(library, (name + std::string("_wrapper")).c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get function"); return fn; } /// Invoke a kernel function. /// \param [in] function kernel function. /// \param [in] queue SYCL queue used to execute kernel /// \param [in] groupRange SYCL group range /// \param [in] localRange SYCL local range /// \param [in] localMemSize The size of local memory required by the kernel /// function. /// \param [in] kernelParams Array of pointers to kernel arguments. /// \param [in] extra Extra arguments. static inline void invoke_kernel_function(dpct::kernel_function &function, sycl::queue &queue, sycl::range<3> groupRange, sycl::range<3> localRange, unsigned int localMemSize, void **kernelParams, void **extra) { function(queue, sycl::nd_range<3>(groupRange * localRange, localRange), localMemSize, kernelParams, extra); } /// Find image wrapper in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the target image wrapper. static inline dpct::image_wrapper_base_p get_image_wrapper(dpct::kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>(GetProcAddress( static_cast<HMODULE>(static_cast<void *>(library)), name.c_str())); #else dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>( dlsym(library, name.c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get image"); return fn; } } // namespace dpct #endif // __DPCT_KERNEL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpct.hpp
//==---- dpct.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_HPP__ #define __DPCT_HPP__ #include <sycl/sycl.hpp> #include <iostream> #include <limits.h> #include <math.h> template <class... Args> class dpct_kernel_name; template <int Arg> class dpct_kernel_scalar; #include "atomic.hpp" #include "device.hpp" #include "image.hpp" #include "kernel.hpp" #include "math.hpp" #include "memory.hpp" #include "util.hpp" #if defined(_MSC_VER) #define __dpct_align__(n) __declspec(align(n)) #define __dpct_inline__ __forceinline #else #define __dpct_align__(n) __attribute__((aligned(n))) #define __dpct_inline__ __inline__ __attribute__((always_inline)) #endif #if defined(_MSC_VER) #define __dpct_noinline__ __declspec(noinline) #else #define __dpct_noinline__ __attribute__((noinline)) #endif #define DPCT_COMPATIBILITY_TEMP (600) namespace dpct{ enum error_code { success = 0, default_error = 999 }; } #define DPCT_CHECK_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const &e) { \ std::cerr << e.what() << std::endl; \ return dpct::default_error; \ } \ }() #define DPCT_PI_F (3.14159274101257f) #define DPCT_PI (3.141592653589793115998) #endif // __DPCT_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dnnl_utils.hpp
//==---- dnnl_utils.hpp ---------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DNNL_UTILS_HPP__ #define __DPCT_DNNL_UTILS_HPP__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <oneapi/dpl/numeric> #include <oneapi/mkl.hpp> #include <oneapi/mkl/rng/device.hpp> #include <sycl/sycl.hpp> #include <oneapi/dnnl/dnnl.hpp> #include <oneapi/dnnl/dnnl_sycl.hpp> #include <unordered_map> #include <algorithm> #include <list> #include "memory.hpp" #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace dnnl { /// Get concatenated library version as an integer. static inline size_t get_version() { const ::dnnl::version_t *ver = ::dnnl::version(); return ver->major * 1000 + ver->minor * 100 + ver->patch; } class engine_ext; typedef oneapi::mkl::rng::philox4x32x10 rng_engine_t; /// An enum class representing memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class memory_format_tag { nchw, nhwc, nchw_blocked }; /// An enum class representing RNN data memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class rnn_memory_format_tag { tnc, ntc }; /// A class holding the description of an N-dimensions memory. class memory_desc_ext { ::dnnl::memory::desc _desc; public: /// Convert dpct::library_data_t to dnnl::memory::data_type. static ::dnnl::memory::data_type to_dnnl_data_type(dpct::library_data_t dt); /// Convert dnnl::memory::data_type to dpct::library_data_t. static dpct::library_data_t to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size); /// Convert dpct::dnnl::memory_format_tag to dnnl::memory::format_tag. static ::dnnl::memory::format_tag to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag); memory_desc_ext() = default; memory_desc_ext(::dnnl::memory::desc &desc) : _desc(desc) {} memory_desc_ext(::dnnl::memory::desc &&desc) : _desc(std::move(desc)) {} /// Setting a 4D memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. void set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w); /// Setting a 3D RNN data memory with given parameters. /// \param [in] tag RNN data format tag. /// \param [in] dt Data type. /// \param [in] t Number of sequence length. /// \param [in] n Number of batch. /// \param [in] c Height of input channel. void set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c); /// Setting a 4D memory with given parameters. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. /// \param [in] n_stride Stride between two continuous images. /// \param [in] c_stride Stride between two continuous channels. /// \param [in] h_stride Stride between two continuous rows. /// \param [in] w_stride Stride between two continuous columns. void set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride); /// Setting a ND memory with given parameters. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. \param [in] strides Array of dimension ndims that /// contain the stride of each memory dimension. void set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]); /// Setting a ND memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. void set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]); /// Getting a ::dnnl::memory::desc from a memory_desc_ext. /// \returns The ::dnnl::memory::desc. const ::dnnl::memory::desc &get_desc() const { return _desc; } /// Setting holding desc with given dnnl memory descriptor. void set_desc(::dnnl::memory::desc desc) { _desc = desc; } /// Getting a size of a memory_desc_ext in bytes. /// \returns The size. size_t get_size() const { return _desc.get_size(); } /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. /// \param [out] n_stride Stride between two continuous images. /// \param [out] c_stride Stride between two continuous channels. /// \param [out] h_stride Stride between two continuous rows. /// \param [out] w_stride Stride between two continuous columns. void get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const; /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. void get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const; /// Getting parameters from a 3D RNN data memory. /// \param [out] dt Data type. /// \param [out] tag RNN data format tag. /// \param [out] t Number of sequence length. /// \param [out] n Number of batch. /// \param [out] c Height of input channel. void get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. /// \param [out] strides Array of dimension requested_ndims that contain the /// stride of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const; /// Getting dims from a ND memory. /// \return The dims. std::vector<int64_t> get_dims() const { return _desc.get_dims(); } /// Getting strides from a ND memory. /// \return The strides. std::vector<int64_t> get_strides() const { return _desc.get_strides(); } /// Getting element num from a ND memory. /// \return The element number. size_t get_element_num() const { auto dims = _desc.get_dims(); if (dims.empty()) { return 0; } size_t result = 1; for (auto &dim : dims) { result *= dim; } return result; } operator bool() const { return bool(_desc); } memory_desc_ext &operator=(std::nullptr_t) { _desc.reset(nullptr); return *this; } }; /// A class holding description for an activation operation. class activation_desc { ::dnnl::algorithm _alg; float _alpha; float _beta; public: /// Setting an activation descriptor with given parameters. /// \param [in] alg Activation algorithm. /// \param [in] alpha Value of alpha parameter. void set(::dnnl::algorithm alg, float alpha) { _alg = alg; if(alg == ::dnnl::algorithm::eltwise_clip) { _alpha = 0; _beta = alpha; } else { _alpha = alpha; } } /// Getting parameters form an activation descriptor. /// \param [out] alg Activation algorithm. /// \param [out] alpha Value of alpha parameter. void get(::dnnl::algorithm *alg, float *alpha) const { *alg = _alg; if(_alg == ::dnnl::algorithm::eltwise_clip) { *alpha = _beta; } else { *alpha = _alpha; } } /// Setting the alpha parameter of an activation descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of an activation descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the algorithm parameter of an activation descriptor. /// \param [in] alg Activation algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Getting the alpha parameter from an activation descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from an activation descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the algorithm parameter from an activation descriptor. /// \param [out] alg Activation algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } }; /// A class holding description for a local response normalization operation. class lrn_desc { unsigned int _local_size; float _alpha; float _beta; float _k; public: /// Setting a local response normalization descriptor with given parameters. /// \param [in] local_size Value of local_size parameter. /// \param [in] alpha Value of alpha parameter. /// \param [in] beta Value of beta parameter. /// \param [in] k Value of k parameter. void set(unsigned int local_size, float alpha, float beta, float k) { _local_size = local_size; _alpha = alpha; _beta = beta; _k = k; } /// Getting parameters form a local response normalization descriptor. /// \param [out] local_size Value of local_size parameter. /// \param [out] alpha Value of alpha parameter. /// \param [out] beta Value of beta parameter. /// \param [out] k Value of k parameter. void get(unsigned int *local_size, float *alpha, float *beta, float *k) const { *local_size = _local_size; *alpha = _alpha; *beta = _beta; *k = _k; } /// Setting the local size parameter of a local response normalization /// descriptor. /// \param [in] local_size Value of local_size parameter. void set_local_size(unsigned int local_size) { _local_size = local_size; } /// Setting the alpha parameter of a local response normalization descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of a local response normalization descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the k parameter of a local response normalization descriptor. /// \param [in] k Value of k parameter. void set_k(float k) { _k = k; } /// Getting the local size parameter from a local response normalization /// descriptor. /// \param [out] local_size Value of local_size parameter. unsigned int get_local_size() const { return _local_size; } /// Getting the alpha parameter from a local response normalization /// descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from a local response normalization descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the k parameter from a local response normalization descriptor. /// \param [out] k Value of k parameter. float get_k() const { return _k; } }; /// An enum class representing softmax algorithm. enum class softmax_algorithm { normal, log }; /// An enum class representing softmax mode. enum class softmax_mode { instance, channel }; /// A class holding description for a pooling operation. class pooling_desc { ::dnnl::algorithm _alg; std::vector<int64_t> _stride; std::vector<int64_t> _kernel; std::vector<int64_t> _padding; public: /// Setting a 2D pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] kernel_h Value of height of kernel. /// \param [in] kernel_w Value of width of kernel. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. void set(::dnnl::algorithm alg, int kernel_h, int kernel_w, int padding_h, int padding_w, int stride_h, int stride_w) { _alg = alg; _stride = {stride_h, stride_w}; _kernel = {kernel_h, kernel_w}; _padding = {padding_h, padding_w}; } /// Setting a ND pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] ndims Dimension of the pooling operation. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [in] padding Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set(::dnnl::algorithm alg, int ndims, int kernel[], int padding[], int stride[]) { _alg = alg; _stride = std::vector<int64_t>(stride, stride + ndims); _kernel = std::vector<int64_t>(kernel, kernel + ndims); _padding = std::vector<int64_t>(padding, padding + ndims); } /// Getting parameters from a 2D pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] kernel_h Value of height of kernel. /// \param [out] kernel_w Value of width of kernel. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. void get(::dnnl::algorithm *alg, int *kernel_h, int *kernel_w, int *padding_h, int *padding_w, int *stride_h, int *stride_w) const { *alg = _alg; *kernel_h = _kernel[0]; *kernel_w = _kernel[1]; *padding_h = _padding[0]; *padding_w = _padding[1]; *stride_h = _stride[0]; *stride_w = _stride[1]; } /// Getting parameters from a ND pooling descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [out] padding Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] stride Array of dimension ndims containing the stride size of /// each dimension. void get(int requested_ndims, ::dnnl::algorithm *alg, int *ndims, int kernel[], int padding[], int stride[]) const { *alg = _alg; *ndims = _stride.size(); for (int i = 0; i < requested_ndims; i++) { kernel[i] = _kernel[i]; padding[i] = _padding[i]; stride[i] = _stride[i]; } } /// Setting the algorithm parameter of a pooling descriptor. /// \param [in] alg Pooling algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Setting the stride parameter of a pooling descriptor. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set_stride(const std::vector<int64_t> &stride) { _stride = stride; } /// Setting the kernel parameter of a pooling descriptor. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. void set_kernel(const std::vector<int64_t> &kernel) { _kernel = kernel; } /// Setting the padding parameter of a pooling descriptor. /// \param [in] padding Array of dimension ndims containing the padding size /// of each dimension. void set_padding(const std::vector<int64_t> &padding) { _padding = padding; } /// Getting the algorithm parameter from a pooling descriptor. /// \param [out] alg Pooling algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } /// Getting the stride parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _stride; } /// Getting the kernel parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the kernel size of each /// dimension. const std::vector<int64_t> &get_kernel() const { return _kernel; } /// Getting the padding parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _padding; } /// Getting the output dimensions of a memory after 2D pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); *out_n = dims[0]; *out_c = dims[1]; *out_h = 1 + (dims[2] + 2 * _padding[0] - _kernel[0]) / _stride[0]; *out_w = 1 + (dims[3] + 2 * _padding[1] - _kernel[1]) / _stride[1]; } /// Getting the output dimensions of a memory after ND pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _padding[i - 2] - _kernel[i - 2]) / _stride[i - 2]; } } }; /// An enum class representing reduction operations. enum class reduction_op { max, min, sum, mul, mean, amax, mul_no_zeros, norm1, norm2 }; /// An enum class representing batch normalization mode. enum class batch_normalization_mode { per_activation, spatial }; /// An enum class representing batch normalization operations. enum class batch_normalization_ops { none, activation, add_activation }; /// An enum class representing binary operations. enum class binary_op { add, sub, mul, div, min, max, sqrt, neg }; /// An struct representing convolution algorithm infomation. struct convolution_algorithm_info { ::dnnl::algorithm algo = ::dnnl::algorithm::convolution_auto; int status = 0; }; /// A class holding description for a convolution operation. class convolution_desc { std::vector<int64_t> _strides; std::vector<int64_t> _dilates; std::vector<int64_t> _paddings; int _group_count = 1; ::dnnl::fpmath_mode _math_mode = ::dnnl::fpmath_mode::strict; public: /// Setting a group count to be used in the convolution. /// \param [in] group_count Value of group count. void set_group_count(int group_count) { _group_count = group_count; } /// Getting a group count specified in the given convolution descriptor. /// \returns Value of group count. int get_group_count() { return _group_count; } /// Setting floating point math mode to be used in the convolution. /// \param [in] math_mode Value of math_mode. void set_math_mode(::dnnl::fpmath_mode math_mode) { _math_mode = math_mode; } /// Getting floating point math mode specified in the given convolution descriptor. /// \returns Value of math mode. ::dnnl::fpmath_mode get_math_mode() { return _math_mode; } /// Setting a 2D convolution descriptor with given parameters. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. /// \param [in] dilate_h Value of height of dilate. /// \param [in] dilate_w Value of width of dilate. void set(int padding_h, int padding_w, int stride_h, int stride_w, int dilate_h, int dilate_w) { _strides = {stride_h, stride_w}; _dilates = {dilate_h - 1, dilate_w - 1}; _paddings = {padding_h, padding_w}; } /// Setting a ND convolution descriptor with given parameters. /// \param [in] ndims Dimension of the convolution operation. /// \param [in] paddings Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [in] dilates Array of dimension ndims containing the kernel size of /// each dimension. void set(int ndims, int paddings[], int strides[], int dilates[]) { _strides = std::vector<int64_t>(strides, strides + ndims); _paddings = std::vector<int64_t>(paddings, paddings + ndims); _dilates = std::vector<int64_t>(dilates, dilates + ndims); for (auto &dilate : _dilates) { dilate--; } } /// Getting parameters from a 2D convolution descriptor. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. /// \param [out] dilate_h Value of height of dilate. /// \param [out] dilate_w Value of width of dilate. void get(int *padding_h, int *padding_w, int *stride_h, int *stride_w, int *dilate_h, int *dilate_w) const { *dilate_h = _dilates[0]; *dilate_w = _dilates[1]; *padding_h = _paddings[0]; *padding_w = _paddings[1]; *stride_h = _strides[0]; *stride_w = _strides[1]; } /// Getting parameters from a ND convolution descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given convolution descriptor. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] paddings Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [out] dilates Array of dimension ndims containing the dilate size of /// each dimension. void get(int requested_ndims, int *ndims, int paddings[], int strides[], int dilates[]) const { *ndims = _strides.size(); for (int i = 0; i < requested_ndims; i++) { dilates[i] = _dilates[i]; paddings[i] = _paddings[i]; strides[i] = _strides[i]; } } /// Getting the stride parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _strides; } /// Getting the kernel parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the dilate size of each /// dimension. const std::vector<int64_t> &get_dilate() const { return _dilates; } /// Getting the padding parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _paddings; } /// Getting the output dimensions of a memory after 2D convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); *out_n = dims[0]; *out_c = weight_dims[0]; *out_h = 1 + (dims[2] + 2 * _paddings[0] - (1 + (_dilates[0] * (weight_dims[2] - 1)))) / _strides[0]; *out_w = 1 + (dims[3] + 2 * _paddings[1] - (1 + (_dilates[1] * (weight_dims[3] - 1)))) / _strides[1]; } /// Getting the output dimensions of a memory after ND convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = weight_dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _paddings[i - 2] - (1 + (_dilates[i - 2] * (weight_dims[i] - 1)))) / _strides[i - 2]; } } convolution_desc &operator=(std::nullptr_t) { return *this = convolution_desc(); } operator bool() const { return !(_strides.size() == 0 && _dilates.size() == 0 && _paddings.size() == 0); } }; /// An enum class representing rnn mode. enum class rnn_mode { vanilla_relu, vanilla_tanh, lstm, gru }; /// An enum class representing rnn bias mode. enum class rnn_bias_mode { none, single }; /// An enum class representing rnn direction. enum class rnn_direction {unidirectional, bidirectional}; /// A class holding description for a RNN operation. class rnn_desc { rnn_mode _mode; rnn_bias_mode _bias_mode; rnn_direction _direction; dpct::library_data_t _dt; int _input_size; int _hidden_size; int _projection_size; int _layer_size; public: void set(rnn_mode mode, rnn_bias_mode bias_mode, rnn_direction direction, dpct::library_data_t dt, int input_size, int hidden_size, int projection_size, int layer_size) { _mode = mode; _bias_mode = bias_mode; _direction = direction; _input_size = input_size; _hidden_size = hidden_size; _projection_size = projection_size; _layer_size = layer_size; _dt = dt; } void get(rnn_mode *mode, rnn_bias_mode *bias_mode, rnn_direction *direction, dpct::library_data_t *dt, int *input_size, int *hidden_size, int *projection_size, int *layer_size) const { *mode = _mode; *bias_mode = _bias_mode; *direction = _direction; *input_size = _input_size; *hidden_size = _hidden_size; *projection_size = _projection_size; *layer_size = _layer_size; *dt = _dt; } }; /// A class holding description for a Dropout operation. class dropout_desc { struct dropout_desc_imp { float _p = 0.5f; unsigned long long _seed = 1; void *_state = nullptr; std::vector<std::uint8_t> _host_state; rng_engine_t _rng_engine; dropout_desc_imp() : _rng_engine(dpct::get_default_queue(), 1) {} }; std::shared_ptr<dropout_desc_imp> _imp; void generate(sycl::queue *q, std::int64_t required_state_size, std::int64_t num, void *buffer) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::event e_gen = oneapi::mkl::rng::generate( oneapi::mkl::rng::bernoulli<std::int32_t>(1.f - _imp->_p), _imp->_rng_engine, num, (std::int32_t *)buffer); sycl::event e_save = q->submit([&](sycl::handler &cgh) { cgh.depends_on(e_gen); cgh.host_task([=] { oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); }); }); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size, e_save); #endif } public: operator bool() const { return bool(_imp); } dropout_desc &operator=(std::nullptr_t) { _imp.reset(); return *this; } /// Initializing a dropout descriptor. void init(){ _imp = std::make_shared<dropout_desc_imp>(); } /// Setting a dropout descriptor with given parameters. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); /// Getting parameters from a dropout descriptor. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void get(float *p, void **states, unsigned long long *seed) const noexcept { *seed = _imp->_seed; *states = _imp->_state; *p = _imp->_p; } /// Getting the probability of value set to zero. /// \returns Probability. float get_probability() const noexcept { return _imp->_p; } /// Restoreing a dropout descriptor from stored state. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); friend class engine_ext; }; namespace detail { typedef std::string primitive_cache_key_type; typedef std::list<primitive_cache_key_type> usage_list_type; typedef struct { ::dnnl::primitive *primitive; usage_list_type::iterator usage_it; std::function<void(::dnnl::primitive *)> destructor; sycl::event e; } primitive_cache_value_type; typedef std::unordered_map<primitive_cache_key_type, primitive_cache_value_type> cache_map_type; // The primitive cache uses LRU replacement policy, and the default cache // capacity is 1024. class primitive_cache { int _capacity = 1024; usage_list_type usage; cache_map_type cache_map; void touch(cache_map_type::iterator it, sycl::event e = {}, bool update_event = false) { if (it->second.usage_it != usage.begin()) { const primitive_cache_key_type &key = it->first; usage.erase(it->second.usage_it); usage.push_front(key); it->second.usage_it = usage.begin(); } if (update_event) { it->second.e = e; } } void async_destruct_primitive(const primitive_cache_value_type &value) { dpct::get_current_device().default_queue().submit([&](sycl::handler &cgh) { cgh.depends_on(value.e); cgh.host_task([=] { value.destructor(value.primitive); }); }); } public: ::dnnl::primitive *get(const primitive_cache_key_type &key) { auto it = cache_map.find(key); if (it == cache_map.end()) { return nullptr; } touch(it); return it->second.primitive; } void put(const primitive_cache_key_type &key, ::dnnl::primitive *value, std::function<void(::dnnl::primitive *)> destructor, sycl::event e) { auto it = cache_map.find(key); if (it != cache_map.end()) { touch(it, e, true); } else { if (cache_map.size() == _capacity) { auto last_primitive = cache_map.find(usage.back()); async_destruct_primitive(last_primitive->second); cache_map.erase(usage.back()); usage.pop_back(); } usage.push_front(key); cache_map[key] = {value, usage.begin(), destructor, e}; } } ~primitive_cache() { for (auto &v : cache_map) { async_destruct_primitive(v.second); } } }; } // namespace detail /// A class holding the oneDNN engine. class engine_ext { struct output_argument_info { float _alpha; float _beta; int _name; memory_desc_ext _desc; void *_data; output_argument_info(float alpha, float beta, int name, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(name), _desc(desc), _data(data) {} output_argument_info(float alpha, float beta, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(0), _desc(desc), _data(data) {} }; ::dnnl::engine _eng; ::dnnl::stream _s; sycl::queue *_q = nullptr; std::map<void *, ::dnnl::memory> workspace_map; std::int64_t _random_engine_state_size = -1; detail::primitive_cache _primitive_cache; ::dnnl::memory &get_workspace(void *key) { return workspace_map[key]; } void insert_workspace(void *key, ::dnnl::memory workspace) { workspace_map[key] = workspace; } const ::dnnl::stream &get_stream() const { return _s; } const ::dnnl::engine &get_engine() const { return _eng; } void *allocate(const memory_desc_ext &desc, int count = 1) const; ::dnnl::memory::desc compress_spatial_dimensions_to_channel(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode); sycl::event batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var); sycl::event batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var); ::dnnl::memory::desc transfer_memory_desc_to_channel_major_format(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc bn_reorder_memory_to_channel_major_format(bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches); ::dnnl::memory::desc transfer_memory_desc_to_format_tag_any(const ::dnnl::memory::desc &desc){ return ::dnnl::memory::desc(desc.get_dims(), desc.get_data_type(), ::dnnl::memory::format_tag::any); } void allocate_and_reorder_memory_to_optimal(::dnnl::memory::desc &from_desc, void *&from, ::dnnl::memory::desc &to_desc, void *&to, std::vector<void *> &caches) { if (from_desc != to_desc) { to = allocate(to_desc); caches.push_back(to); async_reorder(1.f, from_desc, from, 0.f, to_desc, to); } } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive(args_type &&...args); template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive_with_pd(const typename primitive_type::primitive_desc &pd); template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc create_primitive_desc(args_type &&...args); template <typename primitive_desc_type> std::string generate_cache_key(const primitive_desc_type &pd); void serialize_dims(std::stringstream &ss, const std::vector<int64_t> &dims) { ss.write((char *)dims.data(), dims.size() * sizeof(int64_t)); }; void serialize_mem_desc(std::stringstream &ss, const ::dnnl::memory::desc &desc) { if (desc.is_zero()) { return; } auto format_kind = desc.get_format_kind(); ss << desc.get_ndims() << (std::uint8_t)desc.get_data_type() << (std::uint8_t)format_kind; serialize_dims(ss, desc.get_dims()); serialize_dims(ss, desc.get_strides()); if (format_kind == ::dnnl::memory::format_kind::blocked) { ss << desc.get_inner_nblks(); serialize_dims(ss, desc.get_inner_blks()); serialize_dims(ss, desc.get_inner_idxs()); } }; sycl::event execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size = nullptr, size_t *workspace_size = nullptr, size_t *scratchpad_size = nullptr); sycl::event rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query); sycl::event execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num); void async_free(sycl::queue *q, sycl::event e, std::unordered_map<int, ::dnnl::memory> *args, std::vector<void *> device_ptrs = {}) { q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { if (args) { delete args; } for (auto ptr : device_ptrs) { if (ptr) { sycl::free(ptr, *_q); } } }); }); }; bool scale_parameter_preprocess(const std::vector<output_argument_info> &args); template <typename primitive_type> sycl::event execute_primitive(const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &extra_args = {}, const std::vector<void *> &device_ptrs = {}); template <typename T> sycl::event fill_with_type(sycl::queue *q, void *src, const void *value, size_t size_with_byte) { return q->fill<T>(static_cast<T *>(src), *static_cast<const T *>(value), size_with_byte / sizeof(T)); } template <typename T> struct no_zero_op { T operator()(T e) { if (!e) { return 1; } return e; } }; template <typename T> void transform_no_zero_with_type(sycl::queue *q, void *src, void *dst, size_t num) { std::transform(oneapi::dpl::execution::make_device_policy(*q), static_cast<T *>(src), static_cast<T *>(src) + num, static_cast<T *>(dst), no_zero_op<T>()); } void transform_no_zero(const memory_desc_ext &desc, void *src, void *dst); ::dnnl::memory::desc get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc); void get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num); public: engine_ext() {} operator bool() const { return bool(_eng) && bool(_s) && bool(_q); } engine_ext &operator=(std::nullptr_t) { _eng.reset(nullptr); _s.reset(nullptr); _q = nullptr; return *this; } /// Creating oneDNN engine. void create_engine() { _eng = ::dnnl::sycl_interop::make_engine( dpct::get_current_device(), dpct::get_current_device().get_context()); _s = ::dnnl::sycl_interop::make_stream( _eng, dpct::get_current_device().default_queue()); _q = &dpct::get_current_device().default_queue(); } /// Setting the user's SYCL queue for an oneDNN engine. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { if (!q) { throw std::runtime_error("set_queue: pointer must not be nullptr."); } if (!_eng) { throw std::runtime_error("set_queue: current engine is invalid."); } if (q->get_context() != ::dnnl::sycl_interop::get_context(_eng)) { throw std::runtime_error( "set_queue: queue is mismatch with current engine context."); } _q = q; _s = ::dnnl::sycl_interop::make_stream(_eng, *q); } /// Retrieving the user's SYCL queue set in the oneDNN engine. /// \returns Pointer to the SYCL queue. sycl::queue *get_queue() const { return _q; } /// Setting all elements of a memory to a given value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. void fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. void scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. void pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. void pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. void lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. void lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Setting all elements of a memory to a given value asynchronously. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. /// \returns An event representing the fill operations. sycl::event async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reorder operations. sycl::event async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor asynchronously. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. /// \returns An event representing the scale operations. sycl::event async_scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the sum operations. sycl::event async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified binary operation. /// \param [in] alpha_0 Value to scaling factors used to scale the src_0 /// value. /// \param [in] src_desc_0 Source 0 memory descriptor. /// \param [in] src_0 Pointer to source 0 data. /// \param [in] alpha_1 Value to scaling factors used to scale the src_1 /// value. /// \param [in] src_desc_1 Source 1 memory descriptor. /// \param [in] src_1 Pointer to source 1 data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the binary operations. sycl::event async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified reduction operation. /// \param [in] alpha Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reduction operations. sycl::event async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the activation forward operations. sycl::event async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the activation backward operations. sycl::event async_activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value asynchronously. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. /// \returns An event representing the pooling forward operations. sycl::event async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. /// \returns An event representing the pooling backward operations. sycl::event async_pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the softmax forward operations. sycl::event async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the softmax backward operations. sycl::event async_softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value /// asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the lrn forward operations. sycl::event async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the lrn backward operations. sycl::event async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] desc Derived memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] scale_bias_desc Derived scale and bias memory descriptor. /// \param [out] mean_var_desc Derived mean and var memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Get the size of workspace that needed by batch normalization. The data stored /// in workspace must be preserved between forward and backward. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] src_desc Source memory descriptor. /// \returns Size of workspace. size_t get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [in] diff_scale Pointer to differential scale data. /// \param [in] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_desc Differential scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] mean_var_desc Differential mean, variance memory descriptor. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] adesc Activation operation descriptor. /// \param [in] alpha_0 Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] alpha_1 Value to scaling factors used to scale the summand /// value. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] bias_desc Bias memory descriptor. /// \param [in] bias Pointer to bias data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst); /// Computing the data gradient of a specified convolution function asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the convolution backward data operations. sycl::event async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing the weight gradient of a specified convolution function /// asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_weight_desc Differential weight memory descriptor. /// \param [out] diff_weight Pointer to differential weight data. /// \returns An event representing the convolution backward weight operations. sycl::event async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight); /// Computing the bias gradient of a specified convolution function /// asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_bias_desc Differential bias memory descriptor. /// \param [out] diff_bias Pointer to differential bias data. /// \returns An event representing the convolution backward bias operations. sycl::event async_convolution_backward_bias(float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias); /// Getting the required weight space size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [out] weight_space_size Size of required weight space. void rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size); /// Getting the required scratchpad size and workspace size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [out] scratchpad_size Size of required scratchpad. /// \param [out] workspace_size Size of required workspace. void rnn_get_scratchpad_workspace_size(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size); /// Computing a specified rnn function value asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] dst_iter Pointer to output recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] dst_c_iter Pointer to output recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn forward operations. sycl::event async_rnn_forward(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Computing the data and weight gradient of a specified rnn function /// asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [out] diff_src Pointer to differential source data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] diff_dst_iter Pointer to differential output recurrent hidden state data. /// \param [out] diff_src_iter Pointer to differential input recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] diff_dst_c_iter Pointer to differential output recurrent cell state data. /// \param [out] diff_src_c_iter Pointer to differential input recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [out] diff_weight Pointer to differential weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn backward operations. sycl::event async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Getting the required state size for specified dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of state. size_t get_dropout_state_size(); /// Getting the required workspace size for dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of workspace. static size_t get_dropout_workspace_size(const memory_desc_ext &src_desc); /// Computing a specified dropout function value asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout forward operations. sycl::event async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size); /// Computing the gradient of a specified dropout function asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout backward operations. sycl::event async_dropout_backward(dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size); }; inline void dropout_desc::restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("restore: state_size less than required state size."); } sycl::queue *q = engine.get_queue(); _imp->_p = p; _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); q->memcpy(_imp->_host_state.data(), _imp->_state, required_state_size).wait(); _imp->_rng_engine = oneapi::mkl::rng::load_state<rng_engine_t>( *q, _imp->_host_state.data()); } #endif } inline void dropout_desc::set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else _imp->_p = p; if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("set: no sufficient memory to save states."); } sycl::queue *q = engine.get_queue(); _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); _imp->_rng_engine = rng_engine_t(*q, seed); oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size).wait(); } #endif } inline ::dnnl::memory::data_type memory_desc_ext::to_dnnl_data_type(dpct::library_data_t dt) { using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dpct::library_data_t::real_half: return dnnl_dt::f16; case dpct::library_data_t::real_bfloat16: return dnnl_dt::bf16; case dpct::library_data_t::real_float: return dnnl_dt::f32; case dpct::library_data_t::real_int32: return dnnl_dt::s32; case dpct::library_data_t::real_int8: return dnnl_dt::s8; case dpct::library_data_t::real_uint8: return dnnl_dt::u8; case dpct::library_data_t::real_int8_4: return dnnl_dt::s8; case dpct::library_data_t::real_int8_32: return dnnl_dt::s8; case dpct::library_data_t::real_uint8_4: return dnnl_dt::u8; default: throw std::runtime_error("to_dnnl_data_type: unsupported data type."); } } inline dpct::library_data_t memory_desc_ext::to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size) { using dpct_dt = dpct::library_data_t; using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dnnl_dt::f16: return dpct_dt::real_half; case dnnl_dt::bf16: return dpct_dt::real_bfloat16; case dnnl_dt::f32: return dpct_dt::real_float; case dnnl_dt::s32: return dpct_dt::real_int32; case dnnl_dt::s8: if (block_size == 4) { return dpct_dt::real_int8_4; } else if (block_size == 32) { return dpct_dt::real_int8_32; } else { return dpct_dt::real_int8; } case dnnl_dt::u8: if (block_size == 4) { return dpct_dt::real_uint8_4; } else { return dpct_dt::real_uint8; } default: throw std::runtime_error("to_dpct_library_data_t: unsupported data type " "dnnl::memory::data_type::undef."); } } inline ::dnnl::memory::format_tag memory_desc_ext::to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag) { using dpct_dt = dpct::library_data_t; using dpct_tag = memory_format_tag; using dnnl_tag = ::dnnl::memory::format_tag; switch (tag) { case dpct_tag::nchw: return dnnl_tag::nchw; case dpct_tag::nhwc: return dnnl_tag::nhwc; default: if (dt == dpct_dt::real_int8_32) { return dnnl_tag::nChw32c; } else { return dnnl_tag::nChw4c; } } } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), {n_stride, c_stride, h_stride, w_stride}); } inline void memory_desc_ext::set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), {strides, strides + ndims}); } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c) { if (tag == rnn_memory_format_tag::tnc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::tnc); } else if(tag == rnn_memory_format_tag::ntc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::ntc); } else { throw std::runtime_error("set: unsupported memory format tag."); } } inline void memory_desc_ext::get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const { unsigned block_size = 1; auto dims = _desc.get_dims(); auto inner_blks = _desc.get_inner_blks(); auto strides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; *n_stride = strides[0] / block_size; *c_stride = strides[1] / block_size; *h_stride = strides[2] / block_size; *w_stride = strides[3] / block_size; } inline void memory_desc_ext::get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); auto inner_blks = _desc.get_inner_blks(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (strides[1] == 1 && dims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; } inline void memory_desc_ext::get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const { auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); if (strides[0] >= strides[1]) { *tag = rnn_memory_format_tag::tnc; } else { *tag = rnn_memory_format_tag::ntc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), 1); *t = dims[0]; *n = dims[1]; *c = dims[2]; } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const { unsigned block_size = 1; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; strides[index] = astrides[index] / block_size; } } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (astrides[1] == 1 && adims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; } } inline void engine_ext::get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num) { if (!desc.is_zero()) { auto dims = desc.get_dims(); auto strides = desc.get_strides(); if (strides[0] >= strides[1]) { *tag = ::dnnl::memory::format_tag::tnc; *seq_length = dims[0]; *batch_size = dims[1]; } else { *tag = ::dnnl::memory::format_tag::ntc; *seq_length = dims[1]; *batch_size = dims[0]; } } if (direction == rnn_direction::bidirectional) { *direction_num = 2; } else { *direction_num = 1; } if (mode == rnn_mode::lstm) { *gate_num = 4; } else if (mode == rnn_mode::gru) { *gate_num = 3; } else { *gate_num = 1; } if (*projection_size != hidden_size) { *output_size = *projection_size; } else { *projection_size = 0; *output_size = hidden_size; } *dnnl_dt = memory_desc_ext::to_dnnl_data_type(dt); } inline void *engine_ext::allocate(const memory_desc_ext &data_desc, int count) const { size_t mem_size = data_desc.get_size(); void *mem = sycl::malloc_device(mem_size * count, *_q); return mem; } inline void engine_ext::transform_no_zero(const memory_desc_ext &desc, void *src, void *dst) { ::dnnl::memory::data_type dt = desc.get_desc().get_data_type(); size_t element_num = desc.get_element_num(); switch (dt) { case ::dnnl::memory::data_type::f32: transform_no_zero_with_type<float>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::f16: transform_no_zero_with_type<sycl::half>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s32: transform_no_zero_with_type<int32_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s8: transform_no_zero_with_type<int8_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::u8: transform_no_zero_with_type<uint8_t>(_q, src, dst, element_num); break; default: throw std::runtime_error("transform_no_zero: unsupported data type."); } } inline ::dnnl::memory::desc engine_ext::get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc) { if (group_count == 1) { return weight_desc.get_desc(); } auto help_weight_desc = weight_desc.get_desc(); int ndims = help_weight_desc.get_ndims(); if (!help_weight_desc.get_inner_blks().empty()) { throw std::runtime_error("get_group_weight_desc: group convolution with " "blocked weight memory unimplemented."); } std::vector<int64_t> new_size; auto old_size = weight_desc.get_dims(); new_size.push_back(group_count); new_size.push_back(old_size[0] / group_count); for (int index = 1; index < old_size.size(); index++) { new_size.push_back(old_size[index]); } std::vector<int64_t> strides = help_weight_desc.get_strides(); ::dnnl::memory::format_tag tag; bool is_nhwc = (strides[1] == 1 && old_size[1] != 1); if (ndims == 4) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::gohwi; } else { tag = ::dnnl::memory::format_tag::goihw; } } else if (ndims == 5) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::godhwi; } else { tag = ::dnnl::memory::format_tag::goidhw; } } help_weight_desc = ::dnnl::memory::desc(new_size, weight_desc.get_desc().get_data_type(), tag); return help_weight_desc; } inline ::dnnl::memory::desc engine_ext::compress_spatial_dimensions_to_channel( const ::dnnl::memory::desc &desc) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); auto inner_blks = desc.get_inner_blks(); assert(ndims >= 4 && "ndims is at least 4."); std::vector<int64_t> compressed_dims(ndims); compressed_dims[0] = dims[0]; compressed_dims[1] = dims[1]; for (int index = 2; index < ndims; index++) { compressed_dims[1] = compressed_dims[1] * dims[index]; compressed_dims[index] = 1; } if (!inner_blks.empty() && inner_blks[0] == 4) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw4c); } else if (!inner_blks.empty() && inner_blks[0] == 32) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw32c); } std::vector<int64_t> strides(ndims, 1); strides[0] = compressed_dims[1]; return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), strides); } inline ::dnnl::memory::desc engine_ext::get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); assert(ndims >= 4 && "ndims is at least 4."); int channel_num = 1; if (mode == batch_normalization_mode::spatial) { channel_num = dims[1]; } else { for (int index = 1; index < ndims; index++) { channel_num = channel_num * dims[index]; } } return ::dnnl::memory::desc({channel_num}, desc.get_data_type(), ::dnnl::memory::format_tag::a); } inline ::dnnl::memory::desc engine_ext::transfer_memory_desc_to_channel_major_format( const ::dnnl::memory::desc &desc) { if (!desc.get_inner_blks().empty()) { return desc; } int ndims = desc.get_ndims(); auto dims = desc.get_dims(); if (ndims == 4) { return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::nchw); } return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::ncdhw); } /// If the alpha = 0 and beta = 1, then the destination (dst = alpha * out + /// beta * prior_dst) have no change. In this case this function returns true /// means the operation can exit directly. inline bool engine_ext::scale_parameter_preprocess( const std::vector<output_argument_info> &args) { bool direct_exit = true; for (auto &arg : args) { if (arg._alpha == 0.f) { if (arg._beta != 1.f) { async_scale(arg._beta, arg._desc, arg._data); } } else { direct_exit = false; } } return direct_exit; } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { derive_batch_normalization_memory_desc(scale_bias_desc, src_desc, mode); derive_batch_normalization_memory_desc(mean_var_desc, src_desc, mode); } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { int src_ndims = src_desc.get_desc().get_ndims(); auto inner_blks = src_desc.get_desc().get_inner_blks(); if (src_desc.get_desc().get_ndims() != 4 || src_desc.get_desc().get_ndims() != 5) { throw std::runtime_error("derive_batch_normalization_memory_desc: only 4d " "and 5d memory descriptor supported."); } std::vector<int64_t> dims = src_desc.get_dims(); dims[0] = 1; if (mode == batch_normalization_mode::spatial) { dims[2] = 1; dims[3] = 1; if (src_ndims == 5) { dims[4] = 1; } } auto data_type = src_desc.get_desc().get_data_type(); if (data_type == ::dnnl::memory::data_type::f16) { data_type = ::dnnl::memory::data_type::f32; } if (!inner_blks.empty() && inner_blks[0] == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw4c)); } else if (!inner_blks.empty() && inner_blks[0] == 32) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw32c)); } else { if (src_ndims == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nchw)); } else { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::ncdhw)); } } } template <typename primitive_type> sycl::event engine_ext::execute_primitive( const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &output_args, const std::vector<void *> &device_ptrs) { std::vector<void *> caches; int output_arg_num = output_args.size(); for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { auto cache = allocate(output_args[i]._desc); caches.push_back(cache); args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, cache)}); } else { args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, output_args[i]._data)}); } } auto e = ::dnnl::sycl_interop::execute( *(static_cast<primitive_type *>(primitive.second)), _s, *args); _primitive_cache.put( primitive.first, primitive.second, [](::dnnl::primitive *p) { delete static_cast<primitive_type *>(p); }, e); int cache_index = 0; for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { e = async_sum(output_args[i]._alpha, output_args[i]._desc, caches[cache_index++], output_args[i]._beta, output_args[i]._desc, output_args[i]._data); } else { if (output_args[i]._alpha != 1.f) { e = async_scale(output_args[i]._alpha, output_args[i]._desc, output_args[i]._data); } } } caches.insert(caches.end(), device_ptrs.begin(), device_ptrs.end()); async_free(_q, e, args, caches); return e; } inline ::dnnl::memory::desc engine_ext::bn_reorder_memory_to_channel_major_format( bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches) { ::dnnl::memory::desc result; result = transfer_memory_desc_to_channel_major_format(desc); if ((result != desc) || !src) { *cache = allocate(desc); if (is_input && src) { async_reorder(1.f, desc, src, 0.f, result, *cache); } caches.push_back(*cache); } return result; } inline sycl::event engine_ext::batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var) { if (scale_parameter_preprocess( {{alpha_data, beta_data, diff_src_desc, diff_src}, {alpha_param, beta_param, diff_scale_bias_desc, diff_scale}, {alpha_param, beta_param, diff_scale_bias_desc, diff_bias}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_diff_dst = nullptr, *reordered_diff_src = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_diff_scale = nullptr, *reordered_diff_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_diff_scale_bias_desc = diff_scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_diff_src_desc = help_diff_src_desc; ::dnnl::memory::desc actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; help_diff_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_scale_bias_desc, scale, &reordered_scale, caches); actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (bias) { bn_reorder_memory_to_channel_major_format(true, help_diff_scale_bias_desc, bias, &reordered_bias, caches); } bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_scale, &reordered_diff_scale, caches); bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_bias, &reordered_diff_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( true, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); bn_reorder_memory_to_channel_major_format(true, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } else { if ((help_src_desc != help_diff_dst_desc) || (help_src_desc != help_diff_src_desc) || (help_diff_dst_desc != help_diff_src_desc)) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; } } help_diff_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_diff_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); auto forward_primitive = create_primitive_desc<::dnnl::batch_normalization_forward>( ::dnnl::prop_kind::forward_training, help_src_desc, help_diff_dst_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift); auto primitive = create_primitive<::dnnl::batch_normalization_backward>( ::dnnl::prop_kind::backward, help_diff_src_desc, help_diff_dst_desc, help_src_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift, forward_primitive); void *dst_cache = nullptr; if (!saved_mean && !saved_var) { dst_cache = allocate(diff_dst_desc); if (!reordered_saved_mean) { reordered_saved_mean = allocate(mean_var_desc); caches.push_back(reordered_saved_mean); } if (!reordered_saved_var) { reordered_saved_var = allocate(mean_var_desc); caches.push_back(reordered_saved_var); } if (!bias) { _q->fill(reordered_bias, 0, diff_scale_bias_desc.get_size()); } batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, diff_dst_desc, dst_cache, diff_scale_bias_desc, scale, bias ? bias : reordered_bias, mean_var_desc, reordered_saved_mean, reordered_saved_var, nullptr, nullptr); caches.push_back(dst_cache); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_diff_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_src_desc, _eng, reordered_diff_dst ? reordered_diff_dst : diff_dst)}}}; sycl::event e = execute_primitive( primitive, execution_args, {{alpha_data, beta_data, DNNL_ARG_DIFF_SRC, help_diff_src_desc, reordered_diff_src ? reordered_diff_src : diff_src}, {alpha_param, beta_param, DNNL_ARG_DIFF_SCALE, help_diff_scale_bias_desc, reordered_diff_scale ? reordered_diff_scale : diff_scale}, {alpha_param, beta_param, DNNL_ARG_DIFF_SHIFT, help_diff_scale_bias_desc, reordered_diff_bias ? reordered_diff_bias : diff_bias}}); if (actual_diff_src_desc != diff_src_desc.get_desc() && reordered_diff_src) { e = async_reorder(1.f, actual_diff_src_desc, reordered_diff_src, 0.f, diff_src_desc, diff_src); } if (actual_diff_scale_bias_desc != diff_scale_bias_desc.get_desc() && reordered_diff_scale && reordered_diff_bias) { async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_scale, 0.f, diff_scale_bias_desc, diff_scale); e = async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_bias, 0.f, diff_scale_bias_desc, diff_bias); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_dst = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_scale_bias_desc = scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_dst_desc = help_dst_desc; ::dnnl::memory::desc actual_mean_var_desc = help_mean_var_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; help_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_scale_bias_desc, scale, &reordered_scale, caches); bn_reorder_memory_to_channel_major_format(true, help_scale_bias_desc, bias, &reordered_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( is_infer, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); actual_mean_var_desc = help_mean_var_desc; bn_reorder_memory_to_channel_major_format(is_infer, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } else { if (help_src_desc != help_dst_desc) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; } } help_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); ::dnnl::prop_kind kind; ::dnnl::normalization_flags flag = ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift; if (is_infer) { kind = ::dnnl::prop_kind::forward_inference; flag = ::dnnl::normalization_flags::use_global_stats | flag; } else { kind = ::dnnl::prop_kind::forward_training; } auto primitive = create_primitive<::dnnl::batch_normalization_forward>( kind, help_src_desc, help_dst_desc, epsilon, flag); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_SHIFT, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_bias ? reordered_bias : bias)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}}; sycl::event e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, help_dst_desc, reordered_dst ? reordered_dst : dst}}); if (!is_infer && running_var) { auto src_ndim = src_desc.get_desc().get_ndims(); auto src_dims = src_desc.get_dims(); int element_num = src_dims[0]; if (mode == batch_normalization_mode::spatial) { for (int index = 2; index < src_ndim; index++) { element_num *= src_dims[index]; } } float unbias_factor = element_num / (element_num - 1.f); async_scale(1.f - factor, mean_var_desc, running_var); e = async_sum(factor * unbias_factor, mean_var_desc, reordered_saved_var ? reordered_saved_var : saved_var, 1.f, mean_var_desc, running_var); } if (!is_infer && running_mean) { e = async_sum(factor, mean_var_desc, reordered_saved_mean ? reordered_saved_mean : saved_mean, (1.f - factor), mean_var_desc, running_mean); } if (reordered_dst && (actual_dst_desc != dst_desc.get_desc())) { e = async_reorder(1.f, actual_dst_desc, reordered_dst, 0.f, dst_desc, dst); } if (!is_infer && reordered_saved_mean && reordered_saved_var && saved_mean && saved_var && (actual_mean_var_desc != mean_var_desc.get_desc())) { e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_mean, 0.f, mean_var_desc, saved_mean); e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_var, 0.f, mean_var_desc, saved_var); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; std::vector<void *> data = {src, dst, src_iter, dst_iter, src_iter_c, dst_iter_c, weight, workspace, scratchpad}; std::vector<int> offset(6, 0); void *input_layer_cache = nullptr, *hidden_layer_cache = nullptr; sycl::event e; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { // Here to combine the oneDNN bidirectional_sum and // bidirectional_concat config, so call execute_rnn_forward_primitive // twice. if (layer_size > 1) { if (!is_get_execution_args) { input_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); _q->memcpy(input_layer_cache, src, src_desc.get_size()); } data[0] = input_layer_cache; data[1] = hidden_layer_cache; e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1, weight_size_query, workspace_size_query, scratchpad_size_query); data[0] = ((layer_size - 1) % 2 == 0) ? input_layer_cache : hidden_layer_cache; data[1] = dst; } e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } else { e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } if (is_get_execution_args) { return e; } if (input_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(input_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline sycl::event engine_ext::execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size, size_t *workspace_size, size_t *scratchpad_size) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; std::unordered_map<int, ::dnnl::memory> *execution_args; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); } if (weight_size) { *weight_size += (weight_layer_desc.get_size() + weight_iter_desc.get_size() + projection_desc.get_size() + bias_desc.get_size()) * iter_num; return e; } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto pd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( kind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::gru) { auto pd = create_primitive_desc<::dnnl::gru_forward>( kind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::gru_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::lstm) { auto pd = create_primitive_desc<::dnnl::lstm_forward>( kind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::lstm_forward>(pd); key = r.first; p = r.second; } } for (int i = 0; i < iter_num; i++) { void *in_cache = data[0], *out_cache = data[1], *dst_iter_c_cache = nullptr, *dst_iter_cache = ((uint8_t *)(data[3]) + offset[1]); if (mode == rnn_mode::lstm) { dst_iter_c_cache = (uint8_t *)(data[4]) + offset[2]; } if (!workspace_size) { execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[0])}}, {DNNL_ARG_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[1])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[8])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data + offset)}}); offset += d.get_size(); }; insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[0]); insert_args(DNNL_ARG_DST_ITER, iter_desc, data[3], offset[1]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[5], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_LAYER, weight_layer_desc, data[6], offset[4]); insert_args(DNNL_ARG_WEIGHTS_ITER, weight_iter_desc, data[6], offset[4]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, projection_desc, data[6], offset[4]); } if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[6]) + offset[4], 0, bias_desc.get_size()); } insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[4]); if (kind == ::dnnl::prop_kind::forward_training) { insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[5]); } if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { execute_primitive<::dnnl::vanilla_rnn_forward>( {key, static_cast<::dnnl::vanilla_rnn_forward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { execute_primitive<::dnnl::gru_forward>( {key, static_cast<::dnnl::gru_forward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { execute_primitive<::dnnl::lstm_forward>( {key, static_cast<::dnnl::lstm_forward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[0], data[1]); } } if (kind == ::dnnl::prop_kind::forward_training) { if (workspace_size) { *workspace_size += (src_desc.get_size() + dst_desc.get_size() + iter_desc.get_size()); if (mode == rnn_mode::lstm) { *workspace_size += iter_c_desc.get_size(); } } else { _q->memcpy((uint8_t *)(data[7]) + offset[5], in_cache, src_desc.get_size()); offset[5] += src_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], out_cache, dst_desc.get_size()); offset[5] += dst_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_cache, iter_desc.get_size()); offset[5] += iter_desc.get_size(); if (mode == rnn_mode::lstm) { _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_c_cache, iter_c_desc.get_size()); offset[5] += iter_c_desc.get_size(); } } } } return e; } inline sycl::event engine_ext::execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; ::dnnl::prop_kind fkind = ::dnnl::prop_kind::forward_training; ::dnnl::prop_kind bkind = ::dnnl::prop_kind::backward; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc diff_weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc diff_weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc projection_desc, diff_projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); diff_projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldoi); } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto fpd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( fkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::vanilla_rnn_backward>( bkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::gru) { auto fpd = create_primitive_desc<::dnnl::gru_forward>( fkind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::gru_backward>( bkind, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::gru_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::lstm) { auto fpd = create_primitive_desc<::dnnl::lstm_forward>( fkind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); auto pd = create_primitive_desc<::dnnl::lstm_backward>( bkind, direction, src_desc, iter_desc, iter_c_desc, diff_weight_layer_desc, diff_weight_iter_desc, ::dnnl::memory::desc(), diff_projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::lstm_backward>(pd); key = r.first; p = r.second; } for (int i = 0; i < iter_num; i++) { auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[8])}}, {DNNL_ARG_DIFF_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[9])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[15])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { offset += d.get_size(); execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data - offset)}}); }; if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); } insert_args(DNNL_ARG_DST_ITER, iter_desc, data[7], offset[0]); insert_args(DNNL_ARG_DST_LAYER, dst_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_LAYER, src_desc, data[7], offset[0]); insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[1]); insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[3]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, diff_projection_desc, data[6], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_ITER, diff_weight_iter_desc, data[6], offset[3]); insert_args(DNNL_ARG_WEIGHTS_LAYER, diff_weight_layer_desc, data[6], offset[3]); insert_args(DNNL_ARG_DIFF_SRC_ITER, iter_desc, data[10], offset[4]); insert_args(DNNL_ARG_DIFF_DST_ITER, iter_desc, data[11], offset[5]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DIFF_SRC_ITER_C, iter_c_desc, data[12], offset[6]); insert_args(DNNL_ARG_DIFF_DST_ITER_C, iter_c_desc, data[13], offset[7]); } insert_args(DNNL_ARG_DIFF_BIAS, bias_desc, data[14], offset[8]); if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[14]) - offset[8], 0, bias_desc.get_size()); } if (projection_size) { insert_args(DNNL_ARG_DIFF_WEIGHTS_PROJECTION, projection_desc, data[14], offset[8]); } insert_args(DNNL_ARG_DIFF_WEIGHTS_ITER, weight_iter_desc, data[14], offset[8]); insert_args(DNNL_ARG_DIFF_WEIGHTS_LAYER, weight_layer_desc, data[14], offset[8]); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { e = execute_primitive<::dnnl::vanilla_rnn_backward>( {key, static_cast<::dnnl::vanilla_rnn_backward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { e = execute_primitive<::dnnl::gru_backward>( {key, static_cast<::dnnl::gru_backward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { e = execute_primitive<::dnnl::lstm_backward>( {key, static_cast<::dnnl::lstm_backward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[8], data[9]); } } return e; } #define GENERATE_RNN_PRIMITIVE_KEY(name) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_cell_kind() << (std::uint8_t)pd.get_direction() \ << (std::uint8_t)pd.get_algorithm(); \ serialize_mem_desc(ss, pd.src_layer_desc()); \ serialize_mem_desc(ss, pd.src_iter_desc()); \ serialize_mem_desc(ss, pd.dst_layer_desc()); \ serialize_mem_desc(ss, pd.dst_iter_desc()); \ serialize_mem_desc(ss, pd.diff_src_layer_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_desc()); \ serialize_mem_desc(ss, pd.diff_dst_layer_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_desc()); \ serialize_mem_desc(ss, pd.src_iter_c_desc()); \ serialize_mem_desc(ss, pd.dst_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_c_desc()); \ return ss.str(); \ } #define GENERATE_CONVOLUTION_PRIMITIVE_KEY(name, query_type) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_algorithm() \ << (std::uint8_t)pd.get_primitive_attr().get_fpmath_mode() \ << (std::uint8_t)pd.get_group_size(); \ serialize_dims(ss, pd.get_strides()); \ serialize_dims(ss, pd.get_dilations()); \ serialize_dims(ss, pd.get_padding_l()); \ serialize_mem_desc(ss, pd.src_desc()); \ serialize_mem_desc(ss, pd.diff_src_desc()); \ serialize_mem_desc(ss, pd.dst_desc()); \ serialize_mem_desc(ss, pd.diff_dst_desc()); \ serialize_mem_desc(ss, pd.query_type()); \ serialize_mem_desc(ss, pd.weights_desc()); \ serialize_mem_desc(ss, pd.diff_weights_desc()); \ return ss.str(); \ } GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_forward) GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_backward) GENERATE_RNN_PRIMITIVE_KEY(lstm_forward) GENERATE_RNN_PRIMITIVE_KEY(lstm_backward) GENERATE_RNN_PRIMITIVE_KEY(gru_forward) GENERATE_RNN_PRIMITIVE_KEY(gru_backward) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_forward, bias_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_data, scratchpad_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_weights, diff_bias_desc) template <typename primitive_desc_type> std::string engine_ext::generate_cache_key(const primitive_desc_type &pd) { std::stringstream ss; auto kind = pd.get_kind(); ss << (std::uint8_t)kind << (std::uint8_t)pd.get_prop_kind() << (std::uint8_t)pd.get_algorithm(); serialize_mem_desc(ss, pd.src_desc()); serialize_mem_desc(ss, pd.diff_src_desc()); serialize_mem_desc(ss, pd.dst_desc()); serialize_mem_desc(ss, pd.diff_dst_desc()); switch (kind) { case ::dnnl::primitive::kind::batch_normalization: ss << pd.get_epsilon() << (std::uint8_t)pd.get_flags(); case ::dnnl::primitive::kind::reduction: ss << pd.get_p(); break; case ::dnnl::primitive::kind::eltwise: ss << pd.get_alpha() << pd.get_beta(); case ::dnnl::primitive::kind::lrn: ss << pd.get_k(); break; case ::dnnl::primitive::kind::pooling: serialize_dims(ss, pd.get_strides()); serialize_dims(ss, pd.get_dilations()); serialize_dims(ss, pd.get_padding_l()); serialize_dims(ss, pd.get_kernel()); break; case ::dnnl::primitive::kind::softmax: ss << pd.get_axis(); break; default: break; } return ss.str(); } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive(args_type &&...args) { auto pd = create_primitive_desc<primitive_type>(std::forward<args_type>(args)...); return create_primitive_with_pd<primitive_type>(pd); } template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive_with_pd( const typename primitive_type::primitive_desc &pd) { detail::primitive_cache_key_type key = generate_cache_key(pd); primitive_type *p = (primitive_type *)_primitive_cache.get(key); if (!p) { p = new primitive_type(pd); } return {key, p}; } template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc engine_ext::create_primitive_desc(args_type &&...args) { return typename primitive_type::primitive_desc( _eng, std::forward<args_type>(args)...); } inline void engine_ext::fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { async_fill(src_desc, src, valuePtr).wait(); } inline void engine_ext::reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_reorder(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::scale(float alpha, const memory_desc_ext &src_desc, void *src) { async_scale(alpha, src_desc, src).wait(); } inline void engine_ext::sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_sum(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_activation_forward(desc, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_activation_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_pooling_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace).wait(); } inline void engine_ext::pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_pooling_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline void engine_ext::softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_softmax_forward(alg, mode, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_softmax_backward(alg, mode, alpha, dst_desc, dst, diff_dst_desc, diff_dst, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_lrn_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace) .wait(); } inline void engine_ext::lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_lrn_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline sycl::event engine_ext::async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { ::dnnl::memory::data_type dt = src_desc.get_desc().get_data_type(); unsigned mem_size = src_desc.get_size(); switch (dt) { case ::dnnl::memory::data_type::f32: return fill_with_type<float>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::f16: return fill_with_type<sycl::half>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s32: return fill_with_type<int32_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s8: return fill_with_type<int8_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::u8: return fill_with_type<uint8_t>(_q, src, valuePtr, mem_size); default: throw std::runtime_error("async_fill: unsupported data type."); } } inline sycl::event engine_ext::async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto pd = ::dnnl::reorder::primitive_desc(_eng, src_desc.get_desc(), _eng, dst_desc.get_desc()); auto primitive = create_primitive_with_pd<::dnnl::reorder>(pd); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_scale(float alpha, const memory_desc_ext &src_desc, void *src) { if (alpha == 1.f) { return sycl::event(); } void *src_cache = allocate(src_desc); _q->memcpy(src_cache, src, src_desc.get_size()); auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, ::dnnl::algorithm::eltwise_linear, src_desc.get_desc(), src_desc.get_desc(), alpha, 0.f); auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src_cache)}}; return execute_primitive(primitive, args, {}, {src_cache}); } inline sycl::event engine_ext::async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } void *dst_cache = allocate(dst_desc); _q->memcpy(dst_cache, dst, dst_desc.get_size()); auto pd = create_primitive_desc<::dnnl::sum>( std::vector<float>{alpha, beta}, std::vector<::dnnl::memory::desc>{src_desc.get_desc(), dst_desc.get_desc()}); std::stringstream ss; ss << (std::uint8_t)pd.get_kind() << alpha << beta; serialize_mem_desc(ss, pd.src_desc(0)); serialize_mem_desc(ss, pd.src_desc(1)); detail::primitive_cache_key_type key = ss.str(); ::dnnl::sum *p = (::dnnl::sum *)_primitive_cache.get(key); if (!p) { p = new ::dnnl::sum(pd); } auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}, {DNNL_ARG_MULTIPLE_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_MULTIPLE_SRC + 1, ::dnnl::memory(dst_desc.get_desc(), _eng, dst_cache)}}; return execute_primitive<::dnnl::sum>({key, p}, args, {}, {dst_cache}); } inline sycl::event engine_ext::async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst) { ::dnnl::algorithm onednn_algorithm; switch (op) { case binary_op::max: onednn_algorithm = ::dnnl::algorithm::binary_max; break; case binary_op::min: onednn_algorithm = ::dnnl::algorithm::binary_min; break; case binary_op::add: onednn_algorithm = ::dnnl::algorithm::binary_add; break; case binary_op::sub: onednn_algorithm = ::dnnl::algorithm::binary_sub; break; case binary_op::mul: onednn_algorithm = ::dnnl::algorithm::binary_mul; break; case binary_op::div: onednn_algorithm = ::dnnl::algorithm::binary_div; break; case binary_op::sqrt: onednn_algorithm = ::dnnl::algorithm::eltwise_sqrt; break; case binary_op::neg: onednn_algorithm = ::dnnl::algorithm::eltwise_linear; break; } if (onednn_algorithm == ::dnnl::algorithm::eltwise_sqrt || onednn_algorithm == ::dnnl::algorithm::eltwise_linear) { void *src_cache = nullptr, *dst_cache = nullptr; src_cache = allocate(src_desc_0); dst_cache = allocate(dst_desc); _q->memcpy(src_cache, src_0, src_desc_0.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_cache); async_scale(beta, dst_desc, dst_cache); // Let the output = 1 - input to simulate the behavior of neg. auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, onednn_algorithm, src_desc_0.get_desc(), dst_desc.get_desc(), -1.f, 1.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc_0.get_desc(), _eng, src_cache)}}}; execute_primitive( primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); auto e = async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(src_cache, *_q); sycl::free(dst_cache, *_q); }); }); return e; } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{}; void *src_0_cache = nullptr, *src_1_cache = nullptr, *dst_cache = nullptr; src_0_cache = allocate(src_desc_0); src_1_cache = allocate(src_desc_1); dst_cache = allocate(dst_desc); _q->memcpy(src_0_cache, src_0, src_desc_0.get_size()); _q->memcpy(src_1_cache, src_1, src_desc_1.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_0_cache); async_scale(alpha_1, src_desc_1, src_1_cache); async_scale(beta, dst_desc, dst_cache); execution_args->insert({DNNL_ARG_SRC_0, ::dnnl::memory(src_desc_0.get_desc(), _eng, src_0_cache)}); execution_args->insert({DNNL_ARG_SRC_1, ::dnnl::memory(src_desc_1.get_desc(), _eng, src_1_cache)}); auto primitive = create_primitive<::dnnl::binary>( onednn_algorithm, src_desc_0.get_desc(), src_desc_1.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(dst_cache, *_q); sycl::free(src_0_cache, *_q); sycl::free(src_1_cache, *_q); }); }); return e; } inline sycl::event engine_ext::async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } float p = 2.f; ::dnnl::algorithm onednn_algorithm; void *cache = nullptr; switch (op) { case reduction_op::amax: cache = allocate(src_desc); activation_desc adesc; adesc.set_algorithm(::dnnl::algorithm::eltwise_abs); async_activation_forward(adesc, 1.f, src_desc, src, 0.f, src_desc, cache); onednn_algorithm = ::dnnl::algorithm::reduction_max; src = cache; break; case reduction_op::max: onednn_algorithm = ::dnnl::algorithm::reduction_max; break; case reduction_op::min: onednn_algorithm = ::dnnl::algorithm::reduction_min; break; case reduction_op::sum: onednn_algorithm = ::dnnl::algorithm::reduction_sum; break; case reduction_op::mean: onednn_algorithm = ::dnnl::algorithm::reduction_mean; break; case reduction_op::mul: onednn_algorithm = ::dnnl::algorithm::reduction_mul; break; case reduction_op::mul_no_zeros: cache = allocate(src_desc); transform_no_zero(src_desc, src, cache); onednn_algorithm = ::dnnl::algorithm::reduction_mul; src = cache; break; case reduction_op::norm1: p = 1.f; onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_power_p_sum; break; case reduction_op::norm2: onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_sum; break; } auto primitive = create_primitive<::dnnl::reduction>( onednn_algorithm, src_desc.get_desc(), dst_desc.get_desc(), p, 0.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}}; if (cache) { return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc data_desc = dst_desc.get_desc(); auto alg = desc.get_algorithm(); if ((alg == ::dnnl::algorithm::eltwise_clip) || (alg == ::dnnl::algorithm::eltwise_linear) || (alg == ::dnnl::algorithm::eltwise_swish)) { data_desc = src_desc.get_desc(); } auto primitive = create_primitive<::dnnl::eltwise_backward>( alg, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), data_desc, desc.get_alpha(), desc.get_beta(), create_primitive_desc<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, alg, src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive_desc = create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::pooling_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive = create_primitive<::dnnl::pooling_backward>( desc.get_algorithm(), diff_src_desc.get_desc(), diff_dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding(), create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, src)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_src_desc, help_dst_desc, 1); return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, memory_desc_ext(help_dst_desc), dst}}); } inline sycl::event engine_ext::async_softmax_backward( softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(help_dst_desc, _eng, dst)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_dst_desc, _eng, diff_dst)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_backward>( softmax_alg, help_diff_src_desc, help_diff_dst_desc, help_dst_desc, 1, create_primitive_desc<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_diff_src_desc, help_dst_desc, 1)); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, memory_desc_ext(help_diff_src_desc), diff_src}}); } inline sycl::event engine_ext::async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive_desc = create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::lrn_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::lrn_backward>( ::dnnl::algorithm::lrn_across_channels, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), src_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k(), create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline size_t engine_ext::get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc) { if(ops == batch_normalization_ops::none) { return 0; } return src_desc.get_size(); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var) { return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; std::vector<void *> caches; if (has_post_op) { void *dst_cache = allocate(dst_desc); caches.push_back(dst_cache); batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, dst_desc, dst_cache, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, dst_cache); } async_activation_forward(adesc, 1.f, dst_desc, dst_cache, 0.f, dst_desc, dst_cache); e = async_sum(alpha, dst_desc, dst_cache, beta, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var) { return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; if (has_post_op) { if(workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_forward_training_ex: " "no sufficient workspace."); } batch_normalization_forward_internal( false, mode, epsilon, factor, 1.f, src_desc, src, 0.f, dst_desc, workspace, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, workspace); } return async_activation_forward(adesc, alpha, dst_desc, workspace, beta, dst_desc, dst); } return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_forward_training( mode, ops, adesc, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, summand_desc, summand, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, running_mean, running_var, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var) { return batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_mean_var_desc, scale, nullptr, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { std::vector<void *> caches; ::dnnl::memory::desc real_diff_dst_desc = diff_dst_desc.get_desc(); void *real_diff_dst = diff_dst; if (ops != batch_normalization_ops::none && workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_backward_ex: " "no sufficient workspace."); } if (ops == batch_normalization_ops::add_activation) { void *diff_summand_cache = allocate(diff_summand_desc); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_summand_desc, diff_summand_cache); caches.push_back(diff_summand_cache); async_sum(alpha_data, diff_summand_desc, diff_summand_cache, beta_data, diff_summand_desc, diff_summand); real_diff_dst_desc = diff_summand_desc.get_desc(); real_diff_dst = diff_summand_cache; } else if (ops == batch_normalization_ops::activation) { void *diff_dst_cache = allocate(diff_dst_desc); caches.push_back(diff_dst_cache); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_dst_desc, diff_dst_cache); real_diff_dst = diff_dst_cache; } sycl::event e = batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, real_diff_dst_desc, real_diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_desc, scale, bias, beta_param, diff_scale, diff_bias, mean_var_desc, saved_mean, saved_var); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_backward( mode, ops, adesc, epsilon, alpha_data, src_desc, src, dst_desc, dst, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, diff_summand_desc, diff_summand, alpha_param, diff_scale_bias_mean_var_desc, scale, bias, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto origin_src_md = src_desc.get_desc(); auto origin_dst_md = dst_desc.get_desc(); auto origin_weight_md = help_weight_desc; auto src_md = transfer_memory_desc_to_format_tag_any(origin_src_md); auto dst_md = transfer_memory_desc_to_format_tag_any(origin_dst_md); auto weight_md = transfer_memory_desc_to_format_tag_any(origin_weight_md); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_md, weight_md, dst_md, desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); ::dnnl::convolution_forward::primitive_desc pd = ::dnnl::convolution_forward::primitive_desc( const_cast<dnnl_primitive_desc_t>( primitive.second->get_primitive_desc())); auto optimal_src_md = pd.src_desc(); auto optimal_dst_md = pd.dst_desc(); auto optimal_weight_md = pd.weights_desc(); void *optimal_src = src, *optimal_dst = dst, *optimal_weight = weight; std::vector<void *> input_caches, output_caches; allocate_and_reorder_memory_to_optimal(origin_src_md, src, optimal_src_md, optimal_src, input_caches); allocate_and_reorder_memory_to_optimal(origin_dst_md, dst, optimal_dst_md, optimal_dst, output_caches); allocate_and_reorder_memory_to_optimal(origin_weight_md, weight, optimal_weight_md, optimal_weight, input_caches); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(optimal_src_md, _eng, optimal_src)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(optimal_weight_md, _eng, optimal_weight)}}}; auto e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, optimal_dst_md, optimal_dst}}, input_caches); if(origin_dst_md != optimal_dst_md){ e = async_reorder(1.f, optimal_dst_md, optimal_dst, 0.f, origin_dst_md, dst); } async_free(_q, e, nullptr, output_caches); return e; } inline sycl::event engine_ext::async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst) { int channel_num = bias_desc.get_element_num(); auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::memory::desc help_bias_desc = {{channel_num}, bias_desc.get_desc().get_data_type(), ::dnnl::memory::format_tag::a}; ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_desc.get_desc(), help_weight_desc, help_bias_desc, dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_BIAS, {::dnnl::memory(help_bias_desc, _eng, bias)}}}; void *cache = nullptr; if (alpha_0 != 1.f) { cache = allocate(help_weight_desc); _q->memcpy(cache, weight, weight_desc.get_size()); async_scale(alpha_0, help_weight_desc, cache); execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, cache)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } else { execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); } async_sum(alpha_1, summand_desc, summand, 1.f, dst_desc, dst); return async_activation_forward(adesc, 1.f, dst_desc, dst, 0.f, dst_desc, dst); } inline sycl::event engine_ext::async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_dst_desc, diff_dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_data>( ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight) { if (scale_parameter_preprocess( {{alpha, beta, diff_weight_desc, diff_weight}})) { return sycl::event(); } auto help_diff_weight_desc = get_group_weight_desc(desc.get_group_count(), diff_weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_weights>( ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_WEIGHTS, help_diff_weight_desc, diff_weight}}); } inline sycl::event engine_ext::async_convolution_backward_bias( float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias) { return async_reduction(reduction_op::sum, alpha, diff_dst_desc, diff_dst, beta, diff_bias_desc, diff_bias); } inline void engine_ext::rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size) { *weight_space_size = 0; rnn_forward_internal(desc, ::dnnl::prop_kind::forward_inference, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, weight_space_size, nullptr, nullptr); return; } inline void engine_ext::rnn_get_scratchpad_workspace_size( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size) { *workspace_size = 0; *scratchpad_size = 0; rnn_forward_internal(desc, kind, src_desc, nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, nullptr, workspace_size, scratchpad_size); return; } inline sycl::event engine_ext::async_rnn_forward( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { return rnn_forward_internal( desc, kind, src_desc, src, dst_desc, dst, iter_desc, src_iter, dst_iter, iter_c_desc, src_iter_c, dst_iter_c, weight_size, weight, workspace_size, workspace, scratchpad_size, scratchpad, false, nullptr, nullptr, nullptr); } inline sycl::event engine_ext::async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_memory_format_tag format_tag; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; void *last_layer_cache = nullptr; void *hidden_layer_cache = nullptr; sycl::event e; std::vector<int> offset(9, 0); std::vector<void *> data = { src, dst, (uint8_t *)src_iter + iter_desc.get_size(), nullptr, (uint8_t *)src_iter_c + iter_c_desc.get_size(), nullptr, (uint8_t *)weight + weight_size, (uint8_t *)workspace + workspace_size, diff_src, diff_dst, (uint8_t *)diff_src_iter + iter_desc.get_size(), (uint8_t *)diff_dst_iter + iter_desc.get_size(), (uint8_t *)diff_src_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_dst_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_weight + weight_size, scratchpad}; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { if (layer_size > 1) { last_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); data[8] = last_layer_cache; } e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); if (layer_size > 1) { data[8] = hidden_layer_cache; data[9] = last_layer_cache; e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1); _q->memcpy(diff_src, ((layer_size - 1) % 2 == 0) ? last_layer_cache : hidden_layer_cache, src_desc.get_size()); } } else { e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); } if (last_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(last_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline size_t engine_ext::get_dropout_state_size(){ #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::queue q; if(_random_engine_state_size == -1) { if(_q){ q = *_q; } else { q = dpct::get_current_device().default_queue(); } auto rand_engine = rng_engine_t(q, 0); _random_engine_state_size = oneapi::mkl::rng::get_state_size(rand_engine); } return _random_engine_state_size; #endif } inline size_t engine_ext::get_dropout_workspace_size(const memory_desc_ext &src_desc) { return src_desc.get_size(); } inline sycl::event engine_ext::async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size) { if (workspace_size < src_desc.get_size()) { throw std::runtime_error("async_dropout_forward: no sufficient workspace."); } float p = desc.get_probability(); if (p == 1.f) { return _q->memset(dst, 0, dst_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, src_desc, src, 0.f, dst_desc, dst); } float scale_factor = 1.f / (1.f - p); void *cache = workspace; memory_desc_ext rng_data_desc( ::dnnl::memory::desc(src_desc.get_dims(), ::dnnl::memory::data_type::s32, src_desc.get_strides())); if (src_desc.get_desc().get_data_type() != ::dnnl::memory::data_type::s32) { cache = allocate(rng_data_desc); } desc.generate(_q, _random_engine_state_size, rng_data_desc.get_element_num(), (std::int32_t *)cache); if (cache == workspace) { async_scale(scale_factor, src_desc, workspace); } else { async_reorder(scale_factor, rng_data_desc, cache, 0.f, src_desc, workspace); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC_1, ::dnnl::memory(src_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, src_desc.get_desc(), src_desc.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args); if (cache != workspace) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(cache, *_q); }); }); } return e; } inline sycl::event engine_ext::async_dropout_backward( dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size) { float p = desc.get_probability(); if (p == 1.f) { return _q->memset(diff_src, 0, diff_src_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, diff_dst_desc, diff_dst, 0.f, diff_src_desc, diff_src); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}, {DNNL_ARG_SRC_1, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(diff_src_desc.get_desc(), _eng, diff_src)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, diff_dst_desc.get_desc(), diff_dst_desc.get_desc(), diff_src_desc.get_desc()); return execute_primitive(primitive, execution_args); } } // namespace dnnl } // namespace dpct #endif // __DPCT_DNNL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/lapack_utils.hpp
//==---- lapack_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LAPACK_UTILS_HPP__ #define __DPCT_LAPACK_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace lapack { /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The symmetric matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The symmetric matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T> inline int sygvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, T *w, T *scratchpad, int scratchpad_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<T>(a); auto b_buffer = get_buffer<T>(b); auto w_buffer = get_buffer<T>(w); auto scratchpad_buffer = get_buffer<T>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class sygvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a, lda, b, ldb, w, scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes all the eigenvalues, and optionally, the eigenvectors of a complex /// generalized Hermitian positive-definite eigenproblem using a divide and /// conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The Hermitian matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The Hermitian matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [in] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename Tw> inline int hegvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, Tw *w, T *scratchpad, int scratchpad_size, int *info) { using Ty = typename DataType<T>::T2; #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<Ty>(a); auto b_buffer = get_buffer<Ty>(b); auto w_buffer = get_buffer<Tw>(w); auto scratchpad_buffer = get_buffer<Ty>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class hegvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, (Ty *)a, lda, (Ty *)b, ldb, w, (Ty *)scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes the Cholesky factorizations of a batch of symmetric (or Hermitian, /// for complex data) positive-definite matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrf_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, T *a[], int lda, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t lda_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->lda_info = lda; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrf_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->lda_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrf_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), (Ty **)a, &(matrix_info->lda_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrf_batch_scratchpad_size/potrf_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } /// Solves a batch of systems of linear equations with a Cholesky-factored /// symmetric (Hermitian) positive-definite coefficient matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] nrhs The number of right-hand sides. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b Array of pointers to matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrs_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, int nrhs, T *a[], int lda, T *b[], int ldb, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t nrhs_info; std::int64_t lda_info; std::int64_t ldb_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->nrhs_info = nrhs; matrix_info->lda_info = lda; matrix_info->ldb_info = ldb; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrs_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), &(matrix_info->lda_info), &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrs_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), (Ty **)a, &(matrix_info->lda_info), (Ty **)b, &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrs_batch_scratchpad_size/potrs_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } namespace detail { template <template <typename> typename functor_t, typename... args_t> inline int lapack_shim(sycl::queue &q, library_data_t a_type, int *info, std::string const &lapack_api_name, args_t &&...args) { auto handle_lapack_exception = [&](const oneapi::mkl::lapack::exception &e) { std::cerr << "Unexpected exception caught during call to LAPACK API: " << lapack_api_name << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl << "detail: " << e.detail() << std::endl; if (e.info() < std::numeric_limits<int>::min() || e.info() > std::numeric_limits<int>::max()) { throw std::runtime_error("e.info() exceeds the limit of int type"); } int info_val = static_cast<int>(e.info()); if (info) dpct::detail::dpct_memcpy(q, info, &info_val, sizeof(int), memcpy_direction::host_to_device) .wait(); return 1; }; try { switch (a_type) { case library_data_t::real_float: { functor_t<float>()(std::forward<args_t>(args)...); break; } case library_data_t::real_double: { functor_t<double>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_float: { functor_t<std::complex<float>>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_double: { functor_t<std::complex<double>>()(std::forward<args_t>(args)...); break; } default: throw std::runtime_error("the data type is unsupported"); } } catch (oneapi::mkl::lapack::batch_error const &be) { try { std::rethrow_exception(be.exceptions()[0]); } catch (oneapi::mkl::lapack::exception &e) { return handle_lapack_exception(e); } } catch (oneapi::mkl::lapack::exception const &e) { return handle_lapack_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; if (info) dpct::detail::dpct_memset(q, info, 0, sizeof(int)).wait(); return 1; } return 0; } template <typename T> class working_memory { public: working_memory(std::size_t element_number, const sycl::queue &q) : _q(q) { _ptr = dpct::detail::dpct_malloc(element_number * sizeof(T), _q); } auto get_memory() { return dpct::detail::get_memory(reinterpret_cast<T *>(_ptr)); } auto get_ptr() { return _ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_ptr) { dpct::async_dpct_free({_ptr}, {_e}, _q); } } private: void *_ptr = nullptr; sycl::event _e; sycl::queue _q; }; std::size_t byte_to_element_number(std::size_t size_in_byte, dpct::library_data_t element_type) { auto dv = std::lldiv( size_in_byte, dpct::detail::library_data_size[static_cast<unsigned int>(element_type)] / 8); if (dv.rem) { throw std::runtime_error( "size_in_byte is not divisible by the size of element (in bytes)"); } return dv.quot; } std::size_t element_number_to_byte(std::size_t size_in_element, dpct::library_data_t element_type) { auto dv = std::lldiv( dpct::detail::library_data_size[static_cast<unsigned int>(element_type)], 8); if (dv.rem) { throw std::runtime_error( "the size of element (in bits) is not divisible by 8"); } return size_in_element * dv.quot; } inline oneapi::mkl::jobsvd char2jobsvd(signed char job) { switch (job) { case 'A': return oneapi::mkl::jobsvd::vectors; case 'S': return oneapi::mkl::jobsvd::somevec; case 'O': return oneapi::mkl::jobsvd::vectorsina; case 'N': return oneapi::mkl::jobsvd::novec; default: throw std::runtime_error("the job type is unsupported"); } } template <typename T> struct getrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::getrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct getrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrf(q, m, n, a_data, lda, ipiv_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrs_impl { void operator()(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); std::int64_t device_ws_size = oneapi::mkl::lapack::getrs_scratchpad_size<T>( q, trans, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::getrs(q, trans, n, nrhs, a_data, lda, ipiv_data, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct geqrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::geqrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct geqrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto tau_data = dpct::detail::get_memory(reinterpret_cast<T *>(tau)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::geqrf(q, m, n, a_data, lda, tau_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrfnp_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::int64_t a_stride = m * lda; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrfnp_batch(q, m, n, a_data, lda, a_stride, 1, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct gesvd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::gesvd_scratchpad_size<T>( q, jobu, jobvt, m, n, lda, ldu, ldvt); } }; template <typename T> struct ElementType { using value_tpye = T; }; template <typename T> struct ElementType<std::complex<T>> { using value_tpye = T; }; template <typename T> struct gesvd_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto s_data = dpct::detail::get_memory( reinterpret_cast<typename ElementType<T>::value_tpye *>(s)); auto u_data = dpct::detail::get_memory(reinterpret_cast<T *>(u)); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::gesvd(q, jobu, jobvt, m, n, a_data, lda, s_data, u_data, ldu, vt_data, ldvt, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct gesvd_conj_impl : public gesvd_impl<T> { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using base = gesvd_impl<T>; base::operator()(q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); oneapi::mkl::blas::row_major::imatcopy(q, oneapi::mkl::transpose::conjtrans, n, n, T(1.0f), vt_data, ldvt, ldvt); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct potrf_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::potrf_scratchpad_size<T>(q, uplo, n, lda); } }; template <typename T> struct potrf_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::potrf(q, uplo, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct potrs_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { std::int64_t device_ws_size = oneapi::mkl::lapack::potrs_scratchpad_size<T>( q, uplo, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::potrs(q, uplo, n, nrhs, a_data, lda, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct value_type_trait { using value_type = T; }; template <typename T> struct value_type_trait<std::complex<T>> { using value_type = T; }; template <typename T> auto lamch_s() { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else if constexpr (std::is_same_v<T, float>) { return slamch("S"); } else if constexpr (std::is_same_v<T, double>) { return dlamch("S"); } throw std::runtime_error("the type is unsupported"); #endif } #define DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ device_ws_size = oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ device_ws_size = oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) #define DISPATCH_FLOAT_FOR_CALCULATION(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) template <typename T> struct syheevx_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evx_scratchpad_size<T>, q, jobz, range, uplo, n, lda, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> constexpr library_data_t get_library_data_t_from_type() { if constexpr (std::is_same_v<T, float>) { return library_data_t::real_float; } else if constexpr (std::is_same_v<T, double>) { return library_data_t::real_double; } else if constexpr (std::is_same_v<T, sycl::float2> || std::is_same_v<T, std::complex<float>>) { return library_data_t::complex_float; } else if constexpr (std::is_same_v<T, sycl::double2> || std::is_same_v<T, std::complex<double>>) { return library_data_t::complex_double; } throw std::runtime_error("the type is unsupported"); } template <typename T> struct syheevx_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(evx, q, jobz, range, uplo, n, a_data, lda, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvx_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvx_scratchpad_size<T>, q, itype, jobz, range, uplo, n, lda, ldb, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> struct syhegvx_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(gvx, q, itype, jobz, range, uplo, n, a_data, lda, b_data, ldb, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvd_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvd_scratchpad_size<T>, q, itype, jobz, uplo, n, lda, ldb); } }; template <typename T> struct syhegvd_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(gvd, q, itype, jobz, uplo, n, a_data, lda, b_data, ldb, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; oneapi::mkl::compz job2compz(const oneapi::mkl::job &job) { oneapi::mkl::compz ret; if (job == oneapi::mkl::job::novec) { ret = oneapi::mkl::compz::novectors; } else if (job == oneapi::mkl::job::vec) { ret = oneapi::mkl::compz::vectors; } else { throw std::runtime_error("the job type is unsupported"); } return ret; } template <typename T> struct syheev_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(ev_scratchpad_size<T>, q, jobz, uplo, n, lda); #endif } }; template <typename T> struct syheev_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(ev, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct syheevd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evd_scratchpad_size<T>, q, jobz, uplo, n, lda); } }; template <typename T> struct syheevd_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(evd, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; #undef DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE #undef DISPATCH_FLOAT_FOR_CALCULATION template <typename T> struct trtri_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else device_ws_size = oneapi::mkl::lapack::trtri_scratchpad_size<T>(q, uplo, diag, n, lda); #endif } }; template <typename T> struct trtri_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::trtri(q, uplo, diag, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; } // namespace detail /// Computes the size of workspace memory of getrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int getrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::getrf_scratchpad_size_impl>( q, a_type, nullptr, "getrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the LU factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by L and U. The unit /// diagonal elements of L are not stored. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] ipiv The pivot indices. If \p ipiv is nullptr, non-pivoting /// LU factorization is computed. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); if (ipiv == nullptr) { return detail::lapack_shim<detail::getrfnp_impl>( q, a_type, info, "getrfnp_batch", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); } return detail::lapack_shim<detail::getrf_impl>( q, a_type, info, "getrf", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); #endif } /// Solves a system of linear equations with a LU-factored square coefficient /// matrix, with multiple right-hand sides. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] trans Indicates the form of the linear equation. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in] a The input matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ipiv The pivot indices. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrs(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::getrs_impl>( q, a_type, info, "getrs_scratchpad_size/getrs", q, trans, n, nrhs, a_type, a, lda, ipiv, b_type, b, ldb, info); } /// Computes the size of workspace memory of geqrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int geqrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::geqrf_scratchpad_size_impl>( q, a_type, nullptr, "geqrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the QR factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] tau_type The data type of the array tau. /// \param [in] tau The array contains scalars that define elementary reflectors /// for the matrix Q in its decomposition in a product of elementary reflectors. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int geqrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::geqrf_impl>( q, a_type, info, "geqrf", q, m, n, a_type, a, lda, tau_type, tau, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu_enum, jobvt_enum, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] host_ws_size The host workspace size as a number of elements /// of type \param a_type. Currently the value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, int *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } std::size_t device_ws_size_64; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu, jobvt, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_64); *device_ws_size = device_ws_size_64; return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::gesvd_impl>( q, a_type, info, "gesvd", q, jobu_enum, jobvt_enum, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec. /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } detail::lapack_shim<detail::gesvd_conj_impl>( q, a_type, info, "gesvd", q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); return 0; } /// Computes the size of workspace memory of potrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int potrf_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::potrf_scratchpad_size_impl>( q, a_type, nullptr, "potrf_scratchpad_size", q, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the Cholesky factorization of a symmetric (Hermitian) /// positive-definite matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrf(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::potrf_impl>( q, a_type, info, "potrf", q, uplo, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); } /// Solves a system of linear equations with a Cholesky-factored symmetric /// (Hermitian) positive-definite coefficient matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrs(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::potrs_impl>( q, a_type, info, "potrs_scratchpad_size/potrs", q, uplo, n, nrhs, a_type, a, lda, b_type, b, ldb, info); } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, a_type, nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, vl, vu, il, iu, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheevx_impl>( q, a_type, info, "syevx/heevx", q, compz_jobz, range, uplo, n, a_type, a, lda, vl, vu, il, iu, m, w_type, w, device_ws, device_ws_size_in_element_number, info); q.wait(); return ret; } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syheevx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevx/heevx", q, compz_jobz, range, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, &vl, &vu, il, iu, &m64, detail::get_library_data_t_from_type<ValueT>(), w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvx/hegvx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syhegvx_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, int ldb, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvx_scratchpad_size/hegvx_scratchpad_size", q, itype, compz_jobz, range, uplo, n, lda, ldb, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a real /// generalized symmetric/Hermitian definite eigenproblem. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvx(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syhegvx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvx/hegvx", q, itype, compz_jobz, range, uplo, n, a, lda, b, ldb, &vl, &vu, il, iu, &m64, w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvd/hegvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syhegvd_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int ldb, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvd_scratchpad_size/hegvd_scratchpad_size", q, itype, jobz, uplo, n, lda, ldb, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric/Hermitian definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvd(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syhegvd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvd/hegvd", q, itype, jobz, uplo, n, a, lda, b, ldb, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syev/heev function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheev_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int *device_ws_size) { std::size_t device_ws_size_tmp; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheev_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syev_scratchpad_size/heev_scratchpad_size", q, compz_jobz, uplo, n, lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /// or Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheev(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); return detail::lapack_shim<detail::syheev_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syev/heev", q, compz_jobz, uplo, n, a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, a_type, nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::syheevd_impl>( q, a_type, info, "syevd/heevd", q, jobz, uplo, n, a_type, a, lda, w, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, T *a, std::int64_t lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syheevd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevd/heevd", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of trtri function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int trtri_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::trtri_scratchpad_size_impl>( q, a_type, nullptr, "trtri_scratchpad_size", q, uplo, diag, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the inverse of a triangular matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// the inverse matrix of A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int trtri(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::trtri_impl>( q, a_type, info, "trtri", q, uplo, diag, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); #endif } } // namespace lapack } // namespace dpct #endif // __DPCT_LAPACK_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/fft_utils.hpp
//==---- fft_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FFT_UTILS_HPP__ #define __DPCT_FFT_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <optional> #include <utility> #include "lib_common_utils.hpp" namespace dpct { namespace fft { /// An enumeration type to describe the FFT direction is forward or backward. enum fft_direction : int { forward = 0, backward }; /// An enumeration type to describe the types of FFT input and output data. enum fft_type : int { real_float_to_complex_float = 0, complex_float_to_real_float, real_double_to_complex_double, complex_double_to_real_double, complex_float_to_complex_float, complex_double_to_complex_double, }; /// A class to perform FFT calculation. class fft_engine { public: /// Default constructor. fft_engine() {} /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, library_data_t input_type, long long *onembed, long long ostride, long long odist, library_data_t output_type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<long long>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, library_data_t input_type, int *onembed, int ostride, int odist, library_data_t output_type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<int>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n1, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(1); _n[0] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 1; _batch = batch; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(2); _n[0] = n2; _n[1] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 2; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(3); _n[0] = n3; _n[1] = n2; _n[2] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 3; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Create the class for calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n1, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n1, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n3, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, dim, n, inembed, istride, idist, onembed, ostride, odist, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate FFT without commit any config. static fft_engine *create() { fft_engine *engine = new fft_engine(); return engine; } /// Destroy the class for calculate FFT. /// \param [in] engine Pointer returned from fft_engine::craete. static void destroy(fft_engine *engine) { delete engine; } #ifdef __INTEL_MKL__ /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 1-D FFT. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If it is not set, forward direction(if current FFT is /// complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n1, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n1, type, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 2-D FFT. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 3-D FFT. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n3, int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n3, n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } #endif /// Execute the FFT calculation. /// \param [in] input Pointer to the input data. /// \param [out] output Pointer to the output data. /// \param [in] direction The FFT direction. template <typename input_t, typename output_t> void compute(input_t *input, output_t *output, fft_direction direction) { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } else if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } } template <> void compute(float *input, sycl::float2 *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(sycl::float2 *input, float *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(double *input, sycl::double2 *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::double2 *input, double *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::float2 *input, sycl::float2 *output, fft_direction direction) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } template <> void compute(sycl::double2 *input, sycl::double2 *output, fft_direction direction) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } /// Setting the user's SYCL queue for calculation. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { _q = q; } #ifdef __INTEL_MKL__ /// Setting whether to use external or internal workspace. /// \param [in] flag True means using internal workspace. False means using /// external workspace. void use_internal_workspace(bool flag = true) { _use_external_workspace = !flag; } /// Specify the external workspace. /// \param [in] ptr Pointer to the workspace. void set_workspace(void *ptr) { if (!_use_external_workspace) { return; } if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sc->set_workspace(data); } } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dc->set_workspace(data); } } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sr->set_workspace(data); } } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dr->set_workspace(data); } } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } #endif /// Get the workspace size. /// \param [out] scratchpad_size Workspace size in bytes. void get_workspace_size(size_t *scratchpad_size) { if (scratchpad_size) { *scratchpad_size = _workspace_bytes; } } private: static std::pair<library_data_t, library_data_t> fft_type_to_data_type(fft_type type) { switch (type) { case fft_type::real_float_to_complex_float: { return std::make_pair(library_data_t::real_float, library_data_t::complex_float); } case fft_type::complex_float_to_real_float: { return std::make_pair(library_data_t::complex_float, library_data_t::real_float); } case fft_type::real_double_to_complex_double: { return std::make_pair(library_data_t::real_double, library_data_t::complex_double); } case fft_type::complex_double_to_real_double: { return std::make_pair(library_data_t::complex_double, library_data_t::real_double); } case fft_type::complex_float_to_complex_float: { return std::make_pair(library_data_t::complex_float, library_data_t::complex_float); } case fft_type::complex_double_to_complex_double: { return std::make_pair(library_data_t::complex_double, library_data_t::complex_double); } } } void config_and_commit_basic() { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { _desc_sc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_sc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_sc->commit(*_q); #endif } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { _desc_dc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_dc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_dc->commit(*_q); #endif } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { _desc_sr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_sr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); #endif } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { _desc_dr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_dr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); #endif } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } void config_and_commit_advanced() { #ifdef __INTEL_MKL__ #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); \ if (_use_external_workspace) { \ DESC->set_value(oneapi::mkl::dft::config_param::WORKSPACE, \ oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); \ } \ if (_is_estimate_call) { \ if (_q->get_device().is_gpu()) { \ DESC->get_value( \ oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, \ &_workspace_estimate_bytes); \ } \ } else { \ DESC->commit(*_q); \ if (_is_estimate_call) { \ DESC->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, \ &_workspace_bytes); \ } \ } \ } #else #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::NOT_INPLACE); \ DESC->commit(*_q); \ } #endif if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { CONFIG_AND_COMMIT(_desc_sc, SINGLE, COMPLEX, float); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { CONFIG_AND_COMMIT(_desc_dc, DOUBLE, COMPLEX, double); } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { CONFIG_AND_COMMIT(_desc_sr, SINGLE, REAL, float); } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { CONFIG_AND_COMMIT(_desc_dr, DOUBLE, REAL, double); } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } #undef CONFIG_AND_COMMIT } template <typename T> void init(int dim, T *n, T *inembed, T istride, T idist, library_data_t input_type, T *onembed, T ostride, T odist, library_data_t output_type, T batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement) { if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } _n.resize(dim); _inembed.resize(dim); _onembed.resize(dim); _input_type = input_type; _output_type = output_type; for (int i = 0; i < dim; i++) { _n[i] = n[i]; } if (inembed && onembed) { for (int i = 0; i < dim; i++) { _inembed[i] = inembed[i]; _onembed[i] = onembed[i]; } _istride = istride; _ostride = ostride; if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double)) { _fwd_dist = idist; _bwd_dist = odist; } else if ((_output_type == library_data_t::real_float && _input_type == library_data_t::complex_float) || (_output_type == library_data_t::real_double && _input_type == library_data_t::complex_double)) { _fwd_dist = odist; _bwd_dist = idist; } else { if (_is_user_specified_dir_and_placement && (_direction == fft_direction::backward)) { _fwd_dist = odist; _bwd_dist = idist; } else { _fwd_dist = idist; _bwd_dist = odist; } } } else { _is_basic = true; } _batch = batch; _dim = dim; if (_is_basic) config_and_commit_basic(); else config_and_commit_advanced(); } template <class Desc_t> void set_stride_advanced(std::shared_ptr<Desc_t> desc) { if (_dim == 1) { std::int64_t input_stride[2] = {0, _istride}; std::int64_t output_stride[2] = {0, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 2) { std::int64_t input_stride[3] = {0, _inembed[1] * _istride, _istride}; std::int64_t output_stride[3] = {0, _onembed[1] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 3) { std::int64_t input_stride[4] = {0, _inembed[2] * _inembed[1] * _istride, _inembed[2] * _istride, _istride}; std::int64_t output_stride[4] = {0, _onembed[2] * _onembed[1] * _ostride, _onembed[2] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } } template <class Desc_t> void swap_distance(std::shared_ptr<Desc_t> desc) { desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _bwd_dist); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _fwd_dist); std::int64_t temp = _bwd_dist; _bwd_dist = _fwd_dist; _fwd_dist = temp; } template <bool Is_inplace, class Desc_t> void set_stride_and_distance_basic(std::shared_ptr<Desc_t> desc) { std::int64_t forward_distance = 0; std::int64_t backward_distance = 0; #define SET_STRIDE \ { \ if (_direction == fft_direction::forward) { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ real_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ complex_stride); \ } else { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ complex_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ real_stride); \ } \ } if (_dim == 1) { if constexpr (Is_inplace) { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = 2 * (_n[0] / 2 + 1); backward_distance = _n[0] / 2 + 1; } else { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = _n[0]; backward_distance = _n[0] / 2 + 1; } } else if (_dim == 2) { if constexpr (Is_inplace) { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, 2 * (_n[1] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * 2 * (_n[1] / 2 + 1); backward_distance = _n[0] * (_n[1] / 2 + 1); } else { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, _n[1], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1]; backward_distance = _n[0] * (_n[1] / 2 + 1); } } else if (_dim == 3) { if constexpr (Is_inplace) { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * 2 * (_n[2] / 2 + 1), 2 * (_n[2] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * 2 * (_n[2] / 2 + 1); backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } else { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * _n[2], _n[2], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * _n[2]; backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } } #undef SET_STRIDE desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, forward_distance); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, backward_distance); } #define COMPUTE(DESC) \ { \ if (_is_inplace) { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input); \ } \ } else { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ auto data_output = \ dpct::detail::get_memory(reinterpret_cast<T *>(output)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input, data_output); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input, data_output); \ } \ } \ } template <class T, oneapi::mkl::dft::precision Precision> void compute_complex(T *input, T *output, fft_direction direction) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The complex domain descriptor need different config values if the // FFT direction or placement is different. // Here we check the conditions, and new config values are set and // re-committed if needed. if (direction != _direction || is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { if (direction != _direction) { swap_distance(_desc_sc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_sc->commit(*_q); } else { if (direction != _direction) { swap_distance(_desc_dc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_dc->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sc); } else { COMPUTE(_desc_dc); } } template <class T, oneapi::mkl::dft::precision Precision> void compute_real(T *input, T *output) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The real domain descriptor need different config values if the // FFT placement is different. // Here we check the condition, and new config values are set and // re-committed if needed. if (is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_sr); } else { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); } else { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_dr); } else { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sr); } else { COMPUTE(_desc_dr); } } #undef COMPUTE private: sycl::queue *_q = nullptr; int _dim; std::vector<std::int64_t> _n; std::vector<std::int64_t> _inembed; std::int64_t _istride; std::int64_t _fwd_dist; library_data_t _input_type; std::vector<std::int64_t> _onembed; std::int64_t _ostride; std::int64_t _bwd_dist; library_data_t _output_type; std::int64_t _batch = 1; bool _is_basic = false; bool _is_inplace = false; fft_direction _direction = fft_direction::forward; bool _is_user_specified_dir_and_placement = false; bool _use_external_workspace = false; void *_external_workspace_ptr = nullptr; size_t _workspace_bytes = 0; bool _is_estimate_call = false; size_t _workspace_estimate_bytes = 0; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>> _desc_sr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>> _desc_dr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_sc; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_dc; }; using fft_engine_ptr = fft_engine *; } // namespace fft } // namespace dpct #endif // __DPCT_FFT_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/lib_common_utils.hpp
//==---- lib_common_utils.hpp ---------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LIB_COMMON_UTILS_HPP__ #define __DPCT_LIB_COMMON_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { namespace detail { template <typename T> inline auto get_memory(T *x) { #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<std::remove_cv_t<T>>(x); #else return x; #endif } template <typename T> inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) { using Ty = typename DataType<T>::T2; Ty s_h; detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), automatic).wait(); return s_h; } } enum class version_field : int { major, minor, update, patch }; /// Returns the requested field of Intel(R) oneAPI Math Kernel Library version. /// \param field The version information field (major, minor, update or patch). /// \param result The result value. inline void mkl_get_version(version_field field, int *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else MKLVersion version; mkl_get_version(&version); if (version_field::major == field) { *result = version.MajorVersion; } else if (version_field::minor == field) { *result = version.MinorVersion; } else if (version_field::update == field) { *result = version.UpdateVersion; } else if (version_field::patch == field) { *result = 0; } else { throw std::runtime_error("unknown field"); } #endif } enum class library_data_t : unsigned char { real_float = 0, complex_float, real_double, complex_double, real_half, complex_half, real_bfloat16, complex_bfloat16, real_int4, complex_int4, real_uint4, complex_uint4, real_int8, complex_int8, real_uint8, complex_uint8, real_int16, complex_int16, real_uint16, complex_uint16, real_int32, complex_int32, real_uint32, complex_uint32, real_int64, complex_int64, real_uint64, complex_uint64, real_int8_4, real_int8_32, real_uint8_4, library_data_t_size }; namespace detail { template <typename ArgT> inline constexpr std::uint64_t get_type_combination_id(ArgT Val) { static_assert((unsigned char)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT"); return (std::uint64_t)Val; } template <typename FirstT, typename... RestT> inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal, RestT... RestVal) { static_assert((std::uint8_t)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(sizeof...(RestT) <= 8 && "Too many parameters"); static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT"); return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal); } inline constexpr std::size_t library_data_size[] = { 8 * sizeof(float), // real_float 8 * sizeof(std::complex<float>), // complex_float 8 * sizeof(double), // real_double 8 * sizeof(std::complex<double>), // complex_double 8 * sizeof(sycl::half), // real_half 8 * sizeof(std::complex<sycl::half>), // complex_half 16, // real_bfloat16 16 * 2, // complex_bfloat16 4, // real_int4 4 * 2, // complex_int4 4, // real_uint4 4 * 2, // complex_uint4 8, // real_int8 8 * 2, // complex_int8 8, // real_uint8 8 * 2, // complex_uint8 16, // real_int16 16 * 2, // complex_int16 16, // real_uint16 16 * 2, // complex_uint16 32, // real_int32 32 * 2, // complex_int32 32, // real_uint32 32 * 2, // complex_uint32 64, // real_int64 64 * 2, // complex_int64 64, // real_uint64 64 * 2, // complex_uint64 8, // real_int8_4 8, // real_int8_32 8 // real_uint8_4 }; } // namespace detail } // namespace dpct #endif // __DPCT_LIB_COMMON_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/sparse_utils.hpp
//==---- sparse_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_SPARSE_UTILS_HPP__ #define __DPCT_SPARSE_UTILS_HPP__ #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace sparse { /// Describes properties of a sparse matrix. /// The properties are matrix type, diag, uplo and index base. class matrix_info { public: /// Matrix types are: /// ge: General matrix /// sy: Symmetric matrix /// he: Hermitian matrix /// tr: Triangular matrix enum class matrix_type : int { ge = 0, sy, he, tr }; auto get_matrix_type() const { return _matrix_type; } auto get_diag() const { return _diag; } auto get_uplo() const { return _uplo; } auto get_index_base() const { return _index_base; } void set_matrix_type(matrix_type mt) { _matrix_type = mt; } void set_diag(oneapi::mkl::diag d) { _diag = d; } void set_uplo(oneapi::mkl::uplo u) { _uplo = u; } void set_index_base(oneapi::mkl::index_base ib) { _index_base = ib; } private: matrix_type _matrix_type = matrix_type::ge; oneapi::mkl::diag _diag = oneapi::mkl::diag::nonunit; oneapi::mkl::uplo _uplo = oneapi::mkl::uplo::upper; oneapi::mkl::index_base _index_base = oneapi::mkl::index_base::zero; }; /// Computes a CSR format sparse matrix-dense vector product. /// y = alpha * op(A) * x + beta * y /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] num_rows Number of rows of the matrix A. /// \param [in] num_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] x Data of the vector x. /// \param [in] beta Scaling factor for the vector x. /// \param [in, out] y Data of the vector y. template <typename T> void csrmv(sycl::queue &queue, oneapi::mkl::transpose trans, int num_rows, int num_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *x, const T *beta, T *y) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, num_rows, num_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(x))); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::optimize_gemv(queue, trans, *sparse_matrix_handle); oneapi::mkl::sparse::gemv(queue, trans, alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::sy: { oneapi::mkl::sparse::symv(queue, info->get_uplo(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::tr: { oneapi::mkl::sparse::optimize_trmv(queue, info->get_uplo(), trans, info->get_diag(), *sparse_matrix_handle); oneapi::mkl::sparse::trmv(queue, info->get_uplo(), trans, info->get_diag(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } default: throw std::runtime_error( "the spmv does not support matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } /// Computes a CSR format sparse matrix-dense matrix product. /// C = alpha * op(A) * B + beta * C /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] sparse_rows Number of rows of the matrix A. /// \param [in] dense_cols Number of columns of the matrix B or C. /// \param [in] sparse_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] b Data of the matrix B. /// \param [in] ldb Leading dimension of the matrix B. /// \param [in] beta Scaling factor for the matrix B. /// \param [in, out] c Data of the matrix C. /// \param [in] ldc Leading dimension of the matrix C. template <typename T> void csrmm(sycl::queue &queue, oneapi::mkl::transpose trans, int sparse_rows, int dense_cols, int sparse_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *b, int ldb, const T *beta, T *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, sparse_rows, sparse_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(b))); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::gemm(queue, oneapi::mkl::layout::row_major, trans, oneapi::mkl::transpose::nontrans, alpha_value, *sparse_matrix_handle, data_b, dense_cols, ldb, beta_value, data_c, ldc); break; } default: throw std::runtime_error( "the csrmm does not support matrix_info::matrix_type::sy, " "matrix_info::matrix_type::tr and matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Saving the optimization information for solving a system of linear /// equations. class optimize_info { public: /// Constructor optimize_info() { oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); } /// Destructor ~optimize_info() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destructor. /// \param [in] e The event which the destructor depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } private: oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; }; #endif #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Performs internal optimizations for solving a system of linear equations for /// a CSR format sparse matrix. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the sparse matrix. /// \param [in] row_col Number of rows of the sparse matrix. /// \param [in] info Matrix info of the sparse matrix. /// \param [in] val An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] optimize_info The result of the optimizations. template <typename T> void optimize_csrsv(sycl::queue &queue, oneapi::mkl::transpose trans, int row_col, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, std::shared_ptr<optimize_info> optimize_info) { using Ty = typename dpct::DataType<T>::T2; auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, optimize_info->get_matrix_handle(), row_col, row_col, info->get_index_base(), data_row_ptr, data_col_ind, data_val); if (info->get_matrix_type() != matrix_info::matrix_type::tr) return; #ifndef DPCT_USM_LEVEL_NONE sycl::event e; e = #endif oneapi::mkl::sparse::optimize_trsv(queue, info->get_uplo(), trans, info->get_diag(), optimize_info->get_matrix_handle()); #ifndef DPCT_USM_LEVEL_NONE optimize_info->add_dependency(e); #endif } #endif class sparse_matrix_desc; using sparse_matrix_desc_t = std::shared_ptr<sparse_matrix_desc>; /// Structure for describe a dense vector class dense_vector_desc { public: dense_vector_desc(std::int64_t ele_num, void *value, library_data_t value_type) : _ele_num(ele_num), _value(value), _value_type(value_type) {} void get_desc(std::int64_t *ele_num, const void **value, library_data_t *value_type) const noexcept { *ele_num = _ele_num; *value = _value; *value_type = _value_type; } void get_desc(std::int64_t *ele_num, void **value, library_data_t *value_type) const noexcept { get_desc(ele_num, const_cast<const void **>(value), value_type); } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } private: std::int64_t _ele_num; void *_value; library_data_t _value_type; }; /// Structure for describe a dense matrix class dense_matrix_desc { public: dense_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t leading_dim, void *value, library_data_t value_type, oneapi::mkl::layout layout) : _row_num(row_num), _col_num(col_num), _leading_dim(leading_dim), _value(value), _value_type(value_type), _layout(layout) {} void get_desc(std::int64_t *row_num, std::int64_t *col_num, std::int64_t *leading_dim, void **value, library_data_t *value_type, oneapi::mkl::layout *layout) const noexcept { *row_num = _row_num; *col_num = _col_num; *leading_dim = _leading_dim; *value = _value; *value_type = _value_type; *layout = _layout; } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } std::int64_t get_col_num() const noexcept { return _col_num; } std::int64_t get_leading_dim() const noexcept { return _leading_dim; } oneapi::mkl::layout get_layout() const noexcept { return _layout; } private: std::int64_t _row_num; std::int64_t _col_num; std::int64_t _leading_dim; void *_value; library_data_t _value_type; oneapi::mkl::layout _layout; }; /// Sparse matrix data format enum matrix_format : int { csr = 1, }; /// Sparse matrix attribute enum matrix_attribute : int { uplo = 0, diag }; #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Structure for describe a sparse matrix class sparse_matrix_desc { public: /// Constructor /// \param [out] desc The descriptor to be created /// \param [in] row_num Number of rows of the sparse matrix. /// \param [in] col_num Number of colums of the sparse matrix. /// \param [in] nnz Non-zero elements in the sparse matrix. /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr_type Data type of the \p row_ptr . /// \param [in] col_ind_type Data type of the \p col_ind . /// \param [in] base Indicates how input arrays are indexed. /// \param [in] value_type Data type of the \p value . /// \param [in] data_format The matrix data format. sparse_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t nnz, void *row_ptr, void *col_ind, void *value, library_data_t row_ptr_type, library_data_t col_ind_type, oneapi::mkl::index_base base, library_data_t value_type, matrix_format data_format) : _row_num(row_num), _col_num(col_num), _nnz(nnz), _row_ptr(row_ptr), _col_ind(col_ind), _value(value), _row_ptr_type(row_ptr_type), _col_ind_type(col_ind_type), _base(base), _value_type(value_type), _data_format(data_format) { if (_data_format != matrix_format::csr) { throw std::runtime_error("the sparse matrix data format is unsupported"); } oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); construct(); } /// Destructor ~sparse_matrix_desc() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destroy method. /// \param [in] e The event which the destroy method depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } /// Get the values saved in the descriptor /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. /// \param [out] row_ptr An array of length \p row_num + 1. /// \param [out] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] value An array containing the non-zero elements of the sparse matrix. /// \param [out] row_ptr_type Data type of the \p row_ptr . /// \param [out] col_ind_type Data type of the \p col_ind . /// \param [out] base Indicates how input arrays are indexed. /// \param [out] value_type Data type of the \p value . void get_desc(int64_t *row_num, int64_t *col_num, int64_t *nnz, void **row_ptr, void **col_ind, void **value, library_data_t *row_ptr_type, library_data_t *col_ind_type, oneapi::mkl::index_base *base, library_data_t *value_type) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; *row_ptr = _row_ptr; *col_ind = _col_ind; *value = _value; *row_ptr_type = _row_ptr_type; *col_ind_type = _col_ind_type; *base = _base; *value_type = _value_type; } /// Get the sparse matrix data format of this descriptor /// \param [out] format The matrix data format result void get_format(matrix_format *data_format) const noexcept { *data_format = _data_format; } /// Get the index base of this descriptor /// \param [out] base The index base result void get_base(oneapi::mkl::index_base *base) const noexcept { *base = _base; } /// Get the value pointer of this descriptor /// \param [out] value The value pointer result void get_value(void **value) const noexcept { *value = _value; } /// Set the value pointer of this descriptor /// \param [in] value The input value pointer void set_value(void *value) { // Assume the new data is different from the old data _value = value; construct(); } /// Get the size of the sparse matrix /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. void get_size(int64_t *row_num, int64_t *col_num, int64_t *nnz) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; } /// Set the sparse matrix attribute /// \param [in] attribute The attribute type /// \param [in] data The attribute value /// \param [in] data_size The data size of the attribute value void set_attribute(matrix_attribute attribute, const void *data, size_t data_size) { if (attribute == matrix_attribute::diag) { const oneapi::mkl::diag *diag_ptr = reinterpret_cast<const oneapi::mkl::diag *>(data); if (*diag_ptr == oneapi::mkl::diag::unit) { _diag = oneapi::mkl::diag::unit; } else if (*diag_ptr == oneapi::mkl::diag::nonunit) { _diag = oneapi::mkl::diag::nonunit; } else { throw std::runtime_error("unsupported diag value"); } } else if (attribute == matrix_attribute::uplo) { const oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<const oneapi::mkl::uplo *>(data); if (*uplo_ptr == oneapi::mkl::uplo::upper) { _uplo = oneapi::mkl::uplo::upper; } else if (*uplo_ptr == oneapi::mkl::uplo::lower) { _uplo = oneapi::mkl::uplo::lower; } else { throw std::runtime_error("unsupported uplo value"); } } else { throw std::runtime_error("unsupported attribute"); } } /// Get the sparse matrix attribute /// \param [out] attribute The attribute type /// \param [out] data The attribute value /// \param [out] data_size The data size of the attribute value void get_attribute(matrix_attribute attribute, void *data, size_t data_size) const { if (attribute == matrix_attribute::diag) { oneapi::mkl::diag *diag_ptr = reinterpret_cast<oneapi::mkl::diag *>(data); if (_diag.has_value()) { *diag_ptr = _diag.value(); } else { *diag_ptr = oneapi::mkl::diag::nonunit; } } else if (attribute == matrix_attribute::uplo) { oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<oneapi::mkl::uplo *>(data); if (_uplo.has_value()) { *uplo_ptr = _uplo.value(); } else { *uplo_ptr = oneapi::mkl::uplo::lower; } } else { throw std::runtime_error("unsupported attribute"); } } /// Set the pointers for describing the sparse matrix /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. void set_pointers(void *row_ptr, void *col_ind, void *value) { // Assume the new data is different from the old data _row_ptr = row_ptr; _col_ind = col_ind; _value = value; construct(); } /// Get the diag attribute /// \return diag value std::optional<oneapi::mkl::diag> get_diag() const noexcept { return _diag; } /// Get the uplo attribute /// \return uplo value std::optional<oneapi::mkl::uplo> get_uplo() const noexcept { return _uplo; } private: template <typename index_t, typename value_t> void set_data() { auto data_row_ptr = dpct::detail::get_memory(reinterpret_cast<index_t *>(_row_ptr)); auto data_col_ind = dpct::detail::get_memory(reinterpret_cast<index_t *>(_col_ind)); auto data_value = dpct::detail::get_memory(reinterpret_cast<value_t *>(_value)); oneapi::mkl::sparse::set_csr_data(get_default_queue(), _matrix_handle, _row_num, _col_num, _base, data_row_ptr, data_col_ind, data_value); get_default_queue().wait(); } void construct() { std::uint64_t key = dpct::detail::get_type_combination_id( _row_ptr_type, _col_ind_type, _value_type); switch (key) { case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_float): { set_data<std::int32_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_double): { set_data<std::int32_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_float): { set_data<std::int32_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_double): { set_data<std::int32_t, std::complex<double>>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_float): { set_data<std::int64_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_double): { set_data<std::int64_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_float): { set_data<std::int64_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_double): { set_data<std::int64_t, std::complex<double>>(); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } std::int64_t _row_num; std::int64_t _col_num; std::int64_t _nnz; void *_row_ptr; void *_col_ind; void *_value; library_data_t _row_ptr_type; library_data_t _col_ind_type; oneapi::mkl::index_base _base; library_data_t _value_type; oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; matrix_format _data_format; std::optional<oneapi::mkl::uplo> _uplo; std::optional<oneapi::mkl::diag> _diag; }; namespace detail { #ifdef DPCT_USM_LEVEL_NONE #define SPARSE_CALL(X) \ do { \ X; \ } while (0) #else #define SPARSE_CALL(X) \ do { \ sycl::event e = X; \ a->add_dependency(e); \ } while (0) #endif template <typename Ty> inline void spmv_impl(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(x->get_value())); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y->get_value())); if (a->get_diag().has_value() && a->get_uplo().has_value()) { oneapi::mkl::sparse::optimize_trmv(queue, a->get_uplo().value(), trans, a->get_diag().value(), a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::trmv( queue, a->get_uplo().value(), trans, a->get_diag().value(), alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } else { oneapi::mkl::sparse::optimize_gemv(queue, trans, a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::gemv(queue, trans, alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } } template <typename Ty> inline void spmm_impl(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(b->get_value())); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c->get_value())); SPARSE_CALL(oneapi::mkl::sparse::gemm( queue, b->get_layout(), trans_a, trans_b, alpha_value, a->get_matrix_handle(), data_b, b->get_col_num(), b->get_leading_dim(), beta_value, data_c, c->get_leading_dim())); } #undef SPARSE_CALL } // namespace detail /// Computes a sparse matrix-dense vector product: y = alpha * op(a) * x + beta * y. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans Specifies operation on input matrix. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] x Specifies the dense vector x. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] y Specifies the dense vector y. /// \param [in] data_type Specifies the data type of \param a, \param x and \param y . inline void spmv(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y, library_data_t data_type) { switch (data_type) { case library_data_t::real_float: { detail::spmv_impl<float>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::real_double: { detail::spmv_impl<double>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_float: { detail::spmv_impl<std::complex<float>>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_double: { detail::spmv_impl<std::complex<double>>(queue, trans, alpha, a, x, beta, y); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a sparse matrix-dense matrix product: c = alpha * op(a) * op(b) + beta * c. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans_a Specifies operation on input matrix a. /// \param [in] trans_b Specifies operation on input matrix b. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] b Specifies the dense matrix b. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] c Specifies the dense matrix c. /// \param [in] data_type Specifies the data type of \param a, \param b and \param c . inline void spmm(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c, library_data_t data_type) { if (b->get_layout() != c->get_layout()) throw std::runtime_error("the layout of b and c are different"); switch (data_type) { case library_data_t::real_float: { detail::spmm_impl<float>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::real_double: { detail::spmm_impl<double>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_float: { detail::spmm_impl<std::complex<float>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_double: { detail::spmm_impl<std::complex<double>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } #endif } // namespace sparse } // namespace dpct #endif // __DPCT_SPARSE_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/device.hpp
//==---- device.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DEVICE_HPP__ #define __DPCT_DEVICE_HPP__ #include <sycl/sycl.hpp> #include <algorithm> #include <array> #include <cstring> #include <iostream> #include <mutex> #include <set> #include <sstream> #include <map> #include <vector> #include <thread> #if defined(__linux__) #include <unistd.h> #include <sys/syscall.h> #endif #if defined(_WIN64) #define NOMINMAX #include <windows.h> #endif namespace dpct { /// SYCL default exception handler inline auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught asynchronous SYCL exception:" << std::endl << e.what() << std::endl << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; } } }; typedef sycl::event *event_ptr; typedef sycl::queue *queue_ptr; typedef char *device_ptr; /// Destroy \p event pointed memory. /// /// \param event Pointer to the sycl::event address. static void destroy_event(event_ptr event) { delete event; } class device_info { public: // get interface const char *get_name() const { return _name; } char *get_name() { return _name; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() const { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } bool get_host_unified_memory() const { return _host_unified_memory; } int get_major_version() const { return _major; } int get_minor_version() const { return _minor; } int get_integrated() const { return _integrated; } int get_max_clock_frequency() const { return _frequency; } int get_max_compute_units() const { return _max_compute_units; } int get_max_work_group_size() const { return _max_work_group_size; } int get_max_sub_group_size() const { return _max_sub_group_size; } int get_max_work_items_per_compute_unit() const { return _max_work_items_per_compute_unit; } int get_max_register_size_per_work_group() const { return _max_register_size_per_work_group; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() const { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } size_t get_global_mem_size() const { return _global_mem_size; } size_t get_local_mem_size() const { return _local_mem_size; } /// Returns the maximum clock rate of device's global memory in kHz. If /// compiler does not support this API then returns default value 3200000 kHz. unsigned int get_memory_clock_rate() const { return _memory_clock_rate; } /// Returns the maximum bus width between device and memory in bits. If /// compiler does not support this API then returns default value 64 bits. unsigned int get_memory_bus_width() const { return _memory_bus_width; } uint32_t get_device_id() const { return _device_id; } std::array<unsigned char, 16> get_uuid() const { return _uuid; } // set interface void set_name(const char* name) { size_t length = strlen(name); if (length < 256) { std::memcpy(_name, name, length + 1); } else { std::memcpy(_name, name, 255); _name[255] = '\0'; } } void set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) { _max_work_item_sizes = max_work_item_sizes; for (int i = 0; i < 3; ++i) _max_work_item_sizes_i[i] = max_work_item_sizes[i]; } void set_host_unified_memory(bool host_unified_memory) { _host_unified_memory = host_unified_memory; } void set_major_version(int major) { _major = major; } void set_minor_version(int minor) { _minor = minor; } void set_integrated(int integrated) { _integrated = integrated; } void set_max_clock_frequency(int frequency) { _frequency = frequency; } void set_max_compute_units(int max_compute_units) { _max_compute_units = max_compute_units; } void set_global_mem_size(size_t global_mem_size) { _global_mem_size = global_mem_size; } void set_local_mem_size(size_t local_mem_size) { _local_mem_size = local_mem_size; } void set_max_work_group_size(int max_work_group_size) { _max_work_group_size = max_work_group_size; } void set_max_sub_group_size(int max_sub_group_size) { _max_sub_group_size = max_sub_group_size; } void set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) { _max_work_items_per_compute_unit = max_work_items_per_compute_unit; } void set_max_nd_range_size(int max_nd_range_size[]) { for (int i = 0; i < 3; i++) { _max_nd_range_size[i] = max_nd_range_size[i]; _max_nd_range_size_i[i] = max_nd_range_size[i]; } } void set_memory_clock_rate(unsigned int memory_clock_rate) { _memory_clock_rate = memory_clock_rate; } void set_memory_bus_width(unsigned int memory_bus_width) { _memory_bus_width = memory_bus_width; } void set_max_register_size_per_work_group(int max_register_size_per_work_group) { _max_register_size_per_work_group = max_register_size_per_work_group; } void set_device_id(uint32_t device_id) { _device_id = device_id; } void set_uuid(std::array<unsigned char, 16> uuid) { _uuid = std::move(uuid); } private: char _name[256]; sycl::id<3> _max_work_item_sizes; int _max_work_item_sizes_i[3]; bool _host_unified_memory = false; int _major; int _minor; int _integrated = 0; int _frequency; // Set estimated value 3200000 kHz as default value. unsigned int _memory_clock_rate = 3200000; // Set estimated value 64 bits as default value. unsigned int _memory_bus_width = 64; int _max_compute_units; int _max_work_group_size; int _max_sub_group_size; int _max_work_items_per_compute_unit; int _max_register_size_per_work_group; size_t _global_mem_size; size_t _local_mem_size; size_t _max_nd_range_size[3]; int _max_nd_range_size_i[3]; uint32_t _device_id; std::array<unsigned char, 16> _uuid; }; /// dpct device extension class device_ext : public sycl::device { typedef std::mutex mutex_type; public: device_ext() : sycl::device(), _ctx(*this) {} ~device_ext() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); } device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) { std::lock_guard<mutex_type> lock(m_mutex); init_queues(); } int is_native_atomic_supported() { return 0; } int get_major_version() const { int major, minor; get_version(major, minor); return major; } int get_minor_version() const { int major, minor; get_version(major, minor); return minor; } int get_max_compute_units() const { return get_device_info().get_max_compute_units(); } /// Return the maximum clock frequency of this device in KHz. int get_max_clock_frequency() const { return get_device_info().get_max_clock_frequency(); } int get_integrated() const { return get_device_info().get_integrated(); } int get_max_sub_group_size() const { return get_device_info().get_max_sub_group_size(); } int get_max_register_size_per_work_group() const { return get_device_info().get_max_register_size_per_work_group(); } int get_max_work_group_size() const { return get_device_info().get_max_work_group_size(); } int get_mem_base_addr_align() const { return get_info<sycl::info::device::mem_base_addr_align>(); } size_t get_global_mem_size() const { return get_device_info().get_global_mem_size(); } /// Get the number of bytes of free and total memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; } else { free_memory = get_info<sycl::ext::intel::info::device::free_memory>(); } #else std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const { device_info prop; prop.set_name(get_info<sycl::info::device::name>().c_str()); int major, minor; get_version(major, minor); prop.set_major_version(major); prop.set_minor_version(minor); prop.set_max_work_item_sizes( #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION<20220902) // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes is an enum class element get_info<sycl::info::device::max_work_item_sizes>()); #else // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by an int get_info<sycl::info::device::max_work_item_sizes<3>>()); #endif prop.set_host_unified_memory( this->has(sycl::aspect::usm_host_allocations)); prop.set_max_clock_frequency( get_info<sycl::info::device::max_clock_frequency>() * 1000); prop.set_max_compute_units( get_info<sycl::info::device::max_compute_units>()); prop.set_max_work_group_size( get_info<sycl::info::device::max_work_group_size>()); prop.set_global_mem_size( get_info<sycl::info::device::global_mem_size>()); prop.set_local_mem_size(get_info<sycl::info::device::local_mem_size>()); #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6) if (this->has(sycl::aspect::ext_intel_memory_clock_rate)) { unsigned int tmp = this->get_info<sycl::ext::intel::info::device::memory_clock_rate>(); if (tmp != 0) prop.set_memory_clock_rate(1000 * tmp); } if (this->has(sycl::aspect::ext_intel_memory_bus_width)) { prop.set_memory_bus_width( this->get_info<sycl::ext::intel::info::device::memory_bus_width>()); } if (this->has(sycl::aspect::ext_intel_device_id)) { prop.set_device_id( this->get_info<sycl::ext::intel::info::device::device_id>()); } if (this->has(sycl::aspect::ext_intel_device_info_uuid)) { prop.set_uuid( this->get_info<sycl::ext::intel::info::device::uuid>()); } #elif defined(_MSC_VER) && !defined(__clang__) #pragma message("get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value.") #else #warning "get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value." #endif size_t max_sub_group_size = 1; std::vector<size_t> sub_group_sizes = get_info<sycl::info::device::sub_group_sizes>(); for (const auto &sub_group_size : sub_group_sizes) { if (max_sub_group_size < sub_group_size) max_sub_group_size = sub_group_size; } prop.set_max_sub_group_size(max_sub_group_size); prop.set_max_work_items_per_compute_unit( get_info<sycl::info::device::max_work_group_size>()); int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; prop.set_max_nd_range_size(max_nd_range_size); // Estimates max register size per work group, feel free to update the value // according to device properties. prop.set_max_register_size_per_work_group(65536); out = prop; } device_info get_device_info() const { device_info prop; get_device_info(prop); return prop; } void reset() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); init_queues(); } sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue &out_of_order_queue() { return *_q_out_of_order; } sycl::queue &default_queue() { #ifdef DPCT_USM_LEVEL_NONE return out_of_order_queue(); #else return in_order_queue(); #endif // DPCT_USM_LEVEL_NONE } void queues_wait_and_throw() { std::unique_lock<mutex_type> lock(m_mutex); std::vector<std::shared_ptr<sycl::queue>> current_queues( _queues); lock.unlock(); for (const auto &q : current_queues) { q->wait_and_throw(); } // Guard the destruct of current_queues to make sure the ref count is safe. lock.lock(); } sycl::queue *create_queue(bool enable_exception_handler = false) { #ifdef DPCT_USM_LEVEL_NONE return create_out_of_order_queue(enable_exception_handler); #else return create_in_order_queue(enable_exception_handler); #endif // DPCT_USM_LEVEL_NONE } sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler, sycl::property::queue::in_order()); } sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler); } void destroy_queue(sycl::queue *&queue) { std::lock_guard<mutex_type> lock(m_mutex); _queues.erase(std::remove_if(_queues.begin(), _queues.end(), [=](const std::shared_ptr<sycl::queue> &q) -> bool { return q.get() == queue; }), _queues.end()); queue = nullptr; } void set_saved_queue(sycl::queue* q) { std::lock_guard<mutex_type> lock(m_mutex); _saved_queue = q; } sycl::queue *get_saved_queue() const { std::lock_guard<mutex_type> lock(m_mutex); return _saved_queue; } sycl::context get_context() const { return _ctx; } private: void clear_queues() { _queues.clear(); _q_in_order = _q_out_of_order = _saved_queue = nullptr; } void init_queues() { _q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); _q_out_of_order = create_queue_impl(true); _saved_queue = &default_queue(); } /// Caller should acquire resource \p m_mutex before calling this function. template <class... Properties> sycl::queue *create_queue_impl(bool enable_exception_handler, Properties... properties) { sycl::async_handler eh = {}; if (enable_exception_handler) { eh = exception_handler; } _queues.push_back(std::make_shared<sycl::queue>( _ctx, *this, eh, sycl::property_list( #ifdef DPCT_PROFILING_ENABLED sycl::property::queue::enable_profiling(), #endif properties...))); return _queues.back().get(); } void get_version(int &major, int &minor) const { // Version string has the following format: // a. OpenCL<space><major.minor><space><vendor-specific-information> // b. <major.minor> std::string ver; ver = get_info<sycl::info::device::version>(); std::string::size_type i = 0; while (i < ver.size()) { if (isdigit(ver[i])) break; i++; } major = std::stoi(&(ver[i])); while (i < ver.size()) { if (ver[i] == '.') break; i++; } i++; minor = std::stoi(&(ver[i])); } sycl::queue *_q_in_order, *_q_out_of_order; sycl::queue *_saved_queue; sycl::context _ctx; std::vector<std::shared_ptr<sycl::queue>> _queues; mutable mutex_type m_mutex; }; static inline unsigned int get_tid() { #if defined(__linux__) return syscall(SYS_gettid); #elif defined(_WIN64) return GetCurrentThreadId(); #else #error "Only support Windows and Linux." #endif } /// device manager class dev_mgr { public: device_ext &current_device() { unsigned int dev_id=current_device_id(); check_id(dev_id); return *_devs[dev_id]; } device_ext &cpu_device() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); if (_cpu_device == -1) { throw std::runtime_error("no valid cpu device"); } else { return *_devs[_cpu_device]; } } device_ext &get_device(unsigned int id) const { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); return *_devs[id]; } unsigned int current_device_id() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); auto it=_thread2dev_map.find(get_tid()); if(it != _thread2dev_map.end()) return it->second; return DEFAULT_DEVICE_ID; } /// Select device with a device ID. /// \param [in] id The id of the device which can /// be obtained through get_device_id(const sycl::device). void select_device(unsigned int id) { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); _thread2dev_map[get_tid()]=id; } unsigned int device_count() { return _devs.size(); } unsigned int get_device_id(const sycl::device &dev) { unsigned int id = 0; for(auto dev_item : _devs) { if (*dev_item == dev) { break; } id++; } return id; } template <class DeviceSelector> std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { sycl::device selected_device = sycl::device(selector); unsigned int selected_device_id = get_device_id(selected_device); select_device(selected_device_id); } /// Returns the instance of device manager singleton. static dev_mgr &instance() { static dev_mgr d_m; return d_m; } dev_mgr(const dev_mgr &) = delete; dev_mgr &operator=(const dev_mgr &) = delete; dev_mgr(dev_mgr &&) = delete; dev_mgr &operator=(dev_mgr &&) = delete; private: mutable std::recursive_mutex m_mutex; dev_mgr() { sycl::device default_device = sycl::device(sycl::default_selector_v); _devs.push_back(std::make_shared<device_ext>(default_device)); std::vector<sycl::device> sycl_all_devs = sycl::device::get_devices(sycl::info::device_type::all); // Collect other devices except for the default device. if (default_device.is_cpu()) _cpu_device = 0; for (auto &dev : sycl_all_devs) { if (dev == default_device) { continue; } _devs.push_back(std::make_shared<device_ext>(dev)); if (_cpu_device == -1 && dev.is_cpu()) { _cpu_device = _devs.size() - 1; } } } void check_id(unsigned int id) const { if (id >= _devs.size()) { throw std::runtime_error("invalid device id"); } } std::vector<std::shared_ptr<device_ext>> _devs; /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current /// thread id in _thread2dev_map, which means default device should be used /// for the current thread. const unsigned int DEFAULT_DEVICE_ID = 0; /// thread-id to device-id map. std::map<unsigned int, unsigned int> _thread2dev_map; int _cpu_device = -1; }; /// Util function to get the default queue of current selected device depends on /// the USM config. Return the default out-of-ordered queue when USM-none is /// enabled, otherwise return the default in-ordered queue. static inline sycl::queue &get_default_queue() { return dev_mgr::instance().current_device().default_queue(); } /// Util function to get the default in-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_in_order_queue() { return dev_mgr::instance().current_device().in_order_queue(); } /// Util function to get the default out-of-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_out_of_order_queue() { return dev_mgr::instance().current_device().out_of_order_queue(); } /// Util function to get the id of current device in /// dpct device manager. static inline unsigned int get_current_device_id() { return dev_mgr::instance().current_device_id(); } /// Util function to get the current device. static inline device_ext &get_current_device() { return dev_mgr::instance().current_device(); } /// Util function to get a device by id. static inline device_ext &get_device(unsigned int id) { return dev_mgr::instance().get_device(id); } /// Util function to get the context of the default queue of current /// device in dpct device manager. static inline sycl::context get_default_context() { return dpct::get_current_device().get_context(); } /// Util function to get a CPU device. static inline device_ext &cpu_device() { return dev_mgr::instance().cpu_device(); } static inline unsigned int select_device(unsigned int id) { dev_mgr::instance().select_device(id); return id; } template <class DeviceSelector> static inline std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { dev_mgr::instance().select_device(selector); } static inline unsigned int get_device_id(const sycl::device &dev){ return dev_mgr::instance().get_device_id(dev); } /// Util function to check whether a device supports some kinds of sycl::aspect. inline void has_capability_or_fail(const sycl::device &dev, const std::initializer_list<sycl::aspect> &props) { for (const auto &it : props) { if (dev.has(it)) continue; switch (it) { case sycl::aspect::fp64: throw std::runtime_error("'double' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; case sycl::aspect::fp16: throw std::runtime_error("'half' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; default: #define __SYCL_ASPECT(ASPECT, ID) \ case sycl::aspect::ASPECT: \ return #ASPECT; #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID) #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE) auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string { switch (AspectNum) { #include <sycl/info/aspects.def> #include <sycl/info/aspects_deprecated.def> default: return "unknown aspect"; } }; #undef __SYCL_ASPECT_DEPRECATED_ALIAS #undef __SYCL_ASPECT_DEPRECATED #undef __SYCL_ASPECT throw std::runtime_error( "'" + getAspectNameStr(it) + "' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); } break; } } } // namespace dpct #endif // __DPCT_DEVICE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/memory.hpp
//==---- memory.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_HPP__ #define __DPCT_MEMORY_HPP__ #include "device.hpp" #include <sycl/sycl.hpp> #include <cassert> #include <cstdint> #include <cstring> #include <mutex> #include <unordered_map> #include <map> #include <utility> #include <thread> #include <type_traits> #if defined(__linux__) #include <sys/mman.h> #elif defined(_WIN64) #define NOMINMAX #include <windows.h> #else #error "Only support Windows and Linux." #endif namespace dpct { enum memcpy_direction { host_to_host, host_to_device, device_to_host, device_to_device, automatic }; enum memory_region { global = 0, // device global memory constant, // device constant memory local, // device local memory shared, // memory which can be accessed by host and device }; typedef uint8_t byte_t; /// Buffer type to be used in Memory Management runtime. typedef sycl::buffer<byte_t> buffer_t; /// Pitched 2D/3D memory data. class pitched_data { public: pitched_data() : pitched_data(nullptr, 0, 0, 0) {} pitched_data(void *data, size_t pitch, size_t x, size_t y) : _data(data), _pitch(pitch), _x(x), _y(y) {} void *get_data_ptr() { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_pitch() { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } size_t get_x() { return _x; } void set_x(size_t x) { _x = x; }; size_t get_y() { return _y; } void set_y(size_t y) { _y = y; } private: void *_data; size_t _pitch, _x, _y; }; namespace detail { class mem_mgr { mem_mgr() { // Reserved address space, no real memory allocation happens here. #if defined(__linux__) mapped_address_space = (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif defined(_WIN64) mapped_address_space = (byte_t *)VirtualAlloc( NULL, // NULL specified as the base address parameter mapped_region_size, // Size of allocation MEM_RESERVE, // Allocate reserved pages PAGE_NOACCESS); // Protection = no access #else #error "Only support Windows and Linux." #endif next_free = mapped_address_space; }; public: using buffer_id_t = int; struct allocation { buffer_t buffer; byte_t *alloc_ptr; size_t size; }; ~mem_mgr() { #if defined(__linux__) munmap(mapped_address_space, mapped_region_size); #elif defined(_WIN64) VirtualFree(mapped_address_space, 0, MEM_RELEASE); #else #error "Only support Windows and Linux." #endif }; mem_mgr(const mem_mgr &) = delete; mem_mgr &operator=(const mem_mgr &) = delete; mem_mgr(mem_mgr &&) = delete; mem_mgr &operator=(mem_mgr &&) = delete; /// Allocate void *mem_alloc(size_t size) { if (!size) return nullptr; std::lock_guard<std::mutex> lock(m_mutex); if (next_free + size > mapped_address_space + mapped_region_size) { throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool"); } // Allocation sycl::range<1> r(size); buffer_t buf(r); allocation A{buf, next_free, size}; // Map allocation to device pointer void *result = next_free; m_map.emplace(next_free + size, A); // Update pointer to the next free space. next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1); return result; } /// Deallocate void mem_free(const void *ptr) { if (!ptr) return; std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); m_map.erase(it); } /// map: device pointer -> allocation(buffer, alloc_ptr, size) allocation translate_ptr(const void *ptr) { std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); return it->second; } /// Check if the pointer represents device pointer or not. bool is_device_ptr(const void *ptr) const { std::lock_guard<std::mutex> lock(m_mutex); return (mapped_address_space <= ptr) && (ptr < mapped_address_space + mapped_region_size); } /// Returns the instance of memory manager singleton. static mem_mgr &instance() { static mem_mgr m; return m; } private: std::map<byte_t *, allocation> m_map; mutable std::mutex m_mutex; byte_t *mapped_address_space; byte_t *next_free; const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024; const size_t alignment = 256; /// This padding may be defined to some positive value to debug /// out of bound accesses. const size_t extra_padding = 0; std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr) { auto it = m_map.upper_bound((byte_t *)ptr); if (it == m_map.end()) { // Not a virtual pointer. throw std::runtime_error("can not get buffer from non-virtual pointer"); } const allocation &alloc = it->second; if (ptr < alloc.alloc_ptr) { // Out of bound. // This may happen if there's a gap between allocations due to alignment // or extra padding and pointer points to this gap. throw std::runtime_error("invalid virtual pointer"); } return it; } }; template <class T, memory_region Memory, size_t Dimension> class accessor; template <memory_region Memory, class T = byte_t> class memory_traits { public: static constexpr sycl::access::target target = sycl::access::target::device; static constexpr sycl::access_mode mode = (Memory == constant) ? sycl::access_mode::read : sycl::access_mode::read_write; static constexpr size_t type_size = sizeof(T); using element_t = typename std::conditional<Memory == constant, const T, T>::type; using value_t = typename std::remove_cv<T>::type; template <size_t Dimension = 1> using accessor_t = typename std::conditional< Memory == local, sycl::local_accessor<value_t, Dimension>, sycl::accessor<T, Dimension, mode, target>>::type; using pointer_t = T *; }; static inline void *dpct_malloc(size_t size, sycl::queue &q) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().mem_alloc(size * sizeof(byte_t)); #else return sycl::malloc_device(size, q.get_device(), q.get_context()); #endif // DPCT_USM_LEVEL_NONE } #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F)) static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z, sycl::queue &q) { pitch = PITCH_DEFAULT_ALIGN(x); return dpct_malloc(pitch * y * z, q); } /// Set \p value to the first \p size bytes starting from \p dev_ptr in \p q. /// /// \param q The queue in which the operation is done. /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns An event representing the memset operation. static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr, int value, size_t size) { #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); assert(mm.is_device_ptr(dev_ptr)); auto alloc = mm.translate_ptr(dev_ptr); size_t offset = (byte_t *)dev_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.fill(acc, (byte_t)value); }); #else return q.memset(dev_ptr, value, size); #endif // DPCT_USM_LEVEL_NONE } /// Set \p value to the 3D memory region pointed by \p data in \p q. \p size /// specifies the 3D memory size to set. /// /// \param q The queue in which the operation is done. /// \param data Pointer to the device memory region. /// \param value Value to be set. /// \param size Memory region size. /// \returns An event list representing the memset operations. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, pitched_data data, int value, sycl::range<3> size) { std::vector<sycl::event> event_list; size_t slice = data.get_pitch() * data.get_y(); unsigned char *data_surface = (unsigned char *)data.get_data_ptr(); for (size_t z = 0; z < size.get(2); ++z) { unsigned char *data_ptr = data_surface; for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0))); data_ptr += data.get_pitch(); } data_surface += slice; } return event_list; } /// memset 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, void *ptr, size_t pitch, int val, size_t x, size_t y) { return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val, sycl::range<3>(x, y, 1)); } enum class pointer_access_attribute { host_only = 0, device_only, host_device, end }; static pointer_access_attribute get_pointer_attribute(sycl::queue &q, const void *ptr) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().is_device_ptr(ptr) ? pointer_access_attribute::device_only : pointer_access_attribute::host_only; #else switch (sycl::get_pointer_type(ptr, q.get_context())) { case sycl::usm::alloc::unknown: return pointer_access_attribute::host_only; case sycl::usm::alloc::device: return pointer_access_attribute::device_only; case sycl::usm::alloc::shared: case sycl::usm::alloc::host: return pointer_access_attribute::host_device; } #endif } static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr, const void *from_ptr, memcpy_direction dir) { switch (dir) { case memcpy_direction::host_to_host: case memcpy_direction::host_to_device: case memcpy_direction::device_to_host: case memcpy_direction::device_to_device: return dir; case memcpy_direction::automatic: { // table[to_attribute][from_attribute] static const memcpy_direction direction_table[static_cast<unsigned>(pointer_access_attribute::end)] [static_cast<unsigned>(pointer_access_attribute::end)] = {{memcpy_direction::host_to_host, memcpy_direction::device_to_host, memcpy_direction::host_to_host}, {memcpy_direction::host_to_device, memcpy_direction::device_to_device, memcpy_direction::device_to_device}, {memcpy_direction::host_to_host, memcpy_direction::device_to_device, memcpy_direction::device_to_device}}; return direction_table[static_cast<unsigned>(get_pointer_attribute( q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))]; } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } } static sycl::event dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { if (!size) return sycl::event{}; #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); switch (real_direction) { case host_to_host: return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); }); case host_to_device: { auto alloc = mm.translate_ptr(to_ptr); size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(from_ptr, acc); }); } case device_to_host: { auto alloc = mm.translate_ptr(from_ptr); size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(acc, to_ptr); }); } case device_to_device: { auto to_alloc = mm.translate_ptr(to_ptr); auto from_alloc = mm.translate_ptr(from_ptr); size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, r, to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, r, from_o); cgh.copy(from_acc, to_acc); }); } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } #else return q.memcpy(to_ptr, from_ptr, size, dep_events); #endif // DPCT_USM_LEVEL_NONE } // Get actual copy range and make sure it will not exceed range. static inline size_t get_copy_range(sycl::range<3> size, size_t slice, size_t pitch) { return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0); } static inline size_t get_offset(sycl::id<3> id, size_t slice, size_t pitch) { return slice * id.get(2) + pitch * id.get(1) + id.get(0); } /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr /// and \p from_range to another specified by \p to_ptr and \p to_range. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, sycl::range<3> to_range, sycl::range<3> from_range, sycl::id<3> to_id, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { // RAII for host pointer class host_buffer { void *_buf; size_t _size; sycl::queue &_q; const std::vector<sycl::event> &_deps; // free operation depends public: host_buffer(size_t size, sycl::queue &q, const std::vector<sycl::event> &deps) : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {} void *get_ptr() const { return _buf; } size_t get_size() const { return _size; } ~host_buffer() { if (_buf) { _q.submit([&](sycl::handler &cgh) { cgh.depends_on(_deps); cgh.host_task([buf = _buf] { std::free(buf); }); }); } } }; std::vector<sycl::event> event_list; size_t to_slice = to_range.get(1) * to_range.get(0), from_slice = from_range.get(1) * from_range.get(0); unsigned char *to_surface = (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0)); const unsigned char *from_surface = (const unsigned char *)from_ptr + get_offset(from_id, from_slice, from_range.get(0)); if (to_slice == from_slice && to_slice == size.get(1) * size.get(0)) { return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2), direction, dep_events)}; } direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); size_t size_slice = size.get(1) * size.get(0); switch (direction) { case host_to_host: for (size_t z = 0; z < size.get(2); ++z) { unsigned char *to_ptr = to_surface; const unsigned char *from_ptr = from_surface; if (to_range.get(0) == from_range.get(0) && to_range.get(0) == size.get(0)) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice, direction, dep_events)); } else { for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0), direction, dep_events)); to_ptr += to_range.get(0); from_ptr += from_range.get(0); } } to_surface += to_slice; from_surface += from_slice; } break; case host_to_device: { host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q, event_list); std::vector<sycl::event> host_events; if (to_slice == size_slice) { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, dep_events); } else { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy( q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // If has padding data, not sure whether it is useless. So fill temp // buffer with it. std::vector<sycl::event>{ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(), device_to_host, dep_events)}); } // Copy from temp host buffer to device with only one submit. event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(), buf.get_size(), host_to_device, host_events)); break; } case device_to_host: { host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q, event_list); // Copy from host temp buffer to host target with reshaping. event_list = dpct_memcpy( q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // Copy from device to temp host buffer with only one submit. std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface, buf.get_size(), device_to_host, dep_events)}); break; } case device_to_device: #ifdef DPCT_USM_LEVEL_NONE { auto &mm = mem_mgr::instance(); auto to_alloc = mm.translate_ptr(to_surface); auto from_alloc = mm.translate_ptr(from_surface); size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr; event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, get_copy_range(size, to_slice, to_range.get(0)), to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, get_copy_range(size, from_slice, from_range.get(0)), from_o); cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>( size, [=](sycl::id<3> id) { to_acc[get_offset(id, to_slice, to_range.get(0))] = from_acc[get_offset(id, from_slice, from_range.get(0))]; }); })); } #else event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.parallel_for<class dpct_memcpy_3d_detail>( size, [=](sycl::id<3> id) { to_surface[get_offset(id, to_slice, to_range.get(0))] = from_surface[get_offset(id, from_slice, from_range.get(0))]; }); })); #endif break; default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } return event_list; } /// memcpy 2D/3D matrix specified by pitched_data. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id, pitched_data from, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction = automatic) { return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(), sycl::range<3>(to.get_pitch(), to.get_y(), 1), sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id, size, direction); } /// memcpy 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t to_pitch, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic) { return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1), sycl::range<3>(from_pitch, y, 1), sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), sycl::range<3>(x, y, 1), direction); } namespace deprecated { template <typename T, sycl::usm::alloc AllocKind> class usm_allocator { private: using Alloc = sycl::usm_allocator<T, AllocKind>; Alloc _impl; public: using value_type = typename std::allocator_traits<Alloc>::value_type; using pointer = typename std::allocator_traits<Alloc>::pointer; using const_pointer = typename std::allocator_traits<Alloc>::const_pointer; using void_pointer = typename std::allocator_traits<Alloc>::void_pointer; using const_void_pointer = typename std::allocator_traits<Alloc>::const_void_pointer; using reference = typename std::allocator_traits<Alloc>::value_type &; using const_reference = const typename std::allocator_traits<Alloc>::value_type &; using difference_type = typename std::allocator_traits<Alloc>::difference_type; using size_type = typename std::allocator_traits<Alloc>::size_type; using propagate_on_container_copy_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_copy_assignment; using propagate_on_container_move_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_move_assignment; using propagate_on_container_swap = typename std::allocator_traits<Alloc>::propagate_on_container_swap; using is_always_equal = typename std::allocator_traits<Alloc>::is_always_equal; template <typename U> struct rebind { typedef usm_allocator<U, AllocKind> other; }; usm_allocator() : _impl(dpct::get_default_queue()) {} ~usm_allocator() {} usm_allocator(const usm_allocator &other) : _impl(other._impl) {} usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {} pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type cnt, const_void_pointer hint = nullptr) { return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint); } void deallocate(pointer p, size_type cnt) { std::allocator_traits<Alloc>::deallocate(_impl, p, cnt); } size_type max_size() const { return std::allocator_traits<Alloc>::max_size(_impl); } bool operator==(const usm_allocator &other) const { return _impl == other._impl; } bool operator!=(const usm_allocator &other) const { return _impl != other._impl; } }; } // namespace deprecated inline void dpct_free(void *ptr, const sycl::queue &q) { if (ptr) { #ifdef DPCT_USM_LEVEL_NONE detail::mem_mgr::instance().mem_free(ptr); #else sycl::free(ptr, q.get_context()); #endif // DPCT_USM_LEVEL_NONE } } } // namespace detail #ifdef DPCT_USM_LEVEL_NONE /// Check if the pointer \p ptr represents device pointer or not. /// /// \param ptr The pointer to be checked. /// \returns true if \p ptr is a device pointer. template<class T> static inline bool is_device_ptr(T ptr) { if constexpr (std::is_pointer<T>::value) { return detail::mem_mgr::instance().is_device_ptr(ptr); } return false; } #endif /// Get the buffer and the offset of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// If NULL is passed as an argument, an exception will be thrown. /// \returns a pair containing both the buffer and the offset. static std::pair<buffer_t, size_t> get_buffer_and_offset(const void *ptr) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); size_t offset = (byte_t *)ptr - alloc.alloc_ptr; return std::make_pair(alloc.buffer, offset); } else { throw std::runtime_error( "NULL pointer argument in get_buffer_and_offset function is invalid"); } } /// Get the data pointed from \p ptr as a 1D buffer reinterpreted as type T. template <typename T> static sycl::buffer<T> get_buffer(const void *ptr) { if (!ptr) return sycl::buffer<T>(sycl::range<1>(0)); auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.reinterpret<T>( sycl::range<1>(alloc.size / sizeof(T))); } /// Get the buffer of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// \returns the buffer. static buffer_t get_buffer(const void *ptr) { return detail::mem_mgr::instance().translate_ptr(ptr).buffer; } /// A wrapper class contains an accessor and an offset. template <typename dataT, sycl::access_mode accessMode = sycl::access_mode::read_write> class access_wrapper { sycl::accessor<byte_t, 1, accessMode> accessor; size_t offset; public: /// Construct the accessor wrapper for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// \param cgh The command group handler. access_wrapper(const void *ptr, sycl::handler &cgh) : accessor(get_buffer(ptr).get_access<accessMode>(cgh)), offset(0) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); offset = (byte_t *)ptr - alloc.alloc_ptr; } /// Get the device pointer. /// /// \returns a device pointer with offset. dataT get_raw_pointer() const { return (dataT)(&accessor[0] + offset); } }; /// Get the accessor for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// If NULL is passed as an argument, an exception will be thrown. /// \param cgh The command group handler. /// \returns an accessor. template <sycl::access_mode accessMode = sycl::access_mode::read_write> static sycl::accessor<byte_t, 1, accessMode> get_access(const void *ptr, sycl::handler &cgh) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.get_access<accessMode>(cgh); } else { throw std::runtime_error( "NULL pointer argument in get_access function is invalid"); } } /// Allocate memory block on the device. /// \param num_bytes Number of bytes to allocate. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. template <typename T> static inline void *dpct_malloc(T num_bytes, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(static_cast<size_t>(num_bytes), q); } /// Get the host pointer from a buffer that is mapped to virtual pointer ptr. /// \param ptr Virtual Pointer mapped to device buffer /// \returns A host pointer template <typename T> static inline T *get_host_ptr(const void *ptr) { auto BufferOffset = get_buffer_and_offset(ptr); auto host_ptr = BufferOffset.first.get_host_access() .get_pointer(); return (T *)(host_ptr + BufferOffset.second); } /// Allocate memory block for 3D array on the device. /// \param size Size of the memory block, in bytes. /// \param q Queue to execute the allocate task. /// \returns A pitched_data object which stores the memory info. static inline pitched_data dpct_malloc(sycl::range<3> size, sycl::queue &q = get_default_queue()) { pitched_data pitch(nullptr, 0, size.get(0), size.get(1)); size_t pitch_size; pitch.set_data_ptr(detail::dpct_malloc(pitch_size, size.get(0), size.get(1), size.get(2), q)); pitch.set_pitch(pitch_size); return pitch; } /// Allocate memory block for 2D array on the device. /// \param [out] pitch Aligned size of x in bytes. /// \param x Range in dim x. /// \param y Range in dim y. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(pitch, x, y, 1, q); } /// free /// \param ptr Point to free. /// \param q Queue to execute the free task. /// \returns no return value. static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) { detail::dpct_free(ptr, q); } /// Free the device memory pointed by a batch of pointers in \p pointers which /// are related to \p q after \p events completed. /// /// \param pointers The pointers point to the device memory requested to be freed. /// \param events The events to be waited. /// \param q The sycl::queue the memory relates to. inline void async_dpct_free(const std::vector<void *> &pointers, const std::vector<sycl::event> &events, sycl::queue &q = get_default_queue()) { q.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { for (auto p : pointers) if (p) { detail::dpct_free(p, q); } }); }); } /// Synchronously copies \p size bytes from the address specified by \p from_ptr /// to the address specified by \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, /// \a device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction).wait(); } /// Asynchronously copies \p size bytes from the address specified by \p /// from_ptr to the address specified by \p to_ptr. The value of \p direction is /// used to set the copy direction, it can be \a host_to_host, \a /// host_to_device, \a device_to_host, \a device_to_device or \a automatic. The /// return of the function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction); } /// Synchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait(detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction)); } /// Asynchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// \p from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The return of the /// function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction); } /// Synchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The function will return after the copy is completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait( detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction)); } /// Asynchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The return of the function does NOT guarantee the copy is /// completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction); } /// Synchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The function will return after the memset operation is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \param q The queue in which the operation is done. /// \returns no return value. static void dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size).wait(); } /// Asynchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The return of the function does NOT guarantee the memset operation /// is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns no return value. static void async_dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The function will return after the /// memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, ptr, pitch, val, x, y)); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, ptr, pitch, val, x, y); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The function will return after the /// memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, pitch, val, size)); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, pitch, val, size); } /// dpct accessor used as device function parameter. template <class T, memory_region Memory, size_t Dimension> class accessor; template <class T, memory_region Memory> class accessor<T, Memory, 3> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<3>; accessor(pointer_t data, const sycl::range<3> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<3> &in_range) : accessor(acc.get_pointer(), in_range) {} accessor<T, Memory, 2> operator[](size_t index) const { sycl::range<2> sub(_range.get(1), _range.get(2)); return accessor<T, Memory, 2>(_data + index * sub.size(), sub); } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<3> _range; }; template <class T, memory_region Memory> class accessor<T, Memory, 2> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<2>; accessor(pointer_t data, const sycl::range<2> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<2> &in_range) : accessor(acc.get_pointer(), in_range) {} pointer_t operator[](size_t index) const { return _data + _range.get(1) * index; } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<2> _range; }; namespace detail { /// Device variable with address space of shared, global or constant. template <class T, memory_region Memory, size_t Dimension> class device_memory { public: using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<Dimension>; using value_t = typename detail::memory_traits<Memory, T>::value_t; using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>; device_memory() : device_memory(sycl::range<Dimension>(1)) {} /// Constructor of 1-D array with initializer list device_memory( const sycl::range<Dimension> &in_range, std::initializer_list<value_t> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range.size()); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T)); } /// Constructor of 2-D array with initializer list template <size_t D = Dimension> device_memory( const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range, std::initializer_list<std::initializer_list<value_t>> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range[0]); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); auto tmp_data = _host_ptr; for (auto sub_list : init_list) { assert(sub_list.size() <= in_range[1]); std::memcpy(tmp_data, sub_list.begin(), sub_list.size() * sizeof(T)); tmp_data += in_range[1]; } } /// Constructor with range device_memory(const sycl::range<Dimension> &range_in) : _size(range_in.size() * sizeof(T)), _range(range_in), _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) { static_assert( (Memory == global) || (Memory == constant) || (Memory == shared), "device memory region should be global, constant or shared"); // Make sure that singleton class mem_mgr and dev_mgr will destruct later // than this. detail::mem_mgr::instance(); dev_mgr::instance(); } /// Constructor with range template <class... Args> device_memory(Args... Arguments) : device_memory(sycl::range<Dimension>(Arguments...)) {} ~device_memory() { if (_device_ptr && !_reference) dpct::dpct_free(_device_ptr); if (_host_ptr) std::free(_host_ptr); } /// Allocate memory with default queue, and init memory if has initial value. void init() { init(dpct::get_default_queue()); } /// Allocate memory with specified queue, and init memory if has initial value. void init(sycl::queue &q) { if (_device_ptr) return; if (!_size) return; allocate_device(q); if (_host_ptr) detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size, host_to_device); } /// The variable is assigned to a device pointer. void assign(value_t *src, size_t size) { this->~device_memory(); new (this) device_memory(src, size); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr() { return get_ptr(get_default_queue()); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr(sycl::queue &q) { init(q); return _device_ptr; } /// Get the device memory object size in bytes. size_t get_size() { return _size; } template <size_t D = Dimension> typename std::enable_if<D == 1, T>::type &operator[](size_t index) { init(); #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>( _device_ptr) .template get_access<sycl::access_mode::read_write>()[index]; #else return _device_ptr[index]; #endif // DPCT_USM_LEVEL_NONE } #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { return get_buffer(_device_ptr) .template reinterpret<T, Dimension>(_range) .template get_access<detail::memory_traits<Memory, T>::mode, detail::memory_traits<Memory, T>::target>(cgh); } #else /// Get dpct::accessor with dimension info for the device memory object /// when usm is used and dimension is greater than 1. template <size_t D = Dimension> typename std::enable_if<D != 1, dpct_accessor_t>::type get_access(sycl::handler &cgh) { return dpct_accessor_t((T *)_device_ptr, _range); } #endif // DPCT_USM_LEVEL_NONE private: device_memory(value_t *memory_ptr, size_t size) : _size(size), _range(size / sizeof(T)), _reference(true), _device_ptr(memory_ptr) {} void allocate_device(sycl::queue &q) { #ifndef DPCT_USM_LEVEL_NONE if (Memory == shared) { _device_ptr = (value_t *)sycl::malloc_shared( _size, q.get_device(), q.get_context()); return; } #endif _device_ptr = (value_t *)detail::dpct_malloc(_size, q); } size_t _size; sycl::range<Dimension> _range; bool _reference; value_t *_host_ptr; value_t *_device_ptr; }; template <class T, memory_region Memory> class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> { public: using base = device_memory<T, Memory, 1>; using value_t = typename base::value_t; using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<0>; /// Constructor with initial value. device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {} /// Default constructor device_memory() : base(1) {} #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { auto buf = get_buffer(base::get_ptr()) .template reinterpret<T, 1>(sycl::range<1>(1)); return accessor_t(buf, cgh); } #endif // DPCT_USM_LEVEL_NONE }; } template <class T, size_t Dimension> using global_memory = detail::device_memory<T, global, Dimension>; template <class T, size_t Dimension> using constant_memory = detail::device_memory<T, constant, Dimension>; template <class T, size_t Dimension> using shared_memory = detail::device_memory<T, shared, Dimension>; // dpct::deprecated:: is for functionality that was introduced for compatibility // purpose, but relies on deprecated C++ features, which are either removed or // will be removed in the future standards. // Direct use of deprecated functionality in this namespace should be avoided. namespace deprecated { template <typename T> using usm_host_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::host>; template <typename T> using usm_device_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::shared>; } // namespace deprecated class pointer_attributes { public: void init(const void *ptr, sycl::queue &q = dpct::get_default_queue()) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error( "dpct::pointer_attributes: only works for USM pointer."); #else memory_type = sycl::get_pointer_type(ptr, q.get_context()); device_pointer = (memory_type != sycl::usm::alloc::unknown) ? ptr : nullptr; host_pointer = (memory_type != sycl::usm::alloc::unknown) && (memory_type != sycl::usm::alloc::device) ? ptr : nullptr; sycl::device device_obj = sycl::get_pointer_device(ptr, q.get_context()); device_id = dpct::dev_mgr::instance().get_device_id(device_obj); #endif } sycl::usm::alloc get_memory_type() { return memory_type; } const void *get_device_pointer() { return device_pointer; } const void *get_host_pointer() { return host_pointer; } bool is_memory_shared() { return memory_type == sycl::usm::alloc::shared; } unsigned int get_device_id() { return device_id; } private: sycl::usm::alloc memory_type = sycl::usm::alloc::unknown; const void *device_pointer = nullptr; const void *host_pointer = nullptr; unsigned int device_id = 0; }; } // namespace dpct #endif // __DPCT_MEMORY_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_utils.hpp
//==---- dpl_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DPL_UTILS_HPP__ #define __DPCT_DPL_UTILS_HPP__ #define ONEDPL_USE_DPCPP_BACKEND 1 #define __USE_DPCT 1 #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "dpl_extras/memory.h" #include "dpl_extras/algorithm.h" #include "dpl_extras/numeric.h" #include "dpl_extras/iterators.h" #include "dpl_extras/vector.h" #include "dpl_extras/dpcpp_extensions.h" #endif // __DPCT_DPL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/math.hpp
//==---- math.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MATH_HPP__ #define __DPCT_MATH_HPP__ #include <sycl/sycl.hpp> namespace dpct { namespace detail { template <typename VecT, class BinaryOperation, class = void> class vectorized_binary { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { VecT v4; for (size_t i = 0; i < v4.size(); ++i) { v4[i] = binary_op(a[i], b[i]); } return v4; } }; template <typename VecT, class BinaryOperation> class vectorized_binary< VecT, BinaryOperation, std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { return binary_op(a, b).template as<VecT>(); } }; template <typename T> bool isnan(const T a) { return sycl::isnan(a); } // TODO: Need add more specialization such as bfloat16 version. } // namespace detail /// Compute fast_length for variable-length array /// \param [in] a The array /// \param [in] len Length of the array /// \returns The computed fast_length inline float fast_length(const float *a, int len) { switch (len) { case 1: return a[0]; case 2: return sycl::fast_length(sycl::float2(a[0], a[1])); case 3: return sycl::fast_length(sycl::float3(a[0], a[1], a[2])); case 4: return sycl::fast_length(sycl::float4(a[0], a[1], a[2], a[3])); case 0: return 0; default: float f = 0; for (int i = 0; i < len; ++i) f += a[i] * a[i]; return sycl::sqrt(f); } } /// Calculate the square root of the input array. /// \param [in] a The array pointer /// \param [in] len Length of the array /// \returns The square root template <typename T> inline T length(const T *a, const int len) { switch (len) { case 1: return a[0]; case 2: return sycl::length(sycl::vec<T, 2>(a[0], a[1])); case 3: return sycl::length(sycl::vec<T, 3>(a[0], a[1], a[2])); case 4: return sycl::length(sycl::vec<T, 4>(a[0], a[1], a[2], a[3])); default: T ret = 0; for (int i = 0; i < len; ++i) ret += a[i] * a[i]; return sycl::sqrt(ret); } } /// Performs comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> compare(const T a, const T b, const BinaryOperation binary_op) { return binary_op(a, b); } template <typename T> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<std::not_equal_to<>, T, T>, bool>, bool> compare(const T a, const T b, const std::not_equal_to<> binary_op) { return !detail::isnan(a) && !detail::isnan(b) && binary_op(a, b); } /// Performs unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return detail::isnan(a) || detail::isnan(b) || binary_op(a, b); } /// Performs 2 element comparison and return true if both results are true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> compare_both(const T a, const T b, const BinaryOperation binary_op) { return compare(a[0], b[0], binary_op) && compare(a[1], b[1], binary_op); } /// Performs 2 element unordered comparison and return true if both results are /// true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> unordered_compare_both(const T a, const T b, const BinaryOperation binary_op) { return unordered_compare(a[0], b[0], binary_op) && unordered_compare(a[1], b[1], binary_op); } /// Performs 2 element comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> compare(const T a, const T b, const BinaryOperation binary_op) { return {compare(a[0], b[0], binary_op), compare(a[1], b[1], binary_op)}; } /// Performs 2 elements comparison, compare result of each element is 0 (false) /// or 0xffff (true), returns an unsigned int by composing compare result of two /// elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-compare(a[0], b[0], binary_op), -compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Performs 2 element unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return {unordered_compare(a[0], b[0], binary_op), unordered_compare(a[1], b[1], binary_op)}; } /// Performs 2 elements unordered comparison, compare result of each element is /// 0 (false) or 0xffff (true), returns an unsigned int by composing compare /// result of two elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned unordered_compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-unordered_compare(a[0], b[0], binary_op), -unordered_compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Determine whether 2 element value is NaN. /// \param [in] a The input value /// \returns the comparison result template <typename T> inline std::enable_if_t<T::size() == 2, T> isnan(const T a) { return {detail::isnan(a[0]), detail::isnan(a[1])}; } // min function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double min(const double a, const float b) { return sycl::fmin(a, static_cast<double>(b)); } inline double min(const float a, const double b) { return sycl::fmin(static_cast<double>(a), b); } inline float min(const float a, const float b) { return sycl::fmin(a, b); } inline double min(const double a, const double b) { return sycl::fmin(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) { return sycl::min(static_cast<std::uint32_t>(a), b); } inline std::int32_t min(const std::int32_t a, const std::int32_t b) { return sycl::min(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::int64_t min(const std::int64_t a, const std::int64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } // max function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double max(const double a, const float b) { return sycl::fmax(a, static_cast<double>(b)); } inline double max(const float a, const double b) { return sycl::fmax(static_cast<double>(a), b); } inline float max(const float a, const float b) { return sycl::fmax(a, b); } inline double max(const double a, const double b) { return sycl::fmax(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) { return sycl::max(static_cast<std::uint32_t>(a), b); } inline std::int32_t max(const std::int32_t a, const std::int32_t b) { return sycl::max(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::int64_t max(const std::int64_t a, const std::int64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } /// Performs relu saturation. /// \param [in] a The input value /// \returns the relu saturation result template <typename T> inline T relu(const T a) { if (!detail::isnan(a) && a < 0.f) return 0.f; return a; } template <class T> inline sycl::vec<T, 2> relu(const sycl::vec<T, 2> a) { return {relu(a[0]), relu(a[1])}; } /// Performs complex number multiply addition. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] c The third value /// \returns the operation result template <typename T> inline sycl::vec<T, 2> complex_mul_add(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const sycl::vec<T, 2> c) { return sycl::vec<T, 2>{a[0] * b[0] - a[1] * b[1] + c[0], a[0] * b[1] + a[1] * b[0] + c[1]}; } /// Performs 2 elements comparison and returns the bigger one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the bigger value template <typename T> inline T fmax_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmax(a, b); } template <typename T> inline sycl::vec<T, 2> fmax_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmax_nan(a[0], b[0]), fmax_nan(a[1], b[1])}; } /// Performs 2 elements comparison and returns the smaller one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the smaller value template <typename T> inline T fmin_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmin(a, b); } template <typename T> inline sycl::vec<T, 2> fmin_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmin_nan(a[0], b[0]), fmin_nan(a[1], b[1])}; } /// A sycl::abs wrapper functors. struct abs { template <typename T> auto operator()(const T x) const { return sycl::abs(x); } }; /// A sycl::abs_diff wrapper functors. struct abs_diff { template <typename T> auto operator()(const T x, const T y) const { return sycl::abs_diff(x, y); } }; /// A sycl::add_sat wrapper functors. struct add_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::add_sat(x, y); } }; /// A sycl::rhadd wrapper functors. struct rhadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::rhadd(x, y); } }; /// A sycl::hadd wrapper functors. struct hadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::hadd(x, y); } }; /// A sycl::max wrapper functors. struct maximum { template <typename T> auto operator()(const T x, const T y) const { return sycl::max(x, y); } }; /// A sycl::min wrapper functors. struct minimum { template <typename T> auto operator()(const T x, const T y) const { return sycl::min(x, y); } }; /// A sycl::sub_sat wrapper functors. struct sub_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::sub_sat(x, y); } }; /// Compute vectorized binary operation value for two values, with each value /// treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] BinaryOperation The binary operation class /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized binary operation value of the two values template <typename VecT, class BinaryOperation> inline unsigned vectorized_binary(unsigned a, unsigned b, const BinaryOperation binary_op) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op); v0 = v4.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized isgreater for two values, with each value treated as a /// vector type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized greater than of the two values template <typename S, typename T> inline T vectorized_isgreater(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = v2 > v3; v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized max for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized max of the two values template <typename S, typename T> inline T vectorized_max(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::max(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized min for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized min of the two values template <typename S, typename T> inline T vectorized_min(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::min(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized unary operation for a value, with the value treated as a /// vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] UnaryOperation The unary operation class /// \param [in] a The input value /// \returns The vectorized unary operation value of the input value template <typename VecT, class UnaryOperation> inline unsigned vectorized_unary(unsigned a, const UnaryOperation unary_op) { sycl::vec<unsigned, 1> v0{a}; auto v1 = v0.as<VecT>(); auto v2 = unary_op(v1); v0 = v2.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized absolute difference for two values without modulo /// overflow, with each value treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized absolute difference of the two values template <typename VecT> inline unsigned vectorized_sum_abs_diff(unsigned a, unsigned b) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = sycl::abs_diff(v2, v3); unsigned sum = 0; for (size_t i = 0; i < v4.size(); ++i) { sum += v4[i]; } return sum; } } // namespace dpct #endif // __DPCT_MATH_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/blas_utils.hpp
//==---- blas_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_BLAS_UTILS_HPP__ #define __DPCT_BLAS_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <utility> #include <vector> #include <thread> namespace dpct { /// Get the value of \p s. /// Copy the data to host synchronously, then return the data. /// \param [in] p The pointer points the data. /// \param [in] q The queue where the memory copy should be executed. template <typename T> inline auto get_value(const T *s, sycl::queue &q) { return detail::get_value(s, q); } namespace detail { inline void mem_free(sycl::queue *exec_queue, std::vector<void *> pointers_array, sycl::event e) { e.wait(); for (auto p : pointers_array) sycl::free(p, *exec_queue); } inline int stride_for(int num_elems, int mem_align_in_elems) { return ((num_elems - 1) / mem_align_in_elems + 1) * mem_align_in_elems; } #ifndef DPCT_USM_LEVEL_NONE template<typename T> class working_memory { T *_input_ptr; T *_temp_ptr; bool _is_sycl_malloced = false; bool _is_scalar_value = false; sycl::queue _q; sycl::event _e; public: working_memory(size_t size, sycl::queue q) : _q(q) { _is_scalar_value = false; _temp_ptr = (T *)sycl::malloc_device(size, q); } working_memory(T *result_ptr, sycl::queue q) : _input_ptr(result_ptr), _q(q) { _is_scalar_value = true; _is_sycl_malloced = sycl::get_pointer_type(_input_ptr, _q.get_context()) != sycl::usm::alloc::unknown; if (!_is_sycl_malloced) _temp_ptr = sycl::malloc_shared<T>(1, _q); } auto get_ptr() { if (_is_scalar_value && _is_sycl_malloced) return _input_ptr; return _temp_ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_is_scalar_value) { if (!_is_sycl_malloced) { _q.memcpy(_input_ptr, _temp_ptr, sizeof(T)).wait(); sycl::free(_temp_ptr, _q); } } else { std::vector<void *> ptrs{_temp_ptr}; dpct::async_dpct_free(ptrs, {_e}); } } }; #endif template <typename Tx, typename Tr> inline void nrm2_impl(sycl::queue &q, int n, const void *x, int incx, void *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Tx>(x); auto r_buffer = sycl::buffer<Tr, 1>(reinterpret_cast<Tr *>(result), sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); oneapi::mkl::blas::column_major::nrm2(q, n, x_buffer, incx, r_buffer); #else working_memory<Tr> res_mem(reinterpret_cast<Tr *>(result), q); oneapi::mkl::blas::column_major::nrm2(q, n, reinterpret_cast<const Tx *>(x), incx, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate, class Txy, class Tr> inline void dotuc_impl(sycl::queue &q, int n, const Txy *x, int incx, const Txy *y, int incy, Tr *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Txy>(x); auto y_buffer = dpct::get_buffer<Txy>(y); auto r_buffer = sycl::buffer<Tr, 1>((Tr *)result, sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x_buffer, incx, y_buffer, incy, r_buffer); else oneapi::mkl::blas::column_major::dotu(q, n, x_buffer, incx, y_buffer, incy, r_buffer); } else oneapi::mkl::blas::column_major::dot(q, n, x_buffer, incx, y_buffer, incy, r_buffer); #else working_memory<Tr> res_mem(result, q); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x, incx, y, incy, res_mem.get_ptr()); else oneapi::mkl::blas::column_major::dotu(q, n, x, incx, y, incy, res_mem.get_ptr()); } else oneapi::mkl::blas::column_major::dot(q, n, x, incx, y, incy, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate> inline void dotuc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, y_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const float *>(x), incx, reinterpret_cast<const float *>(y), incy, reinterpret_cast<float *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const double *>(x), incx, reinterpret_cast<const double *>(y), incy, reinterpret_cast<double *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<float> *>(x), incx, reinterpret_cast<const std::complex<float> *>(y), incy, reinterpret_cast<std::complex<float> *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<double> *>(x), incx, reinterpret_cast<const std::complex<double> *>(y), incy, reinterpret_cast<std::complex<double> *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const sycl::half *>(x), incx, reinterpret_cast<const sycl::half *>(y), incy, reinterpret_cast<sycl::half *>(result)); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } template <class Tx, class Te> inline void scal_impl(sycl::queue &q, int n, const void *alpha, void *x, int incx) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<Tx *>(x)); oneapi::mkl::blas::column_major::scal(q, n, alpha_val, data_x, incx); #endif } template <class Txy, class Te> inline void axpy_impl(sycl::queue &q, int n, const void *alpha, const void *x, int incx, void *y, int incy) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<const Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::axpy(q, n, alpha_val, data_x, incx, data_y, incy); #endif } template <class Txy, class Tc, class Ts> inline void rot_impl(sycl::queue &q, int n, void *x, int incx, void *y, int incy, const void *c, const void *s) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Tc c_value = dpct::get_value(reinterpret_cast<const Tc *>(c), q); Ts s_value = dpct::get_value(reinterpret_cast<const Ts *>(s), q); auto data_x = get_memory(reinterpret_cast<Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::rot(q, n, data_x, incx, data_y, incy, c_value, s_value); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, const void *b, int ldb, const void *beta, void *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void **a, int lda, const void **b, int ldb, const void *beta, void **c, int ldc, int batch_size) { struct matrix_info_t { oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; matrix_info->value_info[1] = beta_value; matrix_info->size_info[0] = m; matrix_info->size_info[1] = n; matrix_info->size_info[2] = k; matrix_info->ld_info[0] = lda; matrix_info->ld_info[1] = ldb; matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); }); }); } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, long long int stride_a, const void *b, int ldb, long long int stride_b, const void *beta, void *c, int ldc, long long int stride_c, int batch_size) { Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm_batch( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } template <bool is_hermitian, class T, class Tbeta> inline void rk_impl(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { // For symmetric matrix, this function performs: C = alpha*OP(A)*(OP(B))^T + beta*C // For Hermitian matrix, this function performs: C = alpha*OP(A)*(OP(B))^H + beta*C // The gemmt() function performs: C = alpha*OPA(A)*OPB(B) + beta*C // So the OPB need be updated before we call gemmt(). using Ty = typename dpct::DataType<T>::T2; using Ts = typename dpct::DataType<Tbeta>::T2; Ty alpha_value = dpct::get_value(reinterpret_cast<const Ty *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); oneapi::mkl::transpose trans_A = trans, trans_B = trans; int origin_b_rows = trans == oneapi::mkl::transpose::nontrans ? n : k; int origin_b_cols = trans == oneapi::mkl::transpose::nontrans ? k : n; if ((is_hermitian && trans == oneapi::mkl::transpose::trans) || (!is_hermitian && !std::is_floating_point_v<Ty> && trans == oneapi::mkl::transpose::conjtrans)) { // In this case, OPB need be a conjugate operation, // but only notrans, conjtrans and trans are available. // So we need do a conjtrans operation first, then do a trans operation. trans_B = oneapi::mkl::transpose::trans; auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); #ifdef DPCT_USM_LEVEL_NONE auto new_B_buffer = sycl::buffer<Ty, 1>(sycl::range<1>(origin_b_rows * origin_b_cols)); auto from_buffer = dpct::get_buffer<Ty>(b); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), from_buffer, ldb, origin_b_rows * ldb, new_B_buffer, origin_b_cols, origin_b_rows * origin_b_cols, 1); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, new_B_buffer, origin_b_cols, beta_value, data_c, ldc); #else working_memory<T> new_B(origin_b_rows * origin_b_cols * sizeof(T), q); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), reinterpret_cast<const Ty *>(b), ldb, origin_b_rows * ldb, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, origin_b_rows * origin_b_cols, 1); sycl::event e = oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, beta_value, data_c, ldc); new_B.set_event(e); #endif } else { if constexpr (is_hermitian) { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::conjtrans : oneapi::mkl::transpose::nontrans; } else { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans; } auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_b = get_memory(reinterpret_cast<const Ty *>(b)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } } template <class Ta, class Tb, class Ts> inline void trsm_batch_impl(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, int lda, void **b, int ldb, int batch_size) { struct matrix_info_t { matrix_info_t(oneapi::mkl::side side_info, oneapi::mkl::uplo uplo_info, oneapi::mkl::transpose transpose_info, oneapi::mkl::diag diag_info, Ts value_info, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::int64_t groupsize_info) : side_info(side_info), uplo_info(uplo_info), transpose_info(transpose_info), diag_info(diag_info), value_info(value_info), groupsize_info(groupsize_info) { size_info[0] = m; size_info[1] = n; ld_info[0] = lda; ld_info[1] = ldb; } oneapi::mkl::side side_info; oneapi::mkl::uplo uplo_info; oneapi::mkl::transpose transpose_info; oneapi::mkl::diag diag_info; Ts value_info; std::int64_t size_info[2]; std::int64_t ld_info[2]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); matrix_info_t *matrix_info = new matrix_info_t(left_right, upper_lower, trans, unit_diag, alpha_value, m, n, lda, ldb, batch_size); sycl::event e = oneapi::mkl::blas::column_major::trsm_batch( q, &(matrix_info->side_info), &(matrix_info->uplo_info), &(matrix_info->transpose_info), &(matrix_info->diag_info), matrix_info->size_info, matrix_info->size_info + 1, &(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<Tb **>(b), matrix_info->ld_info + 1, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete matrix_info; }); }); } template <typename T> inline void getrfnp_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *info, int batch_size) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); std::int64_t stride_a = n * lda; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrfnp_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, batch_size); Ty *a_strided_mem = (Ty *)dpct::dpct_malloc(stride_a * batch_size * sizeof(Ty), exec_queue); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct::dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct::dpct_memcpy(a_strided_mem + i * stride_a, host_a[i], n * lda * sizeof(T)); #ifdef DPCT_USM_LEVEL_NONE { sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_strided_mem); oneapi::mkl::lapack::getrfnp_batch(exec_queue, n, n, a_buffer, lda, stride_a, batch_size, scratchpad, scratchpad_size); } std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic)); #else Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); sycl::event e = oneapi::mkl::lapack::getrfnp_batch( exec_queue, n, n, a_strided_mem, lda, stride_a, batch_size, scratchpad, scratchpad_size); std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic, {e})); std::vector<void *> ptrs{scratchpad, a_strided_mem}; dpct::async_dpct_free(ptrs, events, exec_queue); #endif exec_queue.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { free(host_a); }); }); #endif } } // namespace detail inline oneapi::mkl::transpose get_transpose(int t) { if (t == 0) { return oneapi::mkl::transpose::nontrans; } else if (t == 1) { return oneapi::mkl::transpose::trans; } else { return oneapi::mkl::transpose::conjtrans; } } /// Computes the LU factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in, out] a Array of pointers to matrices. These matrices will be /// overwritten by lower triangulars with unit diagonal elements and upper /// triangulars. /// \param [in] lda The leading dimension of the matrices. /// \param [out] ipiv An array stores the pivot indices. If \p ipiv is nullptr, /// non-pivoting LU factorization is computed. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrf_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *ipiv, int *info, int batch_size) { if (ipiv == nullptr) { detail::getrfnp_batch_wrapper(exec_queue, n, a, lda, info, batch_size); return; } using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, stride_ipiv, batch_size); T *a_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_buffer_ptr); oneapi::mkl::lapack::getrf_batch(exec_queue, n, n, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); auto to_buffer = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = ipiv_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = to_buffer.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * n + id.get(1)] = static_cast<int>(from_acc[id.get(0) * stride_ipiv + id.get(1)]); }); }); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); std::vector<void *> ptrs{host_a}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; oneapi::mkl::lapack::getrf_batch(exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); sycl::event e = exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv[idx] = static_cast<int>(ipiv_int64[idx]); }); }); std::vector<void *> ptrs{scratchpad, ipiv_int64, ipiv_int64_ptr, a_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Solves a system of linear equations with a batch of LU-factored square /// coefficient matrices, with multiple right-hand sides. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] trans Indicates the form of the linear equations. /// \param [in] n The order of the matrices. /// \param [in] nrhs The number of right hand sides. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [in, out] b Array of pointers to matrices, whose columns are /// the right-hand sides for the systems of equations. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrs_batch_wrapper(sycl::queue &exec_queue, oneapi::mkl::transpose trans, int n, int nrhs, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_b = nrhs * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, trans, n, nrhs, lda, stride_a, stride_ipiv, ldb, stride_b, batch_size); T *a_buffer_ptr, *b_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); dpct_memcpy(b_buffer_ptr + i * stride_b, host_b[i], nrhs * ldb * sizeof(T)); } { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getrs_batch(exec_queue, trans, n, nrhs, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, b_buffer, ldb, stride_b, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, nrhs * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t nrhs_int64 = nrhs; std::int64_t lda_int64 = lda; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, &trans, &n_int64, &nrhs_int64, &lda_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; sycl::event e = oneapi::mkl::lapack::getrs_batch( exec_queue, &trans, &n_int64, &nrhs_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, (Ty **)b_shared, &ldb_int64, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the inverses of a batch of LU-factored matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [out] b Array of pointers to inverse matrices. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getri_batch_wrapper(sycl::queue &exec_queue, int n, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_b = n * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, n, ldb, stride_b, stride_ipiv, batch_size); T *b_buffer_ptr; b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_buffer_ptr + i * stride_b, host_a[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } { auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getri_batch(exec_queue, n, b_buffer, ldb, stride_b, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, n * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, &n_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) { ipiv_int64_ptr[i] = ipiv_int64 + n * i; // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_shared[i], a_shared[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } sycl::event e = oneapi::mkl::lapack::getri_batch( exec_queue, &n_int64, (Ty **)b_shared, &ldb_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the QR factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] m The number of rows in the matrices. /// \param [in] n The number of columns in the matrices. /// \param [in, out] a Array of pointers to matrices. These /// matrices will be overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [out] tau An array stores the scalars. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void geqrf_batch_wrapper(sycl::queue exec_queue, int m, int n, T *a[], int lda, T *tau[], int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_tau = std::max(1, std::min(m, n)); std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, m, n, lda, stride_a, stride_tau, batch_size); T *a_buffer_ptr, *tau_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); tau_buffer_ptr = (T *)dpct_malloc(stride_tau * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_tau = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_tau, tau, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto tau_buffer = get_buffer<Ty>(tau_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; oneapi::mkl::lapack::geqrf_batch(exec_queue, m, n, a_buffer, lda, stride_a, tau_buffer, stride_tau, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events_a; std::vector<sycl::event> events_tau; for (std::int64_t i = 0; i < batch_size; ++i) { events_a.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); events_tau.push_back(detail::dpct_memcpy( exec_queue, host_tau[i], tau_buffer_ptr + i * stride_tau, std::max(1, std::min(m, n)) * sizeof(T), automatic)); } std::vector<void *> ptr_a{host_a}; std::vector<void *> ptr_tau{host_tau}; std::thread mem_free_thread_a( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_a, events_a); std::thread mem_free_thread_tau( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_tau, events_tau); mem_free_thread_a.detach(); mem_free_thread_tau.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **tau_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(tau_shared, tau, batch_size * sizeof(T *)).wait(); sycl::event e = oneapi::mkl::lapack::geqrf_batch( exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, (Ty **)tau_shared, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, a_shared, tau_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the Euclidean norm of a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void nrm2(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::nrm2_impl<float, float>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::nrm2_impl<double, double>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::nrm2_impl<std::complex<float>, float>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::nrm2_impl<std::complex<double>, double>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::nrm2_impl<sycl::half, sycl::half>( q, n, x, incx, result); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes the dot product of two vectors. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dot(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<false>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the dot product of two vectors, conjugating the first vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dotc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<true>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the product of a vector by a scalar. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. inline void scal(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, void *x, library_data_t x_type, int incx) { std::uint64_t key = detail::get_type_combination_id(x_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float): { detail::scal_impl<float, float>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_double): { detail::scal_impl<double, double>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_float): { detail::scal_impl<std::complex<float>, std::complex<float>>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_double): { detail::scal_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_half): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::scal_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a vector-scalar product and adds the result to a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. inline void axpy(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, const void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy) { std::uint64_t key = detail::get_type_combination_id(x_type, alpha_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::axpy_impl<float, float>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::axpy_impl<double, double>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::axpy_impl<std::complex<float>, std::complex<float>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::axpy_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::axpy_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx, y, incy); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Performs rotation of points in the plane. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [in] c Scaling factor. /// \param [in] s Scaling factor. /// \param [in] cs_type Data type of the scaling factors. inline void rot(sycl::queue &q, int n, void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy, const void *c, const void *s, library_data_t cs_type) { std::uint64_t key = detail::get_type_combination_id(x_type, cs_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::rot_impl<float, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::rot_impl<double, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::rot_impl<std::complex<float>, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::rot_impl<std::complex<double>, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::rot_impl<std::complex<float>, float, std::complex<float>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::rot_impl<std::complex<double>, double, std::complex<double>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::rot_impl<sycl::half, sycl::half, sycl::half>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_bfloat16, library_data_t::real_bfloat16): { detail::rot_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16>(q, n, x, incx, y, incy, c, s); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, const void *b, library_data_t b_type, int ldb, const void *beta, void *c, library_data_t c_type, int ldc, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>( q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a[], library_data_t a_type, int lda, const void *b[], library_data_t b_type, int ldb, const void *beta, void *c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] stride_a Stride between the different A matrices. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] stride_b Stride between the different B matrices. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, long long int stride_a, const void *b, library_data_t b_type, int ldb, long long int stride_b, const void *beta, void *c, library_data_t c_type, int ldc, long long int stride_c, int batch_size, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, std::int32_t>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b, &beta_half, c, ldc, stride_c, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// This routines perform a special rank-k update of a symmetric matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T> inline void syrk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const T *beta, T *c, int ldc) { detail::rk_impl<false, T, T>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routines perform a special rank-k update of a Hermitian matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T, class Tbeta> inline void herk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { detail::rk_impl<true, T, Tbeta>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routine performs a group of trsm operations. Each trsm solves an /// equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A multiplies X on the left or on the right. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of the B matrices. /// \param [in] n Number of columns of the B matrices. /// \param [in] alpha Scaling factor for the solutions. /// \param [in] a Input matrices A. /// \param [in] a_type Data type of the matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in, out] b Input and output matrices B. /// \param [in] b_type Data type of the matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [in] batch_size Specifies the number of trsm operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void trsm_batch(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, library_data_t a_type, int lda, void **b, library_data_t b_type, int ldb, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::uint64_t key = detail::get_type_combination_id(a_type, b_type, scaling_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::trsm_batch_impl<float, float, float>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::trsm_batch_impl<double, double, double>( q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::trsm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::trsm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a triangular matrix-general matrix product. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A is on the left or right side of the /// multiplication. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of B. /// \param [in] n Number of columns of B. /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in] b Input matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [out] c Output matrices C. /// \param [in] ldc Leading dimension of the matrices C. template <class T> inline void trmm(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const T *alpha, const T *a, int lda, const T *b, int ldb, T *c, int ldc) { using Ty = typename DataType<T>::T2; auto alpha_val = dpct::get_value(alpha, q); if (b != c) { dpct::matrix_mem_copy(c, b, ldc, ldb, m, n, dpct::device_to_device, q); } auto data_a = detail::get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = detail::get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::trmm(q, left_right, upper_lower, trans, unit_diag, m, n, alpha_val, data_a, lda, data_c, ldc); } } // namespace dpct #endif // __DPCT_BLAS_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/atomic.hpp
//==---- atomic.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ATOMIC_HPP__ #define __DPCT_ATOMIC_HPP__ #include <sycl/sycl.hpp> namespace dpct { /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_add(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_add(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_sub(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_sub(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_sub<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_and(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_and(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_and<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_and<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_and<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_and<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_or(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_or(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_or<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_or<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_or<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_or<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_xor(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_xor(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_xor<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_min(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_min(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_min<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_min<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_min<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_min<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_max(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_max(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_max<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_max<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_max<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_max<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically set \p operand to the value stored in \p addr, if old value stored in /// \p addr is equal to zero or greater than \p operand, else decrease the value stored /// in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_dec(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old == 0 || old > operand) { if (atm.compare_exchange_strong(old, operand)) break; } else if (atm.compare_exchange_strong(old, old - 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old >= operand) { if (atm.compare_exchange_strong(old, 0)) break; } else if (atm.compare_exchange_strong(old, old + 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_exchange(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_exchange(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_exchange<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_exchange<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_exchange<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_exchange<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in, out] addr Multi_ptr. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( sycl::multi_ptr<T, addressSpace> addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(*addr); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( sycl::multi_ptr<T1, addressSpace> addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(*addr); T1 expected_value = expected; atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in] addr The pointer to the data. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( T *addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( T1 *addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { T1 expected_value = expected; auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomic extension to implement standard APIs in std::atomic namespace detail{ template <typename T> struct IsValidAtomicType { static constexpr bool value = (std::is_same<T, int>::value || std::is_same<T, unsigned int>::value || std::is_same<T, long>::value || std::is_same<T, unsigned long>::value || std::is_same<T, long long>::value || std::is_same<T, unsigned long long>::value || std::is_same<T, float>::value || std::is_same<T, double>::value || std::is_pointer<T>::value); }; } // namespace detail template <typename T, sycl::memory_scope DefaultScope = sycl::memory_scope::system, sycl::memory_order DefaultOrder = sycl::memory_order::seq_cst, sycl::access::address_space Space = sycl::access::address_space::generic_space> class atomic{ static_assert( detail::IsValidAtomicType<T>::value, "Invalid atomic type. Valid types are int, unsigned int, long, " "unsigned long, long long, unsigned long long, float, double " "and pointer types"); T __d; public: /// default memory synchronization order static constexpr sycl::memory_order default_read_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_read_order; static constexpr sycl::memory_order default_write_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_write_order; static constexpr sycl::memory_scope default_scope = DefaultScope; static constexpr sycl::memory_order default_read_modify_write_order = DefaultOrder; /// Default constructor. constexpr atomic() noexcept = default; /// Constructor with initialize value. constexpr atomic(T d) noexcept : __d(d){}; /// atomically replaces the value of the referenced object with a non-atomic argument /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. void store(T operand, sycl::memory_order memoryOrder = default_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); atm.store(operand, memoryOrder, memoryScope); } /// atomically obtains the value of the referenced object /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object T load(sycl::memory_order memoryOrder = default_read_order, sycl::memory_scope memoryScope = default_scope) const noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm( const_cast<T &>(__d)); return atm.load(memoryOrder, memoryScope); } /// atomically replaces the value of the referenced object and obtains the value held previously /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T exchange(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.exchange(operand, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, memoryOrder, memoryScope); } /// atomically adds the argument to the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic addition /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_add(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_add(operand, memoryOrder, memoryScope); } /// atomically subtracts the argument from the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic subtraction /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_sub(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_sub(operand, memoryOrder, memoryScope); } }; } // namespace dpct #endif // __DPCT_ATOMIC_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/rng_utils.hpp
//==---- rng_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_RNG_UTILS_HPP__ #define __DPCT_RNG_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. #include <oneapi/mkl/rng/device.hpp> #endif #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace rng { #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. namespace device { /// The random number generator on device. /// \tparam engine_t The device random number generator engine. It can only be /// oneapi::mkl::rng::device::mrg32k3a<1> or /// oneapi::mkl::rng::device::mrg32k3a<4> or /// oneapi::mkl::rng::device::philox4x32x10<1> or /// oneapi::mkl::rng::device::philox4x32x10<4>. template <typename engine_t> class rng_generator { static_assert( std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>, "engine_t can only be oneapi::mkl::rng::device::mrg32k3a<1> or " "oneapi::mkl::rng::device::mrg32k3a<4> or " "oneapi::mkl::rng::device::philox4x32x10<1> or " "oneapi::mkl::rng::device::philox4x32x10<4> or " "oneapi::mkl::rng::device::mcg59<1>."); static constexpr bool _is_engine_vec_size_one = std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>; static constexpr std::uint64_t default_seed = 0; oneapi::mkl::rng::device::bits<std::uint32_t> _distr_bits; oneapi::mkl::rng::device::uniform_bits<std::uint32_t> _distr_uniform_bits; oneapi::mkl::rng::device::gaussian<float> _distr_gaussian_float; oneapi::mkl::rng::device::gaussian<double> _distr_gaussian_double; oneapi::mkl::rng::device::lognormal<float> _distr_lognormal_float; oneapi::mkl::rng::device::lognormal<double> _distr_lognormal_double; oneapi::mkl::rng::device::poisson<std::uint32_t> _distr_poisson; oneapi::mkl::rng::device::uniform<float> _distr_uniform_float; oneapi::mkl::rng::device::uniform<double> _distr_uniform_double; engine_t _engine; public: /// Default constructor of rng_generator rng_generator() { _engine = engine_t(default_seed); } /// Constructor of rng_generator if engine type is not mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. /// The number is calculated as: num_to_skip[0] + num_to_skip[1] * 2^64 + /// num_to_skip[2] * 2^128 + ... + num_to_skip[n-1] * 2^(64*(n-1)) template <typename T = engine_t, typename std::enable_if<!std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::initializer_list<std::uint64_t> num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Constructor of rng_generator if engine type is mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. template <typename T = engine_t, typename std::enable_if<std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::uint64_t num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Generate random number(s) obeys distribution \tparam distr_t. /// \tparam T The distribution of the random number. It can only be /// oneapi::mkl::rng::device::bits<std::uint32_t>, /// oneapi::mkl::rng::device::uniform_bits<std::uint32_t>, /// oneapi::mkl::rng::device::gaussian<float>, /// oneapi::mkl::rng::device::gaussian<double>, /// oneapi::mkl::rng::device::lognormal<float>, /// oneapi::mkl::rng::device::lognormal<double>, /// oneapi::mkl::rng::device::poisson<std::uint32_t>, /// oneapi::mkl::rng::device::uniform<float> or /// oneapi::mkl::rng::device::uniform<double> /// \tparam vec_size The length of the return vector. It can only be 1, 2 /// or 4. /// \param distr_params The parameter(s) for lognormal or poisson /// distribution. /// \return The vector of the random number(s). template <typename distr_t, int vec_size, class... distr_params_t> auto generate(distr_params_t... distr_params) { static_assert(vec_size == 1 || vec_size == 2 || vec_size == 4, "vec_size is not supported."); static_assert( std::disjunction_v< std::is_same<distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::poisson<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<double>>>, "distribution is not supported."); if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_bits); } if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_uniform_bits); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<float>>) { return generate_vec<vec_size>(_distr_gaussian_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<double>>) { return generate_vec<vec_size>(_distr_gaussian_double); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<float>>) { return generate_vec<vec_size>(_distr_lognormal_float, distr_params..., 0.0f, 1.0f); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<double>>) { return generate_vec<vec_size>(_distr_lognormal_double, distr_params..., 0.0, 1.0); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::poisson< std::uint32_t>>) { return generate_vec<vec_size>(_distr_poisson, distr_params...); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<float>>) { return generate_vec<vec_size>(_distr_uniform_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<double>>) { return generate_vec<vec_size>(_distr_uniform_double); } } /// Get the random number generator engine. /// \return The reference of the internal random number generator engine. engine_t &get_engine() { return _engine; } private: template <int vec_size, typename distr_t, class... distr_params_t> auto generate_vec(distr_t &distr, distr_params_t... distr_params) { if constexpr (sizeof...(distr_params_t)) { typename distr_t::param_type pt(distr_params...); distr.param(pt); } if constexpr (vec_size == 4) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 4> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); res.z() = oneapi::mkl::rng::device::generate(distr, _engine); res.w() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { return oneapi::mkl::rng::device::generate(distr, _engine); } } else if constexpr (vec_size == 1) { if constexpr (_is_engine_vec_size_one) { return oneapi::mkl::rng::device::generate(distr, _engine); } else { return oneapi::mkl::rng::device::generate_single(distr, _engine); } } else if constexpr (vec_size == 2) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate_single(distr, _engine); res.y() = oneapi::mkl::rng::device::generate_single(distr, _engine); return res; } } } }; } // namespace device #endif namespace host { namespace detail { class rng_generator_base { public: /// Set the seed of host rng_generator. /// \param seed The engine seed. virtual void set_seed(const std::uint64_t seed) = 0; /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. virtual void set_dimensions(const std::uint32_t dimensions) = 0; /// Set the queue of host rng_generator. /// \param queue The engine queue. virtual void set_queue(sycl::queue *queue) = 0; /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned int *output, std::int64_t n) = 0; /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) = 0; /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(float *output, std::int64_t n, float m, float s) = 0; /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(double *output, std::int64_t n, double m, double s) = 0; /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) = 0; /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) = 0; /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. virtual inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) = 0; /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(float *output, std::int64_t n) = 0; /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(double *output, std::int64_t n) = 0; /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. virtual void skip_ahead(const std::uint64_t num_to_skip) = 0; protected: sycl::queue *_queue{&dpct::get_default_queue()}; std::uint64_t _seed{0}; std::uint32_t _dimensions{1}; }; /// The random number generator on host. template <typename engine_t = oneapi::mkl::rng::philox4x32x10> class rng_generator : public rng_generator_base { public: /// Constructor of rng_generator. rng_generator() : _engine(create_engine(_queue, _seed, _dimensions)) {} /// Set the seed of host rng_generator. /// \param seed The engine seed. void set_seed(const std::uint64_t seed) { if (seed == _seed) { return; } _seed = seed; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. void set_dimensions(const std::uint32_t dimensions) { if (dimensions == _dimensions) { return; } _dimensions = dimensions; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the queue of host rng_generator. /// \param queue The engine queue. void set_queue(sycl::queue *queue) { if (queue == _queue) { return; } _queue = queue; _engine = create_engine(_queue, _seed, _dimensions); } /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned int *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned int) == sizeof(std::uint32_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint32_t>>( (std::uint32_t *)output, n); #endif } /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned long long) == sizeof(std::uint64_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint64_t>>( (std::uint64_t *)output, n); #endif } /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(float *output, std::int64_t n, float m, float s) { generate<oneapi::mkl::rng::lognormal<float>>(output, n, m, s); } /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(double *output, std::int64_t n, double m, double s) { generate<oneapi::mkl::rng::lognormal<double>>(output, n, m, s); } /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) { generate<oneapi::mkl::rng::gaussian<float>>(output, n, mean, stddev); } /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) { generate<oneapi::mkl::rng::gaussian<double>>(output, n, mean, stddev); } /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) { generate<oneapi::mkl::rng::poisson<unsigned int>>(output, n, lambda); } /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(float *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<float>>(output, n); } /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(double *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<double>>(output, n); } /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. void skip_ahead(const std::uint64_t num_to_skip) { #ifndef __INTEL_MKL__ oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #else if constexpr (std::is_same_v<engine_t, oneapi::mkl::rng::mt2203>) throw std::runtime_error("no skip_ahead method of mt2203 engine."); else oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #endif } private: static inline engine_t create_engine(sycl::queue *queue, const std::uint64_t seed, const std::uint32_t dimensions) { #ifdef __INTEL_MKL__ return std::is_same_v<engine_t, oneapi::mkl::rng::sobol> ? engine_t(*queue, dimensions) : engine_t(*queue, seed); #else return engine_t(*queue, seed); #endif } template <typename distr_t, typename buffer_t, class... distr_params_t> void generate(buffer_t *output, const std::int64_t n, const distr_params_t... distr_params) { auto output_buf = dpct::detail::get_memory(output); oneapi::mkl::rng::generate(distr_t(distr_params...), _engine, n, output_buf); } engine_t _engine{}; }; } // namespace detail } // namespace host enum class random_engine_type { philox4x32x10, mrg32k3a, mt2203, mt19937, sobol, mcg59 }; typedef std::shared_ptr<rng::host::detail::rng_generator_base> host_rng_ptr; /// Create a host random number generator. /// \param type The random engine type. /// \return The pointer of random number generator. inline host_rng_ptr create_host_rng(const random_engine_type type) { switch (type) { case random_engine_type::philox4x32x10: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::philox4x32x10>>(); case random_engine_type::mrg32k3a: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mrg32k3a>>(); #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else case random_engine_type::mt2203: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt2203>>(); case random_engine_type::mt19937: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt19937>>(); case random_engine_type::sobol: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::sobol>>(); case random_engine_type::mcg59: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mcg59>>(); #endif } } } // namespace rng } // namespace dpct #endif // __DPCT_RNG_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/numeric.h
//==---- numeric.h --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_NUMERIC_H__ #define __DPCT_NUMERIC_H__ namespace dpct { template <typename Policy, typename InputIt1, typename InputIt2, typename T> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init); } template <typename Policy, typename InputIt1, typename InputIt2, typename T, typename BinaryOperation1, typename BinaryOperation2> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1, BinaryOperation2 op2) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init, op1, op2); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/iterators.h
//==---- iterators.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ITERATORS_H__ #define __DPCT_ITERATORS_H__ #include <oneapi/dpl/iterator> #include "functional.h" namespace dpct { namespace internal { // Wrapper class returned from a dereferenced transform_iterator which was // created using // make_transform_output_iterator(). Used to apply the supplied transform // function when writing into an object of this class. // // Example: // int a[] = {0, 1, 2, 3, 4}; // int* p = a; // auto f = [](auto v) {return v*v;}; // auto tr_out = dpct::make_transform_output_iterator(p+1, f); // auto wrap = *tr_out; // wrap is a transform_output_ref_wrapper // std::cout<<*(p+1)<<std::endl; // '1' // wrap = 2; // apply function, store 2*2=4 // std::cout<<*(p+1)<<std::endl; // '4' template <typename T, typename _UnaryFunc> class transform_output_ref_wrapper { private: T __my_reference_; _UnaryFunc __my_unary_func_; public: template <typename U> transform_output_ref_wrapper(U &&__reference, _UnaryFunc __unary_func) : __my_reference_(std::forward<U>(__reference)), __my_unary_func_(__unary_func) {} // When writing to an object of this type, apply the supplied unary function, // then write to the wrapped reference template <typename UnaryInputType> transform_output_ref_wrapper &operator=(const UnaryInputType &e) { __my_reference_ = __my_unary_func_(e); return *this; } }; // Unary functor to create a transform_output_reference_wrapper when a // transform_iterator is dereferenced, so that a // the supplied unary function may be applied on write, resulting in a // transform_output_iterator template <typename _UnaryFunc> struct _Unary_Out { _Unary_Out(_UnaryFunc __f_) : __f(__f_) {} _UnaryFunc __f; template <typename T> auto operator()(T &&val) const { return transform_output_ref_wrapper<T, _UnaryFunc>(std::forward<T>(val), __f); } }; } // end namespace internal using std::advance; using std::distance; template <typename T> oneapi::dpl::counting_iterator<T> make_counting_iterator(const T &input) { return oneapi::dpl::counting_iterator<T>(input); } template <typename _Tp> class constant_iterator { public: typedef std::false_type is_hetero; typedef std::true_type is_passed_directly; typedef std::ptrdiff_t difference_type; typedef _Tp value_type; typedef _Tp *pointer; // There is no storage behind the iterator, so we return a value instead of // reference. typedef const _Tp reference; typedef const _Tp const_reference; typedef std::random_access_iterator_tag iterator_category; explicit constant_iterator(_Tp __init) : __my_value_(__init), __my_counter_(0) {} private: // used to construct iterator instances with different counter values required // by arithmetic operators constant_iterator(const _Tp &__value, const difference_type &__offset) : __my_value_(__value), __my_counter_(__offset) {} public: // non-const variants of access operators are not provided so unintended // writes are caught at compile time. const_reference operator*() const { return __my_value_; } const_reference operator[](difference_type) const { return __my_value_; } difference_type operator-(const constant_iterator &__it) const { return __my_counter_ - __it.__my_counter_; } constant_iterator &operator+=(difference_type __forward) { __my_counter_ += __forward; return *this; } constant_iterator &operator-=(difference_type __backward) { return *this += -__backward; } constant_iterator &operator++() { return *this += 1; } constant_iterator &operator--() { return *this -= 1; } constant_iterator operator++(int) { constant_iterator __it(*this); ++(*this); return __it; } constant_iterator operator--(int) { constant_iterator __it(*this); --(*this); return __it; } constant_iterator operator-(difference_type __backward) const { return constant_iterator(__my_value_, __my_counter_ - __backward); } constant_iterator operator+(difference_type __forward) const { return constant_iterator(__my_value_, __my_counter_ + __forward); } friend constant_iterator operator+(difference_type __forward, const constant_iterator __it) { return __it + __forward; } bool operator==(const constant_iterator &__it) const { return __my_value_ == __it.__my_value_ && this->__my_counter_ == __it.__my_counter_; } bool operator!=(const constant_iterator &__it) const { return !(*this == __it); } bool operator<(const constant_iterator &__it) const { return *this - __it < 0; } bool operator>(const constant_iterator &__it) const { return __it < *this; } bool operator<=(const constant_iterator &__it) const { return !(*this > __it); } bool operator>=(const constant_iterator &__it) const { return !(*this < __it); } private: _Tp __my_value_; uint64_t __my_counter_; }; template <typename _Tp> constant_iterator<_Tp> make_constant_iterator(_Tp __value) { return constant_iterator<_Tp>(__value); } // key_value_pair class to represent a key and value, specifically a // dereferenced arg_index_input_iterator template <typename _KeyTp, typename _ValueTp> class key_value_pair { public: key_value_pair() = default; key_value_pair(const _KeyTp &_key, const _ValueTp &_value) : key(_key), value(_value) {} bool operator==(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key == _kvp.key) && (value == _kvp.value); } bool operator!=(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key != _kvp.key) || (value != _kvp.value); } _KeyTp key; _ValueTp value; }; namespace detail { template <typename KeyTp, typename _ValueTp> struct make_key_value_pair { template <typename ValRefTp> key_value_pair<KeyTp, _ValueTp> operator()(const oneapi::dpl::__internal::tuple<KeyTp, ValRefTp> &tup) const { return ::dpct::key_value_pair<KeyTp, _ValueTp>(::std::get<0>(tup), ::std::get<1>(tup)); } }; template <class T> struct __zip_iterator_impl; template <class... Ts> struct __zip_iterator_impl<std::tuple<Ts...>> { using type = oneapi::dpl::zip_iterator<Ts...>; }; } // end namespace detail // dpct::zip_iterator can only accept std::tuple type as template argument for // compatibility purpose. Please use oneapi::dpl::zip_iterator if you want to // pass iterator's types directly. template <typename... Ts> using zip_iterator = typename detail::__zip_iterator_impl<Ts...>::type; // arg_index_input_iterator is an iterator over a input iterator, with a index. // When dereferenced, it returns a key_value_pair, which can be interrogated for // the index key or the value from the input iterator template <typename InputIteratorT, typename OffsetT = ptrdiff_t, typename OutputValueT = typename ::std::iterator_traits<InputIteratorT>::value_type> class arg_index_input_iterator : public oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>> { using arg_index_input_iterator_wrap = oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>>; public: typedef OffsetT difference_type; // signal to __get_sycl_range that this iterator is as a direct pass iterator using is_zip = ::std::true_type; arg_index_input_iterator(const arg_index_input_iterator_wrap &__arg_wrap) : arg_index_input_iterator_wrap(__arg_wrap) {} arg_index_input_iterator(InputIteratorT __iter) : arg_index_input_iterator_wrap( oneapi::dpl::make_zip_iterator( oneapi::dpl::counting_iterator(OffsetT(0)), __iter), detail::make_key_value_pair<OffsetT, OutputValueT>()) {} arg_index_input_iterator &operator=(const arg_index_input_iterator &__input) { arg_index_input_iterator_wrap::operator=(__input); return *this; } arg_index_input_iterator &operator++() { arg_index_input_iterator_wrap::operator++(); return *this; } arg_index_input_iterator &operator--() { arg_index_input_iterator_wrap::operator--(); return *this; } arg_index_input_iterator operator++(int) { arg_index_input_iterator __it(*this); ++(*this); return __it; } arg_index_input_iterator operator--(int) { arg_index_input_iterator __it(*this); --(*this); return __it; } arg_index_input_iterator operator+(difference_type __forward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator+(__forward)); } arg_index_input_iterator operator-(difference_type __backward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator-(__backward)); } arg_index_input_iterator &operator+=(difference_type __forward) { arg_index_input_iterator_wrap::operator+=(__forward); return *this; } arg_index_input_iterator &operator-=(difference_type __backward) { arg_index_input_iterator_wrap::operator-=(__backward); return *this; } friend arg_index_input_iterator operator+(difference_type __forward, const arg_index_input_iterator &__it) { return __it + __forward; } difference_type operator-(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator-(__it); } bool operator==(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator==(__it); } bool operator!=(const arg_index_input_iterator &__it) const { return !(*this == __it); } bool operator<(const arg_index_input_iterator &__it) const { return *this - __it < 0; } bool operator>(const arg_index_input_iterator &__it) const { return __it < *this; } bool operator<=(const arg_index_input_iterator &__it) const { return !(*this > __it); } bool operator>=(const arg_index_input_iterator &__it) const { return !(*this < __it); } // returns an arg_index_input_iterator with the same iter position, but a // count reset to 0 arg_index_input_iterator create_normalized() { return arg_index_input_iterator( ::std::get<1>(arg_index_input_iterator_wrap::base().base())); } }; template <typename IterT> struct io_iterator_pair { inline io_iterator_pair() : selector(false) {} inline io_iterator_pair(const IterT &first, const IterT &second) : selector(false) { iter[0] = first; iter[1] = second; } inline IterT first() const { return selector ? iter[1] : iter[0]; } inline IterT second() const { return selector ? iter[0] : iter[1]; } inline void swap() { selector = !selector; } bool selector; IterT iter[2]; }; template <typename _Iter, typename _UnaryFunc> auto make_transform_output_iterator(_Iter __it, _UnaryFunc __unary_func) { return oneapi::dpl::transform_iterator( __it, internal::_Unary_Out<_UnaryFunc>(__unary_func)); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/algorithm.h
//==---- algorithm.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ALGORITHM_H__ #define __DPCT_ALGORITHM_H__ #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "functional.h" #include "iterators.h" #include "vector.h" namespace dpct { template <typename Policy, typename Iter1, typename Iter2, typename Pred, typename T> void replace_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::transform(std::forward<Policy>(policy), first, last, mask, first, internal::replace_if_fun<typename std::iterator_traits<Iter1>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred, typename T> Iter3 replace_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::transform(std::forward<Policy>(policy), first, last, mask, result, internal::replace_if_fun<typename std::iterator_traits<Iter3>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using internal::__buffer; using ValueType = typename std::iterator_traits<Iter1>::value_type; __buffer<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.get(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(std::forward<Policy>(policy), _tmp.get(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using ValueType = typename std::iterator_traits<Iter1>::value_type; std::vector<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( policy, make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.begin(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(policy, _tmp.begin(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 remove_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; auto ret_val = std::remove_copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class BinaryPred> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_first, values_first), ret_val); return std::make_pair(keys_first + n1, values_first + n1); } template <class Policy, class Iter1, class Iter2> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; return unique(std::forward<Policy>(policy), keys_first, keys_last, values_first, std::equal_to<T>()); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryPred> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::unique_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; auto comp = std::equal_to<T>(); return unique_copy(std::forward<Policy>(policy), keys_first, keys_last, values_first, keys_result, values_result, comp); } template <typename Policy, typename Iter, typename Pred> Iter partition_point(Policy &&policy, Iter first, Iter last, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); if (std::is_partitioned(std::forward<Policy>(policy), first, last, p)) return std::find_if_not(std::forward<Policy>(policy), first, last, p); else return first; } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::copy_if( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(pred)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class UnaryOperation, class Pred> Iter2 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, result), oneapi::dpl::make_zip_iterator(first, result) + n, internal::transform_if_fun<T, Pred, UnaryOperation>(pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class UnaryOperation, class Pred> Iter3 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; using Ref1 = typename std::iterator_traits<Iter1>::reference; using Ref2 = typename std::iterator_traits<Iter2>::reference; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask, result), oneapi::dpl::make_zip_iterator(first, mask, result) + n, internal::transform_if_unary_zip_mask_fun<T, Pred, UnaryOperation>( pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryOperation, class Pred> Iter4 transform_if(Policy &&policy, Iter1 first1, Iter1 last1, Iter2 first2, Iter3 mask, Iter4 result, BinaryOperation binary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); const auto n = std::distance(first1, last1); using ZipIterator = typename oneapi::dpl::zip_iterator<Iter1, Iter2, Iter3, Iter4>; using T = typename std::iterator_traits<ZipIterator>::value_type; std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first1, first2, mask, result), oneapi::dpl::make_zip_iterator(last1, first2 + n, mask + n, result + n), internal::transform_if_zip_mask_fun<T, Pred, BinaryOperation>(pred, binary_op)); return result + n; } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> void scatter(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); oneapi::dpl::copy(policy, first, last, oneapi::dpl::make_permutation_iterator(result, map)); } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> OutputIter gather(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 input_first, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = ::std::distance(map_first, map_last); return oneapi::dpl::copy(policy, perm_begin, perm_begin + n, result); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> void scatter_if(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, InputIter3 mask, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); transform_if(policy, first, last, mask, oneapi::dpl::make_permutation_iterator(result, map), [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> OutputIter gather_if(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 mask, InputIter3 input_first, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = std::distance(map_first, map_last); return transform_if(policy, perm_begin, perm_begin + n, mask, result, [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6, typename Comp> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init, T step) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, internal::sequence_fun<T>(init, step)); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); iota(std::forward<Policy>(policy), first, last, init, T(1)); } template <class Policy, class Iter> void iota(Policy &&policy, Iter first, Iter last) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; iota(std::forward<Policy>(policy), first, last, DiffSize(0), DiffSize(1)); } template <class Policy, class Iter1, class Iter2, class Comp> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto first = oneapi::dpl::make_zip_iterator(keys_first, values_first); auto last = first + std::distance(keys_first, keys_last); std::sort(std::forward<Policy>(policy), first, last, internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter1, class Iter2, class Comp> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::stable_sort( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); stable_sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter, class Operator> void for_each_index(Policy &&policy, Iter first, Iter last, Operator unary_op) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, unary_op); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Comp> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::partition_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(out_true, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(out_false, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::make_pair(std::get<0>(ret_val.first.base()), std::get<0>(ret_val.second.base())); } template <typename Policy, typename Iter1, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::partition_copy(std::forward<Policy>(policy), first, last, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition_copy(std::forward<Policy>(policy), first, last, mask, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; internal::__buffer<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.get()); auto ret_val = std::stable_partition(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.get()), oneapi::dpl::make_zip_iterator( last, _tmp.get() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; std::vector<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.begin()); auto ret_val = std::stable_partition( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.begin()), oneapi::dpl::make_zip_iterator(last, _tmp.begin() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_execution_policy<Policy, Iter1> partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition(std::forward<Policy>(policy), first, last, mask, p); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); namespace internal { // Transforms key to a specific bit range and sorts the transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transformed_key_t> inline void transform_and_sort(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto trans_key = translate_key<key_t_value_t, transformed_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange // desired. auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, [=](const auto a, const auto b) { return comp(trans_key(a), trans_key(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<transformed_key_t>()); else partial_sort_with_comp(::std::less<transformed_key_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline void sort_only(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; if constexpr (::std::is_floating_point<key_t_value_t>::value) { if (descending) { // Comparison operator that is not std::greater() ensures stability of // -0.0 and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_descending = [=](const auto a, const auto b) { return a > b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_descending); } else { // Comparison operator that is not std::less() ensures stability of -0.0 // and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_ascending = [=](const auto a, const auto b) { return a < b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_ascending); } } else { if (descending) { oneapi::dpl::partial_sort_copy( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, ::std::greater<key_t_value_t>()); } else { oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n); } } } // Transforms key from a pair to a specific bit range and sorts the pairs by the // transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transform_key_t, typename value_t, typename value_out_t> inline void transform_and_sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); auto trans_key = translate_key<key_t_value_t, transform_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange desired // and also to select the key from the zipped pair. auto load_val = [=](const auto a) { return trans_key(std::get<0>(a)); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline void sort_only_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to select the key from the zipped pair. auto load_val = [=](const auto a) { return std::get<0>(a); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } // overload for key_out_t != std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<!::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_pairs_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort_pairs<decltype(policy), key_t, key_out_t, T, value_t, value_out_t>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_pairs_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_pairs_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_pairs_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_pairs_f.template operator()<uint64_t>(0); } } // overload for key_out_t == std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { // create temporary keys_out to discard, memory footprint could be improved by // a specialized iterator with a single // unchanging dummy key_t element using key_t_value_t = typename std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> temp_keys_out{sycl::range<1>(n)}; internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(temp_keys_out), values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_keys(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_pairs(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_keys(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename OffsetIteratorT> inline void mark_segments(_ExecutionPolicy &&policy, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, int64_t n, int64_t nsegments, sycl::buffer<::std::size_t, 1> segments) { ::std::size_t work_group_size = policy.queue() .get_device() .template get_info<sycl::info::device::max_work_group_size>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); ::std::size_t sub_group_size = sg_sizes.empty() ? 0 : sg_sizes.back(); float avg_seg_size = (float)n / (float)nsegments; if (avg_seg_size > work_group_size) { // If average segment size is larger than workgroup, use workgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(work_group_size, ([=](sycl::id<1> id) { for (::std::size_t seg = 0; seg < nsegments; seg++) { ::std::size_t i = begin_offsets[seg]; ::std::size_t end = end_offsets[seg]; while (i + id < end) { segments_acc[i + id] = seg; i += work_group_size; } } })); }) .wait(); } else if (sub_group_size > 0 && avg_seg_size > sub_group_size / 2) { // If average segment size is larger than half a subgroup, use subgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for( sycl::nd_range<1>{work_group_size, work_group_size}, ([=](sycl::nd_item<1> item) { auto sub_group = item.get_sub_group(); ::std::size_t num_subgroups = sub_group.get_group_range().size(); ::std::size_t local_size = sub_group.get_local_range().size(); ::std::size_t sub_group_id = sub_group.get_group_id(); while (sub_group_id < nsegments) { ::std::size_t subgroup_local_id = sub_group.get_local_id(); ::std::size_t i = begin_offsets[sub_group_id]; ::std::size_t end = end_offsets[sub_group_id]; while (i + subgroup_local_id < end) { segments_acc[i + subgroup_local_id] = sub_group_id; i += local_size; } sub_group_id += num_subgroups; } })); }) .wait(); } else { // If average segment size is small as compared to subgroup, use single // work item to mark each segment policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(nsegments, ([=](sycl::id<1> seg) { for (::std::size_t i = begin_offsets[seg]; i < end_offsets[seg]; i++) { segments_acc[i] = seg; } })); }) .wait(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(segments), oneapi::dpl::begin(segments_sorted), n, descending); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), oneapi::dpl::begin(keys_temp), keys_out, n, false); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; using value_t_value_t = typename ::std::iterator_traits<value_t>::value_type; sycl::buffer<value_t_value_t, 1> values_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); auto zip_seg_vals = oneapi::dpl::make_zip_iterator(oneapi::dpl::begin(segments), values_in); auto zip_seg_vals_out = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(values_temp)); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), zip_seg_vals, zip_seg_vals_out, n, descending); auto zip_keys_vals = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(values_temp)); auto zip_keys_vals_out = oneapi::dpl::make_zip_iterator(keys_out, values_out); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), zip_keys_vals, zip_keys_vals_out, n, false); } } // end namespace internal template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename value_t> inline void sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort<decltype(policy), key_t, key_out_t, T>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_f.template operator()<uint64_t>(0); } } template <typename _ExecutionPolicy, typename key_t> inline void sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_keys(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) keys.swap(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> segmented_sort_keys( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_keys_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_keys_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_keys_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename OffsetIteratorT> inline void segmented_sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_keys(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> segmented_sort_pairs( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_pairs_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_pairs_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_pairs_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename value_t, typename OffsetIteratorT> inline void segmented_sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_pairs(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmax(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::max_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmin(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::min_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable, typename StrictWeakOrdering> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value, StrictWeakOrdering comp) { ::std::vector<::std::int64_t> res_lower(1); ::std::vector<::std::int64_t> res_upper(1); ::std::vector<ValueLessComparable> value_vec(1, value); ::oneapi::dpl::lower_bound(policy, start, end, value_vec.begin(), value_vec.end(), res_lower.begin(), comp); ::oneapi::dpl::upper_bound(::std::forward<_ExecutionPolicy>(policy), start, end, value_vec.begin(), value_vec.end(), res_upper.begin(), comp); auto result = ::std::make_pair(start + res_lower[0], start + res_upper[0]); return result; } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value) { return equal_range(::std::forward<_ExecutionPolicy>(policy), start, end, value, internal::__less()); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmin(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::max()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::min_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmax(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::lowest()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::max_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/memory.h
//==---- memory.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_H__ #define __DPCT_MEMORY_H__ #include <sycl/sycl.hpp> // Memory management section: // device_pointer, device_reference, swap, device_iterator, malloc_device, // device_new, free_device, device_delete namespace dpct { namespace detail { template <typename T> struct make_allocatable { using type = T; }; template <> struct make_allocatable<void> { using type = dpct::byte_t; }; #if defined(__LIBSYCL_MAJOR_VERSION) && defined(__LIBSYCL_MINOR_VERSION) && \ defined(__LIBSYCL_PATCH_VERSION) #define _DPCT_LIBSYCL_VERSION \ (__LIBSYCL_MAJOR_VERSION * 10000 + __LIBSYCL_MINOR_VERSION * 100 + \ __LIBSYCL_PATCH_VERSION) #else #define _DPCT_LIBSYCL_VERSION 0 #endif template <typename _DataT> using __buffer_allocator = #if _DPCT_LIBSYCL_VERSION >= 60000 sycl::buffer_allocator<typename make_allocatable<_DataT>::type>; #else sycl::buffer_allocator; #endif } // namespace detail #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_pointer; #else template <typename T> class device_pointer; #endif template <typename T> struct device_reference { using pointer = device_pointer<T>; using value_type = T; template <typename OtherT> device_reference(const device_reference<OtherT> &input) : value(input.value) {} device_reference(const pointer &input) : value((*input).value) {} device_reference(value_type &input) : value(input) {} template <typename OtherT> device_reference &operator=(const device_reference<OtherT> &input) { value = input; return *this; }; device_reference &operator=(const device_reference &input) { T val = input.value; value = val; return *this; }; device_reference &operator=(const value_type &x) { value = x; return *this; }; pointer operator&() const { return pointer(&value); }; operator value_type() const { return T(value); } device_reference &operator++() { ++value; return *this; }; device_reference &operator--() { --value; return *this; }; device_reference operator++(int) { device_reference ref(*this); ++(*this); return ref; }; device_reference operator--(int) { device_reference ref(*this); --(*this); return ref; }; device_reference &operator+=(const T &input) { value += input; return *this; }; device_reference &operator-=(const T &input) { value -= input; return *this; }; device_reference &operator*=(const T &input) { value *= input; return *this; }; device_reference &operator/=(const T &input) { value /= input; return *this; }; device_reference &operator%=(const T &input) { value %= input; return *this; }; device_reference &operator&=(const T &input) { value &= input; return *this; }; device_reference &operator|=(const T &input) { value |= input; return *this; }; device_reference &operator^=(const T &input) { value ^= input; return *this; }; device_reference &operator<<=(const T &input) { value <<= input; return *this; }; device_reference &operator>>=(const T &input) { value >>= input; return *this; }; void swap(device_reference &input) { T tmp = (*this); *this = (input); input = (tmp); } T &value; }; template <typename T> void swap(device_reference<T> &x, device_reference<T> &y) { x.swap(y); } template <typename T> void swap(T &x, T &y) { T tmp = x; x = y; y = tmp; } namespace internal { // struct for checking if iterator is heterogeneous or not template <typename Iter, typename Void = void> // for non-heterogeneous iterators struct is_hetero_iterator : std::false_type {}; template <typename Iter> // for heterogeneous iterators struct is_hetero_iterator< Iter, typename std::enable_if<Iter::is_hetero::value, void>::type> : std::true_type {}; } // namespace internal #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode, typename Allocator> class device_iterator; template <typename ValueType, typename Allocator, typename Derived> class device_pointer_base { protected: sycl::buffer<ValueType, 1, Allocator> buffer; std::size_t idx; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(sycl::buffer<ValueType, 1> in, std::size_t i = 0) : buffer(in), idx(i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer_base(OtherT *ptr) : buffer( dpct::detail::mem_mgr::instance() .translate_ptr(ptr) .buffer.template reinterpret<ValueType, 1>(sycl::range<1>( dpct::detail::mem_mgr::instance().translate_ptr(ptr).size / sizeof(ValueType)))), idx(ptr - (ValueType*)dpct::detail::mem_mgr::instance() .translate_ptr(ptr).alloc_ptr) {} #endif device_pointer_base(const std::size_t count) : buffer(sycl::range<1>(count / sizeof(ValueType))), idx() {} // buffer has no default ctor we pass zero-range to create an empty buffer device_pointer_base() : buffer(sycl::range<1>(0)) {} device_pointer_base(const device_pointer_base &in) : buffer(in.buffer), idx(in.idx) {} pointer get() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() { auto res = (buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } Derived operator+(difference_type forward) const { return Derived{buffer, idx + forward}; } Derived operator-(difference_type backward) const { return Derived{buffer, idx - backward}; } Derived operator++(int) { Derived p(buffer, idx); idx += 1; return p; } Derived operator--(int) { Derived p(buffer, idx); idx -= 1; return p; } difference_type operator-(const Derived &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - std::distance(oneapi::dpl::begin(buffer), it); } std::size_t get_idx() const { return idx; } // required sycl::buffer<ValueType, 1, Allocator> get_buffer() { return buffer; } // required }; template <typename T, sycl::access_mode Mode, typename Allocator> class device_pointer : public device_pointer_base<T, Allocator, device_pointer<T, Mode, Allocator>> { private: using base_type = device_pointer_base<T, Allocator, device_pointer>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<T, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; template <sycl::access_mode Mode, typename Allocator> class device_pointer<void, Mode, Allocator> : public device_pointer_base<dpct::byte_t, Allocator, device_pointer<void, Mode, Allocator>> { private: using base_type = device_pointer_base<dpct::byte_t, Allocator, device_pointer>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<value_type, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; #else template <typename T> class device_iterator; template <typename ValueType, typename Derived> class device_pointer_base { protected: ValueType *ptr; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(ValueType *p) : ptr(p) {} device_pointer_base(const std::size_t count) { sycl::queue default_queue = dpct::get_default_queue(); ptr = static_cast<ValueType *>(sycl::malloc_shared( count, default_queue.get_device(), default_queue.get_context())); } device_pointer_base() {} pointer get() const { return ptr; } operator ValueType *() { return ptr; } operator ValueType *() const { return ptr; } ValueType &operator[](difference_type idx) { return ptr[idx]; } ValueType &operator[](difference_type idx) const { return ptr[idx]; } Derived operator+(difference_type forward) const { return Derived{ptr + forward}; } Derived operator-(difference_type backward) const { return Derived{ptr - backward}; } Derived operator++(int) { Derived p(ptr); ++ptr; return p; } Derived operator--(int) { Derived p(ptr); --ptr; return p; } difference_type operator-(const Derived &it) const { return ptr - it.ptr; } }; template <typename T> class device_pointer : public device_pointer_base<T, device_pointer<T>> { private: using base_type = device_pointer_base<T, device_pointer<T>>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using const_reference = const T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(T *p) : base_type(p) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer &operator=(const device_iterator<T> &in) { this->ptr = static_cast<device_pointer<T>>(in).ptr; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; template <> class device_pointer<void> : public device_pointer_base<dpct::byte_t, device_pointer<void>> { private: using base_type = device_pointer_base<dpct::byte_t, device_pointer<void>>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using const_reference = const value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(void *p) : base_type(static_cast<value_type *>(p)) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} pointer get() const { return static_cast<pointer>(this->ptr); } operator void *() { return this->ptr; } operator void *() const { return this->ptr; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; #endif #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_iterator : public device_pointer<T, Mode, Allocator> { using Base = device_pointer<T, Mode, Allocator>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; // required static constexpr sycl::access_mode mode = Mode; // required device_iterator() : Base() {} device_iterator(sycl::buffer<T, 1, Allocator> vec, std::size_t index) : Base(vec, index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T, inMode, Allocator> &in) : Base(in.buffer, in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::buffer = in.buffer; Base::idx = in.idx; return *this; } reference operator*() const { return const_cast<device_iterator *>(this) ->buffer.template get_access<mode>()[Base::idx]; } reference operator[](difference_type i) const { return *(*this + i); } device_iterator &operator++() { ++Base::idx; return *this; } device_iterator &operator--() { --Base::idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = Base::idx + forward; return {Base::buffer, new_idx}; } device_iterator &operator+=(difference_type forward) { Base::idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::buffer, Base::idx - backward}; } device_iterator &operator-=(difference_type backward) { Base::idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return Base::idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return Base::idx - std::distance(oneapi::dpl::begin(Base::buffer), it); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return Base::idx; } // required sycl::buffer<T, 1, Allocator> get_buffer() { return Base::buffer; } // required }; #else template <typename T> class device_iterator : public device_pointer<T> { using Base = device_pointer<T>; protected: std::size_t idx; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = typename Base::pointer; using reference = typename Base::reference; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required static constexpr sycl::access_mode mode = sycl::access_mode::read_write; // required device_iterator() : Base(nullptr), idx(0) {} device_iterator(T *vec, std::size_t index) : Base(vec), idx(index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T> &in) : Base(in.ptr), idx(in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::operator=(in); idx = in.idx; return *this; } reference operator*() const { return *(Base::ptr + idx); } reference operator[](difference_type i) { return Base::ptr[idx + i]; } reference operator[](difference_type i) const { return Base::ptr[idx + i]; } device_iterator &operator++() { ++idx; return *this; } device_iterator &operator--() { --idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = idx + forward; return {Base::ptr, new_idx}; } device_iterator &operator+=(difference_type forward) { idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::ptr, idx - backward}; } device_iterator &operator-=(difference_type backward) { idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - it.get_idx(); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return idx; } // required device_iterator &get_buffer() { return *this; } // required std::size_t size() const { return idx; } }; #endif template <typename T> device_pointer<T> malloc_device(const std::size_t num_elements) { return device_pointer<T>(num_elements * sizeof(T)); } static inline device_pointer<void> malloc_device(const std::size_t num_bytes) { return device_pointer<void>(num_bytes); } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const T &value, const std::size_t count = 1) { std::vector<T> result(count, value); p.buffer = sycl::buffer<T, 1>(result.begin(), result.end()); return p + count; } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const std::size_t count = 1) { return device_new(p, T{}, count); } template <typename T> device_pointer<T> device_new(const std::size_t count = 1) { return device_pointer<T>(count); } template <typename T> void free_device(device_pointer<T> ptr) {} template <typename T> typename std::enable_if<!std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T> p, const std::size_t count = 1) { for (std::size_t i = 0; i < count; ++i) { p[i].~T(); } } template <typename T> typename std::enable_if<std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T>, const std::size_t count = 1) {} template <typename T> device_pointer<T> get_device_pointer(T *ptr) { return device_pointer<T>(ptr); } template <typename T> device_pointer<T> get_device_pointer(const device_pointer<T> &ptr) { return device_pointer<T>(ptr); } template <typename T> T *get_raw_pointer(const device_pointer<T> &ptr) { return ptr.get(); } template <typename Pointer> Pointer get_raw_pointer(const Pointer &ptr) { return ptr; } template <typename T> const T &get_raw_reference(const device_reference<T> &ref) { return ref.value; } template <typename T> T &get_raw_reference(device_reference<T> &ref) { return ref.value; } template <typename T> const T &get_raw_reference(const T &ref) { return ref; } template <typename T> T &get_raw_reference(T &ref) { return ref; } } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/vector.h
//==---- vector.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_VECTOR_H__ #define __DPCT_VECTOR_H__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <sycl/sycl.hpp> #include "memory.h" #include <algorithm> #include <iterator> #include <vector> #include "../device.hpp" namespace dpct { namespace internal { template <typename Iter, typename Void = void> // for non-iterators struct is_iterator : std::false_type {}; template <typename Iter> // For iterators struct is_iterator< Iter, typename std::enable_if< !std::is_void<typename Iter::iterator_category>::value, void>::type> : std::true_type {}; template <typename T> // For pointers struct is_iterator<T *> : std::true_type {}; } // end namespace internal #ifndef DPCT_USM_LEVEL_NONE template <typename T, typename Allocator = sycl::usm_allocator<T, sycl::usm::alloc::shared>> class device_vector { public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename ::std::iterator_traits<iterator>::difference_type; using size_type = ::std::size_t; private: Allocator _alloc; size_type _size; size_type _capacity; pointer _storage; size_type _min_capacity() const { return size_type(1); } void _set_capacity_and_alloc() { _capacity = ::std::max(_size * 2, _min_capacity()); _storage = _alloc.allocate(_capacity); } public: template <typename OtherA> operator ::std::vector<T, OtherA>() const { auto __tmp = ::std::vector<T, OtherA>(this->size()); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _alloc(get_default_queue()), _size(0), _capacity(_min_capacity()) { _set_capacity_and_alloc(); } ~device_vector() /*= default*/ { _alloc.deallocate(_storage, _capacity); }; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _alloc(get_default_queue()), _size(n) { _set_capacity_and_alloc(); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), T(value)); } } device_vector(const device_vector &other) : _alloc(get_default_queue()) { _size = other.size(); _capacity = other.capacity(); _storage = _alloc.allocate(_capacity); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } device_vector(device_vector &&other) : _alloc(get_default_queue()), _size(other.size()), _capacity(other.capacity()), _storage(other._storage) { other._size = 0; other._capacity = 0; other._storage = nullptr; } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && ::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if<::std::is_pointer<InputIterator>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { auto ptr_type = sycl::get_pointer_type(first, get_default_context()); if (ptr_type != sycl::usm::alloc::host && ptr_type != sycl::usm::alloc::unknown) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } else { sycl::buffer<T, 1> buf(first, last); auto buf_first = oneapi::dpl::begin(buf); auto buf_last = oneapi::dpl::end(buf); ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), buf_first, buf_last, begin()); } } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && !::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()), _size(::std::distance(first, last)) { _set_capacity_and_alloc(); ::std::vector<T> _tmp(first, last); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), _tmp.begin(), _tmp.end(), this->begin()); } } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _storage(v.real_begin()), _size(v.size()), _capacity(v.capacity()) {} template <typename OtherAllocator> device_vector(::std::vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _size(v.size()) { _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), this->begin()); } } template <typename OtherAllocator> device_vector &operator=(const ::std::vector<T, OtherAllocator> &v) { resize(v.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), begin()); } return *this; } device_vector &operator=(const device_vector &other) { // Copy assignment operator: resize(other.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: device_vector dummy(::std::move(other)); this->swap(dummy); return *this; } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(_storage, 0); } iterator end() { return device_iterator<T>(_storage, size()); } const_iterator begin() const noexcept { return device_iterator<T>(_storage, 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(_storage, size()); } const_iterator cend() const { return end(); } T *real_begin() { return _storage; } const T *real_begin() const { return _storage; } void swap(device_vector &v) { ::std::swap(_size, v._size); ::std::swap(_capacity, v._capacity); ::std::swap(_storage, v._storage); ::std::swap(_alloc, v._alloc); } reference operator[](size_type n) { return _storage[n]; } const_reference operator[](size_type n) const { return _storage[n]; } void reserve(size_type n) { if (n > capacity()) { // allocate buffer for new size auto tmp = _alloc.allocate(2 * n); // copy content (old buffer to new buffer) ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); // deallocate old memory _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = 2 * n; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin() + _size, begin() + new_size, x); } _size = new_size; } size_type max_size(void) const { return ::std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _capacity; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return _storage; } const_pointer data(void) const { return _storage; } void shrink_to_fit(void) { if (_size != capacity()) { size_type tmp_capacity = ::std::max(_size, _min_capacity()); auto tmp = _alloc.allocate(tmp_capacity); if (_size > 0) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); } _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = tmp_capacity; } } void assign(size_type n, const T &x) { resize(n); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), begin() + n, x); } } template <typename InputIterator> void assign(InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); resize(n); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } void clear(void) { _size = 0; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = ::std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } auto m = ::std::distance(last, end()); if (m <= 0) { return end(); } auto tmp = _alloc.allocate(m); // copy remainder to temporary buffer. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), last, end(), tmp); // override (erase) subsequence in storage. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, first); _alloc.deallocate(tmp, m); _size -= n; return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = ::std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), end() - n, end(), x); } else { auto i_n = ::std::distance(begin(), position); // allocate temporary storage auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); // copy remainder ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, position + n, x); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); if (position == end()) { resize(size() + n); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, end()); } else { auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, position); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } Allocator get_allocator() const { return _alloc; } }; #else template <typename T, typename Allocator = detail::__buffer_allocator<T>> class device_vector { static_assert( std::is_same<Allocator, detail::__buffer_allocator<T>>::value, "device_vector doesn't support custom allocator when USM is not used."); public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename std::iterator_traits<iterator>::difference_type; using size_type = std::size_t; private: using Buffer = sycl::buffer<T, 1>; using Range = sycl::range<1>; // Using mem_mgr to handle memory allocation void *_storage; size_type _size; size_type _min_capacity() const { return size_type(1); } void *alloc_store(size_type num_bytes) { return detail::mem_mgr::instance().mem_alloc(num_bytes); } public: template <typename OtherA> operator std::vector<T, OtherA>() const { auto __tmp = std::vector<T, OtherA>(this->size()); std::copy(oneapi::dpl::execution::dpcpp_default, this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _storage(alloc_store(_min_capacity() * sizeof(T))), _size(0) {} ~device_vector() = default; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _storage(alloc_store(std::max(n, _min_capacity()) * sizeof(T))), _size(n) { auto buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(buf), oneapi::dpl::begin(buf) + n, T(value)); } device_vector(const device_vector &other) : _storage(other._storage), _size(other.size()) {} device_vector(device_vector &&other) : _storage(std::move(other._storage)), _size(other.size()) {} template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value && std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if<std::is_pointer<InputIterator>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); Buffer tmp_buf(first, last); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); std::vector<T> tmp(first, last); Buffer tmp_buf(tmp); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.real_begin(), v.real_begin() + v.size(), dst); } template <typename OtherAllocator> device_vector(std::vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { std::copy(oneapi::dpl::execution::dpcpp_default, v.begin(), v.end(), oneapi::dpl::begin(get_buffer())); } device_vector &operator=(const device_vector &other) { // Copy assignment operator: _size = other.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(other.get_buffer()), oneapi::dpl::end(other.get_buffer()), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: _size = other.size(); this->_storage = std::move(other._storage); return *this; } template <typename OtherAllocator> device_vector &operator=(const std::vector<T, OtherAllocator> &v) { Buffer data(v.begin(), v.end()); _size = v.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(data), oneapi::dpl::end(data), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } Buffer get_buffer() const { return detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template reinterpret<T, 1>(sycl::range<1>(capacity())); } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(get_buffer(), 0); } iterator end() { return device_iterator<T>(get_buffer(), _size); } const_iterator begin() const noexcept { return device_iterator<T>(get_buffer(), 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(get_buffer(), _size); } const_iterator cend() const { return end(); } T *real_begin() { return (detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); } const T *real_begin() const { return const_cast<device_vector *>(this) ->detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>() .get_pointer(); } void swap(device_vector &v) { void *temp = v._storage; v._storage = this->_storage; this->_storage = temp; std::swap(_size, v._size); } reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } void reserve(size_type n) { if (n > capacity()) { // create new buffer (allocate for new size) void *a = alloc_store(n * sizeof(T)); // copy content (old buffer to new buffer) if (_storage != nullptr) { auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(n)); auto src_buf = get_buffer(); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf), oneapi::dpl::end(src_buf), oneapi::dpl::begin(tmp)); // deallocate old memory detail::mem_mgr::instance().mem_free(_storage); } _storage = a; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { auto src_buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf) + _size, oneapi::dpl::begin(src_buf) + new_size, x); } _size = new_size; } size_type max_size(void) const { return std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _storage != nullptr ? detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.size() / sizeof(T) : 0; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return reinterpret_cast<pointer>(_storage); } const_pointer data(void) const { return reinterpret_cast<const_pointer>(_storage); } void shrink_to_fit(void) { if (_size != capacity()) { void *a = alloc_store(_size * sizeof(T)); auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(get_buffer()), oneapi::dpl::begin(get_buffer()) + _size, oneapi::dpl::begin(tmp)); detail::mem_mgr::instance().mem_free(_storage); _storage = a; } } void assign(size_type n, const T &x) { resize(n); std::fill(oneapi::dpl::execution::dpcpp_default, begin(), begin() + n, x); } template <typename InputIterator> void assign(InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); resize(n); if (internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value) std::copy(oneapi::dpl::execution::dpcpp_default, first, last, begin()); else { Buffer tmp(first, last); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), begin()); } } void clear(void) { _size = 0; detail::mem_mgr::instance().mem_free(_storage); _storage = nullptr; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } Buffer tmp{Range(std::distance(last, end()))}; // copy remainder to temporary buffer. std::copy(oneapi::dpl::execution::dpcpp_default, last, end(), oneapi::dpl::begin(tmp)); // override (erase) subsequence in storage. std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), first); resize(_size - n); return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); std::fill(oneapi::dpl::execution::dpcpp_default, end() - n, end(), x); } else { auto i_n = std::distance(begin(), position); // allocate temporary storage Buffer tmp{Range(std::distance(position, end()))}; // copy remainder std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::fill(oneapi::dpl::execution::dpcpp_default, position, position + n, x); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); if (position == end()) { resize(size() + n); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, end()); } else { Buffer tmp{Range(std::distance(position, end()))}; std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, position); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } }; #endif } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/dpcpp_extensions.h
//==---- dpcpp_extensions.h ------------------*- C++ -*---------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------===// #ifndef __DPCT_DPCPP_EXTENSIONS_H__ #define __DPCT_DPCPP_EXTENSIONS_H__ #include <sycl/sycl.hpp> #include <stdexcept> #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS #include <sycl/ext/oneapi/experimental/user_defined_reductions.hpp> #endif #include "../dpct.hpp" namespace dpct { namespace group { namespace detail { template <typename... _Args> constexpr auto __reduce_over_group(_Args... __args) { return sycl::reduce_over_group(__args...); } template <typename... _Args> constexpr auto __group_broadcast(_Args... __args) { return sycl::group_broadcast(__args...); } template <typename... _Args> constexpr auto __exclusive_scan_over_group(_Args... __args) { return sycl::exclusive_scan_over_group(__args...); } template <typename... _Args> constexpr auto __inclusive_scan_over_group(_Args... __args) { return sycl::inclusive_scan_over_group(__args...); } } // end namespace detail /// Perform an exclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void exclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], T init, BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); T input = inputs[0]; if (item.get_local_linear_id() == 0) { outputs[0] = init; } else { outputs[0] = exclusive_result; } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { T output = binary_op(input, outputs[i - 1]); input = inputs[i]; outputs[i] = output; } } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns exclusive scan of the first i /// work-items where item is the i-th work item. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, T init, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__exclusive_scan_over_group(item.get_group(), input, init, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns exclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = detail::__exclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); T group_prefix = prefix_callback_op(group_aggregate); if (item.get_local_linear_id() == 0) { output = group_prefix; } else { output = binary_op(group_prefix, output); } return output; } namespace detail { typedef uint16_t digit_counter_type; typedef uint32_t packed_counter_type; template <int N, int CURRENT_VAL = N, int COUNT = 0> struct log2 { enum { VALUE = log2<N, (CURRENT_VAL >> 1), COUNT + 1>::VALUE }; }; template <int N, int COUNT> struct log2<N, 0, COUNT> { enum { VALUE = (1 << (COUNT - 1) < N) ? COUNT : COUNT - 1 }; }; __dpct_inline__ uint32_t bfe(uint32_t source, uint32_t bit_start, uint32_t num_bits) { const uint32_t MASK = (1 << num_bits) - 1; return (source >> bit_start) & MASK; } template <int RADIX_BITS, bool DESCENDING = false> class radix_rank { public: static size_t get_local_memory_size(size_t group_threads) { return group_threads * PADDED_COUNTER_LANES * sizeof(packed_counter_type); } radix_rank(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item, int VALUES_PER_THREAD> __dpct_inline__ void rank_keys(const Item &item, uint32_t (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD], int current_bit, int num_bits) { digit_counter_type thread_prefixes[VALUES_PER_THREAD]; digit_counter_type *digit_counters[VALUES_PER_THREAD]; digit_counter_type *buffer = reinterpret_cast<digit_counter_type *>(_local_memory); reset_local_memory(item); item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { uint32_t digit = bfe(keys[i], current_bit, num_bits); uint32_t sub_counter = digit >> LOG_COUNTER_LANES; uint32_t counter_lane = digit & (COUNTER_LANES - 1); if (DESCENDING) { sub_counter = PACKING_RATIO - 1 - sub_counter; counter_lane = COUNTER_LANES - 1 - counter_lane; } digit_counters[i] = &buffer[counter_lane * item.get_local_range().size() * PACKING_RATIO + item.get_local_linear_id() * PACKING_RATIO + sub_counter]; thread_prefixes[i] = *digit_counters[i]; *digit_counters[i] = thread_prefixes[i] + 1; } item.barrier(sycl::access::fence_space::local_space); scan_counters(item); item.barrier(sycl::access::fence_space::local_space); for (int i = 0; i < VALUES_PER_THREAD; ++i) { ranks[i] = thread_prefixes[i] + *digit_counters[i]; } } private: template <typename Item> __dpct_inline__ void reset_local_memory(const Item &item) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[i * item.get_local_range().size() + item.get_local_linear_id()] = 0; } } template <typename Item> __dpct_inline__ packed_counter_type upsweep(const Item &item) { packed_counter_type sum = 0; packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; i++) { cached_segment[i] = ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i]; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { sum += cached_segment[i]; } return sum; } template <typename Item> __dpct_inline__ void exclusive_downsweep(const Item &item, packed_counter_type raking_partial) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); packed_counter_type sum = raking_partial; #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { packed_counter_type value = cached_segment[i]; cached_segment[i] = sum; sum += value; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i] = cached_segment[i]; } } struct prefix_callback { __dpct_inline__ packed_counter_type operator()(packed_counter_type block_aggregate) { packed_counter_type block_prefix = 0; #pragma unroll for (int packed = 1; packed < PACKING_RATIO; packed++) { block_prefix += block_aggregate << (sizeof(digit_counter_type) * 8 * packed); } return block_prefix; } }; template <typename Item> __dpct_inline__ void scan_counters(const Item &item) { packed_counter_type raking_partial = upsweep(item); prefix_callback callback; packed_counter_type exclusive_partial = exclusive_scan( item, raking_partial, sycl::ext::oneapi::plus<packed_counter_type>(), callback); exclusive_downsweep(item, exclusive_partial); } private: static constexpr int PACKING_RATIO = sizeof(packed_counter_type) / sizeof(digit_counter_type); static constexpr int LOG_PACKING_RATIO = log2<PACKING_RATIO>::VALUE; static constexpr int LOG_COUNTER_LANES = RADIX_BITS - LOG_PACKING_RATIO; static constexpr int COUNTER_LANES = 1 << LOG_COUNTER_LANES; static constexpr int PADDED_COUNTER_LANES = COUNTER_LANES + 1; packed_counter_type cached_segment[PADDED_COUNTER_LANES]; uint8_t *_local_memory; }; template <typename T, typename U> struct base_traits { static __dpct_inline__ U twiddle_in(U key) { throw std::runtime_error("Not implemented"); } static __dpct_inline__ U twiddle_out(U key) { throw std::runtime_error("Not implemented"); } }; template <typename U> struct base_traits<uint32_t, U> { static __dpct_inline__ U twiddle_in(U key) { return key; } static __dpct_inline__ U twiddle_out(U key) { return key; } }; template <typename U> struct base_traits<int, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { return key ^ HIGH_BIT; } static __dpct_inline__ U twiddle_out(U key) { return key ^ HIGH_BIT; } }; template <typename U> struct base_traits<float, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { U mask = (key & HIGH_BIT) ? U(-1) : HIGH_BIT; return key ^ mask; } static __dpct_inline__ U twiddle_out(U key) { U mask = (key & HIGH_BIT) ? HIGH_BIT : U(-1); return key ^ mask; } }; template <typename T> struct traits : base_traits<T, T> {}; template <> struct traits<uint32_t> : base_traits<uint32_t, uint32_t> {}; template <> struct traits<int> : base_traits<int, uint32_t> {}; template <> struct traits<float> : base_traits<float, uint32_t> {}; } // namespace detail namespace detail { template <int N> struct power_of_two { enum { VALUE = ((N & (N - 1)) == 0) }; }; __dpct_inline__ uint32_t shr_add(uint32_t x, uint32_t shift, uint32_t addend) { return (x >> shift) + addend; } } // namespace detail /// Implements scatter to blocked exchange pattern used in radix sort algorithm. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread template <typename T, int VALUES_PER_THREAD> class exchange { public: static size_t get_local_memory_size(size_t group_threads) { size_t padding_values = (INSERT_PADDING) ? ((group_threads * VALUES_PER_THREAD) >> LOG_LOCAL_MEMORY_BANKS) : 0; return (group_threads * VALUES_PER_THREAD + padding_values) * sizeof(T); } exchange(uint8_t *local_memory) : _local_memory(local_memory) {} /// Rearrange elements from rank order to blocked order template <typename Item> __dpct_inline__ void scatter_to_blocked(Item item, T (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD]) { T *buffer = reinterpret_cast<T *>(_local_memory); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = ranks[i]; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); buffer[offset] = keys[i]; } item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = (item.get_local_id(0) * VALUES_PER_THREAD) + i; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); keys[i] = buffer[offset]; } } private: static constexpr int LOG_LOCAL_MEMORY_BANKS = 5; static constexpr bool INSERT_PADDING = (VALUES_PER_THREAD > 4) && (detail::power_of_two<VALUES_PER_THREAD>::VALUE); uint8_t *_local_memory; }; /// Implements radix sort to sort integer data elements assigned to all threads /// in the group. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread /// \tparam DECENDING boolean value indicating if data elements are sorted in /// decending order. template <typename T, int VALUES_PER_THREAD, bool DESCENDING = false> class radix_sort { public: static size_t get_local_memory_size(size_t group_threads) { size_t ranks_size = detail::radix_rank<RADIX_BITS>::get_local_memory_size(group_threads); size_t exchange_size = exchange<T, VALUES_PER_THREAD>::get_local_memory_size(group_threads); return sycl::max(ranks_size, exchange_size); } radix_sort(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item> __dpct_inline__ void sort(const Item &item, T (&keys)[VALUES_PER_THREAD], int begin_bit = 0, int end_bit = 8 * sizeof(T)) { uint32_t(&unsigned_keys)[VALUES_PER_THREAD] = reinterpret_cast<uint32_t(&)[VALUES_PER_THREAD]>(keys); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_in(unsigned_keys[i]); } while (true) { int pass_bits = sycl::min(RADIX_BITS, end_bit - begin_bit); int ranks[VALUES_PER_THREAD]; detail::radix_rank<RADIX_BITS, DESCENDING>(_local_memory) .template rank_keys(item, unsigned_keys, ranks, begin_bit, pass_bits); begin_bit += RADIX_BITS; item.barrier(sycl::access::fence_space::local_space); exchange<T, VALUES_PER_THREAD>(_local_memory) .scatter_to_blocked(item, keys, ranks); item.barrier(sycl::access::fence_space::local_space); if (begin_bit >= end_bit) break; } #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_out(unsigned_keys[i]); } } private: static constexpr int RADIX_BITS = 4; uint8_t *_local_memory; }; /// Perform a reduction of the data elements assigned to all threads in the /// group. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the reduce operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ T reduce(Item item, T (&inputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; i++) { result = binary_op(result, inputs[i]); } return detail::__reduce_over_group(item.get_group(), result, binary_op); } /// Perform a reduction on a limited number of the work items in a subgroup /// /// \param item A work-item in a group. /// \param value value per work item which is to be reduced /// \param items_to_reduce num work items at the start of the subgroup to reduce /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation> __dpct_inline__ typename ::std::enable_if_t<sycl::has_known_identity_v<BinaryOperation, T>, T> reduce_over_partial_group(const Item &item, const T &value, const ::std::uint16_t &items_to_reduce, BinaryOperation binary_op) { T value_temp = (item.get_local_linear_id() < items_to_reduce) ? value : sycl::known_identity_v<BinaryOperation, T>; return detail::__reduce_over_group(item.get_sub_group(), value_temp, binary_op); } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns inclusive scan of the input elements assigned to /// work-items in the group. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void inclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); if (item.get_local_linear_id() == 0) { outputs[0] = inputs[0]; } else { outputs[0] = binary_op(inputs[0], exclusive_result); } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { outputs[i] = binary_op(inputs[i], outputs[i - 1]); } } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Pointer to the input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns inclusive scan of the input /// elements assigned to work-items in the group. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__inclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = output; } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an inclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns inclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = inclusive_scan(item, input, binary_op, group_aggregate); T group_prefix = prefix_callback_op(group_aggregate); return binary_op(group_prefix, output); } } // namespace group namespace device { namespace detail { template <typename... _Args> constexpr auto __joint_reduce(_Args... __args) { return sycl::joint_reduce(__args...); } } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); queue.submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } sycl::multi_ptr<T, sycl::access::address_space::global_space> input_ptr = inputs; T group_aggregate = detail::__joint_reduce( item.get_group(), input_ptr + segment_begin, input_ptr + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS namespace experimental { namespace detail { template <typename _Tp, typename... _Ts> struct __is_any { constexpr static bool value = std::disjunction_v< std::is_same<std::remove_cv_t<_Tp>, std::remove_cv_t<_Ts>>...>; }; template <typename _Tp, typename _Bp> struct __in_native_op_list { constexpr static bool value = __is_any<_Bp, sycl::plus<_Tp>, sycl::bit_or<_Tp>, sycl::bit_xor<_Tp>, sycl::bit_and<_Tp>, sycl::maximum<_Tp>, sycl::minimum<_Tp>, sycl::multiplies<_Tp>>::value; }; template <typename _Tp, typename _Bp> struct __is_native_op { constexpr static bool value = __in_native_op_list<_Tp, _Bp>::value || __in_native_op_list<void, _Bp>::value; }; } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. Compared with dpct::device::segmented_reduce, this experimental /// feature support user define reductions. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); if constexpr (!detail::__is_native_op<T, BinaryOperation>::value) { queue.submit([&](sycl::handler &cgh) { size_t temp_memory_size = GROUP_SIZE * sizeof(T); auto scratch = sycl::local_accessor<std::byte, 1>(temp_memory_size, cgh); cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } // Create a handle that associates the group with an allocation it // can use auto handle = sycl::ext::oneapi::experimental::group_with_scratchpad( item.get_group(), sycl::span(&scratch[0], temp_memory_size)); T group_aggregate = sycl::ext::oneapi::experimental::joint_reduce( handle, inputs + segment_begin, inputs + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } else { dpct::device::segmented_reduce<GROUP_SIZE>(queue, inputs, outputs, segment_count, begin_offsets, end_offsets, binary_op, init); } } } // namespace experimental #endif // SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS } // namespace device } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/functional.h
//==---- functional.h -----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FUNCTIONAL_H__ #define __DPCT_FUNCTIONAL_H__ #include <functional> #include <oneapi/dpl/functional> #include <oneapi/dpl/iterator> #if ONEDPL_USE_DPCPP_BACKEND #include <oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_utils.h> #endif #include <tuple> #include <utility> namespace dpct { struct null_type {}; namespace internal { template <class _ExecPolicy, class _T> using enable_if_execution_policy = typename std::enable_if<oneapi::dpl::execution::is_execution_policy< typename std::decay<_ExecPolicy>::type>::value, _T>::type; template <typename _T> struct is_hetero_execution_policy : ::std::false_type {}; template <typename... PolicyParams> struct is_hetero_execution_policy< oneapi::dpl::execution::device_policy<PolicyParams...>> : ::std::true_type { }; template <typename _T> struct is_fpga_execution_policy : ::std::false_type {}; #if _ONEDPL_FPGA_DEVICE template <unsigned int unroll_factor, typename... PolicyParams> struct is_hetero_execution_policy< execution::fpga_policy<unroll_factor, PolicyParams...>> : ::std::true_type { }; #endif template <class _ExecPolicy, class _T> using enable_if_hetero_execution_policy = typename std::enable_if< is_hetero_execution_policy<typename std::decay<_ExecPolicy>::type>::value, _T>::type; #if _ONEDPL_CPP14_INTEGER_SEQUENCE_PRESENT template <std::size_t... _Sp> using index_sequence = std::index_sequence<_Sp...>; template <std::size_t _Np> using make_index_sequence = std::make_index_sequence<_Np>; #else template <std::size_t... _Sp> class index_sequence {}; template <std::size_t _Np, std::size_t... _Sp> struct make_index_sequence_impl : make_index_sequence_impl<_Np - 1, _Np - 1, _Sp...> {}; template <std::size_t... _Sp> struct make_index_sequence_impl<0, _Sp...> { using type = index_sequence<_Sp...>; }; template <std::size_t _Np> using make_index_sequence = typename make_index_sequence_impl<_Np>::type; #endif // Minimal buffer implementations for temporary storage in mapping rules // Some of our algorithms need to start with raw memory buffer, // not an initialized array, because initialization/destruction // would make the span be at least O(N). #if ONEDPL_USE_DPCPP_BACKEND template <typename _Tp> class __buffer { sycl::buffer<_Tp, 1> __buf; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t __n) : __buf(sycl::range<1>(__n)) {} // Return pointer to buffer, or NULL if buffer could not be obtained. auto get() -> decltype(oneapi::dpl::begin(__buf)) const { return oneapi::dpl::begin(__buf); } }; #else template <typename _Tp> class __buffer { std::unique_ptr<_Tp> _M_ptr; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(const std::size_t __n) : _M_ptr(new _Tp[__n]) {} // Return pointer to buffer, or NULL if buffer could not be obtained. _Tp *get() const { return _M_ptr.get(); } }; #endif // Implements C++14 std::less<void> specialization to allow parameter type // deduction. class __less { public: template <typename _Xp, typename _Yp> bool operator()(_Xp &&__x, _Yp &&__y) const { return std::forward<_Xp>(__x) < std::forward<_Yp>(__y); } }; template <typename Policy, typename NewName> struct rebind_policy { using type = Policy; }; template <typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::device_policy<KernelName>, NewName> { using type = oneapi::dpl::execution::device_policy<NewName>; }; #if _ONEDPL_FPGA_DEVICE template <unsigned int factor, typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::fpga_policy<factor, KernelName>, NewName> { using type = oneapi::dpl::execution::fpga_policy<factor, NewName>; }; #endif template <typename T1, typename T2, typename R1 = typename std::iterator_traits<T1>::reference, typename R2 = typename std::iterator_traits<T2>::reference> struct perm_fun { typedef R2 result_of; perm_fun(T1 input) : source(input) {} R2 operator()(R1 x) const { return *(source + x); } private: T1 source; }; // Functor compares first element (key) from tied sequence. template <typename Compare = class internal::__less> struct compare_key_fun { typedef bool result_of; compare_key_fun(Compare _comp = internal::__less()) : comp(_comp) {} template <typename _T1, typename _T2> result_of operator()(_T1 &&a, _T2 &&b) const { using std::get; return comp(get<0>(a), get<0>(b)); } private: mutable Compare comp; }; // Functor evaluates second element of tied sequence with predicate. // Used by: copy_if, remove_copy_if, stable_partition_copy // Lambda: template <typename Predicate> struct predicate_key_fun { typedef bool result_of; predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return pred(get<1>(a)); } private: mutable Predicate pred; }; // Used by: remove_if template <typename Predicate> struct negate_predicate_key_fun { typedef bool result_of; negate_predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return !pred(get<1>(a)); } private: mutable Predicate pred; }; template <typename T> struct sequence_fun { using result_type = T; sequence_fun(T _init, T _step) : init(_init), step(_step) {} template <typename _T> result_type operator()(_T &&i) const { return static_cast<T>(init + step * i); } private: const T init; const T step; }; //[binary_pred](Ref a, Ref b){ return(binary_pred(get<0>(a),get<0>(b))); template <typename Predicate> struct unique_fun { typedef bool result_of; unique_fun(Predicate _pred) : pred(_pred) {} template <typename _T> result_of operator()(_T &&a, _T &&b) const { using std::get; return pred(get<0>(a), get<0>(b)); } private: mutable Predicate pred; }; // Lambda: [pred, &new_value](Ref1 a, Ref2 s) {return pred(s) ? new_value : a; // }); template <typename T, typename Predicate> struct replace_if_fun { public: typedef T result_of; replace_if_fun(Predicate _pred, T _new_value) : pred(_pred), new_value(_new_value) {} template <typename _T1, typename _T2> T operator()(_T1 &&a, _T2 &&s) const { return pred(s) ? new_value : a; } private: mutable Predicate pred; const T new_value; }; //[pred,op](Ref a){return pred(a) ? op(a) : a; } template <typename T, typename Predicate, typename Operator> struct transform_if_fun { transform_if_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<0>(t))) get<1>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; //[pred, op](Ref1 a, Ref2 s) { return pred(s) ? op(a) : a; }); template <typename T, typename Predicate, typename Operator> struct transform_if_unary_zip_mask_fun { transform_if_unary_zip_mask_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<1>(t))) get<2>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; template <typename T, typename Predicate, typename BinaryOperation> class transform_if_zip_mask_fun { public: transform_if_zip_mask_fun(Predicate _pred = oneapi::dpl::identity(), BinaryOperation _op = oneapi::dpl::identity()) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T &&t) const { using std::get; if (pred(get<2>(t))) get<3>(t) = op(get<0>(t), get<1>(t)); } private: mutable Predicate pred; mutable BinaryOperation op; }; // This following code is similar to a section of code in // oneDPL/include/oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_radix_sort.h // It has a similar approach, and could be consolidated. // Outside of some differences in approach, there are two significant // differences in function. // // 1) This code allows the output type of the bit range translation to be fit // into to the minimal type required to provide that many bits. The code in // oneDPL to calculate the bucket for the radix is similar but its output is // always std::uint32_t. The assumption that the bit range desired will fit in // 32 bits is not true for this code. // // 2) This code ensures that for floating point type, -0.0f and 0.0f map to the // same value. This allows the output of this translation to be used to provide // a sort which ensures the stability of these values for floating point types. template <int N> struct uint_byte_map {}; template <> struct uint_byte_map<1> { using type = uint8_t; }; template <> struct uint_byte_map<2> { using type = uint16_t; }; template <> struct uint_byte_map<4> { using type = uint32_t; }; template <> struct uint_byte_map<8> { using type = uint64_t; }; template <typename T> struct uint_map { using type = typename uint_byte_map<sizeof(T)>::type; }; template <typename T, typename OutKeyT> class translate_key { using uint_type_t = typename uint_map<T>::type; public: translate_key(int begin_bit, int end_bit) { shift = begin_bit; mask = ~OutKeyT(0); // all ones mask = mask >> (sizeof(OutKeyT) * 8 - (end_bit - begin_bit)); // setup appropriate mask flip_sign = uint_type_t(1) << (sizeof(uint_type_t) * 8 - 1); // sign bit flip_key = ~uint_type_t(0); // 0xF...F } inline OutKeyT operator()(const T &key) const { uint_type_t intermediate; if constexpr (std::is_floating_point<T>::value) { // normal case (both -0.0f and 0.0f equal -0.0f) if (key != T(-0.0f)) { uint_type_t is_negative = reinterpret_cast<const uint_type_t &>(key) >> (sizeof(uint_type_t) * 8 - 1); intermediate = reinterpret_cast<const uint_type_t &>(key) ^ ((is_negative * flip_key) | flip_sign); } else // special case for -0.0f to keep stability with 0.0f { T negzero = T(-0.0f); intermediate = reinterpret_cast<const uint_type_t &>(negzero); } } else if constexpr (std::is_signed<T>::value) { intermediate = reinterpret_cast<const uint_type_t &>(key) ^ flip_sign; } else { intermediate = key; } return static_cast<OutKeyT>(intermediate >> shift) & mask; // shift, cast, and mask } private: uint8_t shift; OutKeyT mask; uint_type_t flip_sign; uint_type_t flip_key; }; } // end namespace internal } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/helper_timer.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Helper Timing Functions #ifndef COMMON_HELPER_TIMER_H_ #define COMMON_HELPER_TIMER_H_ #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // includes, system #include <vector> // includes, project #include <exception.h> // Definition of the StopWatch Interface, this is used if we don't want to use // the CUT functions But rather in a self contained class interface class StopWatchInterface { public: StopWatchInterface() {} virtual ~StopWatchInterface() {} public: //! Start time measurement virtual void start() = 0; //! Stop time measurement virtual void stop() = 0; //! Reset time counters to zero virtual void reset() = 0; //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned virtual float getTime() = 0; //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time virtual float getAverageTime() = 0; }; ////////////////////////////////////////////////////////////////// // Begin Stopwatch timer class definitions for all OS platforms // ////////////////////////////////////////////////////////////////// #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // includes, system #define WINDOWS_LEAN_AND_MEAN #include <windows.h> #undef min #undef max //! Windows specific implementation of StopWatch class StopWatchWin : public StopWatchInterface { public: //! Constructor, default StopWatchWin() : start_time(), end_time(), diff_time(0.0f), total_time(0.0f), running(false), clock_sessions(0), freq(0), freq_set(false) { if (!freq_set) { // helper variable LARGE_INTEGER temp; // get the tick frequency from the OS QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER *>(&temp)); // convert to type in which it is needed freq = (static_cast<double>(temp.QuadPart)) / 1000.0; // rememeber query freq_set = true; } } // Destructor ~StopWatchWin() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // member variables //! Start of measurement LARGE_INTEGER start_time; //! End of measurement LARGE_INTEGER end_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; //! tick frequency double freq; //! flag if the frequency has been set bool freq_set; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::start() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::stop() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&end_time)); diff_time = static_cast<float>(((static_cast<double>(end_time.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); total_time += diff_time; clock_sessions++; running = false; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { LARGE_INTEGER temp; QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&temp)); retval += static_cast<float>(((static_cast<double>(temp.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } #else // Declarations for Stopwatch on Linux and Mac OSX // includes, system #include <sys/time.h> #include <ctime> //! Windows specific implementation of StopWatch class StopWatchLinux : public StopWatchInterface { public: //! Constructor, default StopWatchLinux() : start_time(), diff_time(0.0), total_time(0.0), running(false), clock_sessions(0) {} // Destructor virtual ~StopWatchLinux() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // helper functions //! Get difference between start time and current time inline float getDiffTime(); private: // member variables //! Start of measurement struct timeval start_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::start() { gettimeofday(&start_time, 0); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::stop() { diff_time = getDiffTime(); total_time += diff_time; running = false; clock_sessions++; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { gettimeofday(&start_time, 0); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { retval += getDiffTime(); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getDiffTime() { struct timeval t_time; gettimeofday(&t_time, 0); // time difference in milli-seconds return static_cast<float>(1000.0 * (t_time.tv_sec - start_time.tv_sec) + (0.001 * (t_time.tv_usec - start_time.tv_usec))); } #endif // WIN32 //////////////////////////////////////////////////////////////////////////////// //! Timer functionality exported //////////////////////////////////////////////////////////////////////////////// //! Create a new timer //! @return true if a time has been created, otherwise false //! @param name of the new timer, 0 if the creation failed //////////////////////////////////////////////////////////////////////////////// inline bool sdkCreateTimer(StopWatchInterface **timer_interface) { // printf("sdkCreateTimer called object %08x\n", (void *)*timer_interface); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchWin()); #else *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchLinux()); #endif return (*timer_interface != NULL) ? true : false; } //////////////////////////////////////////////////////////////////////////////// //! Delete a timer //! @return true if a time has been deleted, otherwise false //! @param name of the timer to delete //////////////////////////////////////////////////////////////////////////////// inline bool sdkDeleteTimer(StopWatchInterface **timer_interface) { // printf("sdkDeleteTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { delete *timer_interface; *timer_interface = NULL; } return true; } //////////////////////////////////////////////////////////////////////////////// //! Start the time with name \a name //! @param name name of the timer to start //////////////////////////////////////////////////////////////////////////////// inline bool sdkStartTimer(StopWatchInterface **timer_interface) { // printf("sdkStartTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->start(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Stop the time with name \a name. Does not reset. //! @param name name of the timer to stop //////////////////////////////////////////////////////////////////////////////// inline bool sdkStopTimer(StopWatchInterface **timer_interface) { // printf("sdkStopTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->stop(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Resets the timer's counter. //! @param name name of the timer to reset. //////////////////////////////////////////////////////////////////////////////// inline bool sdkResetTimer(StopWatchInterface **timer_interface) { // printf("sdkResetTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->reset(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Return the average time for timer execution as the total time //! for the timer dividied by the number of completed (stopped) runs the timer //! has made. //! Excludes the current running time if the timer is currently running. //! @param name name of the timer to return the time of //////////////////////////////////////////////////////////////////////////////// inline float sdkGetAverageTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetAverageTimerValue called object %08x\n", (void // *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getAverageTime(); } else { return 0.0f; } } //////////////////////////////////////////////////////////////////////////////// //! Total execution time for the timer over all runs since the last reset //! or timer creation. //! @param name name of the timer to obtain the value of. //////////////////////////////////////////////////////////////////////////////// inline float sdkGetTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetTimerValue called object %08x\n", (void *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getTime(); } else { return 0.0f; } } #endif // COMMON_HELPER_TIMER_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/helper_string.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, timers, etc) #ifndef COMMON_HELPER_STRING_H_ #define COMMON_HELPER_STRING_H_ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <string> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE #endif #ifndef STRCASECMP #define STRCASECMP _stricmp #endif #ifndef STRNCASECMP #define STRNCASECMP _strnicmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy_s(sFilePath, nLength, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #ifndef SPRINTF #define SPRINTF sprintf_s #endif #else // Linux Includes #include <string.h> #include <strings.h> #ifndef STRCASECMP #define STRCASECMP strcasecmp #endif #ifndef STRNCASECMP #define STRNCASECMP strncasecmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy(sFilePath, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #ifndef SPRINTF #define SPRINTF sprintf #endif #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // CUDA Utility Helper Functions inline int stringRemoveDelimiter(char delimiter, const char *string) { int string_start = 0; while (string[string_start] == delimiter) { string_start++; } if (string_start >= static_cast<int>(strlen(string) - 1)) { return 0; } return string_start; } inline int getFileExtension(char *filename, char **extension) { int string_length = static_cast<int>(strlen(filename)); while (filename[string_length--] != '.') { if (string_length == 0) break; } if (string_length > 0) string_length += 2; if (string_length == 0) *extension = NULL; else *extension = &filename[string_length]; return string_length; } inline bool checkCmdLineFlag(const int argc, const char **argv, const char *string_ref) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; const char *equal_pos = strchr(string_argv, '='); int argv_length = static_cast<int>( equal_pos == 0 ? strlen(string_argv) : equal_pos - string_argv); int length = static_cast<int>(strlen(string_ref)); if (length == argv_length && !STRNCASECMP(string_argv, string_ref, length)) { bFound = true; continue; } } } return bFound; } // This function wraps the CUDA Driver API into a template function template <class T> inline bool getCmdLineArgumentValue(const int argc, const char **argv, const char *string_ref, T *value) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; *value = (T)atoi(&string_argv[length + auto_inc]); } bFound = true; i = argc; } } } return bFound; } inline int getCmdLineArgumentInt(const int argc, const char **argv, const char *string_ref) { bool bFound = false; int value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = atoi(&string_argv[length + auto_inc]); } else { value = 0; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline float getCmdLineArgumentFloat(const int argc, const char **argv, const char *string_ref) { bool bFound = false; float value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = static_cast<float>(atof(&string_argv[length + auto_inc])); } else { value = 0.f; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline bool getCmdLineArgumentString(const int argc, const char **argv, const char *string_ref, char **string_retval) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); char *string_argv = const_cast<char *>(&argv[i][string_start]); int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { *string_retval = &string_argv[length + 1]; bFound = true; continue; } } } if (!bFound) { *string_retval = NULL; } return bFound; } ////////////////////////////////////////////////////////////////////////////// //! Find the path for a file assuming that //! files are found in the searchPath. //! //! @return the path if succeeded, otherwise 0 //! @param filename name of the file //! @param executable_path optional absolute path of the executable ////////////////////////////////////////////////////////////////////////////// inline char *sdkFindFilePath(const char *filename, const char *executable_path) { // <executable_name> defines a variable that is replaced with the name of the // executable // Typical relative search paths to locate needed companion files (e.g. sample // input data, or JIT source files) The origin for the relative search may be // the .exe file, a .bat file launching an .exe, a browser .exe launching the // .exe or .bat, etc const char *searchPath[] = { "./", // same dir "./data/", // same dir "../../../../Samples/<executable_name>/", // up 4 in tree "../../../Samples/<executable_name>/", // up 3 in tree "../../Samples/<executable_name>/", // up 2 in tree "../../../../Samples/<executable_name>/data/", // up 4 in tree "../../../Samples/<executable_name>/data/", // up 3 in tree "../../Samples/<executable_name>/data/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/data/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/data/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/data/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/data/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/data/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/data/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/data/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/data/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/data/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/data/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/data/", // up 2 in tree "../../../../Common/data/", // up 4 in tree "../../../Common/data/", // up 3 in tree "../../Common/data/" // up 2 in tree }; // Extract the executable name std::string executable_name; if (executable_path != 0) { executable_name = std::string(executable_path); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Windows path delimiter size_t delimiter_pos = executable_name.find_last_of('\\'); executable_name.erase(0, delimiter_pos + 1); if (executable_name.rfind(".exe") != std::string::npos) { // we strip .exe, only if the .exe is found executable_name.resize(executable_name.size() - 4); } #else // Linux & OSX path delimiter size_t delimiter_pos = executable_name.find_last_of('/'); executable_name.erase(0, delimiter_pos + 1); #endif } // Loop over all search paths and return the first hit for (unsigned int i = 0; i < sizeof(searchPath) / sizeof(char *); ++i) { std::string path(searchPath[i]); size_t executable_name_pos = path.find("<executable_name>"); // If there is executable_name variable in the searchPath // replace it with the value if (executable_name_pos != std::string::npos) { if (executable_path != 0) { path.replace(executable_name_pos, strlen("<executable_name>"), executable_name); } else { // Skip this path entry if no executable argument is given continue; } } #ifdef _DEBUG printf("sdkFindFilePath <%s> in %s\n", filename, path.c_str()); #endif // Test if the file exists path.append(filename); FILE *fp; FOPEN(fp, path.c_str(), "rb"); if (fp != NULL) { fclose(fp); // File found // returning an allocated array here for backwards compatibility reasons char *file_path = reinterpret_cast<char *>(malloc(path.length() + 1)); STRCPY(file_path, path.length() + 1, path.c_str()); return file_path; } if (fp) { fclose(fp); } } // File not found printf("\nerror: sdkFindFilePath: file <%s> not found!\n", filename); return 0; } #endif // COMMON_HELPER_STRING_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/helper_image.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (image,bitmap) #ifndef COMMON_HELPER_IMAGE_H_ #define COMMON_HELPER_IMAGE_H_ #include <assert.h> #include <exception.h> #include <math.h> #include <stdint.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> #ifndef MIN #define MIN(a, b) ((a < b) ? a : b) #endif #ifndef MAX #define MAX(a, b) ((a > b) ? a : b) #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #include <helper_string.h> // namespace unnamed (internal) namespace helper_image_internal { //! size of PGM file header const unsigned int PGMHeaderSize = 0x40; // types //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterFromUByte; //! Data converter from unsigned char / unsigned byte template <> struct ConverterFromUByte<unsigned char> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<unsigned char>(val); } }; //! Data converter from unsigned char / unsigned byte to float template <> struct ConverterFromUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<float>(val) / 255.0f; } }; //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterToUByte; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<unsigned char> { //! Conversion operator (essentially a passthru //! @return converted value //! @param val value to convert unsigned char operator()(const unsigned char &val) { return val; } }; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert unsigned char operator()(const float &val) { return static_cast<unsigned char>(val * 255.0f); } }; } // namespace helper_image_internal #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #else #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #endif inline bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels) { FILE *fp = NULL; if (FOPEN_FAIL(FOPEN(fp, file, "rb"))) { std::cerr << "__LoadPPM() : Failed to open file: " << file << std::endl; return false; } // check header char header[helper_image_internal::PGMHeaderSize]; if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (strncmp(header, "P5", 2) == 0) { *channels = 1; } else if (strncmp(header, "P6", 2) == 0) { *channels = 3; } else { std::cerr << "__LoadPPM() : File is not a PPM or PGM image" << std::endl; *channels = 0; return false; } // parse header, read maxval, width and height unsigned int width = 0; unsigned int height = 0; unsigned int maxval = 0; unsigned int i = 0; while (i < 3) { if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (header[0] == '#') { continue; } if (i == 0) { i += SSCANF(header, "%u %u %u", &width, &height, &maxval); } else if (i == 1) { i += SSCANF(header, "%u %u", &height, &maxval); } else if (i == 2) { i += SSCANF(header, "%u", &maxval); } } // check if given handle for the data is initialized if (NULL != *data) { if (*w != width || *h != height) { std::cerr << "__LoadPPM() : Invalid image dimensions." << std::endl; } } else { *data = (unsigned char *)malloc(sizeof(unsigned char) * width * height * *channels); *w = width; *h = height; } // read and close file if (fread(*data, sizeof(unsigned char), width * height * *channels, fp) == 0) { std::cerr << "__LoadPPM() read data returned error." << std::endl; } fclose(fp); return true; } template <class T> inline bool sdkLoadPGM(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = NULL; unsigned int channels; if (true != __loadPPM(file, &idata, w, h, &channels)) { return false; } unsigned int size = *w * *h * channels; // initialize mem if necessary // the correct size is checked / set in loadPGMc() if (NULL == *data) { *data = reinterpret_cast<T *>(malloc(sizeof(T) * size)); } // copy and cast data std::transform(idata, idata + size, *data, helper_image_internal::ConverterFromUByte<T>()); free(idata); return true; } template <class T> inline bool sdkLoadPPM4(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = reinterpret_cast<T *>(malloc(sizeof(T) * size * 4)); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels) { assert(NULL != data); assert(w > 0); assert(h > 0); std::fstream fh(file, std::fstream::out | std::fstream::binary); if (fh.bad()) { std::cerr << "__savePPM() : Opening file failed." << std::endl; return false; } if (channels == 1) { fh << "P5\n"; } else if (channels == 3) { fh << "P6\n"; } else { std::cerr << "__savePPM() : Invalid number of channels." << std::endl; return false; } fh << w << "\n" << h << "\n" << 0xff << std::endl; for (unsigned int i = 0; (i < (w * h * channels)) && fh.good(); ++i) { fh << data[i]; } fh.flush(); if (fh.bad()) { std::cerr << "__savePPM() : Writing data failed." << std::endl; return false; } fh.close(); return true; } template <class T> inline bool sdkSavePGM(const char *file, T *data, unsigned int w, unsigned int h) { unsigned int size = w * h; unsigned char *idata = (unsigned char *)malloc(sizeof(unsigned char) * size); std::transform(data, data + size, idata, helper_image_internal::ConverterToUByte<T>()); // write file bool result = __savePPM(file, idata, w, h, 1); // cleanup free(idata); return result; } inline bool sdkSavePPM4ub(const char *file, unsigned char *data, unsigned int w, unsigned int h) { // strip 4th component int size = w * h; unsigned char *ndata = (unsigned char *)malloc(sizeof(unsigned char) * size * 3); unsigned char *ptr = ndata; for (int i = 0; i < size; i++) { *ptr++ = *data++; *ptr++ = *data++; *ptr++ = *data++; data++; } bool result = __savePPM(file, ndata, w, h, 3); free(ndata); return result; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFile(const char *filename, T **data, unsigned int *len, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // intermediate storage for the data read std::vector<T> data_read; // open file for reading FILE *fh = NULL; // check if filestream is valid if (FOPEN_FAIL(FOPEN(fh, filename, "r"))) { printf("Unable to open input file: %s\n", filename); return false; } // read all data elements T token; while (!feof(fh)) { fscanf(fh, "%f", &token); data_read.push_back(token); } // the last element is read twice data_read.pop_back(); fclose(fh); // check if the given handle is already initialized if (NULL != *data) { if (*len != data_read.size()) { std::cerr << "sdkReadFile() : Initialized memory given but " << "size mismatch with signal read " << "(data read / data init = " << (unsigned int)data_read.size() << " / " << *len << ")" << std::endl; return false; } } else { // allocate storage for the data read *data = reinterpret_cast<T *>(malloc(sizeof(T) * data_read.size())); // store signal size *len = static_cast<unsigned int>(data_read.size()); } // copy data memcpy(*data, &data_read.front(), sizeof(T) * data_read.size()); return true; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFileBlocks(const char *filename, T **data, unsigned int *len, unsigned int block_num, unsigned int block_size, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // open file for reading FILE *fh = fopen(filename, "rb"); if (fh == NULL && verbose) { std::cerr << "sdkReadFile() : Opening file failed." << std::endl; return false; } // check if the given handle is already initialized // allocate storage for the data read data[block_num] = reinterpret_cast<T *>(malloc(block_size)); // read all data elements fseek(fh, block_num * block_size, SEEK_SET); *len = fread(data[block_num], sizeof(T), block_size / sizeof(T), fh); fclose(fh); return true; } ////////////////////////////////////////////////////////////////////////////// //! Write a data file \filename //! @return true if writing the file succeeded, otherwise false //! @param filename name of the source file //! @param data data to write //! @param len number of data elements in data, -1 on error //! @param epsilon epsilon for comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool sdkWriteFile(const char *filename, const T *data, unsigned int len, const S epsilon, bool verbose, bool append = false) { assert(NULL != filename); assert(NULL != data); // open file for writing // if (append) { std::fstream fh(filename, std::fstream::out | std::fstream::ate); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write/append." << std::endl; } /* } else { std::fstream fh(filename, std::fstream::out); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write." << std::endl; } } */ // check if filestream is valid if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Opening file failed." << std::endl; } return false; } // first write epsilon fh << "# " << epsilon << "\n"; // write data for (unsigned int i = 0; (i < len) && (fh.good()); ++i) { fh << data[i] << ' '; } // Check if writing succeeded if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Writing file failed." << std::endl; } return false; } // file ends with nl fh << std::endl; return true; } ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference timer_interface to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareData(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); bool result = true; unsigned int error_count = 0; for (unsigned int i = 0; i < len; ++i) { float diff = static_cast<float>(reference[i]) - static_cast<float>(data[i]); bool comp = (diff <= epsilon) && (diff >= -epsilon); result &= comp; error_count += !comp; #if 0 if (!comp) { std::cerr << "ERROR, i = " << i << ",\t " << reference[i] << " / " << data[i] << " (reference / data)\n"; } #endif } if (threshold == 0.0f) { return (result) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return (len * threshold > error_count) ? true : false; } } #ifndef __MIN_EPSILON_ERROR #define __MIN_EPSILON_ERROR 1e-3f #endif ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference handle to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison //! @param epsilon threshold % of (# of bytes) for pass/fail ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareDataAsFloatThreshold(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); // If we set epsilon to be 0, let's set a minimum threshold float max_error = MAX((float)epsilon, __MIN_EPSILON_ERROR); int error_count = 0; bool result = true; for (unsigned int i = 0; i < len; ++i) { float diff = fabs(static_cast<float>(reference[i]) - static_cast<float>(data[i])); bool comp = (diff < max_error); result &= comp; if (!comp) { error_count++; } } if (threshold == 0.0f) { if (error_count) { printf("total # of errors = %d\n", error_count); } return (error_count == 0) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return ((len * threshold > error_count) ? true : false); } } inline void sdkDumpBin(void *data, unsigned int bytes, const char *filename) { printf("sdkDumpBin: <%s>\n", filename); FILE *fp; FOPEN(fp, filename, "wb"); fwrite(data, bytes, 1, fp); fflush(fp); fclose(fp); } inline bool sdkCompareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { unsigned int *src_buffer, *ref_buffer; FILE *src_fp = NULL, *ref_fp = NULL; uint64_t error_count = 0; size_t fsize = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file); error_count++; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <unsigned int> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf( "compareBin2Bin <unsigned int>" " unable to open ref_file: %s\n", ref_file_path); error_count++; } if (src_fp && ref_fp) { src_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); ref_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); fsize = fread(src_buffer, nelements, sizeof(unsigned int), src_fp); fsize = fread(ref_buffer, nelements, sizeof(unsigned int), ref_fp); printf( "> compareBin2Bin <unsigned int> nelements=%d," " epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize)); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize)); if (!compareData<unsigned int, float>(ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { float *src_buffer = NULL, *ref_buffer = NULL; FILE *src_fp = NULL, *ref_fp = NULL; size_t fsize = 0; uint64_t error_count = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <float> unable to open src_file: %s\n", src_file); error_count = 1; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", exec_path); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path); error_count = 1; } if (src_fp && ref_fp) { src_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); ref_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); printf( "> compareBin2Bin <float> nelements=%d, epsilon=%4.2f," " threshold=%4.2f\n", nelements, epsilon, threshold); fsize = fread(src_buffer, sizeof(float), nelements, src_fp); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize * sizeof(float))); fsize = fread(ref_buffer, sizeof(float), nelements, ref_fp); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize * sizeof(float))); if (!compareDataAsFloatThreshold<float, float>( ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareL2fe(const float *reference, const float *data, const unsigned int len, const float epsilon) { assert(epsilon >= 0); float error = 0; float ref = 0; for (unsigned int i = 0; i < len; ++i) { float diff = reference[i] - data[i]; error += diff * diff; ref += reference[i] * reference[i]; } float normRef = sqrtf(ref); if (fabs(ref) < 1e-7) { #ifdef _DEBUG std::cerr << "ERROR, reference l2-norm is 0\n"; #endif return false; } float normError = sqrtf(error); error = normError / normRef; bool result = error < epsilon; #ifdef _DEBUG if (!result) { std::cerr << "ERROR, l2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; } #endif return result; } inline bool sdkLoadPPMub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned int channels; return __loadPPM(file, data, w, h, &channels); } inline bool sdkLoadPPM4ub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = (unsigned char *)malloc(sizeof(unsigned char) * size * 4); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool sdkComparePPM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data, *ref_data; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PPMvsPPM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPM4ub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PPMvsPPM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPM4ub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PPMvsPPM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PPMvsPPM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) { std::cerr << "PPMvsPPM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; } if (compareData(ref_data, src_data, src_width * src_height * 4, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } inline bool sdkComparePGM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data = 0, *ref_data = 0; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PGMvsPGM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPMub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PGMvsPGM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPMub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PGMvsPGM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PGMvsPGM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) std::cerr << "PGMvsPGM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; if (compareData(ref_data, src_data, src_width * src_height, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } #endif // COMMON_HELPER_IMAGE_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/exception.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CUda UTility Library */ #ifndef COMMON_EXCEPTION_H_ #define COMMON_EXCEPTION_H_ // includes, system #include <stdlib.h> #include <exception> #include <iostream> #include <stdexcept> #include <string> //! Exception wrapper. //! @param Std_Exception Exception out of namespace std for easy typing. template <class Std_Exception> class Exception : public Std_Exception { public: //! @brief Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const char *detailed = "-"); //! Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const std::string &detailed); //! Destructor virtual ~Exception() throw(); private: //! Constructor, default (private) Exception(); //! Constructor, standard //! @param str string returned by what() explicit Exception(const std::string &str); }; //////////////////////////////////////////////////////////////////////////////// //! Exception handler function for arbitrary exceptions //! @param ex exception to handle //////////////////////////////////////////////////////////////////////////////// template <class Exception_Typ> inline void handleException(const Exception_Typ &ex) { std::cerr << ex.what() << std::endl; exit(EXIT_FAILURE); } //! Convenience macros //! Exception caused by dynamic program behavior, e.g. file does not exist #define RUNTIME_EXCEPTION(msg) \ Exception<std::runtime_error>::throw_it(__FILE__, __LINE__, msg) //! Logic exception in program, e.g. an assert failed #define LOGIC_EXCEPTION(msg) \ Exception<std::logic_error>::throw_it(__FILE__, __LINE__, msg) //! Out of range exception #define RANGE_EXCEPTION(msg) \ Exception<std::range_error>::throw_it(__FILE__, __LINE__, msg) //////////////////////////////////////////////////////////////////////////////// //! Implementation // includes, system #include <sstream> //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const char *detailed) { std::stringstream s; // Quiet heavy-weight but exceptions are not for // performance / release versions s << "Exception in file '" << file << "' in line " << line << "\n" << "Detailed description: " << detailed << "\n"; throw Exception(s.str()); } //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const std::string &msg) { throw_it(file, line, msg.c_str()); } //////////////////////////////////////////////////////////////////////////////// //! Constructor, default (private). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception() : Std_Exception("Unknown Exception.\n") {} //////////////////////////////////////////////////////////////////////////////// //! Constructor, standard (private). //! String returned by what(). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception(const std::string &s) : Std_Exception(s) {} //////////////////////////////////////////////////////////////////////////////// //! Destructor //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::~Exception() throw() {} // functions, exported #endif // COMMON_EXCEPTION_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/helper_cuda.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // These are CUDA Helper functions for initialization and error checking #ifndef COMMON_HELPER_CUDA_H_ #define COMMON_HELPER_CUDA_H_ #pragma once #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <helper_string.h> #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // Note, it is required that your SDK sample to include the proper header // files, please refer the CUDA examples for examples of the needed CUDA // headers, which may change depending on which CUDA functions are used. // CUDA Runtime error messages #ifdef __DPCT_HPP__ static const char *_cudaGetErrorEnum(dpct::err0 error) { /* DPCT1009:5: SYCL uses exceptions to report errors and does not use the error codes. The original code was commented out and a warning string was inserted. You need to rewrite this code. */ return "cudaGetErrorName is not supported" /*cudaGetErrorName(error)*/; } #endif #ifdef CUDA_DRIVER_API // CUDA Driver API errors static const char *_cudaGetErrorEnum(CUresult error) { static char unknown[] = "<unknown>"; const char *ret = NULL; cuGetErrorName(error, &ret); return ret ? ret : unknown; } #endif #ifdef CUBLAS_API_H_ // cuBLAS API errors static const char *_cudaGetErrorEnum(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "<unknown>"; } #endif #ifdef _CUFFT_H_ // cuFFT API errors static const char *_cudaGetErrorEnum(cufftResult error) { switch (error) { case CUFFT_SUCCESS: return "CUFFT_SUCCESS"; case CUFFT_INVALID_PLAN: return "CUFFT_INVALID_PLAN"; case CUFFT_ALLOC_FAILED: return "CUFFT_ALLOC_FAILED"; case CUFFT_INVALID_TYPE: return "CUFFT_INVALID_TYPE"; case CUFFT_INVALID_VALUE: return "CUFFT_INVALID_VALUE"; case CUFFT_INTERNAL_ERROR: return "CUFFT_INTERNAL_ERROR"; case CUFFT_EXEC_FAILED: return "CUFFT_EXEC_FAILED"; case CUFFT_SETUP_FAILED: return "CUFFT_SETUP_FAILED"; case CUFFT_INVALID_SIZE: return "CUFFT_INVALID_SIZE"; case CUFFT_UNALIGNED_DATA: return "CUFFT_UNALIGNED_DATA"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "CUFFT_INCOMPLETE_PARAMETER_LIST"; case CUFFT_INVALID_DEVICE: return "CUFFT_INVALID_DEVICE"; case CUFFT_PARSE_ERROR: return "CUFFT_PARSE_ERROR"; case CUFFT_NO_WORKSPACE: return "CUFFT_NO_WORKSPACE"; case CUFFT_NOT_IMPLEMENTED: return "CUFFT_NOT_IMPLEMENTED"; case CUFFT_LICENSE_ERROR: return "CUFFT_LICENSE_ERROR"; case CUFFT_NOT_SUPPORTED: return "CUFFT_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSPARSEAPI // cuSPARSE API errors static const char *_cudaGetErrorEnum(cusparseStatus_t error) { switch (error) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSOLVER_COMMON_H_ // cuSOLVER API errors static const char *_cudaGetErrorEnum(cusolverStatus_t error) { switch (error) { case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCESS"; case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; case CUSOLVER_STATUS_MAPPING_ERROR: return "CUSOLVER_STATUS_MAPPING_ERROR"; case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSOLVER_STATUS_NOT_SUPPORTED: return "CUSOLVER_STATUS_NOT_SUPPORTED "; case CUSOLVER_STATUS_ZERO_PIVOT: return "CUSOLVER_STATUS_ZERO_PIVOT"; case CUSOLVER_STATUS_INVALID_LICENSE: return "CUSOLVER_STATUS_INVALID_LICENSE"; } return "<unknown>"; } #endif #ifdef CURAND_H_ // cuRAND API errors static const char *_cudaGetErrorEnum(int error) { switch (error) { case 0: return "CURAND_STATUS_SUCCESS"; case 100: return "CURAND_STATUS_VERSION_MISMATCH"; case 101: return "CURAND_STATUS_NOT_INITIALIZED"; case 102: return "CURAND_STATUS_ALLOCATION_FAILED"; case 103: return "CURAND_STATUS_TYPE_ERROR"; case 104: return "CURAND_STATUS_OUT_OF_RANGE"; case 105: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case 106: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case 201: return "CURAND_STATUS_LAUNCH_FAILURE"; case 202: return "CURAND_STATUS_PREEXISTING_FAILURE"; case 203: return "CURAND_STATUS_INITIALIZATION_FAILED"; case 204: return "CURAND_STATUS_ARCH_MISMATCH"; case 999: return "CURAND_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NVJPEGAPI // nvJPEG API errors static const char *_cudaGetErrorEnum(nvjpegStatus_t error) { switch (error) { case NVJPEG_STATUS_SUCCESS: return "NVJPEG_STATUS_SUCCESS"; case NVJPEG_STATUS_NOT_INITIALIZED: return "NVJPEG_STATUS_NOT_INITIALIZED"; case NVJPEG_STATUS_INVALID_PARAMETER: return "NVJPEG_STATUS_INVALID_PARAMETER"; case NVJPEG_STATUS_BAD_JPEG: return "NVJPEG_STATUS_BAD_JPEG"; case NVJPEG_STATUS_JPEG_NOT_SUPPORTED: return "NVJPEG_STATUS_JPEG_NOT_SUPPORTED"; case NVJPEG_STATUS_ALLOCATOR_FAILURE: return "NVJPEG_STATUS_ALLOCATOR_FAILURE"; case NVJPEG_STATUS_EXECUTION_FAILED: return "NVJPEG_STATUS_EXECUTION_FAILED"; case NVJPEG_STATUS_ARCH_MISMATCH: return "NVJPEG_STATUS_ARCH_MISMATCH"; case NVJPEG_STATUS_INTERNAL_ERROR: return "NVJPEG_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NV_NPPIDEFS_H // NPP API errors static const char *_cudaGetErrorEnum(NppStatus error) { switch (error) { case NPP_NOT_SUPPORTED_MODE_ERROR: return "NPP_NOT_SUPPORTED_MODE_ERROR"; case NPP_ROUND_MODE_NOT_SUPPORTED_ERROR: return "NPP_ROUND_MODE_NOT_SUPPORTED_ERROR"; case NPP_RESIZE_NO_OPERATION_ERROR: return "NPP_RESIZE_NO_OPERATION_ERROR"; case NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY: return "NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_BAD_ARG_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFF_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECT_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUAD_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEM_ALLOC_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTO_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_INPUT: return "NPP_INVALID_INPUT"; case NPP_POINTER_ERROR: return "NPP_POINTER_ERROR"; case NPP_WARNING: return "NPP_WARNING"; case NPP_ODD_ROI_WARNING: return "NPP_ODD_ROI_WARNING"; #else // These are for CUDA 5.5 or higher case NPP_BAD_ARGUMENT_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFFICIENT_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECTANGLE_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUADRANGLE_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEMORY_ALLOCATION_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_HOST_POINTER_ERROR: return "NPP_INVALID_HOST_POINTER_ERROR"; case NPP_INVALID_DEVICE_POINTER_ERROR: return "NPP_INVALID_DEVICE_POINTER_ERROR"; #endif case NPP_LUT_NUMBER_OF_LEVELS_ERROR: return "NPP_LUT_NUMBER_OF_LEVELS_ERROR"; case NPP_TEXTURE_BIND_ERROR: return "NPP_TEXTURE_BIND_ERROR"; case NPP_WRONG_INTERSECTION_ROI_ERROR: return "NPP_WRONG_INTERSECTION_ROI_ERROR"; case NPP_NOT_EVEN_STEP_ERROR: return "NPP_NOT_EVEN_STEP_ERROR"; case NPP_INTERPOLATION_ERROR: return "NPP_INTERPOLATION_ERROR"; case NPP_RESIZE_FACTOR_ERROR: return "NPP_RESIZE_FACTOR_ERROR"; case NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR: return "NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_MEMFREE_ERR: return "NPP_MEMFREE_ERR"; case NPP_MEMSET_ERR: return "NPP_MEMSET_ERR"; case NPP_MEMCPY_ERR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERR: return "NPP_MIRROR_FLIP_ERR"; #else case NPP_MEMFREE_ERROR: return "NPP_MEMFREE_ERROR"; case NPP_MEMSET_ERROR: return "NPP_MEMSET_ERROR"; case NPP_MEMCPY_ERROR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERROR: return "NPP_MIRROR_FLIP_ERROR"; #endif case NPP_ALIGNMENT_ERROR: return "NPP_ALIGNMENT_ERROR"; case NPP_STEP_ERROR: return "NPP_STEP_ERROR"; case NPP_SIZE_ERROR: return "NPP_SIZE_ERROR"; case NPP_NULL_POINTER_ERROR: return "NPP_NULL_POINTER_ERROR"; case NPP_CUDA_KERNEL_EXECUTION_ERROR: return "NPP_CUDA_KERNEL_EXECUTION_ERROR"; case NPP_NOT_IMPLEMENTED_ERROR: return "NPP_NOT_IMPLEMENTED_ERROR"; case NPP_ERROR: return "NPP_ERROR"; case NPP_SUCCESS: return "NPP_SUCCESS"; case NPP_WRONG_INTERSECTION_QUAD_WARNING: return "NPP_WRONG_INTERSECTION_QUAD_WARNING"; case NPP_MISALIGNED_DST_ROI_WARNING: return "NPP_MISALIGNED_DST_ROI_WARNING"; case NPP_AFFINE_QUAD_INCORRECT_WARNING: return "NPP_AFFINE_QUAD_INCORRECT_WARNING"; case NPP_DOUBLE_SIZE_WARNING: return "NPP_DOUBLE_SIZE_WARNING"; case NPP_WRONG_INTERSECTION_ROI_WARNING: return "NPP_WRONG_INTERSECTION_ROI_WARNING"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x6000 /* These are 6.0 or higher */ case NPP_LUT_PALETTE_BITSIZE_ERROR: return "NPP_LUT_PALETTE_BITSIZE_ERROR"; case NPP_ZC_MODE_NOT_SUPPORTED_ERROR: return "NPP_ZC_MODE_NOT_SUPPORTED_ERROR"; case NPP_QUALITY_INDEX_ERROR: return "NPP_QUALITY_INDEX_ERROR"; case NPP_CHANNEL_ORDER_ERROR: return "NPP_CHANNEL_ORDER_ERROR"; case NPP_ZERO_MASK_VALUE_ERROR: return "NPP_ZERO_MASK_VALUE_ERROR"; case NPP_NUMBER_OF_CHANNELS_ERROR: return "NPP_NUMBER_OF_CHANNELS_ERROR"; case NPP_COI_ERROR: return "NPP_COI_ERROR"; case NPP_DIVISOR_ERROR: return "NPP_DIVISOR_ERROR"; case NPP_CHANNEL_ERROR: return "NPP_CHANNEL_ERROR"; case NPP_STRIDE_ERROR: return "NPP_STRIDE_ERROR"; case NPP_ANCHOR_ERROR: return "NPP_ANCHOR_ERROR"; case NPP_MASK_SIZE_ERROR: return "NPP_MASK_SIZE_ERROR"; case NPP_MOMENT_00_ZERO_ERROR: return "NPP_MOMENT_00_ZERO_ERROR"; case NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR: return "NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR"; case NPP_THRESHOLD_ERROR: return "NPP_THRESHOLD_ERROR"; case NPP_CONTEXT_MATCH_ERROR: return "NPP_CONTEXT_MATCH_ERROR"; case NPP_FFT_FLAG_ERROR: return "NPP_FFT_FLAG_ERROR"; case NPP_FFT_ORDER_ERROR: return "NPP_FFT_ORDER_ERROR"; case NPP_SCALE_RANGE_ERROR: return "NPP_SCALE_RANGE_ERROR"; case NPP_DATA_TYPE_ERROR: return "NPP_DATA_TYPE_ERROR"; case NPP_OUT_OFF_RANGE_ERROR: return "NPP_OUT_OFF_RANGE_ERROR"; case NPP_DIVIDE_BY_ZERO_ERROR: return "NPP_DIVIDE_BY_ZERO_ERROR"; case NPP_RANGE_ERROR: return "NPP_RANGE_ERROR"; case NPP_NO_MEMORY_ERROR: return "NPP_NO_MEMORY_ERROR"; case NPP_ERROR_RESERVED: return "NPP_ERROR_RESERVED"; case NPP_NO_OPERATION_WARNING: return "NPP_NO_OPERATION_WARNING"; case NPP_DIVIDE_BY_ZERO_WARNING: return "NPP_DIVIDE_BY_ZERO_WARNING"; #endif #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x7000 /* These are 7.0 or higher */ case NPP_OVERFLOW_ERROR: return "NPP_OVERFLOW_ERROR"; case NPP_CORRUPTED_DATA_ERROR: return "NPP_CORRUPTED_DATA_ERROR"; #endif } return "<unknown>"; } #endif template <typename T> void check(T result, char const *const func, const char *const file, int const line) { } #ifdef __DPCT_HPP__ // This will output the proper CUDA error strings in the event // that a CUDA host call returns an error #define checkCudaErrors(val) check((val), #val, __FILE__, __LINE__) // This will output the proper error string when calling cudaGetLastError #define getLastCudaError(msg) __getLastCudaError(msg, __FILE__, __LINE__) inline void __getLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:6: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } // This will only print the proper error string when calling cudaGetLastError // but not exit program incase error detected. #define printLastCudaError(msg) __printLastCudaError(msg, __FILE__, __LINE__) inline void __printLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:8: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } #endif #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // Float To Int conversion inline int ftoi(float value) { return (value >= 0 ? static_cast<int>(value + 0.5) : static_cast<int>(value - 0.5)); } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the # of cores per SM typedef struct dpct_type_554348 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { {0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128}, {0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128}, {0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128}, {0x87, 128}, {0x89, 128}, {0x90, 128}, {-1, -1}}; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoCores for SM %d.%d is undefined." " Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index - 1].Cores); return nGpuArchCoresPerSM[index - 1].Cores; } inline const char* _ConvertSMVer2ArchName(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the GPU Arch name) typedef struct dpct_type_876740 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version const char* name; } sSMtoArchName; sSMtoArchName nGpuArchNameSM[] = { {0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"}, {0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"}, {0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"}, {0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"}, {0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"}, {0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"}, {-1, "Graphics Device"}}; int index = 0; while (nGpuArchNameSM[index].SM != -1) { if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) { return nGpuArchNameSM[index].name; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoArchName for SM %d.%d is undefined." " Default to use %s\n", major, minor, nGpuArchNameSM[index - 1].name); return nGpuArchNameSM[index - 1].name; } // end of GPU Architecture definitions #ifdef __DPCT_HPP__ // General GPU Device CUDA Initialization inline int gpuDeviceInit(int devID) { int device_count; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuDeviceInit() CUDA error: " "no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } if (devID < 0) { devID = 0; } if (devID > device_count - 1) { fprintf(stderr, "\n"); fprintf(stderr, ">> %d CUDA capable GPU device(s) detected. <<\n", device_count); fprintf(stderr, ">> gpuDeviceInit (-device=%d) is not a valid" " GPU device. <<\n", devID); fprintf(stderr, "\n"); return -devID; } int computeMode = -1, major = 0, minor = 0; /* DPCT1035:10: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); /* DPCT1035:11: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode == 0) { fprintf(stderr, "Error: device is running in <Compute Mode " "Prohibited>, no threads can use cudaSetDevice().\n"); return -1; } if (major < 1) { fprintf(stderr, "gpuDeviceInit(): GPU device does not support CUDA.\n"); exit(EXIT_FAILURE); } /* DPCT1093:12: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); printf("gpuDeviceInit() CUDA Device [%d]: \"%s\n", devID, _ConvertSMVer2ArchName(major, minor)); return devID; } // This function returns the best GPU (with maximum GFLOPS) inline int gpuGetMaxGflopsDeviceId() try { int current_device = 0, sm_per_multiproc = 0; int max_perf_device = 0; int device_count = 0; int devices_prohibited = 0; uint64_t max_compute_perf = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the best CUDA capable GPU device current_device = 0; while (current_device < device_count) { int computeMode = -1, major = 0, minor = 0; /* DPCT1035:13: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list /* DPCT1035:14: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode != 0) { if (major == 9999 && minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(major, minor); } int multiProcessorCount = 0, clockRate = 0; checkCudaErrors( DPCT_CHECK_ERROR(multiProcessorCount = dpct::dev_mgr::instance() .get_device(current_device) .get_max_compute_units())); dpct::err0 result = DPCT_CHECK_ERROR(clockRate = dpct::dev_mgr::instance() .get_device(current_device) .get_max_clock_frequency()); uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate; if (compute_perf > max_compute_perf) { max_compute_perf = compute_perf; max_perf_device = current_device; } } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } return max_perf_device; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } // Initialization code to find the best CUDA Device inline int findCudaDevice(int argc, const char **argv) { int devID = 0; // If the command-line has a device number specified, use it if (checkCmdLineFlag(argc, argv, "device")) { devID = getCmdLineArgumentInt(argc, argv, "device="); if (devID < 0) { printf("Invalid command line parameter\n "); exit(EXIT_FAILURE); } else { devID = gpuDeviceInit(devID); if (devID < 0) { printf("exiting...\n"); exit(EXIT_FAILURE); } } } else { // Otherwise pick the device with highest Gflops/s devID = gpuGetMaxGflopsDeviceId(); /* DPCT1093:15: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, _ConvertSMVer2ArchName(major, minor), major, minor); } return devID; } inline int findIntegratedGPU() { int current_device = 0; int device_count = 0; int devices_prohibited = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the integrated GPU which is compute capable while (current_device < device_count) { int computeMode = -1, integrated = -1; /* DPCT1035:16: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors( DPCT_CHECK_ERROR(integrated = dpct::dev_mgr::instance() .get_device(current_device) .get_integrated())); // If GPU is integrated and is not running on Compute Mode prohibited, // then cuda can map to GLES resource /* DPCT1035:17: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (integrated && (computeMode != 0)) { /* DPCT1093:18: The "current_device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(current_device))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, _ConvertSMVer2ArchName(major, minor), major, minor); return current_device; } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No GLES-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } // General check for CUDA GPU SM Capabilities inline bool checkCudaCapabilities(int major_version, int minor_version) { int dev; int major = 0, minor = 0; checkCudaErrors(dev = dpct::dev_mgr::instance().current_device_id()); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(dev).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(dev).get_minor_version())); if ((major > major_version) || (major == major_version && minor >= minor_version)) { printf(" Device %d: <%16s >, Compute SM %d.%d detected\n", dev, _ConvertSMVer2ArchName(major, minor), major, minor); return true; } else { printf( " No GPU device was found that can support " "CUDA compute capability %d.%d.\n", major_version, minor_version); return false; } } #endif // end of CUDA Helper Functions #endif // COMMON_HELPER_CUDA_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/helper_functions.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, // timers, image helpers, etc) #ifndef COMMON_HELPER_FUNCTIONS_H_ #define COMMON_HELPER_FUNCTIONS_H_ #ifdef WIN32 #pragma warning(disable : 4996) #endif // includes, project #include <assert.h> #include <exception.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> // includes, timer, string parsing, image helpers #include <helper_image.h> // helper functions for image compare, dump, data comparisons #include <helper_string.h> // helper functions for string parsing #include <helper_timer.h> // helper functions for timers #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #endif // COMMON_HELPER_FUNCTIONS_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Common/multithreading.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MULTITHREADING_H #define MULTITHREADING_H //Simple portable thread library. //Windows threads. #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #include <windows.h> typedef HANDLE CUTThread; typedef unsigned(WINAPI *CUT_THREADROUTINE)(void *); #define CUT_THREADPROC unsigned WINAPI #define CUT_THREADEND return 0 #else //POSIX threads. #include <pthread.h> typedef pthread_t CUTThread; typedef void *(*CUT_THREADROUTINE)(void *); #define CUT_THREADPROC void #define CUT_THREADEND #endif #ifdef __cplusplus extern "C" { #endif //Create thread. CUTThread cutStartThread(CUT_THREADROUTINE, void *data); //Wait for thread to finish. void cutEndThread(CUTThread thread); //Destroy thread. void cutDestroyThread(CUTThread thread); //Wait for multiple threads. void cutWaitForThreads(const CUTThread *threads, int num); #ifdef __cplusplus } //extern "C" #endif #endif //MULTITHREADING_H
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/multithreading.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <multithreading.h> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Create thread CUTThread cutStartThread(CUT_THREADROUTINE func, void *data) { return CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)func, data, 0, NULL); } // Wait for thread to finish void cutEndThread(CUTThread thread) { WaitForSingleObject(thread, INFINITE); CloseHandle(thread); } // Wait for multiple threads void cutWaitForThreads(const CUTThread *threads, int num) { WaitForMultipleObjects(num, threads, true, INFINITE); for (int i = 0; i < num; i++) { CloseHandle(threads[i]); } } #else // Create thread CUTThread cutStartThread(CUT_THREADROUTINE func, void *data) { pthread_t thread; pthread_create(&thread, NULL, func, data); return thread; } // Wait for thread to finish void cutEndThread(CUTThread thread) { pthread_join(thread, NULL); } // Wait for multiple threads void cutWaitForThreads(const CUTThread *threads, int num) { for (int i = 0; i < num; i++) { cutEndThread(threads[i]); } } #endif
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_reduction.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MONTECARLO_REDUCTION_CUH #define MONTECARLO_REDUCTION_CUH #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> //////////////////////////////////////////////////////////////////////////////// // This function calculates total sum for each of the two input arrays. // SUM_N must be power of two // Unrolling provides a bit of a performance improvement for small // to medium path counts. //////////////////////////////////////////////////////////////////////////////// template <class T, int SUM_N, int blockSize> void sumReduce(T *sum, T *sum2, sycl::group<3> &cta, sycl::sub_group &tile32, __TOptionValue *d_CallValue, const sycl::nd_item<3> &item_ct1) { const int VEC = 32; const int tid = item_ct1.get_local_linear_id(); T beta = sum[tid]; T beta2 = sum2[tid]; T temp, temp2; for (int i = VEC / 2; i > 0; i >>= 1) { if (item_ct1.get_sub_group().get_local_linear_id() < i) { temp = sum[tid + i]; temp2 = sum2[tid + i]; beta += temp; beta2 += temp2; sum[tid] = beta; sum2[tid] = beta2; } /* DPCT1065:2: Consider replacing sycl::sub_group::barrier() with sycl::sub_group::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.get_sub_group().barrier(); } /* DPCT1065:0: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); if (tid == 0) { beta = 0; beta2 = 0; for (int i = 0; i < item_ct1.get_local_range(2); i += VEC) { beta += sum[i]; beta2 += sum2[i]; } __TOptionValue t = {beta, beta2}; *d_CallValue = t; } /* DPCT1065:1: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); } #endif
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/realtype.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef REALTYPE_H #define REALTYPE_H //#define DOUBLE_PRECISION #ifndef DOUBLE_PRECISION typedef float real; #else typedef double real; #endif #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_common.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef MONTECARLO_COMMON_H #define MONTECARLO_COMMON_H #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "realtype.h" #include <dpct/rng_utils.hpp> //////////////////////////////////////////////////////////////////////////////// // Global types //////////////////////////////////////////////////////////////////////////////// typedef struct dpct_type_495057 { float S; float X; float T; float R; float V; } TOptionData; typedef struct // #ifdef __CUDACC__ //__align__(8) // #endif dpct_type_363787 { float Expected; float Confidence; } TOptionValue; // GPU outputs before CPU postprocessing typedef struct dpct_type_118506 { real Expected; real Confidence; } __TOptionValue; typedef struct dpct_type_258576 { // Device ID for multi-GPU version int device; // Option count for this plan int optionCount; // Host-side data source and result destination TOptionData *optionData; TOptionValue *callValue; // Temporary Host-side pinned memory for async + faster data transfers __TOptionValue *h_CallValue; // Device- and host-side option data void *d_OptionData; void *h_OptionData; // Device-side option values void *d_CallValue; // Intermediate device-side buffers void *d_Buffer; // random number generator states /* DPCT1032:19: A different random number generator is used. You may need to adjust the code. */ dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> *rngStates; // Pseudorandom samples count int pathN; // Time stamp float time; int gridSize; } TOptionPlan; extern "C" void initMonteCarloGPU(TOptionPlan *plan); extern "C" void MonteCarloGPU(TOptionPlan *plan, dpct::queue_ptr stream = &dpct::get_default_queue()); extern "C" void closeMonteCarloGPU(TOptionPlan *plan); #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_gold.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <dpct/rng_utils.hpp> //#include "curand_kernel.h" #include "helper_cuda.h" //////////////////////////////////////////////////////////////////////////////// // Common types //////////////////////////////////////////////////////////////////////////////// #include "MonteCarlo_common.h" //////////////////////////////////////////////////////////////////////////////// // Black-Scholes formula for Monte Carlo results validation //////////////////////////////////////////////////////////////////////////////// #define A1 0.31938153 #define A2 -0.356563782 #define A3 1.781477937 #define A4 -1.821255978 #define A5 1.330274429 #define RSQRT2PI 0.39894228040143267793994605993438 // Polynomial approximation of // cumulative normal distribution function double CND(double d) { double K = 1.0 / (1.0 + 0.2316419 * fabs(d)); double cnd = RSQRT2PI * exp(-0.5 * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if (d > 0) cnd = 1.0 - cnd; return cnd; } // Black-Scholes formula for call value extern "C" void BlackScholesCall(float &callValue, TOptionData optionData) { double S = optionData.S; double X = optionData.X; double T = optionData.T; double R = optionData.R; double V = optionData.V; double sqrtT = sqrt(T); double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); double d2 = d1 - V * sqrtT; double CNDD1 = CND(d1); double CNDD2 = CND(d2); double expRT = exp(-R * T); callValue = (float)(S * CNDD1 - X * expRT * CNDD2); } //////////////////////////////////////////////////////////////////////////////// // CPU Monte Carlo //////////////////////////////////////////////////////////////////////////////// static double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT) { double callValue = S * exp(MuByT + VBySqrtT * r) - X; return (callValue > 0) ? callValue : 0; } extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData, float *h_Samples, int pathN) { const double S = optionData.S; const double X = optionData.X; const double T = optionData.T; const double R = optionData.R; const double V = optionData.V; const double MuByT = (R - 0.5 * V * V) * T; const double VBySqrtT = V * sqrt(T); float *samples; dpct::rng::host_rng_ptr gen; checkCudaErrors(DPCT_CHECK_ERROR( gen = dpct::rng::create_host_rng(dpct::rng::random_engine_type::mcg59))); unsigned long long seed = 1234ULL; checkCudaErrors(DPCT_CHECK_ERROR(gen->set_seed(seed))); if (h_Samples != NULL) { samples = h_Samples; } else { samples = (float *)malloc(pathN * sizeof(float)); checkCudaErrors( DPCT_CHECK_ERROR(gen->generate_gaussian(samples, pathN, 0.0, 1.0))); } // for(int i=0; i<10; i++) printf("CPU sample = %f\n", samples[i]); double sum = 0, sum2 = 0; for (int pos = 0; pos < pathN; pos++) { double sample = samples[pos]; double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT); sum += callValue; sum2 += callValue * callValue; } if (h_Samples == NULL) free(samples); checkCudaErrors(DPCT_CHECK_ERROR(gen.reset())); // Derive average from the total sum and discount by riskfree rate callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN); // Standard deviation double stdDev = sqrt(((double)pathN * sum2 - sum * sum) / ((double)pathN * (double)(pathN - 1))); // Confidence width; in 95% of all cases theoretical value lies within these // borders callValue.Confidence = (float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN)); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarlo_kernel.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // Global types //////////////////////////////////////////////////////////////////////////////// #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdlib.h> #include <stdio.h> #include <helper_cuda.h> #include <dpct/rng_utils.hpp> #include "MonteCarlo_common.h" //////////////////////////////////////////////////////////////////////////////// // Helper reduction template // Please see the "reduction" CUDA Sample for more information //////////////////////////////////////////////////////////////////////////////// #include "MonteCarlo_reduction.dp.hpp" #include <cmath> //////////////////////////////////////////////////////////////////////////////// // Internal GPU-side data structures //////////////////////////////////////////////////////////////////////////////// #define MAX_OPTIONS (1024 * 1024) // Preprocessed input option data typedef struct dpct_type_164939 { real S; real X; real MuByT; real VBySqrtT; } __TOptionData; //////////////////////////////////////////////////////////////////////////////// // Overloaded shortcut payoff functions for different precision modes //////////////////////////////////////////////////////////////////////////////// inline float endCallValue(float S, float X, float r, float MuByT, float VBySqrtT) { float callValue = S * sycl::native::exp(MuByT + VBySqrtT * r) - X; return (callValue > 0.0F) ? callValue : 0.0F; } inline double endCallValue(double S, double X, double r, double MuByT, double VBySqrtT) { double callValue = S * sycl::exp(MuByT + VBySqrtT * r) - X; return (callValue > 0.0) ? callValue : 0.0; } #define THREAD_N 256 //////////////////////////////////////////////////////////////////////////////// // This kernel computes the integral over all paths using a single thread block // per option. It is fastest when the number of thread blocks times the work per // block is high enough to keep the GPU busy. //////////////////////////////////////////////////////////////////////////////// /* DPCT1110:3: The total declared local variable size in device function MonteCarloOneBlockPerOption exceeds 128 bytes and may cause high register pressure. Consult with your hardware vendor to find the total register size available and adjust the code, or use smaller sub-group size to avoid high register pressure. */ static void MonteCarloOneBlockPerOption( /* DPCT1032:31: A different random number generator is used. You may need to adjust the code. */ dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> *__restrict rngStates, const __TOptionData *__restrict d_OptionData, __TOptionValue *__restrict d_CallValue, int pathN, int optionN, const sycl::nd_item<3> &item_ct1, real *s_SumCall, real *s_Sum2Call) { // Handle to thread block group auto cta = item_ct1.get_group(); sycl::sub_group tile32 = item_ct1.get_sub_group(); const int SUM_N = THREAD_N; // determine global thread id int tid = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); // Copy random number state to local memory for efficiency /* DPCT1032:32: A different random number generator is used. You may need to adjust the code. */ dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> localState = rngStates[tid]; for (int optionIndex = item_ct1.get_group(2); optionIndex < optionN; optionIndex += item_ct1.get_group_range(2)) { const real S = d_OptionData[optionIndex].S; const real X = d_OptionData[optionIndex].X; const real MuByT = d_OptionData[optionIndex].MuByT; const real VBySqrtT = d_OptionData[optionIndex].VBySqrtT; // Cycle through the entire samples array: // derive end stock price for each path // accumulate partial integrals into intermediate shared memory buffer for (int iSum = item_ct1.get_local_id(2); iSum < SUM_N; iSum += item_ct1.get_local_range(2)) { __TOptionValue sumCall = {0, 0}; #pragma unroll 8 for (int i = iSum; i < pathN; i += SUM_N) { real r = localState.generate<oneapi::mkl::rng::device::gaussian<float>, 1>(); real callValue = endCallValue(S, X, r, MuByT, VBySqrtT); sumCall.Expected += callValue; sumCall.Confidence += callValue * callValue; } s_SumCall[iSum] = sumCall.Expected; s_Sum2Call[iSum] = sumCall.Confidence; } // Reduce shared memory accumulators // and write final result to global memory /* DPCT1065:4: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); sumReduce<real, SUM_N, THREAD_N>(s_SumCall, s_Sum2Call, cta, tile32, &d_CallValue[optionIndex], item_ct1); } } /* DPCT1032:33: A different random number generator is used. You may need to adjust the code. */ static void rngSetupStates( dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> *rngState, int device_id, const sycl::nd_item<3> &item_ct1) { // determine global thread id int tid = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); // Each threadblock gets different seed, // Threads within a threadblock get different sequence numbers /* DPCT1105:34: The mcg59 random number generator is used. The subsequence argument "item_ct1.get_local_id(2)" is ignored. You need to verify the migration. */ rngState[tid] = dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>>( item_ct1.get_group(2) + item_ct1.get_group_range(2) * device_id, 0); } //////////////////////////////////////////////////////////////////////////////// // Host-side interface to GPU Monte Carlo //////////////////////////////////////////////////////////////////////////////// extern "C" void initMonteCarloGPU(TOptionPlan *plan) { checkCudaErrors( DPCT_CHECK_ERROR(plan->d_OptionData = (void *)sycl::malloc_device( sizeof(__TOptionData) * (plan->optionCount), dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(plan->d_CallValue = (void *)sycl::malloc_device( sizeof(__TOptionValue) * (plan->optionCount), dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( plan->h_OptionData = (void *)sycl::malloc_host(sizeof(__TOptionData) * (plan->optionCount), dpct::get_default_queue()))); // Allocate internal device memory checkCudaErrors( DPCT_CHECK_ERROR(plan->h_CallValue = sycl::malloc_host<__TOptionValue>( (plan->optionCount), dpct::get_default_queue()))); // Allocate states for pseudo random number generators checkCudaErrors(DPCT_CHECK_ERROR( plan->rngStates = sycl::malloc_device< dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>>>( plan->gridSize * THREAD_N, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue() .memset(plan->rngStates, 0, /* DPCT1032:36: A different random number generator is used. You may need to adjust the code. */ plan->gridSize * THREAD_N * sizeof(dpct::rng::device::rng_generator< oneapi::mkl::rng::device::mcg59<1>>)) .wait())); // place each device pathN random numbers apart on the random number sequence dpct::get_default_queue().submit([&](sycl::handler &cgh) { dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> *plan_rngStates_ct0 = plan->rngStates; int plan_device_ct1 = plan->device; cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, plan->gridSize) * sycl::range<3>(1, 1, THREAD_N), sycl::range<3>(1, 1, THREAD_N)), [=](sycl::nd_item<3> item_ct1) { rngSetupStates(plan_rngStates_ct0, plan_device_ct1, item_ct1); }); }); getLastCudaError("rngSetupStates kernel failed.\n"); } // Compute statistics and deallocate internal device memory extern "C" void closeMonteCarloGPU(TOptionPlan *plan) { for (int i = 0; i < plan->optionCount; i++) { const double RT = plan->optionData[i].R * plan->optionData[i].T; const double sum = plan->h_CallValue[i].Expected; const double sum2 = plan->h_CallValue[i].Confidence; const double pathN = plan->pathN; // Derive average from the total sum and discount by riskfree rate plan->callValue[i].Expected = (float)(exp(-RT) * sum / pathN); // Standard deviation double stdDev = sqrt((pathN * sum2 - sum * sum) / (pathN * (pathN - 1))); // Confidence width; in 95% of all cases theoretical value lies within these // borders plan->callValue[i].Confidence = (float)(exp(-RT) * 1.96 * stdDev / sqrt(pathN)); } checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(plan->rngStates, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->h_CallValue, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->h_OptionData, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->d_CallValue, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free(plan->d_OptionData, dpct::get_default_queue()))); } // Main computations extern "C" void MonteCarloGPU(TOptionPlan *plan, dpct::queue_ptr stream) { __TOptionValue *h_CallValue = plan->h_CallValue; if (plan->optionCount <= 0 || plan->optionCount > MAX_OPTIONS) { printf("MonteCarloGPU(): bad option count.\n"); return; } __TOptionData *h_OptionData = (__TOptionData *)plan->h_OptionData; for (int i = 0; i < plan->optionCount; i++) { const double T = plan->optionData[i].T; const double R = plan->optionData[i].R; const double V = plan->optionData[i].V; const double MuByT = (R - 0.5 * V * V) * T; const double VBySqrtT = V * sqrt(T); h_OptionData[i].S = (real)plan->optionData[i].S; h_OptionData[i].X = (real)plan->optionData[i].X; h_OptionData[i].MuByT = (real)MuByT; h_OptionData[i].VBySqrtT = (real)VBySqrtT; } checkCudaErrors(DPCT_CHECK_ERROR( stream->memcpy(plan->d_OptionData, h_OptionData, plan->optionCount * sizeof(__TOptionData)))); stream->submit([&](sycl::handler &cgh) { /* DPCT1101:37: 'SUM_N' expression was replaced with a value. Modify the code to use the original expression, provided in comments, if it is correct. */ sycl::local_accessor<real, 1> s_SumCall_acc_ct1( sycl::range<1>(256 /*SUM_N*/), cgh); /* DPCT1101:38: 'SUM_N' expression was replaced with a value. Modify the code to use the original expression, provided in comments, if it is correct. */ sycl::local_accessor<real, 1> s_Sum2Call_acc_ct1( sycl::range<1>(256 /*SUM_N*/), cgh); dpct::rng::device::rng_generator<oneapi::mkl::rng::device::mcg59<1>> *plan_rngStates_ct0 = plan->rngStates; const __TOptionData *plan_d_OptionData_ct1 = (__TOptionData *)(plan->d_OptionData); __TOptionValue *plan_d_CallValue_ct2 = (__TOptionValue *)(plan->d_CallValue); int plan_pathN_ct3 = plan->pathN; int plan_optionCount_ct4 = plan->optionCount; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, plan->gridSize) * sycl::range<3>(1, 1, THREAD_N), sycl::range<3>(1, 1, THREAD_N)), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { MonteCarloOneBlockPerOption(plan_rngStates_ct0, plan_d_OptionData_ct1, plan_d_CallValue_ct2, plan_pathN_ct3, plan_optionCount_ct4, item_ct1, s_SumCall_acc_ct1.get_pointer(), s_Sum2Call_acc_ct1.get_pointer()); }); }); getLastCudaError("MonteCarloOneBlockPerOption() execution failed\n"); checkCudaErrors(DPCT_CHECK_ERROR( stream->memcpy(h_CallValue, plan->d_CallValue, plan->optionCount * sizeof(__TOptionValue)))); // cudaDeviceSynchronize(); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/MonteCarloMultiGPU/MonteCarloMultiGPU.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample evaluates fair call price for a * given set of European options using Monte Carlo approach. * See supplied whitepaper for more explanations. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <math.h> // includes, project #include <helper_functions.h> // Helper functions (utilities, parsing, timing) #include <helper_cuda.h> // helper functions (cuda error checking and initialization) #include <multithreading.h> #include "MonteCarlo_common.h" #include <chrono> int *pArgc = NULL; char **pArgv = NULL; #ifdef WIN32 #define strcasecmp _strcmpi #endif //////////////////////////////////////////////////////////////////////////////// // Common functions //////////////////////////////////////////////////////////////////////////////// float randFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } /// Utility function to tweak problem size for small GPUs int adjustProblemSize(int GPU_N, int default_nOptions) { int nOptions = default_nOptions; // select problem size for (int i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR( dpct::dev_mgr::instance().get_device(i).get_device_info(deviceProp))); /* DPCT1005:20: The SYCL device version is different from CUDA Compute Compatibility. You may need to rewrite this code. */ int cudaCores = _ConvertSMVer2Cores(deviceProp.get_major_version(), deviceProp.get_minor_version()) * deviceProp.get_max_compute_units(); if (cudaCores <= 32) { nOptions = (nOptions < cudaCores / 2 ? nOptions : cudaCores / 2); } } return nOptions; } int adjustGridSize(int GPUIndex, int defaultGridSize) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR( dpct::dev_mgr::instance().get_device(GPUIndex).get_device_info( deviceProp))); int maxGridSize = deviceProp.get_max_compute_units() * 40; return ((defaultGridSize > maxGridSize) ? maxGridSize : defaultGridSize); } /////////////////////////////////////////////////////////////////////////////// // CPU reference functions /////////////////////////////////////////////////////////////////////////////// extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData, float *h_Random, int pathN); // Black-Scholes formula for call options extern "C" void BlackScholesCall(float &CallResult, TOptionData optionData); //////////////////////////////////////////////////////////////////////////////// // GPU-driving host thread //////////////////////////////////////////////////////////////////////////////// // Timer StopWatchInterface **hTimer = NULL; static CUT_THREADPROC solverThread(TOptionPlan *plan) { // Init GPU /* DPCT1093:21: The "plan->device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan->device))); dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(plan->device) .get_device_info(deviceProp))); // Start the timer sdkStartTimer(&hTimer[plan->device]); // Allocate intermediate memory for MC integrator and initialize // RNG states initMonteCarloGPU(plan); // Main computation MonteCarloGPU(plan); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().queues_wait_and_throw())); // Stop the timer sdkStopTimer(&hTimer[plan->device]); // Shut down this GPU closeMonteCarloGPU(plan); dpct::get_default_queue().wait(); printf("solverThread() finished - GPU Device %d: %s\n", plan->device, deviceProp.get_name()); CUT_THREADEND; } static void multiSolver(TOptionPlan *plan, int nPlans) { // allocate and initialize an array of stream handles dpct::queue_ptr *streams = (dpct::queue_ptr *)malloc(nPlans * sizeof(dpct::queue_ptr)); dpct::event_ptr *events = (dpct::event_ptr *)malloc(nPlans * sizeof(dpct::event_ptr)); std::chrono::time_point<std::chrono::steady_clock> events_ct1_i; for (int i = 0; i < nPlans; i++) { /* DPCT1093:22: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); checkCudaErrors(DPCT_CHECK_ERROR( (streams[i]) = dpct::get_current_device().create_queue())); checkCudaErrors(DPCT_CHECK_ERROR(events[i] = new sycl::event())); } // Init Each GPU // In CUDA 4.0 we can call cudaSetDevice multiple times to target each device // Set the device desired, then perform initializations on that device for (int i = 0; i < nPlans; i++) { // set the target device to perform initialization on /* DPCT1093:23: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(plan[i].device) .get_device_info(deviceProp))); // Allocate intermediate memory for MC integrator // and initialize RNG state initMonteCarloGPU(&plan[i]); } for (int i = 0; i < nPlans; i++) { /* DPCT1093:24: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().queues_wait_and_throw())); } // Start the timer sdkResetTimer(&hTimer[0]); sdkStartTimer(&hTimer[0]); for (int i = 0; i < nPlans; i++) { /* DPCT1093:25: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); // Main computations MonteCarloGPU(&plan[i], streams[i]); /* DPCT1012:26: Detected kernel execution time measurement pattern and generated an initial code for time measurements in SYCL. You can change the way time is measured depending on your goals. */ /* DPCT1024:27: The original code returned the error code that was further consumed by the program logic. This original code was replaced with 0. You may need to rewrite the program logic consuming the error code. */ events_ct1_i = std::chrono::steady_clock::now(); checkCudaErrors( DPCT_CHECK_ERROR(*events[i] = streams[i]->ext_oneapi_submit_barrier())); } for (int i = 0; i < nPlans; i++) { /* DPCT1093:28: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); events[i]->wait_and_throw(); } // Stop the timer sdkStopTimer(&hTimer[0]); for (int i = 0; i < nPlans; i++) { /* DPCT1093:29: The "plan[i].device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(plan[i].device))); closeMonteCarloGPU(&plan[i]); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_current_device().destroy_queue(streams[i]))); checkCudaErrors(DPCT_CHECK_ERROR(dpct::destroy_event(events[i]))); } } /////////////////////////////////////////////////////////////////////////////// // Main program /////////////////////////////////////////////////////////////////////////////// #define DO_CPU #undef DO_CPU #define PRINT_RESULTS #undef PRINT_RESULTS void usage() { printf("--method=[threaded,streamed] --scaling=[strong,weak] [--help]\n"); printf("Method=threaded: 1 CPU thread for each GPU [default]\n"); printf( " streamed: 1 CPU thread handles all GPUs (requires CUDA 4.0 or " "newer)\n"); printf("Scaling=strong : constant problem size\n"); printf( " weak : problem size scales with number of available GPUs " "[default]\n"); } int main(int argc, char **argv) { char *multiMethodChoice = NULL; char *scalingChoice = NULL; bool use_threads = true; bool bqatest = false; bool strongScaling = false; pArgc = &argc; pArgv = argv; printf("%s Starting...\n\n", argv[0]); if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) { bqatest = true; } getCmdLineArgumentString(argc, (const char **)argv, "method", &multiMethodChoice); getCmdLineArgumentString(argc, (const char **)argv, "scaling", &scalingChoice); if (checkCmdLineFlag(argc, (const char **)argv, "h") || checkCmdLineFlag(argc, (const char **)argv, "help")) { usage(); exit(EXIT_SUCCESS); } if (multiMethodChoice == NULL) { use_threads = false; } else { if (!strcasecmp(multiMethodChoice, "threaded")) { use_threads = true; } else { use_threads = false; } } if (use_threads == false) { printf("Using single CPU thread for multiple GPUs\n"); } if (scalingChoice == NULL) { strongScaling = false; } else { if (!strcasecmp(scalingChoice, "strong")) { strongScaling = true; } else { strongScaling = false; } } // GPU number present in the system int GPU_N; checkCudaErrors( DPCT_CHECK_ERROR(GPU_N = dpct::dev_mgr::instance().device_count())); int nOptions = 8 * 1024; nOptions = adjustProblemSize(GPU_N, nOptions); // select problem size int scale = (strongScaling) ? 1 : GPU_N; int OPT_N = nOptions * scale; int PATH_N = 262144; // initialize the timers hTimer = new StopWatchInterface *[GPU_N]; for (int i = 0; i < GPU_N; i++) { sdkCreateTimer(&hTimer[i]); sdkResetTimer(&hTimer[i]); } // Input data array TOptionData *optionData = new TOptionData[OPT_N]; // Final GPU MC results TOptionValue *callValueGPU = new TOptionValue[OPT_N]; //"Theoretical" call values by Black-Scholes formula float *callValueBS = new float[OPT_N]; // Solver config TOptionPlan *optionSolver = new TOptionPlan[GPU_N]; // OS thread ID CUTThread *threadID = new CUTThread[GPU_N]; int gpuBase, gpuIndex; int i; float time; double delta, ref, sumDelta, sumRef, sumReserve; printf("MonteCarloMultiGPU\n"); printf("==================\n"); printf("Parallelization method = %s\n", use_threads ? "threaded" : "streamed"); printf("Problem scaling = %s\n", strongScaling ? "strong" : "weak"); printf("Number of GPUs = %d\n", GPU_N); printf("Total number of options = %d\n", OPT_N); printf("Number of paths = %d\n", PATH_N); printf("main(): generating input data...\n"); srand(123); for (i = 0; i < OPT_N; i++) { optionData[i].S = randFloat(5.0f, 50.0f); optionData[i].X = randFloat(10.0f, 25.0f); optionData[i].T = randFloat(1.0f, 5.0f); optionData[i].R = 0.06f; optionData[i].V = 0.10f; callValueGPU[i].Expected = -1.0f; callValueGPU[i].Confidence = -1.0f; } printf("main(): starting %i host threads...\n", GPU_N); // Get option count for each GPU for (i = 0; i < GPU_N; i++) { optionSolver[i].optionCount = OPT_N / GPU_N; } // Take into account cases with "odd" option counts for (i = 0; i < (OPT_N % GPU_N); i++) { optionSolver[i].optionCount++; } // Assign GPU option ranges gpuBase = 0; for (i = 0; i < GPU_N; i++) { optionSolver[i].device = i; optionSolver[i].optionData = optionData + gpuBase; optionSolver[i].callValue = callValueGPU + gpuBase; optionSolver[i].pathN = PATH_N; optionSolver[i].gridSize = adjustGridSize(optionSolver[i].device, optionSolver[i].optionCount); gpuBase += optionSolver[i].optionCount; } if (use_threads || bqatest) { // Start CPU thread for each GPU for (gpuIndex = 0; gpuIndex < GPU_N; gpuIndex++) { threadID[gpuIndex] = cutStartThread((CUT_THREADROUTINE)solverThread, &optionSolver[gpuIndex]); } printf("main(): waiting for GPU results...\n"); cutWaitForThreads(threadID, GPU_N); printf("main(): GPU statistics, threaded\n"); for (i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(optionSolver[i].device) .get_device_info(deviceProp))); printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.get_name()); printf("Options : %i\n", optionSolver[i].optionCount); printf("Simulation paths: %i\n", optionSolver[i].pathN); time = sdkGetTimerValue(&hTimer[i]); printf("Total time (ms.): %f\n", time); printf("Options per sec.: %f\n", OPT_N / (time * 0.001)); } printf("main(): comparing Monte Carlo and Black-Scholes results...\n"); sumDelta = 0; sumRef = 0; sumReserve = 0; for (i = 0; i < OPT_N; i++) { BlackScholesCall(callValueBS[i], optionData[i]); delta = fabs(callValueBS[i] - callValueGPU[i].Expected); ref = callValueBS[i]; sumDelta += delta; sumRef += fabs(ref); if (delta > 1e-6) { sumReserve += callValueGPU[i].Confidence / delta; } #ifdef PRINT_RESULTS printf("BS: %f; delta: %E\n", callValueBS[i], delta); #endif } sumReserve /= OPT_N; } if (!use_threads || bqatest) { multiSolver(optionSolver, GPU_N); printf("main(): GPU statistics, streamed\n"); for (i = 0; i < GPU_N; i++) { dpct::device_info deviceProp; checkCudaErrors(DPCT_CHECK_ERROR(dpct::dev_mgr::instance() .get_device(optionSolver[i].device) .get_device_info(deviceProp))); printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.get_name()); printf("Options : %i\n", optionSolver[i].optionCount); printf("Simulation paths: %i\n", optionSolver[i].pathN); } time = sdkGetTimerValue(&hTimer[0]); printf("\nTotal time (ms.): %f\n", time); printf("\tNote: This is elapsed time for all to compute.\n"); printf("Options per sec.: %f\n", OPT_N / (time * 0.001)); printf("main(): comparing Monte Carlo and Black-Scholes results...\n"); sumDelta = 0; sumRef = 0; sumReserve = 0; for (i = 0; i < OPT_N; i++) { BlackScholesCall(callValueBS[i], optionData[i]); delta = fabs(callValueBS[i] - callValueGPU[i].Expected); ref = callValueBS[i]; sumDelta += delta; sumRef += fabs(ref); if (delta > 1e-6) { sumReserve += callValueGPU[i].Confidence / delta; } #ifdef PRINT_RESULTS printf("BS: %f; delta: %E\n", callValueBS[i], delta); #endif } sumReserve /= OPT_N; } #ifdef DO_CPU printf("main(): running CPU MonteCarlo...\n"); TOptionValue callValueCPU; sumDelta = 0; sumRef = 0; for (i = 0; i < OPT_N; i++) { MonteCarloCPU(callValueCPU, optionData[i], NULL, PATH_N); delta = fabs(callValueCPU.Expected - callValueGPU[i].Expected); ref = callValueCPU.Expected; sumDelta += delta; sumRef += fabs(ref); printf("Exp : %f | %f\t", callValueCPU.Expected, callValueGPU[i].Expected); printf("Conf: %f | %f\n", callValueCPU.Confidence, callValueGPU[i].Confidence); } printf("L1 norm: %E\n", sumDelta / sumRef); #endif printf("Shutting down...\n"); for (int i = 0; i < GPU_N; i++) { sdkStartTimer(&hTimer[i]); /* DPCT1093:30: The "i" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(i))); } delete[] optionSolver; delete[] callValueBS; delete[] callValueGPU; delete[] optionData; delete[] threadID; delete[] hTimer; printf("Test Summary...\n"); printf("L1 norm : %E\n", sumDelta / sumRef); printf("Average reserve: %f\n", sumReserve); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n\n"); printf(sumReserve > 1.0f ? "Test passed\n" : "Test failed!\n"); exit(sumReserve > 1.0f ? EXIT_SUCCESS : EXIT_FAILURE); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/ccl_utils.hpp
//==---- ccl_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_CCL_UTILS_HPP__ #define __DPCT_CCL_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/ccl.hpp> #include <unordered_map> #include <memory> #include "device.hpp" namespace dpct { namespace ccl { namespace detail { /// Get stored kvs with specified kvs address. inline std::shared_ptr<oneapi::ccl::kvs> & get_kvs(const oneapi::ccl::kvs::address_type &addr) { struct hash { std::size_t operator()(const oneapi::ccl::kvs::address_type &in) const { return std::hash<std::string_view>()(std::string_view(in.data(), in.size())); } }; static std::unordered_map<oneapi::ccl::kvs::address_type, std::shared_ptr<oneapi::ccl::kvs>, hash> kvs_map; return kvs_map[addr]; } /// Help class to init ccl environment. class ccl_init_helper { public: ccl_init_helper() { oneapi::ccl::init(); } }; } // namespace detail /// Get concatenated library version as an integer. static inline int get_version() { oneapi::ccl::init(); auto ver = oneapi::ccl::get_library_version(); return ver.major * 10000 + ver.minor * 100 + ver.update; } /// Create main kvs and return its address. static inline oneapi::ccl::kvs::address_type create_kvs_address() { oneapi::ccl::init(); auto ptr = oneapi::ccl::create_main_kvs(); auto addr = ptr->get_address(); detail::get_kvs(addr) = ptr; return addr; } /// Get stored kvs with /p addr if exist. Otherwise, create kvs with /p addr. static inline std::shared_ptr<oneapi::ccl::kvs> create_kvs(const oneapi::ccl::kvs::address_type &addr) { oneapi::ccl::init(); auto &ptr = detail::get_kvs(addr); if (!ptr) ptr = oneapi::ccl::create_kvs(addr); return ptr; } /// dpct communicator extension class communicator_wrapper : public dpct::ccl::detail::ccl_init_helper { public: communicator_wrapper( int size, int rank, oneapi::ccl::kvs::address_type id, const oneapi::ccl::comm_attr &attr = oneapi::ccl::default_comm_attr) : _device_comm(oneapi::ccl::create_device( static_cast<sycl::device &>(dpct::get_current_device()))), _context_comm(oneapi::ccl::create_context(dpct::get_default_context())), _comm(oneapi::ccl::create_communicator( size, rank, _device_comm, _context_comm, dpct::ccl::create_kvs(id), attr)) { _queue_init = false; _ccl_stream_ptr = nullptr; } ~communicator_wrapper() { delete _ccl_stream_ptr; }; /// Return the rank in a oneapi::ccl::communicator /// \returns The rank corresponding to communicator object int rank() const { return _comm.rank(); } /// Retrieves the number of rank in oneapi::ccl::communicator /// \returns The number of the ranks int size() const { return _comm.size(); } /// Return underlying native device, which was used in oneapi::ccl::communicator sycl::device get_device() const { return _comm.get_device().get_native(); } /// \brief allreduce is a collective communication operation that performs the global reduction operation /// on values from all ranks of communicator and distributes the result back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void allreduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::allreduce(sendbuff, recvbuff, count, dtype, rtype, _comm, stream); }, queue_ptr); } /// \brief reduce is a collective communication operation that performs the /// global reduction operation on values from all ranks of the communicator /// and returns the result to the root rank. /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, /// must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param root the rank that gets the result of reduction /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, int root, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce(sendbuff, recvbuff, count, dtype, rtype, root, _comm, stream); }, queue_ptr); } /// \brief broadcast is a collective communication operation that broadcasts data /// from one rank of communicator (denoted as root) to all other ranks. /// Only support in-place operation /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result /// \param count the number of elements of type @c dtype in @c buf /// \param dtype thedatatype of elements in @c buf /// \param root the rank that broadcasts @c buf /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void broadcast(void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, int root, sycl::queue *queue_ptr) { if (sendbuff != recvbuff) { throw std::runtime_error( "oneCCL broadcast only support in-place operation. " "send_buf and recv_buf must be same."); return; } call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::broadcast(recvbuff, count, dtype, root, _comm, stream); }, queue_ptr); } /// \brief reduce_scatter is a collective communication operation that performs the global reduction operation /// on values from all ranks of the communicator and scatters the result in blocks back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param recv_count the number of elements of type @c dtype in receive block /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce_scatter(const void *sendbuff, void *recvbuff, size_t recv_count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce_scatter(sendbuff, recvbuff, recv_count, dtype, rtype, _comm, stream); }, queue_ptr); } private: oneapi::ccl::device _device_comm; oneapi::ccl::context _context_comm; oneapi::ccl::communicator _comm; sycl::queue _queue; bool _queue_init; oneapi::ccl::stream *_ccl_stream_ptr; template <class Fn> void call_func_wrapper(Fn func, sycl::queue *qptr) { if (_queue_init && *qptr != _queue) { call_func_async(func, qptr); } else { if(!_queue_init) { _queue = *qptr; _queue_init = true; _ccl_stream_ptr = new oneapi::ccl::stream(oneapi::ccl::create_stream(_queue)); } std::invoke(func, *_ccl_stream_ptr); } } class call_func_async { sycl::queue *_q_ptr; struct call_async_impl { oneapi::ccl::stream _ccl_stream_impl; oneapi::ccl::event _ccl_event_impl; template <class Fn> explicit call_async_impl(Fn func, sycl::queue *qptr) : _ccl_stream_impl(oneapi::ccl::create_stream(*qptr)), _ccl_event_impl(std::invoke(func, _ccl_stream_impl)) {} }; call_async_impl *_imp; public: template <class Fn> explicit call_func_async(Fn func, sycl::queue *qptr) : _q_ptr(qptr), _imp(new call_async_impl(func, qptr)) {} ~call_func_async() { _q_ptr->submit([&](sycl::handler &cgh) { cgh.host_task([=] { _imp->_ccl_event_impl.wait(); delete _imp; }); }); } }; }; typedef dpct::ccl::communicator_wrapper *comm_ptr; } // namespace ccl } // namespace dpct #endif // __DPCT_CCL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/util.hpp
//==---- util.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_UTIL_HPP__ #define __DPCT_UTIL_HPP__ #include <sycl/sycl.hpp> #include <complex> #include <type_traits> #include <cassert> #include <cstdint> // TODO: Remove these function definitions once they exist in the DPC++ compiler #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffle(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleDown(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleUp(__spv::Scope::Flag, T, unsigned) noexcept; #endif namespace dpct { namespace detail { template <typename tag, typename T> class generic_error_type { public: generic_error_type() = default; generic_error_type(T value) : value{value} {} operator T() const { return value; } private: T value; }; } // namespace detail using err0 = detail::generic_error_type<struct err0_tag, int>; using err1 = detail::generic_error_type<struct err1_tag, int>; template <int... Ints> struct integer_sequence {}; template <int Size, int... Ints> struct make_index_sequence : public make_index_sequence<Size - 1, Size - 1, Ints...> {}; template <int... Ints> struct make_index_sequence<0, Ints...> : public integer_sequence<Ints...> {}; template <typename T> struct DataType { using T2 = T; }; template <typename T> struct DataType<sycl::vec<T, 2>> { using T2 = std::complex<T>; }; inline void matrix_mem_copy(void *to_ptr, const void *from_ptr, int to_ld, int from_ld, int rows, int cols, int elem_size, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { if (to_ptr == from_ptr && to_ld == from_ld) { return; } if (to_ld == from_ld) { size_t copy_size = elem_size * ((cols - 1) * (size_t)to_ld + rows); if (async) detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction); else detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction).wait(); } else { if (async) detail::dpct_memcpy(queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction); else sycl::event::wait(detail::dpct_memcpy( queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction)); } } /// Copy matrix data. The default leading dimension is column. /// \param [out] to_ptr A pointer points to the destination location. /// \param [in] from_ptr A pointer points to the source location. /// \param [in] to_ld The leading dimension the destination matrix. /// \param [in] from_ld The leading dimension the source matrix. /// \param [in] rows The number of rows of the source matrix. /// \param [in] cols The number of columns of the source matrix. /// \param [in] direction The direction of the data copy. /// \param [in] queue The queue where the routine should be executed. /// \param [in] async If this argument is true, the return of the function /// does NOT guarantee the copy is completed. template <typename T> inline void matrix_mem_copy(T *to_ptr, const T *from_ptr, int to_ld, int from_ld, int rows, int cols, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { using Ty = typename DataType<T>::T2; matrix_mem_copy((void *)to_ptr, (void *)from_ptr, to_ld, from_ld, rows, cols, sizeof(Ty), direction, queue, async); } /// Cast the high or low 32 bits of a double to an integer. /// \param [in] d The double value. /// \param [in] use_high32 Cast the high 32 bits of the double if true; /// otherwise cast the low 32 bits. inline int cast_double_to_int(double d, bool use_high32 = true) { sycl::vec<double, 1> v0{d}; auto v1 = v0.as<sycl::int2>(); if (use_high32) return v1[1]; return v1[0]; } /// Combine two integers, the first as the high 32 bits and the second /// as the low 32 bits, into a double. /// \param [in] high32 The integer as the high 32 bits /// \param [in] low32 The integer as the low 32 bits inline double cast_ints_to_double(int high32, int low32) { sycl::int2 v0{low32, high32}; auto v1 = v0.as<sycl::vec<double, 1>>(); return v1; } /// Reverse the bit order of an unsigned integer /// \param [in] a Input unsigned integer value /// \returns Value of a with the bit order reversed template <typename T> inline T reverse_bits(T a) { static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value, "unsigned integer required"); if (!a) return 0; T mask = 0; size_t count = 4 * sizeof(T); mask = ~mask >> count; while (count) { a = ((a & mask) << count) | ((a & ~mask) >> count); count = count >> 1; mask = mask ^ (mask << count); } return a; } /// \param [in] a The first value contains 4 bytes /// \param [in] b The second value contains 4 bytes /// \param [in] s The selector value, only lower 16bit used /// \returns the permutation result of 4 bytes selected in the way /// specified by \p s from \p a and \p b inline unsigned int byte_level_permute(unsigned int a, unsigned int b, unsigned int s) { unsigned int ret; ret = ((((std::uint64_t)b << 32 | a) >> (s & 0x7) * 8) & 0xff) | (((((std::uint64_t)b << 32 | a) >> ((s >> 4) & 0x7) * 8) & 0xff) << 8) | (((((std::uint64_t)b << 32 | a) >> ((s >> 8) & 0x7) * 8) & 0xff) << 16) | (((((std::uint64_t)b << 32 | a) >> ((s >> 12) & 0x7) * 8) & 0xff) << 24); return ret; } /// Find position of first least significant set bit in an integer. /// ffs(0) returns 0. /// /// \param [in] a Input integer value /// \returns The position template <typename T> inline int ffs(T a) { static_assert(std::is_integral<T>::value, "integer required"); return (sycl::ctz(a) + 1) % (sizeof(T) * 8 + 1); } /// select_from_sub_group allows work-items to obtain a copy of a value held by /// any other work-item in the sub_group. The input sub_group will be divided /// into several logical sub_groups with id range [0, \p logical_sub_group_size /// - 1]. Each work-item in logical sub_group gets value from another work-item /// whose id is \p remote_local_id. If \p remote_local_id is outside the /// logical sub_group id range, \p remote_local_id will modulo with \p /// logical_sub_group_size. The \p logical_sub_group_size must be a power of 2 /// and not exceed input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; return sycl::select_from_group( g, x, start_index + remote_local_id % logical_sub_group_size); } /// shift_sub_group_left move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the left. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is caller's id adds \p delta. If calculated id is outside the logical /// sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; T result = sycl::shift_group_left(g, x, delta); if ((id + delta) >= end_index) { result = x; } return result; } /// shift_sub_group_right move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the right. The input sub_group will be divided into /// several logical_sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical_sub_group gets value from another work-item whose /// id is caller's id subtracts \p delta. If calculated id is outside the /// logical sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; T result = sycl::shift_group_right(g, x, delta); if ((id - start_index) < delta) { result = x; } return result; } /// permute_sub_group_by_xor permutes values by exchanging values held by pairs /// of work-items identified by computing the bitwise exclusive OR of the /// work-item id and some fixed mask. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is bitwise exclusive OR of the caller's id and \p mask. If calculated id /// is outside the logical sub_group id range, the work-item will get value from /// itself. The \p logical_sub_group_size must be a power of 2 and not exceed /// input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; return sycl::select_from_group(g, x, target_offset < logical_sub_group_size ? start_index + target_offset : id); } namespace experimental { /// Masked version of select_from_sub_group, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(unsigned int member_mask, sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; unsigned logical_remote_id = start_index + remote_local_id % logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)remote_local_id; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_left, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleDown(__spv::Scope::Subgroup, x, delta); if ((id + delta) >= end_index) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_left " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_right, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleUp(__spv::Scope::Subgroup, x, delta); if ((id - start_index) < delta) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_right " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY && __INTEL_LLVM_COMPILER } /// Masked version of permute_sub_group_by_xor, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(unsigned int member_mask, sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; unsigned logical_remote_id = (target_offset < logical_sub_group_size) ? start_index + target_offset : id; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of permute_sub_group_by_xor " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)mask; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } } // namespace experimental /// Computes the multiplication of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cmul(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 * t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the division of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cdiv(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 / t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the magnitude of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> T cabs(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); return std::abs(t); } /// Computes the complex conjugate of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> sycl::vec<T, 2> conj(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); t = std::conj(t); return sycl::vec<T, 2>(t.real(), t.imag()); } inline int get_sycl_language_version() { #ifdef SYCL_LANGUAGE_VERSION return SYCL_LANGUAGE_VERSION; #else return 202000; #endif } namespace experimental { /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <int dimensions = 3> inline void nd_range_barrier(const sycl::nd_item<dimensions> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { static_assert(dimensions == 3, "dimensions must be 3."); unsigned int num_groups = item.get_group_range(2) * item.get_group_range(1) * item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(2) + item.get_group(1) + item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <> inline void nd_range_barrier(const sycl::nd_item<1> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { unsigned int num_groups = item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// The logical-group is a logical collection of some work-items within a /// work-group. /// Note: Please make sure that the logical-group size is a power of 2 in the /// range [1, current_sub_group_size]. class logical_group { sycl::nd_item<3> _item; sycl::group<3> _g; uint32_t _logical_group_size; uint32_t _group_linear_range_in_parent; public: /// Dividing \p parent_group into several logical-groups. /// \param [in] item Current work-item. /// \param [in] parent_group The group to be divided. /// \param [in] size The logical-group size. logical_group(sycl::nd_item<3> item, sycl::group<3> parent_group, uint32_t size) : _item(item), _g(parent_group), _logical_group_size(size) { _group_linear_range_in_parent = (_g.get_local_linear_range() - 1) / _logical_group_size + 1; } /// Returns the index of the work-item within the logical-group. uint32_t get_local_linear_id() const { return _item.get_local_linear_id() % _logical_group_size; } /// Returns the index of the logical-group in the parent group. uint32_t get_group_linear_id() const { return _item.get_local_linear_id() / _logical_group_size; } /// Returns the number of work-items in the logical-group. uint32_t get_local_linear_range() const { if (_g.get_local_linear_range() % _logical_group_size == 0) { return _logical_group_size; } uint32_t last_item_group_id = _g.get_local_linear_range() / _logical_group_size; uint32_t first_of_last_group = last_item_group_id * _logical_group_size; if (_item.get_local_linear_id() >= first_of_last_group) { return _g.get_local_linear_range() - first_of_last_group; } else { return _logical_group_size; } } /// Returns the number of logical-group in the parent group. uint32_t get_group_linear_range() const { return _group_linear_range_in_parent; } }; // The original source of the function calculate_max_active_wg_per_xecore was // under the license below: // // Copyright Intel Corporation // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // /// This function is used for occupancy calculation, it computes the max active /// work-group number per Xe-Core. Ref to /// https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator /// \param [out] num_wg Active work-group number. /// \param [in] wg_size Work-group size. /// \param [in] slm_size Share local memory size. /// \param [in] sg_size Sub-group size. /// \param [in] used_barrier Whether barrier is used. /// \param [in] used_large_grf Whether large General Register File is used. /// \return If no error, returns 0. /// If \p wg_size exceeds the max work-group size, the max work-group size will /// be used instead of \p wg_size and returns -1. inline int calculate_max_active_wg_per_xecore(int *num_wg, int wg_size, int slm_size = 0, int sg_size = 32, bool used_barrier = false, bool used_large_grf = false) { int ret = 0; const int slm_size_per_xe_core = 64 * 1024; const int max_barrier_registers = 32; dpct::device_ext &dev = dpct::get_current_device(); size_t max_wg_size = dev.get_info<sycl::info::device::max_work_group_size>(); if (wg_size > max_wg_size) { wg_size = max_wg_size; ret = -1; } int num_threads_ss = 56; int max_num_wg = 56; if (dev.has(sycl::aspect::ext_intel_gpu_eu_count_per_subslice) && dev.has(sycl::aspect::ext_intel_gpu_hw_threads_per_eu)) { auto eu_count = dev.get_info<sycl::info::device::ext_intel_gpu_eu_count_per_subslice>(); auto threads_count = dev.get_info<sycl::ext::intel::info::device::gpu_hw_threads_per_eu>(); num_threads_ss = eu_count * threads_count; max_num_wg = eu_count * threads_count; } if (used_barrier) { max_num_wg = max_barrier_registers; } // Calculate num_wg_slm int num_wg_slm = 0; if (slm_size == 0) { num_wg_slm = max_num_wg; } else { num_wg_slm = std::floor((float)slm_size_per_xe_core / slm_size); } // Calculate num_wg_threads if (used_large_grf) num_threads_ss = num_threads_ss / 2; int num_threads = std::ceil((float)wg_size / sg_size); int num_wg_threads = std::floor((float)num_threads_ss / num_threads); // Calculate num_wg *num_wg = std::min(num_wg_slm, num_wg_threads); *num_wg = std::min(*num_wg, max_num_wg); return ret; } } // namespace experimental /// If x <= 2, then return a pointer to the deafult queue; /// otherwise, return x reinterpreted as a dpct::queue_ptr. inline queue_ptr int_as_queue_ptr(uintptr_t x) { return x <= 2 ? &get_default_queue() : reinterpret_cast<queue_ptr>(x); } template <int n_nondefault_params, int n_default_params, typename T> class args_selector; /// args_selector is a helper class for extracting arguments from an /// array of pointers to arguments or buffer of arguments to pass to a /// kernel function. /// /// \param R(Ts...) The type of the kernel /// \param n_nondefault_params The number of nondefault parameters of the kernel /// (excluding parameters that like sycl::nd_item, etc.) /// \param n_default_params The number of default parameters of the kernel /// /// Example usage: /// With the following kernel: /// void foo(sycl::float2 *x, int n, sycl::nd_item<3> item_ct1, float f=.1) {} /// and with the declaration: /// args_selector<2, 1, decltype(foo)> selector(kernelParams, extra); /// we have: /// selector.get<0>() returns a reference to sycl::float*, /// selector.get<1>() returns a reference to int, /// selector.get<2>() returns a reference to float template <int n_nondefault_params, int n_default_params, typename R, typename... Ts> class args_selector<n_nondefault_params, n_default_params, R(Ts...)> { private: void **kernel_params; char *args_buffer; template <int i> static constexpr int account_for_default_params() { constexpr int n_total_params = sizeof...(Ts); if constexpr (i >= n_nondefault_params) { return n_total_params - n_default_params + (i - n_nondefault_params); } else { return i; } } public: /// Get the type of the ith argument of R(Ts...) /// \param [in] i Index of parameter to get /// \returns Type of ith parameter template <int i> using arg_type = std::tuple_element_t<account_for_default_params<i>(), std::tuple<Ts...>>; private: template <int i> static constexpr int get_offset() { if constexpr (i == 0) { // we can assume args_buffer is properly aligned to the // first argument return 0; } else { constexpr int prev_off = get_offset<i-1>(); constexpr int prev_past_end = prev_off + sizeof(arg_type<i-1>); using T = arg_type<i>; // is the past-the-end of the i-1st element properly aligned // with the ith element's alignment? if constexpr (prev_past_end % alignof(T) == 0) { return prev_past_end; } // otherwise bump prev_past_end to match alignment else { return prev_past_end + (alignof(T) - (prev_past_end % alignof(T))); } } } static char *get_args_buffer(void **extra) { if (!extra) return nullptr; for (; (std::size_t) *extra != 0; ++extra) { if ((std::size_t) *extra == 1) { return static_cast<char*>(*(extra+1)); } } return nullptr; } public: /// If kernel_params is nonnull, then args_selector will /// extract arguments from kernel_params. Otherwise, it /// will extract them from extra. /// \param [in] kernel_params Array of pointers to arguments /// a or null pointer. /// \param [in] extra Array containing pointer to argument buffer. args_selector(void **kernel_params, void **extra) : kernel_params(kernel_params), args_buffer(get_args_buffer(extra)) {} /// Get a reference to the ith argument extracted from kernel_params /// or extra. /// \param [in] i Index of argument to get /// \returns Reference to the ith argument template <int i> arg_type<i> &get() { if (kernel_params) { return *static_cast<arg_type<i>*>(kernel_params[i]); } else { return *reinterpret_cast<arg_type<i>*>(args_buffer + get_offset<i>()); } } }; #ifdef _WIN32 #define DPCT_EXPORT __declspec(dllexport) #else #define DPCT_EXPORT #endif } // namespace dpct #endif // __DPCT_UTIL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/image.hpp
//==---- image.hpp --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_IMAGE_HPP__ #define __DPCT_IMAGE_HPP__ #include <sycl/sycl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { enum class image_channel_data_type { signed_int, unsigned_int, fp, }; class image_channel; class image_wrapper_base; namespace detail { /// Image object type traits, with accessor type and sampled data type defined. /// The data type of an image accessor must be one of sycl::int4, sycl::uint4, /// sycl::float4 and sycl::half4. The data type of accessors with 8bits/16bits /// channel width will be 32 bits. sycl::half is an exception. template <class T> struct image_trait { using acc_data_t = sycl::vec<T, 4>; template <int dimensions> using accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image>; template <int dimensions> using array_accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image_array>; using data_t = T; using elem_t = T; static constexpr image_channel_data_type data_type = std::is_integral<T>::value ? (std::is_signed<T>::value ? image_channel_data_type::signed_int : image_channel_data_type::unsigned_int) : image_channel_data_type::fp; static constexpr int channel_num = 1; }; template <> struct image_trait<std::uint8_t> : public image_trait<std::uint32_t> { using data_t = std::uint8_t; using elem_t = data_t; }; template <> struct image_trait<std::uint16_t> : public image_trait<std::uint32_t> { using data_t = std::uint16_t; using elem_t = data_t; }; template <> struct image_trait<std::int8_t> : public image_trait<std::int32_t> { using data_t = std::int8_t; using elem_t = data_t; }; template <> struct image_trait<std::int16_t> : public image_trait<std::int32_t> { using data_t = std::int16_t; using elem_t = data_t; }; template <> struct image_trait<char> : public image_trait<typename std::conditional< std::is_signed<char>::value, signed char, unsigned char>::type> {}; template <class T> struct image_trait<sycl::vec<T, 1>> : public image_trait<T> {}; template <class T> struct image_trait<sycl::vec<T, 2>> : public image_trait<T> { using data_t = sycl::vec<T, 2>; static constexpr int channel_num = 2; }; template <class T> struct image_trait<sycl::vec<T, 3>> : public image_trait<sycl::vec<T, 4>> { static constexpr int channel_num = 3; }; template <class T> struct image_trait<sycl::vec<T, 4>> : public image_trait<T> { using data_t = sycl::vec<T, 4>; static constexpr int channel_num = 4; }; /// Functor to fetch data from read result of an image accessor. template <class T> struct fetch_data { using return_t = typename image_trait<T>::data_t; using acc_data_t = typename image_trait<T>::acc_data_t; return_t operator()(acc_data_t &&original_data) { return (return_t)original_data.r(); } }; template <class T> struct fetch_data<sycl::vec<T, 1>> : public fetch_data<T> {}; template <class T> struct fetch_data<sycl::vec<T, 2>> { using return_t = typename image_trait<sycl::vec<T, 2>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 2>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g()); } }; template <class T> struct fetch_data<sycl::vec<T, 3>> : public fetch_data<sycl::vec<T, 4>> {}; template <class T> struct fetch_data<sycl::vec<T, 4>> { using return_t = typename image_trait<sycl::vec<T, 4>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 4>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g(), origin_data.b(), origin_data.a()); } }; /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims); /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims); /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims); } // namespace detail /// Image channel info, include channel number, order, data width and type class image_channel { image_channel_data_type _type = image_channel_data_type::signed_int; /// Number of channels. unsigned _channel_num = 0; /// Total size of all channels in bytes. unsigned _total_size = 0; /// Size of each channel in bytes. unsigned _channel_size = 0; public: /// Create image channel info according to template argument \p T. template <class T> static image_channel create() { image_channel channel; channel.set_channel_size(detail::image_trait<T>::channel_num, sizeof(typename detail::image_trait<T>::elem_t) * 8); channel.set_channel_data_type(detail::image_trait<T>::data_type); return channel; } image_channel() = default; image_channel_data_type get_channel_data_type() { return _type; } void set_channel_data_type(image_channel_data_type type) { _type = type; } unsigned get_total_size() { return _total_size; } unsigned get_channel_num() { return _channel_num; } void set_channel_num(unsigned channel_num) { _channel_num = channel_num; _total_size = _channel_size * _channel_num; } /// image_channel constructor. /// \param r Channel r width in bits. /// \param g Channel g width in bits. Should be same with \p r, or zero. /// \param b Channel b width in bits. Should be same with \p g, or zero. /// \param a Channel a width in bits. Should be same with \p b, or zero. /// \param data_type Image channel data type: signed_nt, unsigned_int or fp. image_channel(int r, int g, int b, int a, image_channel_data_type data_type) { _type = data_type; if (a) { assert(r == a && "SYCL doesn't support different channel size"); assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(4, a); } else if (b) { assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(3, b); } else if (g) { assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(2, g); } else { set_channel_size(1, r); } } sycl::image_channel_type get_channel_type() const { if (_channel_size == 4) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int32; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int32; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp32; } else if (_channel_size == 2) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int16; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int16; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp16; } else { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int8; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int8; } assert(false && "unexpected channel data kind and channel size"); return sycl::image_channel_type::signed_int32; } void set_channel_type(sycl::image_channel_type type) { switch (type) { case sycl::image_channel_type::unsigned_int8: _type = image_channel_data_type::unsigned_int; _channel_size = 1; break; case sycl::image_channel_type::unsigned_int16: _type = image_channel_data_type::unsigned_int; _channel_size = 2; break; case sycl::image_channel_type::unsigned_int32: _type = image_channel_data_type::unsigned_int; _channel_size = 4; break; case sycl::image_channel_type::signed_int8: _type = image_channel_data_type::signed_int; _channel_size = 1; break; case sycl::image_channel_type::signed_int16: _type = image_channel_data_type::signed_int; _channel_size = 2; break; case sycl::image_channel_type::signed_int32: _type = image_channel_data_type::signed_int; _channel_size = 4; break; case sycl::image_channel_type::fp16: _type = image_channel_data_type::fp; _channel_size = 2; break; case sycl::image_channel_type::fp32: _type = image_channel_data_type::fp; _channel_size = 4; break; default: break; } _total_size = _channel_size * _channel_num; } sycl::image_channel_order get_channel_order() const { switch (_channel_num) { case 1: return sycl::image_channel_order::r; case 2: return sycl::image_channel_order::rg; case 3: return sycl::image_channel_order::rgb; case 4: return sycl::image_channel_order::rgba; default: return sycl::image_channel_order::r; } } /// Get the size for each channel in bits. unsigned get_channel_size() const { return _channel_size * 8; } /// Set channel size. /// \param in_channel_num Channels number to set. /// \param channel_size Size for each channel in bits. void set_channel_size(unsigned in_channel_num, unsigned channel_size) { if (in_channel_num < _channel_num) return; _channel_num = in_channel_num; _channel_size = channel_size / 8; _total_size = _channel_size * _channel_num; } }; /// 2D or 3D matrix data for image. class image_matrix { image_channel _channel; int _range[3] = {1, 1, 1}; int _dims = 0; void *_host_data = nullptr; /// Set range of each dimension. template <int dimensions> void set_range(sycl::range<dimensions> range) { for (int i = 0; i < dimensions; ++i) _range[i] = range[i]; _dims = dimensions; } template <int... DimIdx> sycl::range<sizeof...(DimIdx)> get_range(integer_sequence<DimIdx...>) { return sycl::range<sizeof...(DimIdx)>(_range[DimIdx]...); } public: /// Constructor with channel info and dimension size info. template <int dimensions> image_matrix(image_channel channel, sycl::range<dimensions> range) : _channel(channel) { set_range(range); _host_data = std::malloc(range.size() * _channel.get_total_size()); } image_matrix(sycl::image_channel_type channel_type, unsigned channel_num, size_t x, size_t y) { _channel.set_channel_type(channel_type); _channel.set_channel_num(channel_num); _dims = 1; _range[0] = x; if (y) { _dims = 2; _range[1] = y; } _host_data = std::malloc(_range[0] * _range[1] * _channel.get_total_size()); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image() { return create_image<dimensions>(_channel); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image(image_channel channel) { return new sycl::image<dimensions>( _host_data, channel.get_channel_order(), channel.get_channel_type(), get_range(make_index_sequence<dimensions>()), sycl::property::image::use_host_ptr()); } /// Get channel info. inline image_channel get_channel() { return _channel; } /// Get range of the image. sycl::range<3> get_range() { return sycl::range<3>(_range[0], _range[1], _range[2]); } /// Get matrix dims. inline int get_dims() { return _dims; } /// Convert to pitched data. pitched_data to_pitched_data() { return pitched_data(_host_data, _range[0], _range[0], _range[1]); } ~image_matrix() { if (_host_data) std::free(_host_data); _host_data = nullptr; } }; using image_matrix_p = image_matrix *; enum class image_data_type { matrix, linear, pitch, unsupport }; /// Image data info. class image_data { public: image_data() { _type = image_data_type::unsupport; } image_data(image_matrix_p matrix_data) { set_data(matrix_data); } image_data(void *data_ptr, size_t x_size, image_channel channel) { set_data(data_ptr, x_size, channel); } image_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { set_data(data_ptr, x_size, y_size, pitch_size, channel); } void set_data(image_matrix_p matrix_data) { _type = image_data_type::matrix; _data = matrix_data; _channel = matrix_data->get_channel(); } void set_data(void *data_ptr, size_t x_size, image_channel channel) { _type = image_data_type::linear; _data = data_ptr; _x = x_size; _channel = channel; } void set_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { _type = image_data_type::pitch; _data = data_ptr; _x = x_size; _y = y_size; _pitch = pitch_size; _channel = channel; } image_data_type get_data_type() const { return _type; } void set_data_type(image_data_type type) { _type = type; } void *get_data_ptr() const { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_x() const { return _x; } void set_x(size_t x) { _x = x; } size_t get_y() const { return _y; } void set_y(size_t y) { _y = y; } size_t get_pitch() const { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } image_channel get_channel() const { return _channel; } void set_channel(image_channel channel) { _channel = channel; } image_channel_data_type get_channel_data_type() { return _channel.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _channel.set_channel_data_type(type); } unsigned get_channel_size() { return _channel.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _channel.set_channel_size(channel_num, channel_size); } unsigned get_channel_num() { return _channel.get_channel_num(); } void set_channel_num(unsigned num) { return _channel.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _channel.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _channel.set_channel_type(type); } private: image_data_type _type; void *_data = nullptr; size_t _x, _y, _pitch; image_channel _channel; }; /// Image sampling info, include addressing mode, filtering mode and /// normalization info. class sampling_info { sycl::addressing_mode _addressing_mode = sycl::addressing_mode::clamp_to_edge; sycl::filtering_mode _filtering_mode = sycl::filtering_mode::nearest; sycl::coordinate_normalization_mode _coordinate_normalization_mode = sycl::coordinate_normalization_mode::unnormalized; public: sycl::addressing_mode get_addressing_mode() { return _addressing_mode; } void set(sycl::addressing_mode addressing_mode) { _addressing_mode = addressing_mode; } sycl::filtering_mode get_filtering_mode() { return _filtering_mode; } void set(sycl::filtering_mode filtering_mode) { _filtering_mode = filtering_mode; } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _coordinate_normalization_mode; } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _coordinate_normalization_mode = coordinate_normalization_mode; } bool is_coordinate_normalized() { return _coordinate_normalization_mode == sycl::coordinate_normalization_mode::normalized; } void set_coordinate_normalization_mode(int is_normalized) { _coordinate_normalization_mode = is_normalized ? sycl::coordinate_normalization_mode::normalized : sycl::coordinate_normalization_mode::unnormalized; } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } sycl::sampler get_sampler() { return sycl::sampler(_coordinate_normalization_mode, _addressing_mode, _filtering_mode); } }; /// Image base class. class image_wrapper_base { sampling_info _sampling_info; image_data _data; public: virtual ~image_wrapper_base() = 0; void attach(image_data data) { set_data(data); } /// Attach matrix data to this class. void attach(image_matrix *matrix) { detach(); image_wrapper_base::set_data(image_data(matrix)); } /// Attach matrix data to this class. void attach(image_matrix *matrix, image_channel channel) { attach(matrix); image_wrapper_base::set_channel(channel); } /// Attach linear data to this class. void attach(const void *ptr, size_t count) { attach(ptr, count, get_channel()); } /// Attach linear data to this class. void attach(const void *ptr, size_t count, image_channel channel) { detach(); image_wrapper_base::set_data(image_data(const_cast<void *>(ptr), count, channel)); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch) { attach(data, x, y, pitch, get_channel()); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch, image_channel channel) { detach(); image_wrapper_base::set_data( image_data(const_cast<void *>(data), x, y, pitch, channel)); } /// Detach data. virtual void detach() {} sampling_info get_sampling_info() { return _sampling_info; } void set_sampling_info(sampling_info info) { _sampling_info = info; } const image_data &get_data() { return _data; } void set_data(image_data data) { _data = data; } image_channel get_channel() { return _data.get_channel(); } void set_channel(image_channel channel) { _data.set_channel(channel); } image_channel_data_type get_channel_data_type() { return _data.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _data.set_channel_data_type(type); } unsigned get_channel_size() { return _data.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _data.set_channel_size(channel_num, channel_size); } sycl::addressing_mode get_addressing_mode() { return _sampling_info.get_addressing_mode(); } void set(sycl::addressing_mode addressing_mode) { _sampling_info.set(addressing_mode); } sycl::filtering_mode get_filtering_mode() { return _sampling_info.get_filtering_mode(); } void set(sycl::filtering_mode filtering_mode) { _sampling_info.set(filtering_mode); } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _sampling_info.get_coordinate_normalization_mode(); } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _sampling_info.set(coordinate_normalization_mode); } bool is_coordinate_normalized() { return _sampling_info.is_coordinate_normalized(); } void set_coordinate_normalization_mode(int is_normalized) { _sampling_info.set_coordinate_normalization_mode(is_normalized); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } unsigned get_channel_num() { return _data.get_channel_num(); } void set_channel_num(unsigned num) { return _data.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _data.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _data.set_channel_type(type); } sycl::sampler get_sampler() { return _sampling_info.get_sampler(); } }; inline image_wrapper_base::~image_wrapper_base() {} using image_wrapper_base_p = image_wrapper_base *; template <class T, int dimensions, bool IsImageArray> class image_accessor_ext; /// Image class, wrapper of sycl::image. template <class T, int dimensions, bool IsImageArray = false> class image_wrapper : public image_wrapper_base { sycl::image<dimensions> *_image = nullptr; #ifndef DPCT_USM_LEVEL_NONE std::vector<char> _host_buffer; #endif void create_image(sycl::queue q) { auto &data = get_data(); if (data.get_data_type() == image_data_type::matrix) { _image = static_cast<image_matrix_p>(data.get_data_ptr()) ->create_image<dimensions>(data.get_channel()); return; } auto ptr = data.get_data_ptr(); auto channel = data.get_channel(); if (detail::get_pointer_attribute(q, ptr) == detail::pointer_access_attribute::device_only) { #ifdef DPCT_USM_LEVEL_NONE ptr = get_buffer(ptr) .template get_access<sycl::access_mode::read_write>() .get_pointer(); #else auto sz = data.get_x(); if (data.get_data_type() == image_data_type::pitch) sz *= channel.get_total_size() * data.get_y(); _host_buffer.resize(sz); q.memcpy(_host_buffer.data(), ptr, sz).wait(); ptr = _host_buffer.data(); #endif } if constexpr (dimensions == 1) { assert(data.get_data_type() == image_data_type::linear); _image = new sycl::image<1>( ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<1>(data.get_x() / channel.get_total_size())); } else if constexpr (dimensions == 2) { assert(data.get_data_type() == image_data_type::pitch); _image = new sycl::image<2>(ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<2>(data.get_x(), data.get_y()), sycl::range<1>(data.get_pitch())); } else { throw std::runtime_error("3D image only support matrix data"); } return; } public: using acc_data_t = typename detail::image_trait<T>::acc_data_t; using accessor_t = typename image_accessor_ext<T, IsImageArray ? (dimensions - 1) : dimensions, IsImageArray>::accessor_t; image_wrapper() { set_channel(image_channel::create<T>()); } ~image_wrapper() { detach(); } /// Get image accessor. accessor_t get_access(sycl::handler &cgh, sycl::queue &q = get_default_queue()) { if (!_image) create_image(q); return accessor_t(*_image, cgh); } /// Detach data. void detach() override { if (_image) delete _image; _image = nullptr; } }; /// Wrap sampler and image accessor together. template <class T, int dimensions, bool IsImageArray = false> class image_accessor_ext { public: using accessor_t = typename detail::image_trait<T>::template accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 3> typename std::enable_if<Available, data_t>::type read(float x, float y, float z) { return detail::fetch_data<T>()( _img_acc.read(sycl::float4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, class Coord2, bool Available = dimensions == 3 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value &&std::is_integral<Coord2>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y, Coord2 z) { return detail::fetch_data<T>()( _img_acc.read(sycl::int4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(float x, float y) { return detail::fetch_data<T>()( _img_acc.read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, bool Available = dimensions == 2 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y) { return detail::fetch_data<T>()( _img_acc.read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(float x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } /// Read data from accessor. template <class CoordT, bool Available = dimensions == 1 && std::is_integral<CoordT>::value> typename std::enable_if<Available, data_t>::type read(CoordT x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } }; template <class T, int dimensions> class image_accessor_ext<T, dimensions, true> { public: using accessor_t = typename detail::image_trait<T>::template array_accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, float x, float y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, int x, int y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, float x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, int x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } }; /// Create image wrapper according to image data and sampling info. /// \return Pointer to image wrapper base class. /// \param data Image data used to create image wrapper. /// \param info Image sampling info used to create image wrapper. /// \returns Pointer to base class of created image wrapper object. static inline image_wrapper_base *create_image_wrapper(image_data data, sampling_info info) { image_channel channel; int dims = 1; if (data.get_data_type() == image_data_type::matrix) { auto matrix = (image_matrix_p)data.get_data_ptr(); channel = matrix->get_channel(); dims = matrix->get_dims(); } else { if (data.get_data_type() == image_data_type::pitch) { dims = 2; } channel = data.get_channel(); } if (auto ret = detail::create_image_wrapper(channel, dims)) { ret->set_sampling_info(info); ret->set_data(data); return ret; } return nullptr; } namespace detail { /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims) { switch (dims) { case 1: return new image_wrapper<T, 1>(); case 2: return new image_wrapper<T, 2>(); case 3: return new image_wrapper<T, 3>(); default: return nullptr; } } /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims) { switch (channel_num) { case 1: return create_image_wrapper<T>(dims); case 2: return create_image_wrapper<sycl::vec<T, 2>>(dims); case 3: return create_image_wrapper<sycl::vec<T, 3>>(dims); case 4: return create_image_wrapper<sycl::vec<T, 4>>(dims); default: return nullptr; } } /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims) { switch (channel.get_channel_type()) { case sycl::image_channel_type::fp16: return create_image_wrapper<sycl::half>(channel.get_channel_num(), dims); case sycl::image_channel_type::fp32: return create_image_wrapper<float>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int8: return create_image_wrapper<std::int8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int16: return create_image_wrapper<std::int16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int32: return create_image_wrapper<std::int32_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int8: return create_image_wrapper<std::uint8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int16: return create_image_wrapper<std::uint16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int32: return create_image_wrapper<std::uint32_t>(channel.get_channel_num(), dims); default: return nullptr; } } } // namespace detail } // namespace dpct #endif // !__DPCT_IMAGE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/kernel.hpp
//==---- kernel.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_KERNEL_HPP__ #define __DPCT_KERNEL_HPP__ #include <sycl/sycl.hpp> #ifdef _WIN32 #include <unordered_set> #include <windows.h> #else #include <dlfcn.h> #endif #if defined(__has_include) && __has_include(<filesystem>) #include <filesystem> #elif defined(__has_include) && __has_include(<experimental/filesystem>) #include <experimental/filesystem> #else #error "SYCLomatic runtime requires C++ filesystem support" #endif #include <random> #include <image.hpp> #include <fstream> namespace dpct { typedef void (*kernel_functor)(sycl::queue &, const sycl::nd_range<3> &, unsigned int, void **, void **); struct kernel_function_info { int max_work_group_size = 0; }; static inline void get_kernel_function_info(kernel_function_info *kernel_info, const void *function) { kernel_info->max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); } static inline kernel_function_info get_kernel_function_info(const void *function) { kernel_function_info kernel_info; kernel_info.max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); return kernel_info; } namespace detail { #if defined(__has_include) && __has_include(<filesystem>) namespace fs = std::filesystem; #else namespace fs = std::experimental::filesystem; #endif /// Write data to temporary file and return absolute path to temporary file. /// Temporary file is created in a temporary directory both of which have random /// names with only the user having access permissions. Only one temporary file /// will be created in the temporary directory. static inline fs::path write_data_to_file(char const *const data, size_t size) { std::error_code ec; if (sizeof(size_t) >= sizeof(std::streamsize) && size > (std::numeric_limits<std::streamsize>::max)()) throw std::runtime_error("data file too large"); // random number generator std::random_device dev; std::mt19937 prng(dev()); std::uniform_int_distribution<uint64_t> rand(0); // find temporary directory auto tmp_dir = fs::temp_directory_path(ec); if (ec) throw std::runtime_error("could not find temporary directory"); // create private directory std::stringstream directory; fs::path directory_path; constexpr int max_attempts = 5; int i; for (i = 0; i < max_attempts; i++) { directory << std::hex << rand(prng); directory_path = tmp_dir / directory.str(); if (fs::create_directory(directory_path)) { break; } } if (i == max_attempts) throw std::runtime_error("could not create directory"); // only allow owner permissions to private directory fs::permissions(directory_path, fs::perms::owner_all, ec); if (ec) throw std::runtime_error("could not set directory permissions"); // random filename in private directory std::stringstream filename; filename << std::hex << rand(prng); #ifdef _WIN32 auto filepath = directory_path / (filename.str() + ".dll"); #else auto filepath = directory_path / filename.str(); #endif // write data to temporary file auto outfile = std::ofstream(filepath, std::ios::out | std::ios::binary); if (outfile) { // only allow program to write file fs::permissions(filepath, fs::perms::owner_write, ec); if (ec) throw std::runtime_error("could not set permissions"); outfile.write(data, size); if (!outfile.good()) throw std::runtime_error("could not write data"); outfile.close(); // only allow program to read/execute file fs::permissions(filepath, fs::perms::owner_read | fs::perms::owner_exec, ec); if (ec) throw std::runtime_error("could not set permissions"); } else throw std::runtime_error("could not write data"); // check temporary file contents auto infile = std::ifstream(filepath, std::ios::in | std::ios::binary); if (infile) { bool mismatch = false; size_t cnt = 0; while (1) { char c; infile.get(c); if (infile.eof()) break; if (c != data[cnt++]) mismatch = true; } if (cnt != size || mismatch) throw std::runtime_error("file contents not written correctly"); } else throw std::runtime_error("could not validate file"); if (!filepath.is_absolute()) throw std::runtime_error("temporary filepath is not absolute"); return filepath; } static inline uint16_t extract16(unsigned char const *const ptr) { uint16_t ret = 0; ret |= static_cast<uint16_t>(ptr[0]) << 0; ret |= static_cast<uint16_t>(ptr[1]) << 8; return (ret); } static inline uint32_t extract32(unsigned char const *const ptr) { uint32_t ret = 0; ret |= static_cast<uint32_t>(ptr[0]) << 0; ret |= static_cast<uint32_t>(ptr[1]) << 8; ret |= static_cast<uint32_t>(ptr[2]) << 16; ret |= static_cast<uint32_t>(ptr[3]) << 24; return (ret); } static inline uint64_t extract64(unsigned char const *const ptr) { uint64_t ret = 0; ret |= static_cast<uint64_t>(ptr[0]) << 0; ret |= static_cast<uint64_t>(ptr[1]) << 8; ret |= static_cast<uint64_t>(ptr[2]) << 16; ret |= static_cast<uint64_t>(ptr[3]) << 24; ret |= static_cast<uint64_t>(ptr[4]) << 32; ret |= static_cast<uint64_t>(ptr[5]) << 40; ret |= static_cast<uint64_t>(ptr[6]) << 48; ret |= static_cast<uint64_t>(ptr[7]) << 56; return (ret); } static inline uint64_t get_lib_size(char const *const blob) { #ifdef _WIN32 /////////////////////////////////////////////////////////////////////// // Analyze DOS stub unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); if (ublob[0] != 0x4d || ublob[1] != 0x5a) { throw std::runtime_error("Blob is not a Windows DLL."); } uint32_t pe_header_offset = extract32(ublob + 0x3c); /////////////////////////////////////////////////////////////////////// // Ananlyze PE-header unsigned char const *const pe_header = ublob + pe_header_offset; // signature uint32_t pe_signature = extract32(pe_header + 0); if (pe_signature != 0x00004550) { throw std::runtime_error("PE-header signature is not 0x00004550"); } // machine uint16_t machine = extract16(pe_header + 4); if (machine != 0x8664) { throw std::runtime_error("Only DLLs for x64 supported"); } // number of sections uint16_t number_of_sections = extract16(pe_header + 6); // sizeof optional header uint16_t sizeof_optional_header = extract16(pe_header + 20); // magic uint16_t magic = extract16(pe_header + 24); if (magic != 0x10b && magic != 0x20b) { throw std::runtime_error("MAGIC is not 0x010b or 0x020b"); } /////////////////////////////////////////////////////////////////////// // Analyze tail of optional header constexpr int coff_header_size = 24; unsigned char const *const tail_of_optional_header = pe_header + coff_header_size + sizeof_optional_header; if (extract64(tail_of_optional_header - 8) != 0) { throw std::runtime_error("Optional header not zero-padded"); } /////////////////////////////////////////////////////////////////////// // Analyze last section header constexpr int section_header_size = 40; unsigned char const *const last_section_header = tail_of_optional_header + section_header_size * (number_of_sections - 1); uint32_t sizeof_raw_data = extract32(last_section_header + 16); uint32_t pointer_to_raw_data = extract32(last_section_header + 20); return sizeof_raw_data + pointer_to_raw_data; #else if (blob[0] != 0x7F || blob[1] != 'E' || blob[2] != 'L' || blob[3] != 'F') throw std::runtime_error("Blob is not in ELF format"); if (blob[4] != 0x02) throw std::runtime_error("Only 64-bit headers are supported"); if (blob[5] != 0x01) throw std::runtime_error("Only little-endian headers are supported"); unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); uint64_t e_shoff = extract64(ublob + 0x28); uint16_t e_shentsize = extract16(ublob + 0x3A); uint16_t e_shnum = extract16(ublob + 0x3C); return e_shoff + (e_shentsize * e_shnum); #endif } #ifdef _WIN32 class path_lib_record { public: void operator=(const path_lib_record &) = delete; ~path_lib_record() { for (auto entry : lib_to_path) { FreeLibrary(static_cast<HMODULE>(entry.first)); fs::permissions(entry.second, fs::perms::owner_all); fs::remove_all(entry.second.remove_filename()); } } static void record_lib_path(fs::path path, void *library) { lib_to_path[library] = path; } static void remove_lib(void *library) { auto path = lib_to_path[library]; std::error_code ec; FreeLibrary(static_cast<HMODULE>(library)); fs::permissions(path, fs::perms::owner_all); if (fs::remove_all(path.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); lib_to_path.erase(library); } private: static inline std::unordered_map<void *, fs::path> lib_to_path; }; #endif } // namespace detail class kernel_library { public: kernel_library() : ptr{nullptr} {} kernel_library(void *ptr) : ptr{ptr} {} operator void *() const { return ptr; } private: void *ptr; #ifdef _WIN32 static inline detail::path_lib_record single_instance_to_trigger_destructor; #endif }; namespace detail { static inline kernel_library load_dl_from_data(char const *const data, size_t size) { fs::path filename = write_data_to_file(data, size); #ifdef _WIN32 void *so = LoadLibraryW(filename.wstring().c_str()); #else void *so = dlopen(filename.c_str(), RTLD_LAZY); #endif if (so == nullptr) throw std::runtime_error("Failed to load kernel library"); #ifdef _WIN32 detail::path_lib_record::record_lib_path(filename, so); #else std::error_code ec; // Windows DLL cannot be deleted while in use if (fs::remove_all(filename.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); #endif return so; } } // namespace detail /// Load kernel library and return a handle to use the library. /// \param [in] name The name of the library. static inline kernel_library load_kernel_library(const std::string &name) { std::ifstream ifs; ifs.open(name, std::ios::in | std::ios::binary); std::stringstream buffer; buffer << ifs.rdbuf(); const std::string buffer_string = buffer.str(); return detail::load_dl_from_data(buffer_string.c_str(), buffer_string.size()); } /// Load kernel library whose image is alreay in memory and return a handle to /// use the library. /// \param [in] image A pointer to the image in memory. static inline kernel_library load_kernel_library_mem(char const *const image) { const size_t size = detail::get_lib_size(image); return detail::load_dl_from_data(image, size); } /// Unload kernel library. /// \param [in,out] library Handle to the library to be closed. static inline void unload_kernel_library(const kernel_library &library) { #ifdef _WIN32 detail::path_lib_record::remove_lib(library); #else dlclose(library); #endif } class kernel_function { public: kernel_function() : ptr{nullptr} {} kernel_function(dpct::kernel_functor ptr) : ptr{ptr} {} operator void *() const { return ((void *)ptr); } void operator()(sycl::queue &q, const sycl::nd_range<3> &range, unsigned int a, void **args, void **extra) { ptr(q, range, a, args, extra); } private: dpct::kernel_functor ptr; }; /// Find kernel function in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the kernel function. static inline dpct::kernel_function get_kernel_function(kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( GetProcAddress(static_cast<HMODULE>(static_cast<void *>(library)), (name + std::string("_wrapper")).c_str())); #else dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( dlsym(library, (name + std::string("_wrapper")).c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get function"); return fn; } /// Invoke a kernel function. /// \param [in] function kernel function. /// \param [in] queue SYCL queue used to execute kernel /// \param [in] groupRange SYCL group range /// \param [in] localRange SYCL local range /// \param [in] localMemSize The size of local memory required by the kernel /// function. /// \param [in] kernelParams Array of pointers to kernel arguments. /// \param [in] extra Extra arguments. static inline void invoke_kernel_function(dpct::kernel_function &function, sycl::queue &queue, sycl::range<3> groupRange, sycl::range<3> localRange, unsigned int localMemSize, void **kernelParams, void **extra) { function(queue, sycl::nd_range<3>(groupRange * localRange, localRange), localMemSize, kernelParams, extra); } /// Find image wrapper in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the target image wrapper. static inline dpct::image_wrapper_base_p get_image_wrapper(dpct::kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>(GetProcAddress( static_cast<HMODULE>(static_cast<void *>(library)), name.c_str())); #else dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>( dlsym(library, name.c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get image"); return fn; } } // namespace dpct #endif // __DPCT_KERNEL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpct.hpp
//==---- dpct.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_HPP__ #define __DPCT_HPP__ #include <sycl/sycl.hpp> #include <iostream> #include <limits.h> #include <math.h> template <class... Args> class dpct_kernel_name; template <int Arg> class dpct_kernel_scalar; #include "atomic.hpp" #include "device.hpp" #include "image.hpp" #include "kernel.hpp" #include "math.hpp" #include "memory.hpp" #include "util.hpp" #if defined(_MSC_VER) #define __dpct_align__(n) __declspec(align(n)) #define __dpct_inline__ __forceinline #else #define __dpct_align__(n) __attribute__((aligned(n))) #define __dpct_inline__ __inline__ __attribute__((always_inline)) #endif #if defined(_MSC_VER) #define __dpct_noinline__ __declspec(noinline) #else #define __dpct_noinline__ __attribute__((noinline)) #endif #define DPCT_COMPATIBILITY_TEMP (600) namespace dpct{ enum error_code { success = 0, default_error = 999 }; } #define DPCT_CHECK_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const &e) { \ std::cerr << e.what() << std::endl; \ return dpct::default_error; \ } \ }() #define DPCT_PI_F (3.14159274101257f) #define DPCT_PI (3.141592653589793115998) #endif // __DPCT_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dnnl_utils.hpp
//==---- dnnl_utils.hpp ---------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DNNL_UTILS_HPP__ #define __DPCT_DNNL_UTILS_HPP__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <oneapi/dpl/numeric> #include <oneapi/mkl.hpp> #include <oneapi/mkl/rng/device.hpp> #include <sycl/sycl.hpp> #include <oneapi/dnnl/dnnl.hpp> #include <oneapi/dnnl/dnnl_sycl.hpp> #include <unordered_map> #include <algorithm> #include <list> #include "memory.hpp" #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace dnnl { /// Get concatenated library version as an integer. static inline size_t get_version() { const ::dnnl::version_t *ver = ::dnnl::version(); return ver->major * 1000 + ver->minor * 100 + ver->patch; } class engine_ext; typedef oneapi::mkl::rng::philox4x32x10 rng_engine_t; /// An enum class representing memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class memory_format_tag { nchw, nhwc, nchw_blocked }; /// An enum class representing RNN data memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class rnn_memory_format_tag { tnc, ntc }; /// A class holding the description of an N-dimensions memory. class memory_desc_ext { ::dnnl::memory::desc _desc; public: /// Convert dpct::library_data_t to dnnl::memory::data_type. static ::dnnl::memory::data_type to_dnnl_data_type(dpct::library_data_t dt); /// Convert dnnl::memory::data_type to dpct::library_data_t. static dpct::library_data_t to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size); /// Convert dpct::dnnl::memory_format_tag to dnnl::memory::format_tag. static ::dnnl::memory::format_tag to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag); memory_desc_ext() = default; memory_desc_ext(::dnnl::memory::desc &desc) : _desc(desc) {} memory_desc_ext(::dnnl::memory::desc &&desc) : _desc(std::move(desc)) {} /// Setting a 4D memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. void set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w); /// Setting a 3D RNN data memory with given parameters. /// \param [in] tag RNN data format tag. /// \param [in] dt Data type. /// \param [in] t Number of sequence length. /// \param [in] n Number of batch. /// \param [in] c Height of input channel. void set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c); /// Setting a 4D memory with given parameters. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. /// \param [in] n_stride Stride between two continuous images. /// \param [in] c_stride Stride between two continuous channels. /// \param [in] h_stride Stride between two continuous rows. /// \param [in] w_stride Stride between two continuous columns. void set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride); /// Setting a ND memory with given parameters. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. \param [in] strides Array of dimension ndims that /// contain the stride of each memory dimension. void set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]); /// Setting a ND memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. void set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]); /// Getting a ::dnnl::memory::desc from a memory_desc_ext. /// \returns The ::dnnl::memory::desc. const ::dnnl::memory::desc &get_desc() const { return _desc; } /// Setting holding desc with given dnnl memory descriptor. void set_desc(::dnnl::memory::desc desc) { _desc = desc; } /// Getting a size of a memory_desc_ext in bytes. /// \returns The size. size_t get_size() const { return _desc.get_size(); } /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. /// \param [out] n_stride Stride between two continuous images. /// \param [out] c_stride Stride between two continuous channels. /// \param [out] h_stride Stride between two continuous rows. /// \param [out] w_stride Stride between two continuous columns. void get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const; /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. void get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const; /// Getting parameters from a 3D RNN data memory. /// \param [out] dt Data type. /// \param [out] tag RNN data format tag. /// \param [out] t Number of sequence length. /// \param [out] n Number of batch. /// \param [out] c Height of input channel. void get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. /// \param [out] strides Array of dimension requested_ndims that contain the /// stride of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const; /// Getting dims from a ND memory. /// \return The dims. std::vector<int64_t> get_dims() const { return _desc.get_dims(); } /// Getting strides from a ND memory. /// \return The strides. std::vector<int64_t> get_strides() const { return _desc.get_strides(); } /// Getting element num from a ND memory. /// \return The element number. size_t get_element_num() const { auto dims = _desc.get_dims(); if (dims.empty()) { return 0; } size_t result = 1; for (auto &dim : dims) { result *= dim; } return result; } operator bool() const { return bool(_desc); } memory_desc_ext &operator=(std::nullptr_t) { _desc.reset(nullptr); return *this; } }; /// A class holding description for an activation operation. class activation_desc { ::dnnl::algorithm _alg; float _alpha; float _beta; public: /// Setting an activation descriptor with given parameters. /// \param [in] alg Activation algorithm. /// \param [in] alpha Value of alpha parameter. void set(::dnnl::algorithm alg, float alpha) { _alg = alg; if(alg == ::dnnl::algorithm::eltwise_clip) { _alpha = 0; _beta = alpha; } else { _alpha = alpha; } } /// Getting parameters form an activation descriptor. /// \param [out] alg Activation algorithm. /// \param [out] alpha Value of alpha parameter. void get(::dnnl::algorithm *alg, float *alpha) const { *alg = _alg; if(_alg == ::dnnl::algorithm::eltwise_clip) { *alpha = _beta; } else { *alpha = _alpha; } } /// Setting the alpha parameter of an activation descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of an activation descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the algorithm parameter of an activation descriptor. /// \param [in] alg Activation algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Getting the alpha parameter from an activation descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from an activation descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the algorithm parameter from an activation descriptor. /// \param [out] alg Activation algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } }; /// A class holding description for a local response normalization operation. class lrn_desc { unsigned int _local_size; float _alpha; float _beta; float _k; public: /// Setting a local response normalization descriptor with given parameters. /// \param [in] local_size Value of local_size parameter. /// \param [in] alpha Value of alpha parameter. /// \param [in] beta Value of beta parameter. /// \param [in] k Value of k parameter. void set(unsigned int local_size, float alpha, float beta, float k) { _local_size = local_size; _alpha = alpha; _beta = beta; _k = k; } /// Getting parameters form a local response normalization descriptor. /// \param [out] local_size Value of local_size parameter. /// \param [out] alpha Value of alpha parameter. /// \param [out] beta Value of beta parameter. /// \param [out] k Value of k parameter. void get(unsigned int *local_size, float *alpha, float *beta, float *k) const { *local_size = _local_size; *alpha = _alpha; *beta = _beta; *k = _k; } /// Setting the local size parameter of a local response normalization /// descriptor. /// \param [in] local_size Value of local_size parameter. void set_local_size(unsigned int local_size) { _local_size = local_size; } /// Setting the alpha parameter of a local response normalization descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of a local response normalization descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the k parameter of a local response normalization descriptor. /// \param [in] k Value of k parameter. void set_k(float k) { _k = k; } /// Getting the local size parameter from a local response normalization /// descriptor. /// \param [out] local_size Value of local_size parameter. unsigned int get_local_size() const { return _local_size; } /// Getting the alpha parameter from a local response normalization /// descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from a local response normalization descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the k parameter from a local response normalization descriptor. /// \param [out] k Value of k parameter. float get_k() const { return _k; } }; /// An enum class representing softmax algorithm. enum class softmax_algorithm { normal, log }; /// An enum class representing softmax mode. enum class softmax_mode { instance, channel }; /// A class holding description for a pooling operation. class pooling_desc { ::dnnl::algorithm _alg; std::vector<int64_t> _stride; std::vector<int64_t> _kernel; std::vector<int64_t> _padding; public: /// Setting a 2D pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] kernel_h Value of height of kernel. /// \param [in] kernel_w Value of width of kernel. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. void set(::dnnl::algorithm alg, int kernel_h, int kernel_w, int padding_h, int padding_w, int stride_h, int stride_w) { _alg = alg; _stride = {stride_h, stride_w}; _kernel = {kernel_h, kernel_w}; _padding = {padding_h, padding_w}; } /// Setting a ND pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] ndims Dimension of the pooling operation. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [in] padding Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set(::dnnl::algorithm alg, int ndims, int kernel[], int padding[], int stride[]) { _alg = alg; _stride = std::vector<int64_t>(stride, stride + ndims); _kernel = std::vector<int64_t>(kernel, kernel + ndims); _padding = std::vector<int64_t>(padding, padding + ndims); } /// Getting parameters from a 2D pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] kernel_h Value of height of kernel. /// \param [out] kernel_w Value of width of kernel. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. void get(::dnnl::algorithm *alg, int *kernel_h, int *kernel_w, int *padding_h, int *padding_w, int *stride_h, int *stride_w) const { *alg = _alg; *kernel_h = _kernel[0]; *kernel_w = _kernel[1]; *padding_h = _padding[0]; *padding_w = _padding[1]; *stride_h = _stride[0]; *stride_w = _stride[1]; } /// Getting parameters from a ND pooling descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [out] padding Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] stride Array of dimension ndims containing the stride size of /// each dimension. void get(int requested_ndims, ::dnnl::algorithm *alg, int *ndims, int kernel[], int padding[], int stride[]) const { *alg = _alg; *ndims = _stride.size(); for (int i = 0; i < requested_ndims; i++) { kernel[i] = _kernel[i]; padding[i] = _padding[i]; stride[i] = _stride[i]; } } /// Setting the algorithm parameter of a pooling descriptor. /// \param [in] alg Pooling algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Setting the stride parameter of a pooling descriptor. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set_stride(const std::vector<int64_t> &stride) { _stride = stride; } /// Setting the kernel parameter of a pooling descriptor. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. void set_kernel(const std::vector<int64_t> &kernel) { _kernel = kernel; } /// Setting the padding parameter of a pooling descriptor. /// \param [in] padding Array of dimension ndims containing the padding size /// of each dimension. void set_padding(const std::vector<int64_t> &padding) { _padding = padding; } /// Getting the algorithm parameter from a pooling descriptor. /// \param [out] alg Pooling algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } /// Getting the stride parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _stride; } /// Getting the kernel parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the kernel size of each /// dimension. const std::vector<int64_t> &get_kernel() const { return _kernel; } /// Getting the padding parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _padding; } /// Getting the output dimensions of a memory after 2D pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); *out_n = dims[0]; *out_c = dims[1]; *out_h = 1 + (dims[2] + 2 * _padding[0] - _kernel[0]) / _stride[0]; *out_w = 1 + (dims[3] + 2 * _padding[1] - _kernel[1]) / _stride[1]; } /// Getting the output dimensions of a memory after ND pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _padding[i - 2] - _kernel[i - 2]) / _stride[i - 2]; } } }; /// An enum class representing reduction operations. enum class reduction_op { max, min, sum, mul, mean, amax, mul_no_zeros, norm1, norm2 }; /// An enum class representing batch normalization mode. enum class batch_normalization_mode { per_activation, spatial }; /// An enum class representing batch normalization operations. enum class batch_normalization_ops { none, activation, add_activation }; /// An enum class representing binary operations. enum class binary_op { add, sub, mul, div, min, max, sqrt, neg }; /// An struct representing convolution algorithm infomation. struct convolution_algorithm_info { ::dnnl::algorithm algo = ::dnnl::algorithm::convolution_auto; int status = 0; }; /// A class holding description for a convolution operation. class convolution_desc { std::vector<int64_t> _strides; std::vector<int64_t> _dilates; std::vector<int64_t> _paddings; int _group_count = 1; ::dnnl::fpmath_mode _math_mode = ::dnnl::fpmath_mode::strict; public: /// Setting a group count to be used in the convolution. /// \param [in] group_count Value of group count. void set_group_count(int group_count) { _group_count = group_count; } /// Getting a group count specified in the given convolution descriptor. /// \returns Value of group count. int get_group_count() { return _group_count; } /// Setting floating point math mode to be used in the convolution. /// \param [in] math_mode Value of math_mode. void set_math_mode(::dnnl::fpmath_mode math_mode) { _math_mode = math_mode; } /// Getting floating point math mode specified in the given convolution descriptor. /// \returns Value of math mode. ::dnnl::fpmath_mode get_math_mode() { return _math_mode; } /// Setting a 2D convolution descriptor with given parameters. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. /// \param [in] dilate_h Value of height of dilate. /// \param [in] dilate_w Value of width of dilate. void set(int padding_h, int padding_w, int stride_h, int stride_w, int dilate_h, int dilate_w) { _strides = {stride_h, stride_w}; _dilates = {dilate_h - 1, dilate_w - 1}; _paddings = {padding_h, padding_w}; } /// Setting a ND convolution descriptor with given parameters. /// \param [in] ndims Dimension of the convolution operation. /// \param [in] paddings Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [in] dilates Array of dimension ndims containing the kernel size of /// each dimension. void set(int ndims, int paddings[], int strides[], int dilates[]) { _strides = std::vector<int64_t>(strides, strides + ndims); _paddings = std::vector<int64_t>(paddings, paddings + ndims); _dilates = std::vector<int64_t>(dilates, dilates + ndims); for (auto &dilate : _dilates) { dilate--; } } /// Getting parameters from a 2D convolution descriptor. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. /// \param [out] dilate_h Value of height of dilate. /// \param [out] dilate_w Value of width of dilate. void get(int *padding_h, int *padding_w, int *stride_h, int *stride_w, int *dilate_h, int *dilate_w) const { *dilate_h = _dilates[0]; *dilate_w = _dilates[1]; *padding_h = _paddings[0]; *padding_w = _paddings[1]; *stride_h = _strides[0]; *stride_w = _strides[1]; } /// Getting parameters from a ND convolution descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given convolution descriptor. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] paddings Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [out] dilates Array of dimension ndims containing the dilate size of /// each dimension. void get(int requested_ndims, int *ndims, int paddings[], int strides[], int dilates[]) const { *ndims = _strides.size(); for (int i = 0; i < requested_ndims; i++) { dilates[i] = _dilates[i]; paddings[i] = _paddings[i]; strides[i] = _strides[i]; } } /// Getting the stride parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _strides; } /// Getting the kernel parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the dilate size of each /// dimension. const std::vector<int64_t> &get_dilate() const { return _dilates; } /// Getting the padding parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _paddings; } /// Getting the output dimensions of a memory after 2D convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); *out_n = dims[0]; *out_c = weight_dims[0]; *out_h = 1 + (dims[2] + 2 * _paddings[0] - (1 + (_dilates[0] * (weight_dims[2] - 1)))) / _strides[0]; *out_w = 1 + (dims[3] + 2 * _paddings[1] - (1 + (_dilates[1] * (weight_dims[3] - 1)))) / _strides[1]; } /// Getting the output dimensions of a memory after ND convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = weight_dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _paddings[i - 2] - (1 + (_dilates[i - 2] * (weight_dims[i] - 1)))) / _strides[i - 2]; } } convolution_desc &operator=(std::nullptr_t) { return *this = convolution_desc(); } operator bool() const { return !(_strides.size() == 0 && _dilates.size() == 0 && _paddings.size() == 0); } }; /// An enum class representing rnn mode. enum class rnn_mode { vanilla_relu, vanilla_tanh, lstm, gru }; /// An enum class representing rnn bias mode. enum class rnn_bias_mode { none, single }; /// An enum class representing rnn direction. enum class rnn_direction {unidirectional, bidirectional}; /// A class holding description for a RNN operation. class rnn_desc { rnn_mode _mode; rnn_bias_mode _bias_mode; rnn_direction _direction; dpct::library_data_t _dt; int _input_size; int _hidden_size; int _projection_size; int _layer_size; public: void set(rnn_mode mode, rnn_bias_mode bias_mode, rnn_direction direction, dpct::library_data_t dt, int input_size, int hidden_size, int projection_size, int layer_size) { _mode = mode; _bias_mode = bias_mode; _direction = direction; _input_size = input_size; _hidden_size = hidden_size; _projection_size = projection_size; _layer_size = layer_size; _dt = dt; } void get(rnn_mode *mode, rnn_bias_mode *bias_mode, rnn_direction *direction, dpct::library_data_t *dt, int *input_size, int *hidden_size, int *projection_size, int *layer_size) const { *mode = _mode; *bias_mode = _bias_mode; *direction = _direction; *input_size = _input_size; *hidden_size = _hidden_size; *projection_size = _projection_size; *layer_size = _layer_size; *dt = _dt; } }; /// A class holding description for a Dropout operation. class dropout_desc { struct dropout_desc_imp { float _p = 0.5f; unsigned long long _seed = 1; void *_state = nullptr; std::vector<std::uint8_t> _host_state; rng_engine_t _rng_engine; dropout_desc_imp() : _rng_engine(dpct::get_default_queue(), 1) {} }; std::shared_ptr<dropout_desc_imp> _imp; void generate(sycl::queue *q, std::int64_t required_state_size, std::int64_t num, void *buffer) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::event e_gen = oneapi::mkl::rng::generate( oneapi::mkl::rng::bernoulli<std::int32_t>(1.f - _imp->_p), _imp->_rng_engine, num, (std::int32_t *)buffer); sycl::event e_save = q->submit([&](sycl::handler &cgh) { cgh.depends_on(e_gen); cgh.host_task([=] { oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); }); }); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size, e_save); #endif } public: operator bool() const { return bool(_imp); } dropout_desc &operator=(std::nullptr_t) { _imp.reset(); return *this; } /// Initializing a dropout descriptor. void init(){ _imp = std::make_shared<dropout_desc_imp>(); } /// Setting a dropout descriptor with given parameters. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); /// Getting parameters from a dropout descriptor. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void get(float *p, void **states, unsigned long long *seed) const noexcept { *seed = _imp->_seed; *states = _imp->_state; *p = _imp->_p; } /// Getting the probability of value set to zero. /// \returns Probability. float get_probability() const noexcept { return _imp->_p; } /// Restoreing a dropout descriptor from stored state. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); friend class engine_ext; }; namespace detail { typedef std::string primitive_cache_key_type; typedef std::list<primitive_cache_key_type> usage_list_type; typedef struct { ::dnnl::primitive *primitive; usage_list_type::iterator usage_it; std::function<void(::dnnl::primitive *)> destructor; sycl::event e; } primitive_cache_value_type; typedef std::unordered_map<primitive_cache_key_type, primitive_cache_value_type> cache_map_type; // The primitive cache uses LRU replacement policy, and the default cache // capacity is 1024. class primitive_cache { int _capacity = 1024; usage_list_type usage; cache_map_type cache_map; void touch(cache_map_type::iterator it, sycl::event e = {}, bool update_event = false) { if (it->second.usage_it != usage.begin()) { const primitive_cache_key_type &key = it->first; usage.erase(it->second.usage_it); usage.push_front(key); it->second.usage_it = usage.begin(); } if (update_event) { it->second.e = e; } } void async_destruct_primitive(const primitive_cache_value_type &value) { dpct::get_current_device().default_queue().submit([&](sycl::handler &cgh) { cgh.depends_on(value.e); cgh.host_task([=] { value.destructor(value.primitive); }); }); } public: ::dnnl::primitive *get(const primitive_cache_key_type &key) { auto it = cache_map.find(key); if (it == cache_map.end()) { return nullptr; } touch(it); return it->second.primitive; } void put(const primitive_cache_key_type &key, ::dnnl::primitive *value, std::function<void(::dnnl::primitive *)> destructor, sycl::event e) { auto it = cache_map.find(key); if (it != cache_map.end()) { touch(it, e, true); } else { if (cache_map.size() == _capacity) { auto last_primitive = cache_map.find(usage.back()); async_destruct_primitive(last_primitive->second); cache_map.erase(usage.back()); usage.pop_back(); } usage.push_front(key); cache_map[key] = {value, usage.begin(), destructor, e}; } } ~primitive_cache() { for (auto &v : cache_map) { async_destruct_primitive(v.second); } } }; } // namespace detail /// A class holding the oneDNN engine. class engine_ext { struct output_argument_info { float _alpha; float _beta; int _name; memory_desc_ext _desc; void *_data; output_argument_info(float alpha, float beta, int name, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(name), _desc(desc), _data(data) {} output_argument_info(float alpha, float beta, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(0), _desc(desc), _data(data) {} }; ::dnnl::engine _eng; ::dnnl::stream _s; sycl::queue *_q = nullptr; std::map<void *, ::dnnl::memory> workspace_map; std::int64_t _random_engine_state_size = -1; detail::primitive_cache _primitive_cache; ::dnnl::memory &get_workspace(void *key) { return workspace_map[key]; } void insert_workspace(void *key, ::dnnl::memory workspace) { workspace_map[key] = workspace; } const ::dnnl::stream &get_stream() const { return _s; } const ::dnnl::engine &get_engine() const { return _eng; } void *allocate(const memory_desc_ext &desc, int count = 1) const; ::dnnl::memory::desc compress_spatial_dimensions_to_channel(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode); sycl::event batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var); sycl::event batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var); ::dnnl::memory::desc transfer_memory_desc_to_channel_major_format(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc bn_reorder_memory_to_channel_major_format(bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches); ::dnnl::memory::desc transfer_memory_desc_to_format_tag_any(const ::dnnl::memory::desc &desc){ return ::dnnl::memory::desc(desc.get_dims(), desc.get_data_type(), ::dnnl::memory::format_tag::any); } void allocate_and_reorder_memory_to_optimal(::dnnl::memory::desc &from_desc, void *&from, ::dnnl::memory::desc &to_desc, void *&to, std::vector<void *> &caches) { if (from_desc != to_desc) { to = allocate(to_desc); caches.push_back(to); async_reorder(1.f, from_desc, from, 0.f, to_desc, to); } } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive(args_type &&...args); template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive_with_pd(const typename primitive_type::primitive_desc &pd); template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc create_primitive_desc(args_type &&...args); template <typename primitive_desc_type> std::string generate_cache_key(const primitive_desc_type &pd); void serialize_dims(std::stringstream &ss, const std::vector<int64_t> &dims) { ss.write((char *)dims.data(), dims.size() * sizeof(int64_t)); }; void serialize_mem_desc(std::stringstream &ss, const ::dnnl::memory::desc &desc) { if (desc.is_zero()) { return; } auto format_kind = desc.get_format_kind(); ss << desc.get_ndims() << (std::uint8_t)desc.get_data_type() << (std::uint8_t)format_kind; serialize_dims(ss, desc.get_dims()); serialize_dims(ss, desc.get_strides()); if (format_kind == ::dnnl::memory::format_kind::blocked) { ss << desc.get_inner_nblks(); serialize_dims(ss, desc.get_inner_blks()); serialize_dims(ss, desc.get_inner_idxs()); } }; sycl::event execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size = nullptr, size_t *workspace_size = nullptr, size_t *scratchpad_size = nullptr); sycl::event rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query); sycl::event execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num); void async_free(sycl::queue *q, sycl::event e, std::unordered_map<int, ::dnnl::memory> *args, std::vector<void *> device_ptrs = {}) { q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { if (args) { delete args; } for (auto ptr : device_ptrs) { if (ptr) { sycl::free(ptr, *_q); } } }); }); }; bool scale_parameter_preprocess(const std::vector<output_argument_info> &args); template <typename primitive_type> sycl::event execute_primitive(const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &extra_args = {}, const std::vector<void *> &device_ptrs = {}); template <typename T> sycl::event fill_with_type(sycl::queue *q, void *src, const void *value, size_t size_with_byte) { return q->fill<T>(static_cast<T *>(src), *static_cast<const T *>(value), size_with_byte / sizeof(T)); } template <typename T> struct no_zero_op { T operator()(T e) { if (!e) { return 1; } return e; } }; template <typename T> void transform_no_zero_with_type(sycl::queue *q, void *src, void *dst, size_t num) { std::transform(oneapi::dpl::execution::make_device_policy(*q), static_cast<T *>(src), static_cast<T *>(src) + num, static_cast<T *>(dst), no_zero_op<T>()); } void transform_no_zero(const memory_desc_ext &desc, void *src, void *dst); ::dnnl::memory::desc get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc); void get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num); public: engine_ext() {} operator bool() const { return bool(_eng) && bool(_s) && bool(_q); } engine_ext &operator=(std::nullptr_t) { _eng.reset(nullptr); _s.reset(nullptr); _q = nullptr; return *this; } /// Creating oneDNN engine. void create_engine() { _eng = ::dnnl::sycl_interop::make_engine( dpct::get_current_device(), dpct::get_current_device().get_context()); _s = ::dnnl::sycl_interop::make_stream( _eng, dpct::get_current_device().default_queue()); _q = &dpct::get_current_device().default_queue(); } /// Setting the user's SYCL queue for an oneDNN engine. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { if (!q) { throw std::runtime_error("set_queue: pointer must not be nullptr."); } if (!_eng) { throw std::runtime_error("set_queue: current engine is invalid."); } if (q->get_context() != ::dnnl::sycl_interop::get_context(_eng)) { throw std::runtime_error( "set_queue: queue is mismatch with current engine context."); } _q = q; _s = ::dnnl::sycl_interop::make_stream(_eng, *q); } /// Retrieving the user's SYCL queue set in the oneDNN engine. /// \returns Pointer to the SYCL queue. sycl::queue *get_queue() const { return _q; } /// Setting all elements of a memory to a given value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. void fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. void scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. void pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. void pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. void lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. void lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Setting all elements of a memory to a given value asynchronously. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. /// \returns An event representing the fill operations. sycl::event async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reorder operations. sycl::event async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor asynchronously. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. /// \returns An event representing the scale operations. sycl::event async_scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the sum operations. sycl::event async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified binary operation. /// \param [in] alpha_0 Value to scaling factors used to scale the src_0 /// value. /// \param [in] src_desc_0 Source 0 memory descriptor. /// \param [in] src_0 Pointer to source 0 data. /// \param [in] alpha_1 Value to scaling factors used to scale the src_1 /// value. /// \param [in] src_desc_1 Source 1 memory descriptor. /// \param [in] src_1 Pointer to source 1 data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the binary operations. sycl::event async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified reduction operation. /// \param [in] alpha Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reduction operations. sycl::event async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the activation forward operations. sycl::event async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the activation backward operations. sycl::event async_activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value asynchronously. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. /// \returns An event representing the pooling forward operations. sycl::event async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. /// \returns An event representing the pooling backward operations. sycl::event async_pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the softmax forward operations. sycl::event async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the softmax backward operations. sycl::event async_softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value /// asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the lrn forward operations. sycl::event async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the lrn backward operations. sycl::event async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] desc Derived memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] scale_bias_desc Derived scale and bias memory descriptor. /// \param [out] mean_var_desc Derived mean and var memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Get the size of workspace that needed by batch normalization. The data stored /// in workspace must be preserved between forward and backward. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] src_desc Source memory descriptor. /// \returns Size of workspace. size_t get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [in] diff_scale Pointer to differential scale data. /// \param [in] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_desc Differential scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] mean_var_desc Differential mean, variance memory descriptor. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] adesc Activation operation descriptor. /// \param [in] alpha_0 Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] alpha_1 Value to scaling factors used to scale the summand /// value. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] bias_desc Bias memory descriptor. /// \param [in] bias Pointer to bias data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst); /// Computing the data gradient of a specified convolution function asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the convolution backward data operations. sycl::event async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing the weight gradient of a specified convolution function /// asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_weight_desc Differential weight memory descriptor. /// \param [out] diff_weight Pointer to differential weight data. /// \returns An event representing the convolution backward weight operations. sycl::event async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight); /// Computing the bias gradient of a specified convolution function /// asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_bias_desc Differential bias memory descriptor. /// \param [out] diff_bias Pointer to differential bias data. /// \returns An event representing the convolution backward bias operations. sycl::event async_convolution_backward_bias(float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias); /// Getting the required weight space size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [out] weight_space_size Size of required weight space. void rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size); /// Getting the required scratchpad size and workspace size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [out] scratchpad_size Size of required scratchpad. /// \param [out] workspace_size Size of required workspace. void rnn_get_scratchpad_workspace_size(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size); /// Computing a specified rnn function value asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] dst_iter Pointer to output recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] dst_c_iter Pointer to output recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn forward operations. sycl::event async_rnn_forward(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Computing the data and weight gradient of a specified rnn function /// asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [out] diff_src Pointer to differential source data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] diff_dst_iter Pointer to differential output recurrent hidden state data. /// \param [out] diff_src_iter Pointer to differential input recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] diff_dst_c_iter Pointer to differential output recurrent cell state data. /// \param [out] diff_src_c_iter Pointer to differential input recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [out] diff_weight Pointer to differential weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn backward operations. sycl::event async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Getting the required state size for specified dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of state. size_t get_dropout_state_size(); /// Getting the required workspace size for dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of workspace. static size_t get_dropout_workspace_size(const memory_desc_ext &src_desc); /// Computing a specified dropout function value asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout forward operations. sycl::event async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size); /// Computing the gradient of a specified dropout function asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout backward operations. sycl::event async_dropout_backward(dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size); }; inline void dropout_desc::restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("restore: state_size less than required state size."); } sycl::queue *q = engine.get_queue(); _imp->_p = p; _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); q->memcpy(_imp->_host_state.data(), _imp->_state, required_state_size).wait(); _imp->_rng_engine = oneapi::mkl::rng::load_state<rng_engine_t>( *q, _imp->_host_state.data()); } #endif } inline void dropout_desc::set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else _imp->_p = p; if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("set: no sufficient memory to save states."); } sycl::queue *q = engine.get_queue(); _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); _imp->_rng_engine = rng_engine_t(*q, seed); oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size).wait(); } #endif } inline ::dnnl::memory::data_type memory_desc_ext::to_dnnl_data_type(dpct::library_data_t dt) { using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dpct::library_data_t::real_half: return dnnl_dt::f16; case dpct::library_data_t::real_bfloat16: return dnnl_dt::bf16; case dpct::library_data_t::real_float: return dnnl_dt::f32; case dpct::library_data_t::real_int32: return dnnl_dt::s32; case dpct::library_data_t::real_int8: return dnnl_dt::s8; case dpct::library_data_t::real_uint8: return dnnl_dt::u8; case dpct::library_data_t::real_int8_4: return dnnl_dt::s8; case dpct::library_data_t::real_int8_32: return dnnl_dt::s8; case dpct::library_data_t::real_uint8_4: return dnnl_dt::u8; default: throw std::runtime_error("to_dnnl_data_type: unsupported data type."); } } inline dpct::library_data_t memory_desc_ext::to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size) { using dpct_dt = dpct::library_data_t; using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dnnl_dt::f16: return dpct_dt::real_half; case dnnl_dt::bf16: return dpct_dt::real_bfloat16; case dnnl_dt::f32: return dpct_dt::real_float; case dnnl_dt::s32: return dpct_dt::real_int32; case dnnl_dt::s8: if (block_size == 4) { return dpct_dt::real_int8_4; } else if (block_size == 32) { return dpct_dt::real_int8_32; } else { return dpct_dt::real_int8; } case dnnl_dt::u8: if (block_size == 4) { return dpct_dt::real_uint8_4; } else { return dpct_dt::real_uint8; } default: throw std::runtime_error("to_dpct_library_data_t: unsupported data type " "dnnl::memory::data_type::undef."); } } inline ::dnnl::memory::format_tag memory_desc_ext::to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag) { using dpct_dt = dpct::library_data_t; using dpct_tag = memory_format_tag; using dnnl_tag = ::dnnl::memory::format_tag; switch (tag) { case dpct_tag::nchw: return dnnl_tag::nchw; case dpct_tag::nhwc: return dnnl_tag::nhwc; default: if (dt == dpct_dt::real_int8_32) { return dnnl_tag::nChw32c; } else { return dnnl_tag::nChw4c; } } } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), {n_stride, c_stride, h_stride, w_stride}); } inline void memory_desc_ext::set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), {strides, strides + ndims}); } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c) { if (tag == rnn_memory_format_tag::tnc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::tnc); } else if(tag == rnn_memory_format_tag::ntc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::ntc); } else { throw std::runtime_error("set: unsupported memory format tag."); } } inline void memory_desc_ext::get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const { unsigned block_size = 1; auto dims = _desc.get_dims(); auto inner_blks = _desc.get_inner_blks(); auto strides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; *n_stride = strides[0] / block_size; *c_stride = strides[1] / block_size; *h_stride = strides[2] / block_size; *w_stride = strides[3] / block_size; } inline void memory_desc_ext::get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); auto inner_blks = _desc.get_inner_blks(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (strides[1] == 1 && dims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; } inline void memory_desc_ext::get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const { auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); if (strides[0] >= strides[1]) { *tag = rnn_memory_format_tag::tnc; } else { *tag = rnn_memory_format_tag::ntc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), 1); *t = dims[0]; *n = dims[1]; *c = dims[2]; } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const { unsigned block_size = 1; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; strides[index] = astrides[index] / block_size; } } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (astrides[1] == 1 && adims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; } } inline void engine_ext::get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num) { if (!desc.is_zero()) { auto dims = desc.get_dims(); auto strides = desc.get_strides(); if (strides[0] >= strides[1]) { *tag = ::dnnl::memory::format_tag::tnc; *seq_length = dims[0]; *batch_size = dims[1]; } else { *tag = ::dnnl::memory::format_tag::ntc; *seq_length = dims[1]; *batch_size = dims[0]; } } if (direction == rnn_direction::bidirectional) { *direction_num = 2; } else { *direction_num = 1; } if (mode == rnn_mode::lstm) { *gate_num = 4; } else if (mode == rnn_mode::gru) { *gate_num = 3; } else { *gate_num = 1; } if (*projection_size != hidden_size) { *output_size = *projection_size; } else { *projection_size = 0; *output_size = hidden_size; } *dnnl_dt = memory_desc_ext::to_dnnl_data_type(dt); } inline void *engine_ext::allocate(const memory_desc_ext &data_desc, int count) const { size_t mem_size = data_desc.get_size(); void *mem = sycl::malloc_device(mem_size * count, *_q); return mem; } inline void engine_ext::transform_no_zero(const memory_desc_ext &desc, void *src, void *dst) { ::dnnl::memory::data_type dt = desc.get_desc().get_data_type(); size_t element_num = desc.get_element_num(); switch (dt) { case ::dnnl::memory::data_type::f32: transform_no_zero_with_type<float>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::f16: transform_no_zero_with_type<sycl::half>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s32: transform_no_zero_with_type<int32_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s8: transform_no_zero_with_type<int8_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::u8: transform_no_zero_with_type<uint8_t>(_q, src, dst, element_num); break; default: throw std::runtime_error("transform_no_zero: unsupported data type."); } } inline ::dnnl::memory::desc engine_ext::get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc) { if (group_count == 1) { return weight_desc.get_desc(); } auto help_weight_desc = weight_desc.get_desc(); int ndims = help_weight_desc.get_ndims(); if (!help_weight_desc.get_inner_blks().empty()) { throw std::runtime_error("get_group_weight_desc: group convolution with " "blocked weight memory unimplemented."); } std::vector<int64_t> new_size; auto old_size = weight_desc.get_dims(); new_size.push_back(group_count); new_size.push_back(old_size[0] / group_count); for (int index = 1; index < old_size.size(); index++) { new_size.push_back(old_size[index]); } std::vector<int64_t> strides = help_weight_desc.get_strides(); ::dnnl::memory::format_tag tag; bool is_nhwc = (strides[1] == 1 && old_size[1] != 1); if (ndims == 4) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::gohwi; } else { tag = ::dnnl::memory::format_tag::goihw; } } else if (ndims == 5) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::godhwi; } else { tag = ::dnnl::memory::format_tag::goidhw; } } help_weight_desc = ::dnnl::memory::desc(new_size, weight_desc.get_desc().get_data_type(), tag); return help_weight_desc; } inline ::dnnl::memory::desc engine_ext::compress_spatial_dimensions_to_channel( const ::dnnl::memory::desc &desc) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); auto inner_blks = desc.get_inner_blks(); assert(ndims >= 4 && "ndims is at least 4."); std::vector<int64_t> compressed_dims(ndims); compressed_dims[0] = dims[0]; compressed_dims[1] = dims[1]; for (int index = 2; index < ndims; index++) { compressed_dims[1] = compressed_dims[1] * dims[index]; compressed_dims[index] = 1; } if (!inner_blks.empty() && inner_blks[0] == 4) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw4c); } else if (!inner_blks.empty() && inner_blks[0] == 32) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw32c); } std::vector<int64_t> strides(ndims, 1); strides[0] = compressed_dims[1]; return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), strides); } inline ::dnnl::memory::desc engine_ext::get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); assert(ndims >= 4 && "ndims is at least 4."); int channel_num = 1; if (mode == batch_normalization_mode::spatial) { channel_num = dims[1]; } else { for (int index = 1; index < ndims; index++) { channel_num = channel_num * dims[index]; } } return ::dnnl::memory::desc({channel_num}, desc.get_data_type(), ::dnnl::memory::format_tag::a); } inline ::dnnl::memory::desc engine_ext::transfer_memory_desc_to_channel_major_format( const ::dnnl::memory::desc &desc) { if (!desc.get_inner_blks().empty()) { return desc; } int ndims = desc.get_ndims(); auto dims = desc.get_dims(); if (ndims == 4) { return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::nchw); } return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::ncdhw); } /// If the alpha = 0 and beta = 1, then the destination (dst = alpha * out + /// beta * prior_dst) have no change. In this case this function returns true /// means the operation can exit directly. inline bool engine_ext::scale_parameter_preprocess( const std::vector<output_argument_info> &args) { bool direct_exit = true; for (auto &arg : args) { if (arg._alpha == 0.f) { if (arg._beta != 1.f) { async_scale(arg._beta, arg._desc, arg._data); } } else { direct_exit = false; } } return direct_exit; } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { derive_batch_normalization_memory_desc(scale_bias_desc, src_desc, mode); derive_batch_normalization_memory_desc(mean_var_desc, src_desc, mode); } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { int src_ndims = src_desc.get_desc().get_ndims(); auto inner_blks = src_desc.get_desc().get_inner_blks(); if (src_desc.get_desc().get_ndims() != 4 || src_desc.get_desc().get_ndims() != 5) { throw std::runtime_error("derive_batch_normalization_memory_desc: only 4d " "and 5d memory descriptor supported."); } std::vector<int64_t> dims = src_desc.get_dims(); dims[0] = 1; if (mode == batch_normalization_mode::spatial) { dims[2] = 1; dims[3] = 1; if (src_ndims == 5) { dims[4] = 1; } } auto data_type = src_desc.get_desc().get_data_type(); if (data_type == ::dnnl::memory::data_type::f16) { data_type = ::dnnl::memory::data_type::f32; } if (!inner_blks.empty() && inner_blks[0] == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw4c)); } else if (!inner_blks.empty() && inner_blks[0] == 32) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw32c)); } else { if (src_ndims == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nchw)); } else { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::ncdhw)); } } } template <typename primitive_type> sycl::event engine_ext::execute_primitive( const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &output_args, const std::vector<void *> &device_ptrs) { std::vector<void *> caches; int output_arg_num = output_args.size(); for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { auto cache = allocate(output_args[i]._desc); caches.push_back(cache); args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, cache)}); } else { args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, output_args[i]._data)}); } } auto e = ::dnnl::sycl_interop::execute( *(static_cast<primitive_type *>(primitive.second)), _s, *args); _primitive_cache.put( primitive.first, primitive.second, [](::dnnl::primitive *p) { delete static_cast<primitive_type *>(p); }, e); int cache_index = 0; for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { e = async_sum(output_args[i]._alpha, output_args[i]._desc, caches[cache_index++], output_args[i]._beta, output_args[i]._desc, output_args[i]._data); } else { if (output_args[i]._alpha != 1.f) { e = async_scale(output_args[i]._alpha, output_args[i]._desc, output_args[i]._data); } } } caches.insert(caches.end(), device_ptrs.begin(), device_ptrs.end()); async_free(_q, e, args, caches); return e; } inline ::dnnl::memory::desc engine_ext::bn_reorder_memory_to_channel_major_format( bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches) { ::dnnl::memory::desc result; result = transfer_memory_desc_to_channel_major_format(desc); if ((result != desc) || !src) { *cache = allocate(desc); if (is_input && src) { async_reorder(1.f, desc, src, 0.f, result, *cache); } caches.push_back(*cache); } return result; } inline sycl::event engine_ext::batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var) { if (scale_parameter_preprocess( {{alpha_data, beta_data, diff_src_desc, diff_src}, {alpha_param, beta_param, diff_scale_bias_desc, diff_scale}, {alpha_param, beta_param, diff_scale_bias_desc, diff_bias}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_diff_dst = nullptr, *reordered_diff_src = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_diff_scale = nullptr, *reordered_diff_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_diff_scale_bias_desc = diff_scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_diff_src_desc = help_diff_src_desc; ::dnnl::memory::desc actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; help_diff_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_scale_bias_desc, scale, &reordered_scale, caches); actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (bias) { bn_reorder_memory_to_channel_major_format(true, help_diff_scale_bias_desc, bias, &reordered_bias, caches); } bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_scale, &reordered_diff_scale, caches); bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_bias, &reordered_diff_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( true, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); bn_reorder_memory_to_channel_major_format(true, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } else { if ((help_src_desc != help_diff_dst_desc) || (help_src_desc != help_diff_src_desc) || (help_diff_dst_desc != help_diff_src_desc)) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; } } help_diff_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_diff_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); auto forward_primitive = create_primitive_desc<::dnnl::batch_normalization_forward>( ::dnnl::prop_kind::forward_training, help_src_desc, help_diff_dst_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift); auto primitive = create_primitive<::dnnl::batch_normalization_backward>( ::dnnl::prop_kind::backward, help_diff_src_desc, help_diff_dst_desc, help_src_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift, forward_primitive); void *dst_cache = nullptr; if (!saved_mean && !saved_var) { dst_cache = allocate(diff_dst_desc); if (!reordered_saved_mean) { reordered_saved_mean = allocate(mean_var_desc); caches.push_back(reordered_saved_mean); } if (!reordered_saved_var) { reordered_saved_var = allocate(mean_var_desc); caches.push_back(reordered_saved_var); } if (!bias) { _q->fill(reordered_bias, 0, diff_scale_bias_desc.get_size()); } batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, diff_dst_desc, dst_cache, diff_scale_bias_desc, scale, bias ? bias : reordered_bias, mean_var_desc, reordered_saved_mean, reordered_saved_var, nullptr, nullptr); caches.push_back(dst_cache); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_diff_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_src_desc, _eng, reordered_diff_dst ? reordered_diff_dst : diff_dst)}}}; sycl::event e = execute_primitive( primitive, execution_args, {{alpha_data, beta_data, DNNL_ARG_DIFF_SRC, help_diff_src_desc, reordered_diff_src ? reordered_diff_src : diff_src}, {alpha_param, beta_param, DNNL_ARG_DIFF_SCALE, help_diff_scale_bias_desc, reordered_diff_scale ? reordered_diff_scale : diff_scale}, {alpha_param, beta_param, DNNL_ARG_DIFF_SHIFT, help_diff_scale_bias_desc, reordered_diff_bias ? reordered_diff_bias : diff_bias}}); if (actual_diff_src_desc != diff_src_desc.get_desc() && reordered_diff_src) { e = async_reorder(1.f, actual_diff_src_desc, reordered_diff_src, 0.f, diff_src_desc, diff_src); } if (actual_diff_scale_bias_desc != diff_scale_bias_desc.get_desc() && reordered_diff_scale && reordered_diff_bias) { async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_scale, 0.f, diff_scale_bias_desc, diff_scale); e = async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_bias, 0.f, diff_scale_bias_desc, diff_bias); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_dst = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_scale_bias_desc = scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_dst_desc = help_dst_desc; ::dnnl::memory::desc actual_mean_var_desc = help_mean_var_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; help_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_scale_bias_desc, scale, &reordered_scale, caches); bn_reorder_memory_to_channel_major_format(true, help_scale_bias_desc, bias, &reordered_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( is_infer, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); actual_mean_var_desc = help_mean_var_desc; bn_reorder_memory_to_channel_major_format(is_infer, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } else { if (help_src_desc != help_dst_desc) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; } } help_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); ::dnnl::prop_kind kind; ::dnnl::normalization_flags flag = ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift; if (is_infer) { kind = ::dnnl::prop_kind::forward_inference; flag = ::dnnl::normalization_flags::use_global_stats | flag; } else { kind = ::dnnl::prop_kind::forward_training; } auto primitive = create_primitive<::dnnl::batch_normalization_forward>( kind, help_src_desc, help_dst_desc, epsilon, flag); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_SHIFT, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_bias ? reordered_bias : bias)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}}; sycl::event e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, help_dst_desc, reordered_dst ? reordered_dst : dst}}); if (!is_infer && running_var) { auto src_ndim = src_desc.get_desc().get_ndims(); auto src_dims = src_desc.get_dims(); int element_num = src_dims[0]; if (mode == batch_normalization_mode::spatial) { for (int index = 2; index < src_ndim; index++) { element_num *= src_dims[index]; } } float unbias_factor = element_num / (element_num - 1.f); async_scale(1.f - factor, mean_var_desc, running_var); e = async_sum(factor * unbias_factor, mean_var_desc, reordered_saved_var ? reordered_saved_var : saved_var, 1.f, mean_var_desc, running_var); } if (!is_infer && running_mean) { e = async_sum(factor, mean_var_desc, reordered_saved_mean ? reordered_saved_mean : saved_mean, (1.f - factor), mean_var_desc, running_mean); } if (reordered_dst && (actual_dst_desc != dst_desc.get_desc())) { e = async_reorder(1.f, actual_dst_desc, reordered_dst, 0.f, dst_desc, dst); } if (!is_infer && reordered_saved_mean && reordered_saved_var && saved_mean && saved_var && (actual_mean_var_desc != mean_var_desc.get_desc())) { e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_mean, 0.f, mean_var_desc, saved_mean); e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_var, 0.f, mean_var_desc, saved_var); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; std::vector<void *> data = {src, dst, src_iter, dst_iter, src_iter_c, dst_iter_c, weight, workspace, scratchpad}; std::vector<int> offset(6, 0); void *input_layer_cache = nullptr, *hidden_layer_cache = nullptr; sycl::event e; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { // Here to combine the oneDNN bidirectional_sum and // bidirectional_concat config, so call execute_rnn_forward_primitive // twice. if (layer_size > 1) { if (!is_get_execution_args) { input_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); _q->memcpy(input_layer_cache, src, src_desc.get_size()); } data[0] = input_layer_cache; data[1] = hidden_layer_cache; e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1, weight_size_query, workspace_size_query, scratchpad_size_query); data[0] = ((layer_size - 1) % 2 == 0) ? input_layer_cache : hidden_layer_cache; data[1] = dst; } e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } else { e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } if (is_get_execution_args) { return e; } if (input_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(input_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline sycl::event engine_ext::execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size, size_t *workspace_size, size_t *scratchpad_size) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; std::unordered_map<int, ::dnnl::memory> *execution_args; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); } if (weight_size) { *weight_size += (weight_layer_desc.get_size() + weight_iter_desc.get_size() + projection_desc.get_size() + bias_desc.get_size()) * iter_num; return e; } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto pd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( kind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::gru) { auto pd = create_primitive_desc<::dnnl::gru_forward>( kind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::gru_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::lstm) { auto pd = create_primitive_desc<::dnnl::lstm_forward>( kind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::lstm_forward>(pd); key = r.first; p = r.second; } } for (int i = 0; i < iter_num; i++) { void *in_cache = data[0], *out_cache = data[1], *dst_iter_c_cache = nullptr, *dst_iter_cache = ((uint8_t *)(data[3]) + offset[1]); if (mode == rnn_mode::lstm) { dst_iter_c_cache = (uint8_t *)(data[4]) + offset[2]; } if (!workspace_size) { execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[0])}}, {DNNL_ARG_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[1])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[8])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data + offset)}}); offset += d.get_size(); }; insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[0]); insert_args(DNNL_ARG_DST_ITER, iter_desc, data[3], offset[1]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[5], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_LAYER, weight_layer_desc, data[6], offset[4]); insert_args(DNNL_ARG_WEIGHTS_ITER, weight_iter_desc, data[6], offset[4]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, projection_desc, data[6], offset[4]); } if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[6]) + offset[4], 0, bias_desc.get_size()); } insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[4]); if (kind == ::dnnl::prop_kind::forward_training) { insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[5]); } if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { execute_primitive<::dnnl::vanilla_rnn_forward>( {key, static_cast<::dnnl::vanilla_rnn_forward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { execute_primitive<::dnnl::gru_forward>( {key, static_cast<::dnnl::gru_forward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { execute_primitive<::dnnl::lstm_forward>( {key, static_cast<::dnnl::lstm_forward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[0], data[1]); } } if (kind == ::dnnl::prop_kind::forward_training) { if (workspace_size) { *workspace_size += (src_desc.get_size() + dst_desc.get_size() + iter_desc.get_size()); if (mode == rnn_mode::lstm) { *workspace_size += iter_c_desc.get_size(); } } else { _q->memcpy((uint8_t *)(data[7]) + offset[5], in_cache, src_desc.get_size()); offset[5] += src_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], out_cache, dst_desc.get_size()); offset[5] += dst_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_cache, iter_desc.get_size()); offset[5] += iter_desc.get_size(); if (mode == rnn_mode::lstm) { _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_c_cache, iter_c_desc.get_size()); offset[5] += iter_c_desc.get_size(); } } } } return e; } inline sycl::event engine_ext::execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; ::dnnl::prop_kind fkind = ::dnnl::prop_kind::forward_training; ::dnnl::prop_kind bkind = ::dnnl::prop_kind::backward; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc diff_weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc diff_weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc projection_desc, diff_projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); diff_projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldoi); } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto fpd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( fkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::vanilla_rnn_backward>( bkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::gru) { auto fpd = create_primitive_desc<::dnnl::gru_forward>( fkind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::gru_backward>( bkind, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::gru_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::lstm) { auto fpd = create_primitive_desc<::dnnl::lstm_forward>( fkind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); auto pd = create_primitive_desc<::dnnl::lstm_backward>( bkind, direction, src_desc, iter_desc, iter_c_desc, diff_weight_layer_desc, diff_weight_iter_desc, ::dnnl::memory::desc(), diff_projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::lstm_backward>(pd); key = r.first; p = r.second; } for (int i = 0; i < iter_num; i++) { auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[8])}}, {DNNL_ARG_DIFF_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[9])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[15])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { offset += d.get_size(); execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data - offset)}}); }; if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); } insert_args(DNNL_ARG_DST_ITER, iter_desc, data[7], offset[0]); insert_args(DNNL_ARG_DST_LAYER, dst_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_LAYER, src_desc, data[7], offset[0]); insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[1]); insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[3]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, diff_projection_desc, data[6], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_ITER, diff_weight_iter_desc, data[6], offset[3]); insert_args(DNNL_ARG_WEIGHTS_LAYER, diff_weight_layer_desc, data[6], offset[3]); insert_args(DNNL_ARG_DIFF_SRC_ITER, iter_desc, data[10], offset[4]); insert_args(DNNL_ARG_DIFF_DST_ITER, iter_desc, data[11], offset[5]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DIFF_SRC_ITER_C, iter_c_desc, data[12], offset[6]); insert_args(DNNL_ARG_DIFF_DST_ITER_C, iter_c_desc, data[13], offset[7]); } insert_args(DNNL_ARG_DIFF_BIAS, bias_desc, data[14], offset[8]); if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[14]) - offset[8], 0, bias_desc.get_size()); } if (projection_size) { insert_args(DNNL_ARG_DIFF_WEIGHTS_PROJECTION, projection_desc, data[14], offset[8]); } insert_args(DNNL_ARG_DIFF_WEIGHTS_ITER, weight_iter_desc, data[14], offset[8]); insert_args(DNNL_ARG_DIFF_WEIGHTS_LAYER, weight_layer_desc, data[14], offset[8]); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { e = execute_primitive<::dnnl::vanilla_rnn_backward>( {key, static_cast<::dnnl::vanilla_rnn_backward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { e = execute_primitive<::dnnl::gru_backward>( {key, static_cast<::dnnl::gru_backward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { e = execute_primitive<::dnnl::lstm_backward>( {key, static_cast<::dnnl::lstm_backward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[8], data[9]); } } return e; } #define GENERATE_RNN_PRIMITIVE_KEY(name) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_cell_kind() << (std::uint8_t)pd.get_direction() \ << (std::uint8_t)pd.get_algorithm(); \ serialize_mem_desc(ss, pd.src_layer_desc()); \ serialize_mem_desc(ss, pd.src_iter_desc()); \ serialize_mem_desc(ss, pd.dst_layer_desc()); \ serialize_mem_desc(ss, pd.dst_iter_desc()); \ serialize_mem_desc(ss, pd.diff_src_layer_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_desc()); \ serialize_mem_desc(ss, pd.diff_dst_layer_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_desc()); \ serialize_mem_desc(ss, pd.src_iter_c_desc()); \ serialize_mem_desc(ss, pd.dst_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_c_desc()); \ return ss.str(); \ } #define GENERATE_CONVOLUTION_PRIMITIVE_KEY(name, query_type) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_algorithm() \ << (std::uint8_t)pd.get_primitive_attr().get_fpmath_mode() \ << (std::uint8_t)pd.get_group_size(); \ serialize_dims(ss, pd.get_strides()); \ serialize_dims(ss, pd.get_dilations()); \ serialize_dims(ss, pd.get_padding_l()); \ serialize_mem_desc(ss, pd.src_desc()); \ serialize_mem_desc(ss, pd.diff_src_desc()); \ serialize_mem_desc(ss, pd.dst_desc()); \ serialize_mem_desc(ss, pd.diff_dst_desc()); \ serialize_mem_desc(ss, pd.query_type()); \ serialize_mem_desc(ss, pd.weights_desc()); \ serialize_mem_desc(ss, pd.diff_weights_desc()); \ return ss.str(); \ } GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_forward) GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_backward) GENERATE_RNN_PRIMITIVE_KEY(lstm_forward) GENERATE_RNN_PRIMITIVE_KEY(lstm_backward) GENERATE_RNN_PRIMITIVE_KEY(gru_forward) GENERATE_RNN_PRIMITIVE_KEY(gru_backward) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_forward, bias_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_data, scratchpad_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_weights, diff_bias_desc) template <typename primitive_desc_type> std::string engine_ext::generate_cache_key(const primitive_desc_type &pd) { std::stringstream ss; auto kind = pd.get_kind(); ss << (std::uint8_t)kind << (std::uint8_t)pd.get_prop_kind() << (std::uint8_t)pd.get_algorithm(); serialize_mem_desc(ss, pd.src_desc()); serialize_mem_desc(ss, pd.diff_src_desc()); serialize_mem_desc(ss, pd.dst_desc()); serialize_mem_desc(ss, pd.diff_dst_desc()); switch (kind) { case ::dnnl::primitive::kind::batch_normalization: ss << pd.get_epsilon() << (std::uint8_t)pd.get_flags(); case ::dnnl::primitive::kind::reduction: ss << pd.get_p(); break; case ::dnnl::primitive::kind::eltwise: ss << pd.get_alpha() << pd.get_beta(); case ::dnnl::primitive::kind::lrn: ss << pd.get_k(); break; case ::dnnl::primitive::kind::pooling: serialize_dims(ss, pd.get_strides()); serialize_dims(ss, pd.get_dilations()); serialize_dims(ss, pd.get_padding_l()); serialize_dims(ss, pd.get_kernel()); break; case ::dnnl::primitive::kind::softmax: ss << pd.get_axis(); break; default: break; } return ss.str(); } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive(args_type &&...args) { auto pd = create_primitive_desc<primitive_type>(std::forward<args_type>(args)...); return create_primitive_with_pd<primitive_type>(pd); } template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive_with_pd( const typename primitive_type::primitive_desc &pd) { detail::primitive_cache_key_type key = generate_cache_key(pd); primitive_type *p = (primitive_type *)_primitive_cache.get(key); if (!p) { p = new primitive_type(pd); } return {key, p}; } template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc engine_ext::create_primitive_desc(args_type &&...args) { return typename primitive_type::primitive_desc( _eng, std::forward<args_type>(args)...); } inline void engine_ext::fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { async_fill(src_desc, src, valuePtr).wait(); } inline void engine_ext::reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_reorder(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::scale(float alpha, const memory_desc_ext &src_desc, void *src) { async_scale(alpha, src_desc, src).wait(); } inline void engine_ext::sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_sum(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_activation_forward(desc, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_activation_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_pooling_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace).wait(); } inline void engine_ext::pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_pooling_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline void engine_ext::softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_softmax_forward(alg, mode, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_softmax_backward(alg, mode, alpha, dst_desc, dst, diff_dst_desc, diff_dst, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_lrn_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace) .wait(); } inline void engine_ext::lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_lrn_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline sycl::event engine_ext::async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { ::dnnl::memory::data_type dt = src_desc.get_desc().get_data_type(); unsigned mem_size = src_desc.get_size(); switch (dt) { case ::dnnl::memory::data_type::f32: return fill_with_type<float>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::f16: return fill_with_type<sycl::half>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s32: return fill_with_type<int32_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s8: return fill_with_type<int8_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::u8: return fill_with_type<uint8_t>(_q, src, valuePtr, mem_size); default: throw std::runtime_error("async_fill: unsupported data type."); } } inline sycl::event engine_ext::async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto pd = ::dnnl::reorder::primitive_desc(_eng, src_desc.get_desc(), _eng, dst_desc.get_desc()); auto primitive = create_primitive_with_pd<::dnnl::reorder>(pd); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_scale(float alpha, const memory_desc_ext &src_desc, void *src) { if (alpha == 1.f) { return sycl::event(); } void *src_cache = allocate(src_desc); _q->memcpy(src_cache, src, src_desc.get_size()); auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, ::dnnl::algorithm::eltwise_linear, src_desc.get_desc(), src_desc.get_desc(), alpha, 0.f); auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src_cache)}}; return execute_primitive(primitive, args, {}, {src_cache}); } inline sycl::event engine_ext::async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } void *dst_cache = allocate(dst_desc); _q->memcpy(dst_cache, dst, dst_desc.get_size()); auto pd = create_primitive_desc<::dnnl::sum>( std::vector<float>{alpha, beta}, std::vector<::dnnl::memory::desc>{src_desc.get_desc(), dst_desc.get_desc()}); std::stringstream ss; ss << (std::uint8_t)pd.get_kind() << alpha << beta; serialize_mem_desc(ss, pd.src_desc(0)); serialize_mem_desc(ss, pd.src_desc(1)); detail::primitive_cache_key_type key = ss.str(); ::dnnl::sum *p = (::dnnl::sum *)_primitive_cache.get(key); if (!p) { p = new ::dnnl::sum(pd); } auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}, {DNNL_ARG_MULTIPLE_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_MULTIPLE_SRC + 1, ::dnnl::memory(dst_desc.get_desc(), _eng, dst_cache)}}; return execute_primitive<::dnnl::sum>({key, p}, args, {}, {dst_cache}); } inline sycl::event engine_ext::async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst) { ::dnnl::algorithm onednn_algorithm; switch (op) { case binary_op::max: onednn_algorithm = ::dnnl::algorithm::binary_max; break; case binary_op::min: onednn_algorithm = ::dnnl::algorithm::binary_min; break; case binary_op::add: onednn_algorithm = ::dnnl::algorithm::binary_add; break; case binary_op::sub: onednn_algorithm = ::dnnl::algorithm::binary_sub; break; case binary_op::mul: onednn_algorithm = ::dnnl::algorithm::binary_mul; break; case binary_op::div: onednn_algorithm = ::dnnl::algorithm::binary_div; break; case binary_op::sqrt: onednn_algorithm = ::dnnl::algorithm::eltwise_sqrt; break; case binary_op::neg: onednn_algorithm = ::dnnl::algorithm::eltwise_linear; break; } if (onednn_algorithm == ::dnnl::algorithm::eltwise_sqrt || onednn_algorithm == ::dnnl::algorithm::eltwise_linear) { void *src_cache = nullptr, *dst_cache = nullptr; src_cache = allocate(src_desc_0); dst_cache = allocate(dst_desc); _q->memcpy(src_cache, src_0, src_desc_0.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_cache); async_scale(beta, dst_desc, dst_cache); // Let the output = 1 - input to simulate the behavior of neg. auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, onednn_algorithm, src_desc_0.get_desc(), dst_desc.get_desc(), -1.f, 1.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc_0.get_desc(), _eng, src_cache)}}}; execute_primitive( primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); auto e = async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(src_cache, *_q); sycl::free(dst_cache, *_q); }); }); return e; } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{}; void *src_0_cache = nullptr, *src_1_cache = nullptr, *dst_cache = nullptr; src_0_cache = allocate(src_desc_0); src_1_cache = allocate(src_desc_1); dst_cache = allocate(dst_desc); _q->memcpy(src_0_cache, src_0, src_desc_0.get_size()); _q->memcpy(src_1_cache, src_1, src_desc_1.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_0_cache); async_scale(alpha_1, src_desc_1, src_1_cache); async_scale(beta, dst_desc, dst_cache); execution_args->insert({DNNL_ARG_SRC_0, ::dnnl::memory(src_desc_0.get_desc(), _eng, src_0_cache)}); execution_args->insert({DNNL_ARG_SRC_1, ::dnnl::memory(src_desc_1.get_desc(), _eng, src_1_cache)}); auto primitive = create_primitive<::dnnl::binary>( onednn_algorithm, src_desc_0.get_desc(), src_desc_1.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(dst_cache, *_q); sycl::free(src_0_cache, *_q); sycl::free(src_1_cache, *_q); }); }); return e; } inline sycl::event engine_ext::async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } float p = 2.f; ::dnnl::algorithm onednn_algorithm; void *cache = nullptr; switch (op) { case reduction_op::amax: cache = allocate(src_desc); activation_desc adesc; adesc.set_algorithm(::dnnl::algorithm::eltwise_abs); async_activation_forward(adesc, 1.f, src_desc, src, 0.f, src_desc, cache); onednn_algorithm = ::dnnl::algorithm::reduction_max; src = cache; break; case reduction_op::max: onednn_algorithm = ::dnnl::algorithm::reduction_max; break; case reduction_op::min: onednn_algorithm = ::dnnl::algorithm::reduction_min; break; case reduction_op::sum: onednn_algorithm = ::dnnl::algorithm::reduction_sum; break; case reduction_op::mean: onednn_algorithm = ::dnnl::algorithm::reduction_mean; break; case reduction_op::mul: onednn_algorithm = ::dnnl::algorithm::reduction_mul; break; case reduction_op::mul_no_zeros: cache = allocate(src_desc); transform_no_zero(src_desc, src, cache); onednn_algorithm = ::dnnl::algorithm::reduction_mul; src = cache; break; case reduction_op::norm1: p = 1.f; onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_power_p_sum; break; case reduction_op::norm2: onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_sum; break; } auto primitive = create_primitive<::dnnl::reduction>( onednn_algorithm, src_desc.get_desc(), dst_desc.get_desc(), p, 0.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}}; if (cache) { return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc data_desc = dst_desc.get_desc(); auto alg = desc.get_algorithm(); if ((alg == ::dnnl::algorithm::eltwise_clip) || (alg == ::dnnl::algorithm::eltwise_linear) || (alg == ::dnnl::algorithm::eltwise_swish)) { data_desc = src_desc.get_desc(); } auto primitive = create_primitive<::dnnl::eltwise_backward>( alg, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), data_desc, desc.get_alpha(), desc.get_beta(), create_primitive_desc<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, alg, src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive_desc = create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::pooling_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive = create_primitive<::dnnl::pooling_backward>( desc.get_algorithm(), diff_src_desc.get_desc(), diff_dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding(), create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, src)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_src_desc, help_dst_desc, 1); return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, memory_desc_ext(help_dst_desc), dst}}); } inline sycl::event engine_ext::async_softmax_backward( softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(help_dst_desc, _eng, dst)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_dst_desc, _eng, diff_dst)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_backward>( softmax_alg, help_diff_src_desc, help_diff_dst_desc, help_dst_desc, 1, create_primitive_desc<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_diff_src_desc, help_dst_desc, 1)); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, memory_desc_ext(help_diff_src_desc), diff_src}}); } inline sycl::event engine_ext::async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive_desc = create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::lrn_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::lrn_backward>( ::dnnl::algorithm::lrn_across_channels, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), src_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k(), create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline size_t engine_ext::get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc) { if(ops == batch_normalization_ops::none) { return 0; } return src_desc.get_size(); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var) { return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; std::vector<void *> caches; if (has_post_op) { void *dst_cache = allocate(dst_desc); caches.push_back(dst_cache); batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, dst_desc, dst_cache, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, dst_cache); } async_activation_forward(adesc, 1.f, dst_desc, dst_cache, 0.f, dst_desc, dst_cache); e = async_sum(alpha, dst_desc, dst_cache, beta, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var) { return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; if (has_post_op) { if(workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_forward_training_ex: " "no sufficient workspace."); } batch_normalization_forward_internal( false, mode, epsilon, factor, 1.f, src_desc, src, 0.f, dst_desc, workspace, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, workspace); } return async_activation_forward(adesc, alpha, dst_desc, workspace, beta, dst_desc, dst); } return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_forward_training( mode, ops, adesc, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, summand_desc, summand, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, running_mean, running_var, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var) { return batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_mean_var_desc, scale, nullptr, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { std::vector<void *> caches; ::dnnl::memory::desc real_diff_dst_desc = diff_dst_desc.get_desc(); void *real_diff_dst = diff_dst; if (ops != batch_normalization_ops::none && workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_backward_ex: " "no sufficient workspace."); } if (ops == batch_normalization_ops::add_activation) { void *diff_summand_cache = allocate(diff_summand_desc); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_summand_desc, diff_summand_cache); caches.push_back(diff_summand_cache); async_sum(alpha_data, diff_summand_desc, diff_summand_cache, beta_data, diff_summand_desc, diff_summand); real_diff_dst_desc = diff_summand_desc.get_desc(); real_diff_dst = diff_summand_cache; } else if (ops == batch_normalization_ops::activation) { void *diff_dst_cache = allocate(diff_dst_desc); caches.push_back(diff_dst_cache); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_dst_desc, diff_dst_cache); real_diff_dst = diff_dst_cache; } sycl::event e = batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, real_diff_dst_desc, real_diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_desc, scale, bias, beta_param, diff_scale, diff_bias, mean_var_desc, saved_mean, saved_var); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_backward( mode, ops, adesc, epsilon, alpha_data, src_desc, src, dst_desc, dst, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, diff_summand_desc, diff_summand, alpha_param, diff_scale_bias_mean_var_desc, scale, bias, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto origin_src_md = src_desc.get_desc(); auto origin_dst_md = dst_desc.get_desc(); auto origin_weight_md = help_weight_desc; auto src_md = transfer_memory_desc_to_format_tag_any(origin_src_md); auto dst_md = transfer_memory_desc_to_format_tag_any(origin_dst_md); auto weight_md = transfer_memory_desc_to_format_tag_any(origin_weight_md); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_md, weight_md, dst_md, desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); ::dnnl::convolution_forward::primitive_desc pd = ::dnnl::convolution_forward::primitive_desc( const_cast<dnnl_primitive_desc_t>( primitive.second->get_primitive_desc())); auto optimal_src_md = pd.src_desc(); auto optimal_dst_md = pd.dst_desc(); auto optimal_weight_md = pd.weights_desc(); void *optimal_src = src, *optimal_dst = dst, *optimal_weight = weight; std::vector<void *> input_caches, output_caches; allocate_and_reorder_memory_to_optimal(origin_src_md, src, optimal_src_md, optimal_src, input_caches); allocate_and_reorder_memory_to_optimal(origin_dst_md, dst, optimal_dst_md, optimal_dst, output_caches); allocate_and_reorder_memory_to_optimal(origin_weight_md, weight, optimal_weight_md, optimal_weight, input_caches); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(optimal_src_md, _eng, optimal_src)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(optimal_weight_md, _eng, optimal_weight)}}}; auto e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, optimal_dst_md, optimal_dst}}, input_caches); if(origin_dst_md != optimal_dst_md){ e = async_reorder(1.f, optimal_dst_md, optimal_dst, 0.f, origin_dst_md, dst); } async_free(_q, e, nullptr, output_caches); return e; } inline sycl::event engine_ext::async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst) { int channel_num = bias_desc.get_element_num(); auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::memory::desc help_bias_desc = {{channel_num}, bias_desc.get_desc().get_data_type(), ::dnnl::memory::format_tag::a}; ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_desc.get_desc(), help_weight_desc, help_bias_desc, dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_BIAS, {::dnnl::memory(help_bias_desc, _eng, bias)}}}; void *cache = nullptr; if (alpha_0 != 1.f) { cache = allocate(help_weight_desc); _q->memcpy(cache, weight, weight_desc.get_size()); async_scale(alpha_0, help_weight_desc, cache); execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, cache)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } else { execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); } async_sum(alpha_1, summand_desc, summand, 1.f, dst_desc, dst); return async_activation_forward(adesc, 1.f, dst_desc, dst, 0.f, dst_desc, dst); } inline sycl::event engine_ext::async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_dst_desc, diff_dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_data>( ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight) { if (scale_parameter_preprocess( {{alpha, beta, diff_weight_desc, diff_weight}})) { return sycl::event(); } auto help_diff_weight_desc = get_group_weight_desc(desc.get_group_count(), diff_weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_weights>( ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_WEIGHTS, help_diff_weight_desc, diff_weight}}); } inline sycl::event engine_ext::async_convolution_backward_bias( float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias) { return async_reduction(reduction_op::sum, alpha, diff_dst_desc, diff_dst, beta, diff_bias_desc, diff_bias); } inline void engine_ext::rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size) { *weight_space_size = 0; rnn_forward_internal(desc, ::dnnl::prop_kind::forward_inference, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, weight_space_size, nullptr, nullptr); return; } inline void engine_ext::rnn_get_scratchpad_workspace_size( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size) { *workspace_size = 0; *scratchpad_size = 0; rnn_forward_internal(desc, kind, src_desc, nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, nullptr, workspace_size, scratchpad_size); return; } inline sycl::event engine_ext::async_rnn_forward( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { return rnn_forward_internal( desc, kind, src_desc, src, dst_desc, dst, iter_desc, src_iter, dst_iter, iter_c_desc, src_iter_c, dst_iter_c, weight_size, weight, workspace_size, workspace, scratchpad_size, scratchpad, false, nullptr, nullptr, nullptr); } inline sycl::event engine_ext::async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_memory_format_tag format_tag; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; void *last_layer_cache = nullptr; void *hidden_layer_cache = nullptr; sycl::event e; std::vector<int> offset(9, 0); std::vector<void *> data = { src, dst, (uint8_t *)src_iter + iter_desc.get_size(), nullptr, (uint8_t *)src_iter_c + iter_c_desc.get_size(), nullptr, (uint8_t *)weight + weight_size, (uint8_t *)workspace + workspace_size, diff_src, diff_dst, (uint8_t *)diff_src_iter + iter_desc.get_size(), (uint8_t *)diff_dst_iter + iter_desc.get_size(), (uint8_t *)diff_src_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_dst_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_weight + weight_size, scratchpad}; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { if (layer_size > 1) { last_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); data[8] = last_layer_cache; } e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); if (layer_size > 1) { data[8] = hidden_layer_cache; data[9] = last_layer_cache; e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1); _q->memcpy(diff_src, ((layer_size - 1) % 2 == 0) ? last_layer_cache : hidden_layer_cache, src_desc.get_size()); } } else { e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); } if (last_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(last_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline size_t engine_ext::get_dropout_state_size(){ #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::queue q; if(_random_engine_state_size == -1) { if(_q){ q = *_q; } else { q = dpct::get_current_device().default_queue(); } auto rand_engine = rng_engine_t(q, 0); _random_engine_state_size = oneapi::mkl::rng::get_state_size(rand_engine); } return _random_engine_state_size; #endif } inline size_t engine_ext::get_dropout_workspace_size(const memory_desc_ext &src_desc) { return src_desc.get_size(); } inline sycl::event engine_ext::async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size) { if (workspace_size < src_desc.get_size()) { throw std::runtime_error("async_dropout_forward: no sufficient workspace."); } float p = desc.get_probability(); if (p == 1.f) { return _q->memset(dst, 0, dst_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, src_desc, src, 0.f, dst_desc, dst); } float scale_factor = 1.f / (1.f - p); void *cache = workspace; memory_desc_ext rng_data_desc( ::dnnl::memory::desc(src_desc.get_dims(), ::dnnl::memory::data_type::s32, src_desc.get_strides())); if (src_desc.get_desc().get_data_type() != ::dnnl::memory::data_type::s32) { cache = allocate(rng_data_desc); } desc.generate(_q, _random_engine_state_size, rng_data_desc.get_element_num(), (std::int32_t *)cache); if (cache == workspace) { async_scale(scale_factor, src_desc, workspace); } else { async_reorder(scale_factor, rng_data_desc, cache, 0.f, src_desc, workspace); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC_1, ::dnnl::memory(src_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, src_desc.get_desc(), src_desc.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args); if (cache != workspace) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(cache, *_q); }); }); } return e; } inline sycl::event engine_ext::async_dropout_backward( dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size) { float p = desc.get_probability(); if (p == 1.f) { return _q->memset(diff_src, 0, diff_src_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, diff_dst_desc, diff_dst, 0.f, diff_src_desc, diff_src); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}, {DNNL_ARG_SRC_1, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(diff_src_desc.get_desc(), _eng, diff_src)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, diff_dst_desc.get_desc(), diff_dst_desc.get_desc(), diff_src_desc.get_desc()); return execute_primitive(primitive, execution_args); } } // namespace dnnl } // namespace dpct #endif // __DPCT_DNNL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/lapack_utils.hpp
//==---- lapack_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LAPACK_UTILS_HPP__ #define __DPCT_LAPACK_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace lapack { /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The symmetric matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The symmetric matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T> inline int sygvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, T *w, T *scratchpad, int scratchpad_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<T>(a); auto b_buffer = get_buffer<T>(b); auto w_buffer = get_buffer<T>(w); auto scratchpad_buffer = get_buffer<T>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class sygvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a, lda, b, ldb, w, scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes all the eigenvalues, and optionally, the eigenvectors of a complex /// generalized Hermitian positive-definite eigenproblem using a divide and /// conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The Hermitian matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The Hermitian matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [in] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename Tw> inline int hegvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, Tw *w, T *scratchpad, int scratchpad_size, int *info) { using Ty = typename DataType<T>::T2; #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<Ty>(a); auto b_buffer = get_buffer<Ty>(b); auto w_buffer = get_buffer<Tw>(w); auto scratchpad_buffer = get_buffer<Ty>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class hegvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, (Ty *)a, lda, (Ty *)b, ldb, w, (Ty *)scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes the Cholesky factorizations of a batch of symmetric (or Hermitian, /// for complex data) positive-definite matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrf_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, T *a[], int lda, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t lda_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->lda_info = lda; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrf_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->lda_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrf_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), (Ty **)a, &(matrix_info->lda_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrf_batch_scratchpad_size/potrf_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } /// Solves a batch of systems of linear equations with a Cholesky-factored /// symmetric (Hermitian) positive-definite coefficient matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] nrhs The number of right-hand sides. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b Array of pointers to matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrs_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, int nrhs, T *a[], int lda, T *b[], int ldb, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t nrhs_info; std::int64_t lda_info; std::int64_t ldb_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->nrhs_info = nrhs; matrix_info->lda_info = lda; matrix_info->ldb_info = ldb; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrs_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), &(matrix_info->lda_info), &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrs_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), (Ty **)a, &(matrix_info->lda_info), (Ty **)b, &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrs_batch_scratchpad_size/potrs_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } namespace detail { template <template <typename> typename functor_t, typename... args_t> inline int lapack_shim(sycl::queue &q, library_data_t a_type, int *info, std::string const &lapack_api_name, args_t &&...args) { auto handle_lapack_exception = [&](const oneapi::mkl::lapack::exception &e) { std::cerr << "Unexpected exception caught during call to LAPACK API: " << lapack_api_name << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl << "detail: " << e.detail() << std::endl; if (e.info() < std::numeric_limits<int>::min() || e.info() > std::numeric_limits<int>::max()) { throw std::runtime_error("e.info() exceeds the limit of int type"); } int info_val = static_cast<int>(e.info()); if (info) dpct::detail::dpct_memcpy(q, info, &info_val, sizeof(int), memcpy_direction::host_to_device) .wait(); return 1; }; try { switch (a_type) { case library_data_t::real_float: { functor_t<float>()(std::forward<args_t>(args)...); break; } case library_data_t::real_double: { functor_t<double>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_float: { functor_t<std::complex<float>>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_double: { functor_t<std::complex<double>>()(std::forward<args_t>(args)...); break; } default: throw std::runtime_error("the data type is unsupported"); } } catch (oneapi::mkl::lapack::batch_error const &be) { try { std::rethrow_exception(be.exceptions()[0]); } catch (oneapi::mkl::lapack::exception &e) { return handle_lapack_exception(e); } } catch (oneapi::mkl::lapack::exception const &e) { return handle_lapack_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; if (info) dpct::detail::dpct_memset(q, info, 0, sizeof(int)).wait(); return 1; } return 0; } template <typename T> class working_memory { public: working_memory(std::size_t element_number, const sycl::queue &q) : _q(q) { _ptr = dpct::detail::dpct_malloc(element_number * sizeof(T), _q); } auto get_memory() { return dpct::detail::get_memory(reinterpret_cast<T *>(_ptr)); } auto get_ptr() { return _ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_ptr) { dpct::async_dpct_free({_ptr}, {_e}, _q); } } private: void *_ptr = nullptr; sycl::event _e; sycl::queue _q; }; std::size_t byte_to_element_number(std::size_t size_in_byte, dpct::library_data_t element_type) { auto dv = std::lldiv( size_in_byte, dpct::detail::library_data_size[static_cast<unsigned int>(element_type)] / 8); if (dv.rem) { throw std::runtime_error( "size_in_byte is not divisible by the size of element (in bytes)"); } return dv.quot; } std::size_t element_number_to_byte(std::size_t size_in_element, dpct::library_data_t element_type) { auto dv = std::lldiv( dpct::detail::library_data_size[static_cast<unsigned int>(element_type)], 8); if (dv.rem) { throw std::runtime_error( "the size of element (in bits) is not divisible by 8"); } return size_in_element * dv.quot; } inline oneapi::mkl::jobsvd char2jobsvd(signed char job) { switch (job) { case 'A': return oneapi::mkl::jobsvd::vectors; case 'S': return oneapi::mkl::jobsvd::somevec; case 'O': return oneapi::mkl::jobsvd::vectorsina; case 'N': return oneapi::mkl::jobsvd::novec; default: throw std::runtime_error("the job type is unsupported"); } } template <typename T> struct getrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::getrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct getrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrf(q, m, n, a_data, lda, ipiv_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrs_impl { void operator()(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); std::int64_t device_ws_size = oneapi::mkl::lapack::getrs_scratchpad_size<T>( q, trans, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::getrs(q, trans, n, nrhs, a_data, lda, ipiv_data, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct geqrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::geqrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct geqrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto tau_data = dpct::detail::get_memory(reinterpret_cast<T *>(tau)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::geqrf(q, m, n, a_data, lda, tau_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrfnp_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::int64_t a_stride = m * lda; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrfnp_batch(q, m, n, a_data, lda, a_stride, 1, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct gesvd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::gesvd_scratchpad_size<T>( q, jobu, jobvt, m, n, lda, ldu, ldvt); } }; template <typename T> struct ElementType { using value_tpye = T; }; template <typename T> struct ElementType<std::complex<T>> { using value_tpye = T; }; template <typename T> struct gesvd_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto s_data = dpct::detail::get_memory( reinterpret_cast<typename ElementType<T>::value_tpye *>(s)); auto u_data = dpct::detail::get_memory(reinterpret_cast<T *>(u)); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::gesvd(q, jobu, jobvt, m, n, a_data, lda, s_data, u_data, ldu, vt_data, ldvt, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct gesvd_conj_impl : public gesvd_impl<T> { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using base = gesvd_impl<T>; base::operator()(q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); oneapi::mkl::blas::row_major::imatcopy(q, oneapi::mkl::transpose::conjtrans, n, n, T(1.0f), vt_data, ldvt, ldvt); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct potrf_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::potrf_scratchpad_size<T>(q, uplo, n, lda); } }; template <typename T> struct potrf_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::potrf(q, uplo, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct potrs_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { std::int64_t device_ws_size = oneapi::mkl::lapack::potrs_scratchpad_size<T>( q, uplo, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::potrs(q, uplo, n, nrhs, a_data, lda, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct value_type_trait { using value_type = T; }; template <typename T> struct value_type_trait<std::complex<T>> { using value_type = T; }; template <typename T> auto lamch_s() { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else if constexpr (std::is_same_v<T, float>) { return slamch("S"); } else if constexpr (std::is_same_v<T, double>) { return dlamch("S"); } throw std::runtime_error("the type is unsupported"); #endif } #define DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ device_ws_size = oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ device_ws_size = oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) #define DISPATCH_FLOAT_FOR_CALCULATION(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) template <typename T> struct syheevx_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evx_scratchpad_size<T>, q, jobz, range, uplo, n, lda, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> constexpr library_data_t get_library_data_t_from_type() { if constexpr (std::is_same_v<T, float>) { return library_data_t::real_float; } else if constexpr (std::is_same_v<T, double>) { return library_data_t::real_double; } else if constexpr (std::is_same_v<T, sycl::float2> || std::is_same_v<T, std::complex<float>>) { return library_data_t::complex_float; } else if constexpr (std::is_same_v<T, sycl::double2> || std::is_same_v<T, std::complex<double>>) { return library_data_t::complex_double; } throw std::runtime_error("the type is unsupported"); } template <typename T> struct syheevx_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(evx, q, jobz, range, uplo, n, a_data, lda, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvx_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvx_scratchpad_size<T>, q, itype, jobz, range, uplo, n, lda, ldb, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> struct syhegvx_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(gvx, q, itype, jobz, range, uplo, n, a_data, lda, b_data, ldb, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvd_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvd_scratchpad_size<T>, q, itype, jobz, uplo, n, lda, ldb); } }; template <typename T> struct syhegvd_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(gvd, q, itype, jobz, uplo, n, a_data, lda, b_data, ldb, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; oneapi::mkl::compz job2compz(const oneapi::mkl::job &job) { oneapi::mkl::compz ret; if (job == oneapi::mkl::job::novec) { ret = oneapi::mkl::compz::novectors; } else if (job == oneapi::mkl::job::vec) { ret = oneapi::mkl::compz::vectors; } else { throw std::runtime_error("the job type is unsupported"); } return ret; } template <typename T> struct syheev_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(ev_scratchpad_size<T>, q, jobz, uplo, n, lda); #endif } }; template <typename T> struct syheev_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(ev, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct syheevd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evd_scratchpad_size<T>, q, jobz, uplo, n, lda); } }; template <typename T> struct syheevd_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(evd, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; #undef DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE #undef DISPATCH_FLOAT_FOR_CALCULATION template <typename T> struct trtri_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else device_ws_size = oneapi::mkl::lapack::trtri_scratchpad_size<T>(q, uplo, diag, n, lda); #endif } }; template <typename T> struct trtri_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::trtri(q, uplo, diag, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; } // namespace detail /// Computes the size of workspace memory of getrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int getrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::getrf_scratchpad_size_impl>( q, a_type, nullptr, "getrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the LU factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by L and U. The unit /// diagonal elements of L are not stored. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] ipiv The pivot indices. If \p ipiv is nullptr, non-pivoting /// LU factorization is computed. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); if (ipiv == nullptr) { return detail::lapack_shim<detail::getrfnp_impl>( q, a_type, info, "getrfnp_batch", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); } return detail::lapack_shim<detail::getrf_impl>( q, a_type, info, "getrf", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); #endif } /// Solves a system of linear equations with a LU-factored square coefficient /// matrix, with multiple right-hand sides. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] trans Indicates the form of the linear equation. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in] a The input matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ipiv The pivot indices. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrs(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::getrs_impl>( q, a_type, info, "getrs_scratchpad_size/getrs", q, trans, n, nrhs, a_type, a, lda, ipiv, b_type, b, ldb, info); } /// Computes the size of workspace memory of geqrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int geqrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::geqrf_scratchpad_size_impl>( q, a_type, nullptr, "geqrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the QR factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] tau_type The data type of the array tau. /// \param [in] tau The array contains scalars that define elementary reflectors /// for the matrix Q in its decomposition in a product of elementary reflectors. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int geqrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::geqrf_impl>( q, a_type, info, "geqrf", q, m, n, a_type, a, lda, tau_type, tau, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu_enum, jobvt_enum, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] host_ws_size The host workspace size as a number of elements /// of type \param a_type. Currently the value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, int *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } std::size_t device_ws_size_64; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu, jobvt, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_64); *device_ws_size = device_ws_size_64; return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::gesvd_impl>( q, a_type, info, "gesvd", q, jobu_enum, jobvt_enum, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec. /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } detail::lapack_shim<detail::gesvd_conj_impl>( q, a_type, info, "gesvd", q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); return 0; } /// Computes the size of workspace memory of potrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int potrf_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::potrf_scratchpad_size_impl>( q, a_type, nullptr, "potrf_scratchpad_size", q, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the Cholesky factorization of a symmetric (Hermitian) /// positive-definite matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrf(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::potrf_impl>( q, a_type, info, "potrf", q, uplo, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); } /// Solves a system of linear equations with a Cholesky-factored symmetric /// (Hermitian) positive-definite coefficient matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrs(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::potrs_impl>( q, a_type, info, "potrs_scratchpad_size/potrs", q, uplo, n, nrhs, a_type, a, lda, b_type, b, ldb, info); } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, a_type, nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, vl, vu, il, iu, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheevx_impl>( q, a_type, info, "syevx/heevx", q, compz_jobz, range, uplo, n, a_type, a, lda, vl, vu, il, iu, m, w_type, w, device_ws, device_ws_size_in_element_number, info); q.wait(); return ret; } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syheevx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevx/heevx", q, compz_jobz, range, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, &vl, &vu, il, iu, &m64, detail::get_library_data_t_from_type<ValueT>(), w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvx/hegvx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syhegvx_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, int ldb, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvx_scratchpad_size/hegvx_scratchpad_size", q, itype, compz_jobz, range, uplo, n, lda, ldb, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a real /// generalized symmetric/Hermitian definite eigenproblem. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvx(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syhegvx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvx/hegvx", q, itype, compz_jobz, range, uplo, n, a, lda, b, ldb, &vl, &vu, il, iu, &m64, w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvd/hegvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syhegvd_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int ldb, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvd_scratchpad_size/hegvd_scratchpad_size", q, itype, jobz, uplo, n, lda, ldb, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric/Hermitian definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvd(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syhegvd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvd/hegvd", q, itype, jobz, uplo, n, a, lda, b, ldb, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syev/heev function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheev_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int *device_ws_size) { std::size_t device_ws_size_tmp; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheev_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syev_scratchpad_size/heev_scratchpad_size", q, compz_jobz, uplo, n, lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /// or Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheev(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); return detail::lapack_shim<detail::syheev_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syev/heev", q, compz_jobz, uplo, n, a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, a_type, nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::syheevd_impl>( q, a_type, info, "syevd/heevd", q, jobz, uplo, n, a_type, a, lda, w, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, T *a, std::int64_t lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syheevd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevd/heevd", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of trtri function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int trtri_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::trtri_scratchpad_size_impl>( q, a_type, nullptr, "trtri_scratchpad_size", q, uplo, diag, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the inverse of a triangular matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// the inverse matrix of A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int trtri(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::trtri_impl>( q, a_type, info, "trtri", q, uplo, diag, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); #endif } } // namespace lapack } // namespace dpct #endif // __DPCT_LAPACK_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/fft_utils.hpp
//==---- fft_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FFT_UTILS_HPP__ #define __DPCT_FFT_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <optional> #include <utility> #include "lib_common_utils.hpp" namespace dpct { namespace fft { /// An enumeration type to describe the FFT direction is forward or backward. enum fft_direction : int { forward = 0, backward }; /// An enumeration type to describe the types of FFT input and output data. enum fft_type : int { real_float_to_complex_float = 0, complex_float_to_real_float, real_double_to_complex_double, complex_double_to_real_double, complex_float_to_complex_float, complex_double_to_complex_double, }; /// A class to perform FFT calculation. class fft_engine { public: /// Default constructor. fft_engine() {} /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, library_data_t input_type, long long *onembed, long long ostride, long long odist, library_data_t output_type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<long long>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, library_data_t input_type, int *onembed, int ostride, int odist, library_data_t output_type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<int>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n1, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(1); _n[0] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 1; _batch = batch; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(2); _n[0] = n2; _n[1] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 2; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(3); _n[0] = n3; _n[1] = n2; _n[2] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 3; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Create the class for calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n1, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n1, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n3, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, dim, n, inembed, istride, idist, onembed, ostride, odist, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate FFT without commit any config. static fft_engine *create() { fft_engine *engine = new fft_engine(); return engine; } /// Destroy the class for calculate FFT. /// \param [in] engine Pointer returned from fft_engine::craete. static void destroy(fft_engine *engine) { delete engine; } #ifdef __INTEL_MKL__ /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 1-D FFT. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If it is not set, forward direction(if current FFT is /// complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n1, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n1, type, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 2-D FFT. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 3-D FFT. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n3, int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n3, n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } #endif /// Execute the FFT calculation. /// \param [in] input Pointer to the input data. /// \param [out] output Pointer to the output data. /// \param [in] direction The FFT direction. template <typename input_t, typename output_t> void compute(input_t *input, output_t *output, fft_direction direction) { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } else if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } } template <> void compute(float *input, sycl::float2 *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(sycl::float2 *input, float *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(double *input, sycl::double2 *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::double2 *input, double *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::float2 *input, sycl::float2 *output, fft_direction direction) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } template <> void compute(sycl::double2 *input, sycl::double2 *output, fft_direction direction) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } /// Setting the user's SYCL queue for calculation. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { _q = q; } #ifdef __INTEL_MKL__ /// Setting whether to use external or internal workspace. /// \param [in] flag True means using internal workspace. False means using /// external workspace. void use_internal_workspace(bool flag = true) { _use_external_workspace = !flag; } /// Specify the external workspace. /// \param [in] ptr Pointer to the workspace. void set_workspace(void *ptr) { if (!_use_external_workspace) { return; } if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sc->set_workspace(data); } } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dc->set_workspace(data); } } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sr->set_workspace(data); } } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dr->set_workspace(data); } } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } #endif /// Get the workspace size. /// \param [out] scratchpad_size Workspace size in bytes. void get_workspace_size(size_t *scratchpad_size) { if (scratchpad_size) { *scratchpad_size = _workspace_bytes; } } private: static std::pair<library_data_t, library_data_t> fft_type_to_data_type(fft_type type) { switch (type) { case fft_type::real_float_to_complex_float: { return std::make_pair(library_data_t::real_float, library_data_t::complex_float); } case fft_type::complex_float_to_real_float: { return std::make_pair(library_data_t::complex_float, library_data_t::real_float); } case fft_type::real_double_to_complex_double: { return std::make_pair(library_data_t::real_double, library_data_t::complex_double); } case fft_type::complex_double_to_real_double: { return std::make_pair(library_data_t::complex_double, library_data_t::real_double); } case fft_type::complex_float_to_complex_float: { return std::make_pair(library_data_t::complex_float, library_data_t::complex_float); } case fft_type::complex_double_to_complex_double: { return std::make_pair(library_data_t::complex_double, library_data_t::complex_double); } } } void config_and_commit_basic() { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { _desc_sc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_sc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_sc->commit(*_q); #endif } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { _desc_dc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_dc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_dc->commit(*_q); #endif } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { _desc_sr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_sr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); #endif } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { _desc_dr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_dr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); #endif } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } void config_and_commit_advanced() { #ifdef __INTEL_MKL__ #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); \ if (_use_external_workspace) { \ DESC->set_value(oneapi::mkl::dft::config_param::WORKSPACE, \ oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); \ } \ if (_is_estimate_call) { \ if (_q->get_device().is_gpu()) { \ DESC->get_value( \ oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, \ &_workspace_estimate_bytes); \ } \ } else { \ DESC->commit(*_q); \ if (_is_estimate_call) { \ DESC->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, \ &_workspace_bytes); \ } \ } \ } #else #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::NOT_INPLACE); \ DESC->commit(*_q); \ } #endif if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { CONFIG_AND_COMMIT(_desc_sc, SINGLE, COMPLEX, float); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { CONFIG_AND_COMMIT(_desc_dc, DOUBLE, COMPLEX, double); } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { CONFIG_AND_COMMIT(_desc_sr, SINGLE, REAL, float); } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { CONFIG_AND_COMMIT(_desc_dr, DOUBLE, REAL, double); } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } #undef CONFIG_AND_COMMIT } template <typename T> void init(int dim, T *n, T *inembed, T istride, T idist, library_data_t input_type, T *onembed, T ostride, T odist, library_data_t output_type, T batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement) { if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } _n.resize(dim); _inembed.resize(dim); _onembed.resize(dim); _input_type = input_type; _output_type = output_type; for (int i = 0; i < dim; i++) { _n[i] = n[i]; } if (inembed && onembed) { for (int i = 0; i < dim; i++) { _inembed[i] = inembed[i]; _onembed[i] = onembed[i]; } _istride = istride; _ostride = ostride; if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double)) { _fwd_dist = idist; _bwd_dist = odist; } else if ((_output_type == library_data_t::real_float && _input_type == library_data_t::complex_float) || (_output_type == library_data_t::real_double && _input_type == library_data_t::complex_double)) { _fwd_dist = odist; _bwd_dist = idist; } else { if (_is_user_specified_dir_and_placement && (_direction == fft_direction::backward)) { _fwd_dist = odist; _bwd_dist = idist; } else { _fwd_dist = idist; _bwd_dist = odist; } } } else { _is_basic = true; } _batch = batch; _dim = dim; if (_is_basic) config_and_commit_basic(); else config_and_commit_advanced(); } template <class Desc_t> void set_stride_advanced(std::shared_ptr<Desc_t> desc) { if (_dim == 1) { std::int64_t input_stride[2] = {0, _istride}; std::int64_t output_stride[2] = {0, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 2) { std::int64_t input_stride[3] = {0, _inembed[1] * _istride, _istride}; std::int64_t output_stride[3] = {0, _onembed[1] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 3) { std::int64_t input_stride[4] = {0, _inembed[2] * _inembed[1] * _istride, _inembed[2] * _istride, _istride}; std::int64_t output_stride[4] = {0, _onembed[2] * _onembed[1] * _ostride, _onembed[2] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } } template <class Desc_t> void swap_distance(std::shared_ptr<Desc_t> desc) { desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _bwd_dist); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _fwd_dist); std::int64_t temp = _bwd_dist; _bwd_dist = _fwd_dist; _fwd_dist = temp; } template <bool Is_inplace, class Desc_t> void set_stride_and_distance_basic(std::shared_ptr<Desc_t> desc) { std::int64_t forward_distance = 0; std::int64_t backward_distance = 0; #define SET_STRIDE \ { \ if (_direction == fft_direction::forward) { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ real_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ complex_stride); \ } else { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ complex_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ real_stride); \ } \ } if (_dim == 1) { if constexpr (Is_inplace) { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = 2 * (_n[0] / 2 + 1); backward_distance = _n[0] / 2 + 1; } else { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = _n[0]; backward_distance = _n[0] / 2 + 1; } } else if (_dim == 2) { if constexpr (Is_inplace) { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, 2 * (_n[1] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * 2 * (_n[1] / 2 + 1); backward_distance = _n[0] * (_n[1] / 2 + 1); } else { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, _n[1], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1]; backward_distance = _n[0] * (_n[1] / 2 + 1); } } else if (_dim == 3) { if constexpr (Is_inplace) { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * 2 * (_n[2] / 2 + 1), 2 * (_n[2] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * 2 * (_n[2] / 2 + 1); backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } else { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * _n[2], _n[2], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * _n[2]; backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } } #undef SET_STRIDE desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, forward_distance); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, backward_distance); } #define COMPUTE(DESC) \ { \ if (_is_inplace) { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input); \ } \ } else { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ auto data_output = \ dpct::detail::get_memory(reinterpret_cast<T *>(output)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input, data_output); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input, data_output); \ } \ } \ } template <class T, oneapi::mkl::dft::precision Precision> void compute_complex(T *input, T *output, fft_direction direction) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The complex domain descriptor need different config values if the // FFT direction or placement is different. // Here we check the conditions, and new config values are set and // re-committed if needed. if (direction != _direction || is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { if (direction != _direction) { swap_distance(_desc_sc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_sc->commit(*_q); } else { if (direction != _direction) { swap_distance(_desc_dc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_dc->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sc); } else { COMPUTE(_desc_dc); } } template <class T, oneapi::mkl::dft::precision Precision> void compute_real(T *input, T *output) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The real domain descriptor need different config values if the // FFT placement is different. // Here we check the condition, and new config values are set and // re-committed if needed. if (is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_sr); } else { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); } else { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_dr); } else { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sr); } else { COMPUTE(_desc_dr); } } #undef COMPUTE private: sycl::queue *_q = nullptr; int _dim; std::vector<std::int64_t> _n; std::vector<std::int64_t> _inembed; std::int64_t _istride; std::int64_t _fwd_dist; library_data_t _input_type; std::vector<std::int64_t> _onembed; std::int64_t _ostride; std::int64_t _bwd_dist; library_data_t _output_type; std::int64_t _batch = 1; bool _is_basic = false; bool _is_inplace = false; fft_direction _direction = fft_direction::forward; bool _is_user_specified_dir_and_placement = false; bool _use_external_workspace = false; void *_external_workspace_ptr = nullptr; size_t _workspace_bytes = 0; bool _is_estimate_call = false; size_t _workspace_estimate_bytes = 0; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>> _desc_sr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>> _desc_dr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_sc; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_dc; }; using fft_engine_ptr = fft_engine *; } // namespace fft } // namespace dpct #endif // __DPCT_FFT_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/lib_common_utils.hpp
//==---- lib_common_utils.hpp ---------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LIB_COMMON_UTILS_HPP__ #define __DPCT_LIB_COMMON_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { namespace detail { template <typename T> inline auto get_memory(T *x) { #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<std::remove_cv_t<T>>(x); #else return x; #endif } template <typename T> inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) { using Ty = typename DataType<T>::T2; Ty s_h; detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), automatic).wait(); return s_h; } } enum class version_field : int { major, minor, update, patch }; /// Returns the requested field of Intel(R) oneAPI Math Kernel Library version. /// \param field The version information field (major, minor, update or patch). /// \param result The result value. inline void mkl_get_version(version_field field, int *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else MKLVersion version; mkl_get_version(&version); if (version_field::major == field) { *result = version.MajorVersion; } else if (version_field::minor == field) { *result = version.MinorVersion; } else if (version_field::update == field) { *result = version.UpdateVersion; } else if (version_field::patch == field) { *result = 0; } else { throw std::runtime_error("unknown field"); } #endif } enum class library_data_t : unsigned char { real_float = 0, complex_float, real_double, complex_double, real_half, complex_half, real_bfloat16, complex_bfloat16, real_int4, complex_int4, real_uint4, complex_uint4, real_int8, complex_int8, real_uint8, complex_uint8, real_int16, complex_int16, real_uint16, complex_uint16, real_int32, complex_int32, real_uint32, complex_uint32, real_int64, complex_int64, real_uint64, complex_uint64, real_int8_4, real_int8_32, real_uint8_4, library_data_t_size }; namespace detail { template <typename ArgT> inline constexpr std::uint64_t get_type_combination_id(ArgT Val) { static_assert((unsigned char)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT"); return (std::uint64_t)Val; } template <typename FirstT, typename... RestT> inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal, RestT... RestVal) { static_assert((std::uint8_t)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(sizeof...(RestT) <= 8 && "Too many parameters"); static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT"); return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal); } inline constexpr std::size_t library_data_size[] = { 8 * sizeof(float), // real_float 8 * sizeof(std::complex<float>), // complex_float 8 * sizeof(double), // real_double 8 * sizeof(std::complex<double>), // complex_double 8 * sizeof(sycl::half), // real_half 8 * sizeof(std::complex<sycl::half>), // complex_half 16, // real_bfloat16 16 * 2, // complex_bfloat16 4, // real_int4 4 * 2, // complex_int4 4, // real_uint4 4 * 2, // complex_uint4 8, // real_int8 8 * 2, // complex_int8 8, // real_uint8 8 * 2, // complex_uint8 16, // real_int16 16 * 2, // complex_int16 16, // real_uint16 16 * 2, // complex_uint16 32, // real_int32 32 * 2, // complex_int32 32, // real_uint32 32 * 2, // complex_uint32 64, // real_int64 64 * 2, // complex_int64 64, // real_uint64 64 * 2, // complex_uint64 8, // real_int8_4 8, // real_int8_32 8 // real_uint8_4 }; } // namespace detail } // namespace dpct #endif // __DPCT_LIB_COMMON_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/sparse_utils.hpp
//==---- sparse_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_SPARSE_UTILS_HPP__ #define __DPCT_SPARSE_UTILS_HPP__ #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace sparse { /// Describes properties of a sparse matrix. /// The properties are matrix type, diag, uplo and index base. class matrix_info { public: /// Matrix types are: /// ge: General matrix /// sy: Symmetric matrix /// he: Hermitian matrix /// tr: Triangular matrix enum class matrix_type : int { ge = 0, sy, he, tr }; auto get_matrix_type() const { return _matrix_type; } auto get_diag() const { return _diag; } auto get_uplo() const { return _uplo; } auto get_index_base() const { return _index_base; } void set_matrix_type(matrix_type mt) { _matrix_type = mt; } void set_diag(oneapi::mkl::diag d) { _diag = d; } void set_uplo(oneapi::mkl::uplo u) { _uplo = u; } void set_index_base(oneapi::mkl::index_base ib) { _index_base = ib; } private: matrix_type _matrix_type = matrix_type::ge; oneapi::mkl::diag _diag = oneapi::mkl::diag::nonunit; oneapi::mkl::uplo _uplo = oneapi::mkl::uplo::upper; oneapi::mkl::index_base _index_base = oneapi::mkl::index_base::zero; }; /// Computes a CSR format sparse matrix-dense vector product. /// y = alpha * op(A) * x + beta * y /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] num_rows Number of rows of the matrix A. /// \param [in] num_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] x Data of the vector x. /// \param [in] beta Scaling factor for the vector x. /// \param [in, out] y Data of the vector y. template <typename T> void csrmv(sycl::queue &queue, oneapi::mkl::transpose trans, int num_rows, int num_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *x, const T *beta, T *y) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, num_rows, num_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(x))); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::optimize_gemv(queue, trans, *sparse_matrix_handle); oneapi::mkl::sparse::gemv(queue, trans, alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::sy: { oneapi::mkl::sparse::symv(queue, info->get_uplo(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::tr: { oneapi::mkl::sparse::optimize_trmv(queue, info->get_uplo(), trans, info->get_diag(), *sparse_matrix_handle); oneapi::mkl::sparse::trmv(queue, info->get_uplo(), trans, info->get_diag(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } default: throw std::runtime_error( "the spmv does not support matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } /// Computes a CSR format sparse matrix-dense matrix product. /// C = alpha * op(A) * B + beta * C /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] sparse_rows Number of rows of the matrix A. /// \param [in] dense_cols Number of columns of the matrix B or C. /// \param [in] sparse_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] b Data of the matrix B. /// \param [in] ldb Leading dimension of the matrix B. /// \param [in] beta Scaling factor for the matrix B. /// \param [in, out] c Data of the matrix C. /// \param [in] ldc Leading dimension of the matrix C. template <typename T> void csrmm(sycl::queue &queue, oneapi::mkl::transpose trans, int sparse_rows, int dense_cols, int sparse_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *b, int ldb, const T *beta, T *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, sparse_rows, sparse_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(b))); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::gemm(queue, oneapi::mkl::layout::row_major, trans, oneapi::mkl::transpose::nontrans, alpha_value, *sparse_matrix_handle, data_b, dense_cols, ldb, beta_value, data_c, ldc); break; } default: throw std::runtime_error( "the csrmm does not support matrix_info::matrix_type::sy, " "matrix_info::matrix_type::tr and matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Saving the optimization information for solving a system of linear /// equations. class optimize_info { public: /// Constructor optimize_info() { oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); } /// Destructor ~optimize_info() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destructor. /// \param [in] e The event which the destructor depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } private: oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; }; #endif #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Performs internal optimizations for solving a system of linear equations for /// a CSR format sparse matrix. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the sparse matrix. /// \param [in] row_col Number of rows of the sparse matrix. /// \param [in] info Matrix info of the sparse matrix. /// \param [in] val An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] optimize_info The result of the optimizations. template <typename T> void optimize_csrsv(sycl::queue &queue, oneapi::mkl::transpose trans, int row_col, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, std::shared_ptr<optimize_info> optimize_info) { using Ty = typename dpct::DataType<T>::T2; auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, optimize_info->get_matrix_handle(), row_col, row_col, info->get_index_base(), data_row_ptr, data_col_ind, data_val); if (info->get_matrix_type() != matrix_info::matrix_type::tr) return; #ifndef DPCT_USM_LEVEL_NONE sycl::event e; e = #endif oneapi::mkl::sparse::optimize_trsv(queue, info->get_uplo(), trans, info->get_diag(), optimize_info->get_matrix_handle()); #ifndef DPCT_USM_LEVEL_NONE optimize_info->add_dependency(e); #endif } #endif class sparse_matrix_desc; using sparse_matrix_desc_t = std::shared_ptr<sparse_matrix_desc>; /// Structure for describe a dense vector class dense_vector_desc { public: dense_vector_desc(std::int64_t ele_num, void *value, library_data_t value_type) : _ele_num(ele_num), _value(value), _value_type(value_type) {} void get_desc(std::int64_t *ele_num, const void **value, library_data_t *value_type) const noexcept { *ele_num = _ele_num; *value = _value; *value_type = _value_type; } void get_desc(std::int64_t *ele_num, void **value, library_data_t *value_type) const noexcept { get_desc(ele_num, const_cast<const void **>(value), value_type); } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } private: std::int64_t _ele_num; void *_value; library_data_t _value_type; }; /// Structure for describe a dense matrix class dense_matrix_desc { public: dense_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t leading_dim, void *value, library_data_t value_type, oneapi::mkl::layout layout) : _row_num(row_num), _col_num(col_num), _leading_dim(leading_dim), _value(value), _value_type(value_type), _layout(layout) {} void get_desc(std::int64_t *row_num, std::int64_t *col_num, std::int64_t *leading_dim, void **value, library_data_t *value_type, oneapi::mkl::layout *layout) const noexcept { *row_num = _row_num; *col_num = _col_num; *leading_dim = _leading_dim; *value = _value; *value_type = _value_type; *layout = _layout; } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } std::int64_t get_col_num() const noexcept { return _col_num; } std::int64_t get_leading_dim() const noexcept { return _leading_dim; } oneapi::mkl::layout get_layout() const noexcept { return _layout; } private: std::int64_t _row_num; std::int64_t _col_num; std::int64_t _leading_dim; void *_value; library_data_t _value_type; oneapi::mkl::layout _layout; }; /// Sparse matrix data format enum matrix_format : int { csr = 1, }; /// Sparse matrix attribute enum matrix_attribute : int { uplo = 0, diag }; #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Structure for describe a sparse matrix class sparse_matrix_desc { public: /// Constructor /// \param [out] desc The descriptor to be created /// \param [in] row_num Number of rows of the sparse matrix. /// \param [in] col_num Number of colums of the sparse matrix. /// \param [in] nnz Non-zero elements in the sparse matrix. /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr_type Data type of the \p row_ptr . /// \param [in] col_ind_type Data type of the \p col_ind . /// \param [in] base Indicates how input arrays are indexed. /// \param [in] value_type Data type of the \p value . /// \param [in] data_format The matrix data format. sparse_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t nnz, void *row_ptr, void *col_ind, void *value, library_data_t row_ptr_type, library_data_t col_ind_type, oneapi::mkl::index_base base, library_data_t value_type, matrix_format data_format) : _row_num(row_num), _col_num(col_num), _nnz(nnz), _row_ptr(row_ptr), _col_ind(col_ind), _value(value), _row_ptr_type(row_ptr_type), _col_ind_type(col_ind_type), _base(base), _value_type(value_type), _data_format(data_format) { if (_data_format != matrix_format::csr) { throw std::runtime_error("the sparse matrix data format is unsupported"); } oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); construct(); } /// Destructor ~sparse_matrix_desc() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destroy method. /// \param [in] e The event which the destroy method depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } /// Get the values saved in the descriptor /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. /// \param [out] row_ptr An array of length \p row_num + 1. /// \param [out] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] value An array containing the non-zero elements of the sparse matrix. /// \param [out] row_ptr_type Data type of the \p row_ptr . /// \param [out] col_ind_type Data type of the \p col_ind . /// \param [out] base Indicates how input arrays are indexed. /// \param [out] value_type Data type of the \p value . void get_desc(int64_t *row_num, int64_t *col_num, int64_t *nnz, void **row_ptr, void **col_ind, void **value, library_data_t *row_ptr_type, library_data_t *col_ind_type, oneapi::mkl::index_base *base, library_data_t *value_type) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; *row_ptr = _row_ptr; *col_ind = _col_ind; *value = _value; *row_ptr_type = _row_ptr_type; *col_ind_type = _col_ind_type; *base = _base; *value_type = _value_type; } /// Get the sparse matrix data format of this descriptor /// \param [out] format The matrix data format result void get_format(matrix_format *data_format) const noexcept { *data_format = _data_format; } /// Get the index base of this descriptor /// \param [out] base The index base result void get_base(oneapi::mkl::index_base *base) const noexcept { *base = _base; } /// Get the value pointer of this descriptor /// \param [out] value The value pointer result void get_value(void **value) const noexcept { *value = _value; } /// Set the value pointer of this descriptor /// \param [in] value The input value pointer void set_value(void *value) { // Assume the new data is different from the old data _value = value; construct(); } /// Get the size of the sparse matrix /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. void get_size(int64_t *row_num, int64_t *col_num, int64_t *nnz) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; } /// Set the sparse matrix attribute /// \param [in] attribute The attribute type /// \param [in] data The attribute value /// \param [in] data_size The data size of the attribute value void set_attribute(matrix_attribute attribute, const void *data, size_t data_size) { if (attribute == matrix_attribute::diag) { const oneapi::mkl::diag *diag_ptr = reinterpret_cast<const oneapi::mkl::diag *>(data); if (*diag_ptr == oneapi::mkl::diag::unit) { _diag = oneapi::mkl::diag::unit; } else if (*diag_ptr == oneapi::mkl::diag::nonunit) { _diag = oneapi::mkl::diag::nonunit; } else { throw std::runtime_error("unsupported diag value"); } } else if (attribute == matrix_attribute::uplo) { const oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<const oneapi::mkl::uplo *>(data); if (*uplo_ptr == oneapi::mkl::uplo::upper) { _uplo = oneapi::mkl::uplo::upper; } else if (*uplo_ptr == oneapi::mkl::uplo::lower) { _uplo = oneapi::mkl::uplo::lower; } else { throw std::runtime_error("unsupported uplo value"); } } else { throw std::runtime_error("unsupported attribute"); } } /// Get the sparse matrix attribute /// \param [out] attribute The attribute type /// \param [out] data The attribute value /// \param [out] data_size The data size of the attribute value void get_attribute(matrix_attribute attribute, void *data, size_t data_size) const { if (attribute == matrix_attribute::diag) { oneapi::mkl::diag *diag_ptr = reinterpret_cast<oneapi::mkl::diag *>(data); if (_diag.has_value()) { *diag_ptr = _diag.value(); } else { *diag_ptr = oneapi::mkl::diag::nonunit; } } else if (attribute == matrix_attribute::uplo) { oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<oneapi::mkl::uplo *>(data); if (_uplo.has_value()) { *uplo_ptr = _uplo.value(); } else { *uplo_ptr = oneapi::mkl::uplo::lower; } } else { throw std::runtime_error("unsupported attribute"); } } /// Set the pointers for describing the sparse matrix /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. void set_pointers(void *row_ptr, void *col_ind, void *value) { // Assume the new data is different from the old data _row_ptr = row_ptr; _col_ind = col_ind; _value = value; construct(); } /// Get the diag attribute /// \return diag value std::optional<oneapi::mkl::diag> get_diag() const noexcept { return _diag; } /// Get the uplo attribute /// \return uplo value std::optional<oneapi::mkl::uplo> get_uplo() const noexcept { return _uplo; } private: template <typename index_t, typename value_t> void set_data() { auto data_row_ptr = dpct::detail::get_memory(reinterpret_cast<index_t *>(_row_ptr)); auto data_col_ind = dpct::detail::get_memory(reinterpret_cast<index_t *>(_col_ind)); auto data_value = dpct::detail::get_memory(reinterpret_cast<value_t *>(_value)); oneapi::mkl::sparse::set_csr_data(get_default_queue(), _matrix_handle, _row_num, _col_num, _base, data_row_ptr, data_col_ind, data_value); get_default_queue().wait(); } void construct() { std::uint64_t key = dpct::detail::get_type_combination_id( _row_ptr_type, _col_ind_type, _value_type); switch (key) { case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_float): { set_data<std::int32_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_double): { set_data<std::int32_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_float): { set_data<std::int32_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_double): { set_data<std::int32_t, std::complex<double>>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_float): { set_data<std::int64_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_double): { set_data<std::int64_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_float): { set_data<std::int64_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_double): { set_data<std::int64_t, std::complex<double>>(); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } std::int64_t _row_num; std::int64_t _col_num; std::int64_t _nnz; void *_row_ptr; void *_col_ind; void *_value; library_data_t _row_ptr_type; library_data_t _col_ind_type; oneapi::mkl::index_base _base; library_data_t _value_type; oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; matrix_format _data_format; std::optional<oneapi::mkl::uplo> _uplo; std::optional<oneapi::mkl::diag> _diag; }; namespace detail { #ifdef DPCT_USM_LEVEL_NONE #define SPARSE_CALL(X) \ do { \ X; \ } while (0) #else #define SPARSE_CALL(X) \ do { \ sycl::event e = X; \ a->add_dependency(e); \ } while (0) #endif template <typename Ty> inline void spmv_impl(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(x->get_value())); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y->get_value())); if (a->get_diag().has_value() && a->get_uplo().has_value()) { oneapi::mkl::sparse::optimize_trmv(queue, a->get_uplo().value(), trans, a->get_diag().value(), a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::trmv( queue, a->get_uplo().value(), trans, a->get_diag().value(), alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } else { oneapi::mkl::sparse::optimize_gemv(queue, trans, a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::gemv(queue, trans, alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } } template <typename Ty> inline void spmm_impl(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(b->get_value())); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c->get_value())); SPARSE_CALL(oneapi::mkl::sparse::gemm( queue, b->get_layout(), trans_a, trans_b, alpha_value, a->get_matrix_handle(), data_b, b->get_col_num(), b->get_leading_dim(), beta_value, data_c, c->get_leading_dim())); } #undef SPARSE_CALL } // namespace detail /// Computes a sparse matrix-dense vector product: y = alpha * op(a) * x + beta * y. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans Specifies operation on input matrix. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] x Specifies the dense vector x. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] y Specifies the dense vector y. /// \param [in] data_type Specifies the data type of \param a, \param x and \param y . inline void spmv(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y, library_data_t data_type) { switch (data_type) { case library_data_t::real_float: { detail::spmv_impl<float>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::real_double: { detail::spmv_impl<double>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_float: { detail::spmv_impl<std::complex<float>>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_double: { detail::spmv_impl<std::complex<double>>(queue, trans, alpha, a, x, beta, y); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a sparse matrix-dense matrix product: c = alpha * op(a) * op(b) + beta * c. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans_a Specifies operation on input matrix a. /// \param [in] trans_b Specifies operation on input matrix b. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] b Specifies the dense matrix b. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] c Specifies the dense matrix c. /// \param [in] data_type Specifies the data type of \param a, \param b and \param c . inline void spmm(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c, library_data_t data_type) { if (b->get_layout() != c->get_layout()) throw std::runtime_error("the layout of b and c are different"); switch (data_type) { case library_data_t::real_float: { detail::spmm_impl<float>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::real_double: { detail::spmm_impl<double>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_float: { detail::spmm_impl<std::complex<float>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_double: { detail::spmm_impl<std::complex<double>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } #endif } // namespace sparse } // namespace dpct #endif // __DPCT_SPARSE_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/device.hpp
//==---- device.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DEVICE_HPP__ #define __DPCT_DEVICE_HPP__ #include <sycl/sycl.hpp> #include <algorithm> #include <array> #include <cstring> #include <iostream> #include <mutex> #include <set> #include <sstream> #include <map> #include <vector> #include <thread> #if defined(__linux__) #include <unistd.h> #include <sys/syscall.h> #endif #if defined(_WIN64) #define NOMINMAX #include <windows.h> #endif namespace dpct { /// SYCL default exception handler inline auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught asynchronous SYCL exception:" << std::endl << e.what() << std::endl << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; } } }; typedef sycl::event *event_ptr; typedef sycl::queue *queue_ptr; typedef char *device_ptr; /// Destroy \p event pointed memory. /// /// \param event Pointer to the sycl::event address. static void destroy_event(event_ptr event) { delete event; } class device_info { public: // get interface const char *get_name() const { return _name; } char *get_name() { return _name; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() const { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } bool get_host_unified_memory() const { return _host_unified_memory; } int get_major_version() const { return _major; } int get_minor_version() const { return _minor; } int get_integrated() const { return _integrated; } int get_max_clock_frequency() const { return _frequency; } int get_max_compute_units() const { return _max_compute_units; } int get_max_work_group_size() const { return _max_work_group_size; } int get_max_sub_group_size() const { return _max_sub_group_size; } int get_max_work_items_per_compute_unit() const { return _max_work_items_per_compute_unit; } int get_max_register_size_per_work_group() const { return _max_register_size_per_work_group; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() const { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } size_t get_global_mem_size() const { return _global_mem_size; } size_t get_local_mem_size() const { return _local_mem_size; } /// Returns the maximum clock rate of device's global memory in kHz. If /// compiler does not support this API then returns default value 3200000 kHz. unsigned int get_memory_clock_rate() const { return _memory_clock_rate; } /// Returns the maximum bus width between device and memory in bits. If /// compiler does not support this API then returns default value 64 bits. unsigned int get_memory_bus_width() const { return _memory_bus_width; } uint32_t get_device_id() const { return _device_id; } std::array<unsigned char, 16> get_uuid() const { return _uuid; } // set interface void set_name(const char* name) { size_t length = strlen(name); if (length < 256) { std::memcpy(_name, name, length + 1); } else { std::memcpy(_name, name, 255); _name[255] = '\0'; } } void set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) { _max_work_item_sizes = max_work_item_sizes; for (int i = 0; i < 3; ++i) _max_work_item_sizes_i[i] = max_work_item_sizes[i]; } void set_host_unified_memory(bool host_unified_memory) { _host_unified_memory = host_unified_memory; } void set_major_version(int major) { _major = major; } void set_minor_version(int minor) { _minor = minor; } void set_integrated(int integrated) { _integrated = integrated; } void set_max_clock_frequency(int frequency) { _frequency = frequency; } void set_max_compute_units(int max_compute_units) { _max_compute_units = max_compute_units; } void set_global_mem_size(size_t global_mem_size) { _global_mem_size = global_mem_size; } void set_local_mem_size(size_t local_mem_size) { _local_mem_size = local_mem_size; } void set_max_work_group_size(int max_work_group_size) { _max_work_group_size = max_work_group_size; } void set_max_sub_group_size(int max_sub_group_size) { _max_sub_group_size = max_sub_group_size; } void set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) { _max_work_items_per_compute_unit = max_work_items_per_compute_unit; } void set_max_nd_range_size(int max_nd_range_size[]) { for (int i = 0; i < 3; i++) { _max_nd_range_size[i] = max_nd_range_size[i]; _max_nd_range_size_i[i] = max_nd_range_size[i]; } } void set_memory_clock_rate(unsigned int memory_clock_rate) { _memory_clock_rate = memory_clock_rate; } void set_memory_bus_width(unsigned int memory_bus_width) { _memory_bus_width = memory_bus_width; } void set_max_register_size_per_work_group(int max_register_size_per_work_group) { _max_register_size_per_work_group = max_register_size_per_work_group; } void set_device_id(uint32_t device_id) { _device_id = device_id; } void set_uuid(std::array<unsigned char, 16> uuid) { _uuid = std::move(uuid); } private: char _name[256]; sycl::id<3> _max_work_item_sizes; int _max_work_item_sizes_i[3]; bool _host_unified_memory = false; int _major; int _minor; int _integrated = 0; int _frequency; // Set estimated value 3200000 kHz as default value. unsigned int _memory_clock_rate = 3200000; // Set estimated value 64 bits as default value. unsigned int _memory_bus_width = 64; int _max_compute_units; int _max_work_group_size; int _max_sub_group_size; int _max_work_items_per_compute_unit; int _max_register_size_per_work_group; size_t _global_mem_size; size_t _local_mem_size; size_t _max_nd_range_size[3]; int _max_nd_range_size_i[3]; uint32_t _device_id; std::array<unsigned char, 16> _uuid; }; /// dpct device extension class device_ext : public sycl::device { typedef std::mutex mutex_type; public: device_ext() : sycl::device(), _ctx(*this) {} ~device_ext() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); } device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) { std::lock_guard<mutex_type> lock(m_mutex); init_queues(); } int is_native_atomic_supported() { return 0; } int get_major_version() const { int major, minor; get_version(major, minor); return major; } int get_minor_version() const { int major, minor; get_version(major, minor); return minor; } int get_max_compute_units() const { return get_device_info().get_max_compute_units(); } /// Return the maximum clock frequency of this device in KHz. int get_max_clock_frequency() const { return get_device_info().get_max_clock_frequency(); } int get_integrated() const { return get_device_info().get_integrated(); } int get_max_sub_group_size() const { return get_device_info().get_max_sub_group_size(); } int get_max_register_size_per_work_group() const { return get_device_info().get_max_register_size_per_work_group(); } int get_max_work_group_size() const { return get_device_info().get_max_work_group_size(); } int get_mem_base_addr_align() const { return get_info<sycl::info::device::mem_base_addr_align>(); } size_t get_global_mem_size() const { return get_device_info().get_global_mem_size(); } /// Get the number of bytes of free and total memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; } else { free_memory = get_info<sycl::ext::intel::info::device::free_memory>(); } #else std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const { device_info prop; prop.set_name(get_info<sycl::info::device::name>().c_str()); int major, minor; get_version(major, minor); prop.set_major_version(major); prop.set_minor_version(minor); prop.set_max_work_item_sizes( #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION<20220902) // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes is an enum class element get_info<sycl::info::device::max_work_item_sizes>()); #else // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by an int get_info<sycl::info::device::max_work_item_sizes<3>>()); #endif prop.set_host_unified_memory( this->has(sycl::aspect::usm_host_allocations)); prop.set_max_clock_frequency( get_info<sycl::info::device::max_clock_frequency>() * 1000); prop.set_max_compute_units( get_info<sycl::info::device::max_compute_units>()); prop.set_max_work_group_size( get_info<sycl::info::device::max_work_group_size>()); prop.set_global_mem_size( get_info<sycl::info::device::global_mem_size>()); prop.set_local_mem_size(get_info<sycl::info::device::local_mem_size>()); #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6) if (this->has(sycl::aspect::ext_intel_memory_clock_rate)) { unsigned int tmp = this->get_info<sycl::ext::intel::info::device::memory_clock_rate>(); if (tmp != 0) prop.set_memory_clock_rate(1000 * tmp); } if (this->has(sycl::aspect::ext_intel_memory_bus_width)) { prop.set_memory_bus_width( this->get_info<sycl::ext::intel::info::device::memory_bus_width>()); } if (this->has(sycl::aspect::ext_intel_device_id)) { prop.set_device_id( this->get_info<sycl::ext::intel::info::device::device_id>()); } if (this->has(sycl::aspect::ext_intel_device_info_uuid)) { prop.set_uuid( this->get_info<sycl::ext::intel::info::device::uuid>()); } #elif defined(_MSC_VER) && !defined(__clang__) #pragma message("get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value.") #else #warning "get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value." #endif size_t max_sub_group_size = 1; std::vector<size_t> sub_group_sizes = get_info<sycl::info::device::sub_group_sizes>(); for (const auto &sub_group_size : sub_group_sizes) { if (max_sub_group_size < sub_group_size) max_sub_group_size = sub_group_size; } prop.set_max_sub_group_size(max_sub_group_size); prop.set_max_work_items_per_compute_unit( get_info<sycl::info::device::max_work_group_size>()); int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; prop.set_max_nd_range_size(max_nd_range_size); // Estimates max register size per work group, feel free to update the value // according to device properties. prop.set_max_register_size_per_work_group(65536); out = prop; } device_info get_device_info() const { device_info prop; get_device_info(prop); return prop; } void reset() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); init_queues(); } sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue &out_of_order_queue() { return *_q_out_of_order; } sycl::queue &default_queue() { #ifdef DPCT_USM_LEVEL_NONE return out_of_order_queue(); #else return in_order_queue(); #endif // DPCT_USM_LEVEL_NONE } void queues_wait_and_throw() { std::unique_lock<mutex_type> lock(m_mutex); std::vector<std::shared_ptr<sycl::queue>> current_queues( _queues); lock.unlock(); for (const auto &q : current_queues) { q->wait_and_throw(); } // Guard the destruct of current_queues to make sure the ref count is safe. lock.lock(); } sycl::queue *create_queue(bool enable_exception_handler = false) { #ifdef DPCT_USM_LEVEL_NONE return create_out_of_order_queue(enable_exception_handler); #else return create_in_order_queue(enable_exception_handler); #endif // DPCT_USM_LEVEL_NONE } sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler, sycl::property::queue::in_order()); } sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler); } void destroy_queue(sycl::queue *&queue) { std::lock_guard<mutex_type> lock(m_mutex); _queues.erase(std::remove_if(_queues.begin(), _queues.end(), [=](const std::shared_ptr<sycl::queue> &q) -> bool { return q.get() == queue; }), _queues.end()); queue = nullptr; } void set_saved_queue(sycl::queue* q) { std::lock_guard<mutex_type> lock(m_mutex); _saved_queue = q; } sycl::queue *get_saved_queue() const { std::lock_guard<mutex_type> lock(m_mutex); return _saved_queue; } sycl::context get_context() const { return _ctx; } private: void clear_queues() { _queues.clear(); _q_in_order = _q_out_of_order = _saved_queue = nullptr; } void init_queues() { _q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); _q_out_of_order = create_queue_impl(true); _saved_queue = &default_queue(); } /// Caller should acquire resource \p m_mutex before calling this function. template <class... Properties> sycl::queue *create_queue_impl(bool enable_exception_handler, Properties... properties) { sycl::async_handler eh = {}; if (enable_exception_handler) { eh = exception_handler; } _queues.push_back(std::make_shared<sycl::queue>( _ctx, *this, eh, sycl::property_list( #ifdef DPCT_PROFILING_ENABLED sycl::property::queue::enable_profiling(), #endif properties...))); return _queues.back().get(); } void get_version(int &major, int &minor) const { // Version string has the following format: // a. OpenCL<space><major.minor><space><vendor-specific-information> // b. <major.minor> std::string ver; ver = get_info<sycl::info::device::version>(); std::string::size_type i = 0; while (i < ver.size()) { if (isdigit(ver[i])) break; i++; } major = std::stoi(&(ver[i])); while (i < ver.size()) { if (ver[i] == '.') break; i++; } i++; minor = std::stoi(&(ver[i])); } sycl::queue *_q_in_order, *_q_out_of_order; sycl::queue *_saved_queue; sycl::context _ctx; std::vector<std::shared_ptr<sycl::queue>> _queues; mutable mutex_type m_mutex; }; static inline unsigned int get_tid() { #if defined(__linux__) return syscall(SYS_gettid); #elif defined(_WIN64) return GetCurrentThreadId(); #else #error "Only support Windows and Linux." #endif } /// device manager class dev_mgr { public: device_ext &current_device() { unsigned int dev_id=current_device_id(); check_id(dev_id); return *_devs[dev_id]; } device_ext &cpu_device() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); if (_cpu_device == -1) { throw std::runtime_error("no valid cpu device"); } else { return *_devs[_cpu_device]; } } device_ext &get_device(unsigned int id) const { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); return *_devs[id]; } unsigned int current_device_id() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); auto it=_thread2dev_map.find(get_tid()); if(it != _thread2dev_map.end()) return it->second; return DEFAULT_DEVICE_ID; } /// Select device with a device ID. /// \param [in] id The id of the device which can /// be obtained through get_device_id(const sycl::device). void select_device(unsigned int id) { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); _thread2dev_map[get_tid()]=id; } unsigned int device_count() { return _devs.size(); } unsigned int get_device_id(const sycl::device &dev) { unsigned int id = 0; for(auto dev_item : _devs) { if (*dev_item == dev) { break; } id++; } return id; } template <class DeviceSelector> std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { sycl::device selected_device = sycl::device(selector); unsigned int selected_device_id = get_device_id(selected_device); select_device(selected_device_id); } /// Returns the instance of device manager singleton. static dev_mgr &instance() { static dev_mgr d_m; return d_m; } dev_mgr(const dev_mgr &) = delete; dev_mgr &operator=(const dev_mgr &) = delete; dev_mgr(dev_mgr &&) = delete; dev_mgr &operator=(dev_mgr &&) = delete; private: mutable std::recursive_mutex m_mutex; dev_mgr() { sycl::device default_device = sycl::device(sycl::default_selector_v); _devs.push_back(std::make_shared<device_ext>(default_device)); std::vector<sycl::device> sycl_all_devs = sycl::device::get_devices(sycl::info::device_type::all); // Collect other devices except for the default device. if (default_device.is_cpu()) _cpu_device = 0; for (auto &dev : sycl_all_devs) { if (dev == default_device) { continue; } _devs.push_back(std::make_shared<device_ext>(dev)); if (_cpu_device == -1 && dev.is_cpu()) { _cpu_device = _devs.size() - 1; } } } void check_id(unsigned int id) const { if (id >= _devs.size()) { throw std::runtime_error("invalid device id"); } } std::vector<std::shared_ptr<device_ext>> _devs; /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current /// thread id in _thread2dev_map, which means default device should be used /// for the current thread. const unsigned int DEFAULT_DEVICE_ID = 0; /// thread-id to device-id map. std::map<unsigned int, unsigned int> _thread2dev_map; int _cpu_device = -1; }; /// Util function to get the default queue of current selected device depends on /// the USM config. Return the default out-of-ordered queue when USM-none is /// enabled, otherwise return the default in-ordered queue. static inline sycl::queue &get_default_queue() { return dev_mgr::instance().current_device().default_queue(); } /// Util function to get the default in-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_in_order_queue() { return dev_mgr::instance().current_device().in_order_queue(); } /// Util function to get the default out-of-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_out_of_order_queue() { return dev_mgr::instance().current_device().out_of_order_queue(); } /// Util function to get the id of current device in /// dpct device manager. static inline unsigned int get_current_device_id() { return dev_mgr::instance().current_device_id(); } /// Util function to get the current device. static inline device_ext &get_current_device() { return dev_mgr::instance().current_device(); } /// Util function to get a device by id. static inline device_ext &get_device(unsigned int id) { return dev_mgr::instance().get_device(id); } /// Util function to get the context of the default queue of current /// device in dpct device manager. static inline sycl::context get_default_context() { return dpct::get_current_device().get_context(); } /// Util function to get a CPU device. static inline device_ext &cpu_device() { return dev_mgr::instance().cpu_device(); } static inline unsigned int select_device(unsigned int id) { dev_mgr::instance().select_device(id); return id; } template <class DeviceSelector> static inline std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { dev_mgr::instance().select_device(selector); } static inline unsigned int get_device_id(const sycl::device &dev){ return dev_mgr::instance().get_device_id(dev); } /// Util function to check whether a device supports some kinds of sycl::aspect. inline void has_capability_or_fail(const sycl::device &dev, const std::initializer_list<sycl::aspect> &props) { for (const auto &it : props) { if (dev.has(it)) continue; switch (it) { case sycl::aspect::fp64: throw std::runtime_error("'double' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; case sycl::aspect::fp16: throw std::runtime_error("'half' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; default: #define __SYCL_ASPECT(ASPECT, ID) \ case sycl::aspect::ASPECT: \ return #ASPECT; #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID) #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE) auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string { switch (AspectNum) { #include <sycl/info/aspects.def> #include <sycl/info/aspects_deprecated.def> default: return "unknown aspect"; } }; #undef __SYCL_ASPECT_DEPRECATED_ALIAS #undef __SYCL_ASPECT_DEPRECATED #undef __SYCL_ASPECT throw std::runtime_error( "'" + getAspectNameStr(it) + "' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); } break; } } } // namespace dpct #endif // __DPCT_DEVICE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/memory.hpp
//==---- memory.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_HPP__ #define __DPCT_MEMORY_HPP__ #include "device.hpp" #include <sycl/sycl.hpp> #include <cassert> #include <cstdint> #include <cstring> #include <mutex> #include <unordered_map> #include <map> #include <utility> #include <thread> #include <type_traits> #if defined(__linux__) #include <sys/mman.h> #elif defined(_WIN64) #define NOMINMAX #include <windows.h> #else #error "Only support Windows and Linux." #endif namespace dpct { enum memcpy_direction { host_to_host, host_to_device, device_to_host, device_to_device, automatic }; enum memory_region { global = 0, // device global memory constant, // device constant memory local, // device local memory shared, // memory which can be accessed by host and device }; typedef uint8_t byte_t; /// Buffer type to be used in Memory Management runtime. typedef sycl::buffer<byte_t> buffer_t; /// Pitched 2D/3D memory data. class pitched_data { public: pitched_data() : pitched_data(nullptr, 0, 0, 0) {} pitched_data(void *data, size_t pitch, size_t x, size_t y) : _data(data), _pitch(pitch), _x(x), _y(y) {} void *get_data_ptr() { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_pitch() { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } size_t get_x() { return _x; } void set_x(size_t x) { _x = x; }; size_t get_y() { return _y; } void set_y(size_t y) { _y = y; } private: void *_data; size_t _pitch, _x, _y; }; namespace detail { class mem_mgr { mem_mgr() { // Reserved address space, no real memory allocation happens here. #if defined(__linux__) mapped_address_space = (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif defined(_WIN64) mapped_address_space = (byte_t *)VirtualAlloc( NULL, // NULL specified as the base address parameter mapped_region_size, // Size of allocation MEM_RESERVE, // Allocate reserved pages PAGE_NOACCESS); // Protection = no access #else #error "Only support Windows and Linux." #endif next_free = mapped_address_space; }; public: using buffer_id_t = int; struct allocation { buffer_t buffer; byte_t *alloc_ptr; size_t size; }; ~mem_mgr() { #if defined(__linux__) munmap(mapped_address_space, mapped_region_size); #elif defined(_WIN64) VirtualFree(mapped_address_space, 0, MEM_RELEASE); #else #error "Only support Windows and Linux." #endif }; mem_mgr(const mem_mgr &) = delete; mem_mgr &operator=(const mem_mgr &) = delete; mem_mgr(mem_mgr &&) = delete; mem_mgr &operator=(mem_mgr &&) = delete; /// Allocate void *mem_alloc(size_t size) { if (!size) return nullptr; std::lock_guard<std::mutex> lock(m_mutex); if (next_free + size > mapped_address_space + mapped_region_size) { throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool"); } // Allocation sycl::range<1> r(size); buffer_t buf(r); allocation A{buf, next_free, size}; // Map allocation to device pointer void *result = next_free; m_map.emplace(next_free + size, A); // Update pointer to the next free space. next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1); return result; } /// Deallocate void mem_free(const void *ptr) { if (!ptr) return; std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); m_map.erase(it); } /// map: device pointer -> allocation(buffer, alloc_ptr, size) allocation translate_ptr(const void *ptr) { std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); return it->second; } /// Check if the pointer represents device pointer or not. bool is_device_ptr(const void *ptr) const { std::lock_guard<std::mutex> lock(m_mutex); return (mapped_address_space <= ptr) && (ptr < mapped_address_space + mapped_region_size); } /// Returns the instance of memory manager singleton. static mem_mgr &instance() { static mem_mgr m; return m; } private: std::map<byte_t *, allocation> m_map; mutable std::mutex m_mutex; byte_t *mapped_address_space; byte_t *next_free; const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024; const size_t alignment = 256; /// This padding may be defined to some positive value to debug /// out of bound accesses. const size_t extra_padding = 0; std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr) { auto it = m_map.upper_bound((byte_t *)ptr); if (it == m_map.end()) { // Not a virtual pointer. throw std::runtime_error("can not get buffer from non-virtual pointer"); } const allocation &alloc = it->second; if (ptr < alloc.alloc_ptr) { // Out of bound. // This may happen if there's a gap between allocations due to alignment // or extra padding and pointer points to this gap. throw std::runtime_error("invalid virtual pointer"); } return it; } }; template <class T, memory_region Memory, size_t Dimension> class accessor; template <memory_region Memory, class T = byte_t> class memory_traits { public: static constexpr sycl::access::target target = sycl::access::target::device; static constexpr sycl::access_mode mode = (Memory == constant) ? sycl::access_mode::read : sycl::access_mode::read_write; static constexpr size_t type_size = sizeof(T); using element_t = typename std::conditional<Memory == constant, const T, T>::type; using value_t = typename std::remove_cv<T>::type; template <size_t Dimension = 1> using accessor_t = typename std::conditional< Memory == local, sycl::local_accessor<value_t, Dimension>, sycl::accessor<T, Dimension, mode, target>>::type; using pointer_t = T *; }; static inline void *dpct_malloc(size_t size, sycl::queue &q) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().mem_alloc(size * sizeof(byte_t)); #else return sycl::malloc_device(size, q.get_device(), q.get_context()); #endif // DPCT_USM_LEVEL_NONE } #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F)) static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z, sycl::queue &q) { pitch = PITCH_DEFAULT_ALIGN(x); return dpct_malloc(pitch * y * z, q); } /// Set \p value to the first \p size bytes starting from \p dev_ptr in \p q. /// /// \param q The queue in which the operation is done. /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns An event representing the memset operation. static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr, int value, size_t size) { #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); assert(mm.is_device_ptr(dev_ptr)); auto alloc = mm.translate_ptr(dev_ptr); size_t offset = (byte_t *)dev_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.fill(acc, (byte_t)value); }); #else return q.memset(dev_ptr, value, size); #endif // DPCT_USM_LEVEL_NONE } /// Set \p value to the 3D memory region pointed by \p data in \p q. \p size /// specifies the 3D memory size to set. /// /// \param q The queue in which the operation is done. /// \param data Pointer to the device memory region. /// \param value Value to be set. /// \param size Memory region size. /// \returns An event list representing the memset operations. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, pitched_data data, int value, sycl::range<3> size) { std::vector<sycl::event> event_list; size_t slice = data.get_pitch() * data.get_y(); unsigned char *data_surface = (unsigned char *)data.get_data_ptr(); for (size_t z = 0; z < size.get(2); ++z) { unsigned char *data_ptr = data_surface; for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0))); data_ptr += data.get_pitch(); } data_surface += slice; } return event_list; } /// memset 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, void *ptr, size_t pitch, int val, size_t x, size_t y) { return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val, sycl::range<3>(x, y, 1)); } enum class pointer_access_attribute { host_only = 0, device_only, host_device, end }; static pointer_access_attribute get_pointer_attribute(sycl::queue &q, const void *ptr) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().is_device_ptr(ptr) ? pointer_access_attribute::device_only : pointer_access_attribute::host_only; #else switch (sycl::get_pointer_type(ptr, q.get_context())) { case sycl::usm::alloc::unknown: return pointer_access_attribute::host_only; case sycl::usm::alloc::device: return pointer_access_attribute::device_only; case sycl::usm::alloc::shared: case sycl::usm::alloc::host: return pointer_access_attribute::host_device; } #endif } static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr, const void *from_ptr, memcpy_direction dir) { switch (dir) { case memcpy_direction::host_to_host: case memcpy_direction::host_to_device: case memcpy_direction::device_to_host: case memcpy_direction::device_to_device: return dir; case memcpy_direction::automatic: { // table[to_attribute][from_attribute] static const memcpy_direction direction_table[static_cast<unsigned>(pointer_access_attribute::end)] [static_cast<unsigned>(pointer_access_attribute::end)] = {{memcpy_direction::host_to_host, memcpy_direction::device_to_host, memcpy_direction::host_to_host}, {memcpy_direction::host_to_device, memcpy_direction::device_to_device, memcpy_direction::device_to_device}, {memcpy_direction::host_to_host, memcpy_direction::device_to_device, memcpy_direction::device_to_device}}; return direction_table[static_cast<unsigned>(get_pointer_attribute( q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))]; } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } } static sycl::event dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { if (!size) return sycl::event{}; #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); switch (real_direction) { case host_to_host: return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); }); case host_to_device: { auto alloc = mm.translate_ptr(to_ptr); size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(from_ptr, acc); }); } case device_to_host: { auto alloc = mm.translate_ptr(from_ptr); size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(acc, to_ptr); }); } case device_to_device: { auto to_alloc = mm.translate_ptr(to_ptr); auto from_alloc = mm.translate_ptr(from_ptr); size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, r, to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, r, from_o); cgh.copy(from_acc, to_acc); }); } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } #else return q.memcpy(to_ptr, from_ptr, size, dep_events); #endif // DPCT_USM_LEVEL_NONE } // Get actual copy range and make sure it will not exceed range. static inline size_t get_copy_range(sycl::range<3> size, size_t slice, size_t pitch) { return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0); } static inline size_t get_offset(sycl::id<3> id, size_t slice, size_t pitch) { return slice * id.get(2) + pitch * id.get(1) + id.get(0); } /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr /// and \p from_range to another specified by \p to_ptr and \p to_range. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, sycl::range<3> to_range, sycl::range<3> from_range, sycl::id<3> to_id, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { // RAII for host pointer class host_buffer { void *_buf; size_t _size; sycl::queue &_q; const std::vector<sycl::event> &_deps; // free operation depends public: host_buffer(size_t size, sycl::queue &q, const std::vector<sycl::event> &deps) : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {} void *get_ptr() const { return _buf; } size_t get_size() const { return _size; } ~host_buffer() { if (_buf) { _q.submit([&](sycl::handler &cgh) { cgh.depends_on(_deps); cgh.host_task([buf = _buf] { std::free(buf); }); }); } } }; std::vector<sycl::event> event_list; size_t to_slice = to_range.get(1) * to_range.get(0), from_slice = from_range.get(1) * from_range.get(0); unsigned char *to_surface = (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0)); const unsigned char *from_surface = (const unsigned char *)from_ptr + get_offset(from_id, from_slice, from_range.get(0)); if (to_slice == from_slice && to_slice == size.get(1) * size.get(0)) { return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2), direction, dep_events)}; } direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); size_t size_slice = size.get(1) * size.get(0); switch (direction) { case host_to_host: for (size_t z = 0; z < size.get(2); ++z) { unsigned char *to_ptr = to_surface; const unsigned char *from_ptr = from_surface; if (to_range.get(0) == from_range.get(0) && to_range.get(0) == size.get(0)) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice, direction, dep_events)); } else { for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0), direction, dep_events)); to_ptr += to_range.get(0); from_ptr += from_range.get(0); } } to_surface += to_slice; from_surface += from_slice; } break; case host_to_device: { host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q, event_list); std::vector<sycl::event> host_events; if (to_slice == size_slice) { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, dep_events); } else { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy( q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // If has padding data, not sure whether it is useless. So fill temp // buffer with it. std::vector<sycl::event>{ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(), device_to_host, dep_events)}); } // Copy from temp host buffer to device with only one submit. event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(), buf.get_size(), host_to_device, host_events)); break; } case device_to_host: { host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q, event_list); // Copy from host temp buffer to host target with reshaping. event_list = dpct_memcpy( q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // Copy from device to temp host buffer with only one submit. std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface, buf.get_size(), device_to_host, dep_events)}); break; } case device_to_device: #ifdef DPCT_USM_LEVEL_NONE { auto &mm = mem_mgr::instance(); auto to_alloc = mm.translate_ptr(to_surface); auto from_alloc = mm.translate_ptr(from_surface); size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr; event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, get_copy_range(size, to_slice, to_range.get(0)), to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, get_copy_range(size, from_slice, from_range.get(0)), from_o); cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>( size, [=](sycl::id<3> id) { to_acc[get_offset(id, to_slice, to_range.get(0))] = from_acc[get_offset(id, from_slice, from_range.get(0))]; }); })); } #else event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.parallel_for<class dpct_memcpy_3d_detail>( size, [=](sycl::id<3> id) { to_surface[get_offset(id, to_slice, to_range.get(0))] = from_surface[get_offset(id, from_slice, from_range.get(0))]; }); })); #endif break; default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } return event_list; } /// memcpy 2D/3D matrix specified by pitched_data. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id, pitched_data from, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction = automatic) { return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(), sycl::range<3>(to.get_pitch(), to.get_y(), 1), sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id, size, direction); } /// memcpy 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t to_pitch, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic) { return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1), sycl::range<3>(from_pitch, y, 1), sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), sycl::range<3>(x, y, 1), direction); } namespace deprecated { template <typename T, sycl::usm::alloc AllocKind> class usm_allocator { private: using Alloc = sycl::usm_allocator<T, AllocKind>; Alloc _impl; public: using value_type = typename std::allocator_traits<Alloc>::value_type; using pointer = typename std::allocator_traits<Alloc>::pointer; using const_pointer = typename std::allocator_traits<Alloc>::const_pointer; using void_pointer = typename std::allocator_traits<Alloc>::void_pointer; using const_void_pointer = typename std::allocator_traits<Alloc>::const_void_pointer; using reference = typename std::allocator_traits<Alloc>::value_type &; using const_reference = const typename std::allocator_traits<Alloc>::value_type &; using difference_type = typename std::allocator_traits<Alloc>::difference_type; using size_type = typename std::allocator_traits<Alloc>::size_type; using propagate_on_container_copy_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_copy_assignment; using propagate_on_container_move_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_move_assignment; using propagate_on_container_swap = typename std::allocator_traits<Alloc>::propagate_on_container_swap; using is_always_equal = typename std::allocator_traits<Alloc>::is_always_equal; template <typename U> struct rebind { typedef usm_allocator<U, AllocKind> other; }; usm_allocator() : _impl(dpct::get_default_queue()) {} ~usm_allocator() {} usm_allocator(const usm_allocator &other) : _impl(other._impl) {} usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {} pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type cnt, const_void_pointer hint = nullptr) { return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint); } void deallocate(pointer p, size_type cnt) { std::allocator_traits<Alloc>::deallocate(_impl, p, cnt); } size_type max_size() const { return std::allocator_traits<Alloc>::max_size(_impl); } bool operator==(const usm_allocator &other) const { return _impl == other._impl; } bool operator!=(const usm_allocator &other) const { return _impl != other._impl; } }; } // namespace deprecated inline void dpct_free(void *ptr, const sycl::queue &q) { if (ptr) { #ifdef DPCT_USM_LEVEL_NONE detail::mem_mgr::instance().mem_free(ptr); #else sycl::free(ptr, q.get_context()); #endif // DPCT_USM_LEVEL_NONE } } } // namespace detail #ifdef DPCT_USM_LEVEL_NONE /// Check if the pointer \p ptr represents device pointer or not. /// /// \param ptr The pointer to be checked. /// \returns true if \p ptr is a device pointer. template<class T> static inline bool is_device_ptr(T ptr) { if constexpr (std::is_pointer<T>::value) { return detail::mem_mgr::instance().is_device_ptr(ptr); } return false; } #endif /// Get the buffer and the offset of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// If NULL is passed as an argument, an exception will be thrown. /// \returns a pair containing both the buffer and the offset. static std::pair<buffer_t, size_t> get_buffer_and_offset(const void *ptr) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); size_t offset = (byte_t *)ptr - alloc.alloc_ptr; return std::make_pair(alloc.buffer, offset); } else { throw std::runtime_error( "NULL pointer argument in get_buffer_and_offset function is invalid"); } } /// Get the data pointed from \p ptr as a 1D buffer reinterpreted as type T. template <typename T> static sycl::buffer<T> get_buffer(const void *ptr) { if (!ptr) return sycl::buffer<T>(sycl::range<1>(0)); auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.reinterpret<T>( sycl::range<1>(alloc.size / sizeof(T))); } /// Get the buffer of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// \returns the buffer. static buffer_t get_buffer(const void *ptr) { return detail::mem_mgr::instance().translate_ptr(ptr).buffer; } /// A wrapper class contains an accessor and an offset. template <typename dataT, sycl::access_mode accessMode = sycl::access_mode::read_write> class access_wrapper { sycl::accessor<byte_t, 1, accessMode> accessor; size_t offset; public: /// Construct the accessor wrapper for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// \param cgh The command group handler. access_wrapper(const void *ptr, sycl::handler &cgh) : accessor(get_buffer(ptr).get_access<accessMode>(cgh)), offset(0) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); offset = (byte_t *)ptr - alloc.alloc_ptr; } /// Get the device pointer. /// /// \returns a device pointer with offset. dataT get_raw_pointer() const { return (dataT)(&accessor[0] + offset); } }; /// Get the accessor for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// If NULL is passed as an argument, an exception will be thrown. /// \param cgh The command group handler. /// \returns an accessor. template <sycl::access_mode accessMode = sycl::access_mode::read_write> static sycl::accessor<byte_t, 1, accessMode> get_access(const void *ptr, sycl::handler &cgh) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.get_access<accessMode>(cgh); } else { throw std::runtime_error( "NULL pointer argument in get_access function is invalid"); } } /// Allocate memory block on the device. /// \param num_bytes Number of bytes to allocate. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. template <typename T> static inline void *dpct_malloc(T num_bytes, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(static_cast<size_t>(num_bytes), q); } /// Get the host pointer from a buffer that is mapped to virtual pointer ptr. /// \param ptr Virtual Pointer mapped to device buffer /// \returns A host pointer template <typename T> static inline T *get_host_ptr(const void *ptr) { auto BufferOffset = get_buffer_and_offset(ptr); auto host_ptr = BufferOffset.first.get_host_access() .get_pointer(); return (T *)(host_ptr + BufferOffset.second); } /// Allocate memory block for 3D array on the device. /// \param size Size of the memory block, in bytes. /// \param q Queue to execute the allocate task. /// \returns A pitched_data object which stores the memory info. static inline pitched_data dpct_malloc(sycl::range<3> size, sycl::queue &q = get_default_queue()) { pitched_data pitch(nullptr, 0, size.get(0), size.get(1)); size_t pitch_size; pitch.set_data_ptr(detail::dpct_malloc(pitch_size, size.get(0), size.get(1), size.get(2), q)); pitch.set_pitch(pitch_size); return pitch; } /// Allocate memory block for 2D array on the device. /// \param [out] pitch Aligned size of x in bytes. /// \param x Range in dim x. /// \param y Range in dim y. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(pitch, x, y, 1, q); } /// free /// \param ptr Point to free. /// \param q Queue to execute the free task. /// \returns no return value. static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) { detail::dpct_free(ptr, q); } /// Free the device memory pointed by a batch of pointers in \p pointers which /// are related to \p q after \p events completed. /// /// \param pointers The pointers point to the device memory requested to be freed. /// \param events The events to be waited. /// \param q The sycl::queue the memory relates to. inline void async_dpct_free(const std::vector<void *> &pointers, const std::vector<sycl::event> &events, sycl::queue &q = get_default_queue()) { q.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { for (auto p : pointers) if (p) { detail::dpct_free(p, q); } }); }); } /// Synchronously copies \p size bytes from the address specified by \p from_ptr /// to the address specified by \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, /// \a device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction).wait(); } /// Asynchronously copies \p size bytes from the address specified by \p /// from_ptr to the address specified by \p to_ptr. The value of \p direction is /// used to set the copy direction, it can be \a host_to_host, \a /// host_to_device, \a device_to_host, \a device_to_device or \a automatic. The /// return of the function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction); } /// Synchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait(detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction)); } /// Asynchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// \p from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The return of the /// function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction); } /// Synchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The function will return after the copy is completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait( detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction)); } /// Asynchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The return of the function does NOT guarantee the copy is /// completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction); } /// Synchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The function will return after the memset operation is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \param q The queue in which the operation is done. /// \returns no return value. static void dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size).wait(); } /// Asynchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The return of the function does NOT guarantee the memset operation /// is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns no return value. static void async_dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The function will return after the /// memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, ptr, pitch, val, x, y)); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, ptr, pitch, val, x, y); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The function will return after the /// memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, pitch, val, size)); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, pitch, val, size); } /// dpct accessor used as device function parameter. template <class T, memory_region Memory, size_t Dimension> class accessor; template <class T, memory_region Memory> class accessor<T, Memory, 3> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<3>; accessor(pointer_t data, const sycl::range<3> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<3> &in_range) : accessor(acc.get_pointer(), in_range) {} accessor<T, Memory, 2> operator[](size_t index) const { sycl::range<2> sub(_range.get(1), _range.get(2)); return accessor<T, Memory, 2>(_data + index * sub.size(), sub); } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<3> _range; }; template <class T, memory_region Memory> class accessor<T, Memory, 2> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<2>; accessor(pointer_t data, const sycl::range<2> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<2> &in_range) : accessor(acc.get_pointer(), in_range) {} pointer_t operator[](size_t index) const { return _data + _range.get(1) * index; } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<2> _range; }; namespace detail { /// Device variable with address space of shared, global or constant. template <class T, memory_region Memory, size_t Dimension> class device_memory { public: using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<Dimension>; using value_t = typename detail::memory_traits<Memory, T>::value_t; using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>; device_memory() : device_memory(sycl::range<Dimension>(1)) {} /// Constructor of 1-D array with initializer list device_memory( const sycl::range<Dimension> &in_range, std::initializer_list<value_t> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range.size()); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T)); } /// Constructor of 2-D array with initializer list template <size_t D = Dimension> device_memory( const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range, std::initializer_list<std::initializer_list<value_t>> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range[0]); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); auto tmp_data = _host_ptr; for (auto sub_list : init_list) { assert(sub_list.size() <= in_range[1]); std::memcpy(tmp_data, sub_list.begin(), sub_list.size() * sizeof(T)); tmp_data += in_range[1]; } } /// Constructor with range device_memory(const sycl::range<Dimension> &range_in) : _size(range_in.size() * sizeof(T)), _range(range_in), _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) { static_assert( (Memory == global) || (Memory == constant) || (Memory == shared), "device memory region should be global, constant or shared"); // Make sure that singleton class mem_mgr and dev_mgr will destruct later // than this. detail::mem_mgr::instance(); dev_mgr::instance(); } /// Constructor with range template <class... Args> device_memory(Args... Arguments) : device_memory(sycl::range<Dimension>(Arguments...)) {} ~device_memory() { if (_device_ptr && !_reference) dpct::dpct_free(_device_ptr); if (_host_ptr) std::free(_host_ptr); } /// Allocate memory with default queue, and init memory if has initial value. void init() { init(dpct::get_default_queue()); } /// Allocate memory with specified queue, and init memory if has initial value. void init(sycl::queue &q) { if (_device_ptr) return; if (!_size) return; allocate_device(q); if (_host_ptr) detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size, host_to_device); } /// The variable is assigned to a device pointer. void assign(value_t *src, size_t size) { this->~device_memory(); new (this) device_memory(src, size); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr() { return get_ptr(get_default_queue()); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr(sycl::queue &q) { init(q); return _device_ptr; } /// Get the device memory object size in bytes. size_t get_size() { return _size; } template <size_t D = Dimension> typename std::enable_if<D == 1, T>::type &operator[](size_t index) { init(); #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>( _device_ptr) .template get_access<sycl::access_mode::read_write>()[index]; #else return _device_ptr[index]; #endif // DPCT_USM_LEVEL_NONE } #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { return get_buffer(_device_ptr) .template reinterpret<T, Dimension>(_range) .template get_access<detail::memory_traits<Memory, T>::mode, detail::memory_traits<Memory, T>::target>(cgh); } #else /// Get dpct::accessor with dimension info for the device memory object /// when usm is used and dimension is greater than 1. template <size_t D = Dimension> typename std::enable_if<D != 1, dpct_accessor_t>::type get_access(sycl::handler &cgh) { return dpct_accessor_t((T *)_device_ptr, _range); } #endif // DPCT_USM_LEVEL_NONE private: device_memory(value_t *memory_ptr, size_t size) : _size(size), _range(size / sizeof(T)), _reference(true), _device_ptr(memory_ptr) {} void allocate_device(sycl::queue &q) { #ifndef DPCT_USM_LEVEL_NONE if (Memory == shared) { _device_ptr = (value_t *)sycl::malloc_shared( _size, q.get_device(), q.get_context()); return; } #endif _device_ptr = (value_t *)detail::dpct_malloc(_size, q); } size_t _size; sycl::range<Dimension> _range; bool _reference; value_t *_host_ptr; value_t *_device_ptr; }; template <class T, memory_region Memory> class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> { public: using base = device_memory<T, Memory, 1>; using value_t = typename base::value_t; using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<0>; /// Constructor with initial value. device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {} /// Default constructor device_memory() : base(1) {} #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { auto buf = get_buffer(base::get_ptr()) .template reinterpret<T, 1>(sycl::range<1>(1)); return accessor_t(buf, cgh); } #endif // DPCT_USM_LEVEL_NONE }; } template <class T, size_t Dimension> using global_memory = detail::device_memory<T, global, Dimension>; template <class T, size_t Dimension> using constant_memory = detail::device_memory<T, constant, Dimension>; template <class T, size_t Dimension> using shared_memory = detail::device_memory<T, shared, Dimension>; // dpct::deprecated:: is for functionality that was introduced for compatibility // purpose, but relies on deprecated C++ features, which are either removed or // will be removed in the future standards. // Direct use of deprecated functionality in this namespace should be avoided. namespace deprecated { template <typename T> using usm_host_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::host>; template <typename T> using usm_device_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::shared>; } // namespace deprecated class pointer_attributes { public: void init(const void *ptr, sycl::queue &q = dpct::get_default_queue()) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error( "dpct::pointer_attributes: only works for USM pointer."); #else memory_type = sycl::get_pointer_type(ptr, q.get_context()); device_pointer = (memory_type != sycl::usm::alloc::unknown) ? ptr : nullptr; host_pointer = (memory_type != sycl::usm::alloc::unknown) && (memory_type != sycl::usm::alloc::device) ? ptr : nullptr; sycl::device device_obj = sycl::get_pointer_device(ptr, q.get_context()); device_id = dpct::dev_mgr::instance().get_device_id(device_obj); #endif } sycl::usm::alloc get_memory_type() { return memory_type; } const void *get_device_pointer() { return device_pointer; } const void *get_host_pointer() { return host_pointer; } bool is_memory_shared() { return memory_type == sycl::usm::alloc::shared; } unsigned int get_device_id() { return device_id; } private: sycl::usm::alloc memory_type = sycl::usm::alloc::unknown; const void *device_pointer = nullptr; const void *host_pointer = nullptr; unsigned int device_id = 0; }; } // namespace dpct #endif // __DPCT_MEMORY_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_utils.hpp
//==---- dpl_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DPL_UTILS_HPP__ #define __DPCT_DPL_UTILS_HPP__ #define ONEDPL_USE_DPCPP_BACKEND 1 #define __USE_DPCT 1 #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "dpl_extras/memory.h" #include "dpl_extras/algorithm.h" #include "dpl_extras/numeric.h" #include "dpl_extras/iterators.h" #include "dpl_extras/vector.h" #include "dpl_extras/dpcpp_extensions.h" #endif // __DPCT_DPL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/math.hpp
//==---- math.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MATH_HPP__ #define __DPCT_MATH_HPP__ #include <sycl/sycl.hpp> namespace dpct { namespace detail { template <typename VecT, class BinaryOperation, class = void> class vectorized_binary { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { VecT v4; for (size_t i = 0; i < v4.size(); ++i) { v4[i] = binary_op(a[i], b[i]); } return v4; } }; template <typename VecT, class BinaryOperation> class vectorized_binary< VecT, BinaryOperation, std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { return binary_op(a, b).template as<VecT>(); } }; template <typename T> bool isnan(const T a) { return sycl::isnan(a); } // TODO: Need add more specialization such as bfloat16 version. } // namespace detail /// Compute fast_length for variable-length array /// \param [in] a The array /// \param [in] len Length of the array /// \returns The computed fast_length inline float fast_length(const float *a, int len) { switch (len) { case 1: return a[0]; case 2: return sycl::fast_length(sycl::float2(a[0], a[1])); case 3: return sycl::fast_length(sycl::float3(a[0], a[1], a[2])); case 4: return sycl::fast_length(sycl::float4(a[0], a[1], a[2], a[3])); case 0: return 0; default: float f = 0; for (int i = 0; i < len; ++i) f += a[i] * a[i]; return sycl::sqrt(f); } } /// Calculate the square root of the input array. /// \param [in] a The array pointer /// \param [in] len Length of the array /// \returns The square root template <typename T> inline T length(const T *a, const int len) { switch (len) { case 1: return a[0]; case 2: return sycl::length(sycl::vec<T, 2>(a[0], a[1])); case 3: return sycl::length(sycl::vec<T, 3>(a[0], a[1], a[2])); case 4: return sycl::length(sycl::vec<T, 4>(a[0], a[1], a[2], a[3])); default: T ret = 0; for (int i = 0; i < len; ++i) ret += a[i] * a[i]; return sycl::sqrt(ret); } } /// Performs comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> compare(const T a, const T b, const BinaryOperation binary_op) { return binary_op(a, b); } template <typename T> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<std::not_equal_to<>, T, T>, bool>, bool> compare(const T a, const T b, const std::not_equal_to<> binary_op) { return !detail::isnan(a) && !detail::isnan(b) && binary_op(a, b); } /// Performs unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return detail::isnan(a) || detail::isnan(b) || binary_op(a, b); } /// Performs 2 element comparison and return true if both results are true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> compare_both(const T a, const T b, const BinaryOperation binary_op) { return compare(a[0], b[0], binary_op) && compare(a[1], b[1], binary_op); } /// Performs 2 element unordered comparison and return true if both results are /// true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> unordered_compare_both(const T a, const T b, const BinaryOperation binary_op) { return unordered_compare(a[0], b[0], binary_op) && unordered_compare(a[1], b[1], binary_op); } /// Performs 2 element comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> compare(const T a, const T b, const BinaryOperation binary_op) { return {compare(a[0], b[0], binary_op), compare(a[1], b[1], binary_op)}; } /// Performs 2 elements comparison, compare result of each element is 0 (false) /// or 0xffff (true), returns an unsigned int by composing compare result of two /// elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-compare(a[0], b[0], binary_op), -compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Performs 2 element unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return {unordered_compare(a[0], b[0], binary_op), unordered_compare(a[1], b[1], binary_op)}; } /// Performs 2 elements unordered comparison, compare result of each element is /// 0 (false) or 0xffff (true), returns an unsigned int by composing compare /// result of two elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned unordered_compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-unordered_compare(a[0], b[0], binary_op), -unordered_compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Determine whether 2 element value is NaN. /// \param [in] a The input value /// \returns the comparison result template <typename T> inline std::enable_if_t<T::size() == 2, T> isnan(const T a) { return {detail::isnan(a[0]), detail::isnan(a[1])}; } // min function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double min(const double a, const float b) { return sycl::fmin(a, static_cast<double>(b)); } inline double min(const float a, const double b) { return sycl::fmin(static_cast<double>(a), b); } inline float min(const float a, const float b) { return sycl::fmin(a, b); } inline double min(const double a, const double b) { return sycl::fmin(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) { return sycl::min(static_cast<std::uint32_t>(a), b); } inline std::int32_t min(const std::int32_t a, const std::int32_t b) { return sycl::min(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::int64_t min(const std::int64_t a, const std::int64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } // max function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double max(const double a, const float b) { return sycl::fmax(a, static_cast<double>(b)); } inline double max(const float a, const double b) { return sycl::fmax(static_cast<double>(a), b); } inline float max(const float a, const float b) { return sycl::fmax(a, b); } inline double max(const double a, const double b) { return sycl::fmax(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) { return sycl::max(static_cast<std::uint32_t>(a), b); } inline std::int32_t max(const std::int32_t a, const std::int32_t b) { return sycl::max(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::int64_t max(const std::int64_t a, const std::int64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } /// Performs relu saturation. /// \param [in] a The input value /// \returns the relu saturation result template <typename T> inline T relu(const T a) { if (!detail::isnan(a) && a < 0.f) return 0.f; return a; } template <class T> inline sycl::vec<T, 2> relu(const sycl::vec<T, 2> a) { return {relu(a[0]), relu(a[1])}; } /// Performs complex number multiply addition. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] c The third value /// \returns the operation result template <typename T> inline sycl::vec<T, 2> complex_mul_add(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const sycl::vec<T, 2> c) { return sycl::vec<T, 2>{a[0] * b[0] - a[1] * b[1] + c[0], a[0] * b[1] + a[1] * b[0] + c[1]}; } /// Performs 2 elements comparison and returns the bigger one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the bigger value template <typename T> inline T fmax_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmax(a, b); } template <typename T> inline sycl::vec<T, 2> fmax_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmax_nan(a[0], b[0]), fmax_nan(a[1], b[1])}; } /// Performs 2 elements comparison and returns the smaller one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the smaller value template <typename T> inline T fmin_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmin(a, b); } template <typename T> inline sycl::vec<T, 2> fmin_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmin_nan(a[0], b[0]), fmin_nan(a[1], b[1])}; } /// A sycl::abs wrapper functors. struct abs { template <typename T> auto operator()(const T x) const { return sycl::abs(x); } }; /// A sycl::abs_diff wrapper functors. struct abs_diff { template <typename T> auto operator()(const T x, const T y) const { return sycl::abs_diff(x, y); } }; /// A sycl::add_sat wrapper functors. struct add_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::add_sat(x, y); } }; /// A sycl::rhadd wrapper functors. struct rhadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::rhadd(x, y); } }; /// A sycl::hadd wrapper functors. struct hadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::hadd(x, y); } }; /// A sycl::max wrapper functors. struct maximum { template <typename T> auto operator()(const T x, const T y) const { return sycl::max(x, y); } }; /// A sycl::min wrapper functors. struct minimum { template <typename T> auto operator()(const T x, const T y) const { return sycl::min(x, y); } }; /// A sycl::sub_sat wrapper functors. struct sub_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::sub_sat(x, y); } }; /// Compute vectorized binary operation value for two values, with each value /// treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] BinaryOperation The binary operation class /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized binary operation value of the two values template <typename VecT, class BinaryOperation> inline unsigned vectorized_binary(unsigned a, unsigned b, const BinaryOperation binary_op) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op); v0 = v4.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized isgreater for two values, with each value treated as a /// vector type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized greater than of the two values template <typename S, typename T> inline T vectorized_isgreater(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = v2 > v3; v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized max for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized max of the two values template <typename S, typename T> inline T vectorized_max(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::max(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized min for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized min of the two values template <typename S, typename T> inline T vectorized_min(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::min(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized unary operation for a value, with the value treated as a /// vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] UnaryOperation The unary operation class /// \param [in] a The input value /// \returns The vectorized unary operation value of the input value template <typename VecT, class UnaryOperation> inline unsigned vectorized_unary(unsigned a, const UnaryOperation unary_op) { sycl::vec<unsigned, 1> v0{a}; auto v1 = v0.as<VecT>(); auto v2 = unary_op(v1); v0 = v2.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized absolute difference for two values without modulo /// overflow, with each value treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized absolute difference of the two values template <typename VecT> inline unsigned vectorized_sum_abs_diff(unsigned a, unsigned b) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = sycl::abs_diff(v2, v3); unsigned sum = 0; for (size_t i = 0; i < v4.size(); ++i) { sum += v4[i]; } return sum; } } // namespace dpct #endif // __DPCT_MATH_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/blas_utils.hpp
//==---- blas_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_BLAS_UTILS_HPP__ #define __DPCT_BLAS_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <utility> #include <vector> #include <thread> namespace dpct { /// Get the value of \p s. /// Copy the data to host synchronously, then return the data. /// \param [in] p The pointer points the data. /// \param [in] q The queue where the memory copy should be executed. template <typename T> inline auto get_value(const T *s, sycl::queue &q) { return detail::get_value(s, q); } namespace detail { inline void mem_free(sycl::queue *exec_queue, std::vector<void *> pointers_array, sycl::event e) { e.wait(); for (auto p : pointers_array) sycl::free(p, *exec_queue); } inline int stride_for(int num_elems, int mem_align_in_elems) { return ((num_elems - 1) / mem_align_in_elems + 1) * mem_align_in_elems; } #ifndef DPCT_USM_LEVEL_NONE template<typename T> class working_memory { T *_input_ptr; T *_temp_ptr; bool _is_sycl_malloced = false; bool _is_scalar_value = false; sycl::queue _q; sycl::event _e; public: working_memory(size_t size, sycl::queue q) : _q(q) { _is_scalar_value = false; _temp_ptr = (T *)sycl::malloc_device(size, q); } working_memory(T *result_ptr, sycl::queue q) : _input_ptr(result_ptr), _q(q) { _is_scalar_value = true; _is_sycl_malloced = sycl::get_pointer_type(_input_ptr, _q.get_context()) != sycl::usm::alloc::unknown; if (!_is_sycl_malloced) _temp_ptr = sycl::malloc_shared<T>(1, _q); } auto get_ptr() { if (_is_scalar_value && _is_sycl_malloced) return _input_ptr; return _temp_ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_is_scalar_value) { if (!_is_sycl_malloced) { _q.memcpy(_input_ptr, _temp_ptr, sizeof(T)).wait(); sycl::free(_temp_ptr, _q); } } else { std::vector<void *> ptrs{_temp_ptr}; dpct::async_dpct_free(ptrs, {_e}); } } }; #endif template <typename Tx, typename Tr> inline void nrm2_impl(sycl::queue &q, int n, const void *x, int incx, void *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Tx>(x); auto r_buffer = sycl::buffer<Tr, 1>(reinterpret_cast<Tr *>(result), sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); oneapi::mkl::blas::column_major::nrm2(q, n, x_buffer, incx, r_buffer); #else working_memory<Tr> res_mem(reinterpret_cast<Tr *>(result), q); oneapi::mkl::blas::column_major::nrm2(q, n, reinterpret_cast<const Tx *>(x), incx, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate, class Txy, class Tr> inline void dotuc_impl(sycl::queue &q, int n, const Txy *x, int incx, const Txy *y, int incy, Tr *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Txy>(x); auto y_buffer = dpct::get_buffer<Txy>(y); auto r_buffer = sycl::buffer<Tr, 1>((Tr *)result, sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x_buffer, incx, y_buffer, incy, r_buffer); else oneapi::mkl::blas::column_major::dotu(q, n, x_buffer, incx, y_buffer, incy, r_buffer); } else oneapi::mkl::blas::column_major::dot(q, n, x_buffer, incx, y_buffer, incy, r_buffer); #else working_memory<Tr> res_mem(result, q); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x, incx, y, incy, res_mem.get_ptr()); else oneapi::mkl::blas::column_major::dotu(q, n, x, incx, y, incy, res_mem.get_ptr()); } else oneapi::mkl::blas::column_major::dot(q, n, x, incx, y, incy, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate> inline void dotuc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, y_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const float *>(x), incx, reinterpret_cast<const float *>(y), incy, reinterpret_cast<float *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const double *>(x), incx, reinterpret_cast<const double *>(y), incy, reinterpret_cast<double *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<float> *>(x), incx, reinterpret_cast<const std::complex<float> *>(y), incy, reinterpret_cast<std::complex<float> *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<double> *>(x), incx, reinterpret_cast<const std::complex<double> *>(y), incy, reinterpret_cast<std::complex<double> *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const sycl::half *>(x), incx, reinterpret_cast<const sycl::half *>(y), incy, reinterpret_cast<sycl::half *>(result)); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } template <class Tx, class Te> inline void scal_impl(sycl::queue &q, int n, const void *alpha, void *x, int incx) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<Tx *>(x)); oneapi::mkl::blas::column_major::scal(q, n, alpha_val, data_x, incx); #endif } template <class Txy, class Te> inline void axpy_impl(sycl::queue &q, int n, const void *alpha, const void *x, int incx, void *y, int incy) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<const Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::axpy(q, n, alpha_val, data_x, incx, data_y, incy); #endif } template <class Txy, class Tc, class Ts> inline void rot_impl(sycl::queue &q, int n, void *x, int incx, void *y, int incy, const void *c, const void *s) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Tc c_value = dpct::get_value(reinterpret_cast<const Tc *>(c), q); Ts s_value = dpct::get_value(reinterpret_cast<const Ts *>(s), q); auto data_x = get_memory(reinterpret_cast<Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::rot(q, n, data_x, incx, data_y, incy, c_value, s_value); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, const void *b, int ldb, const void *beta, void *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void **a, int lda, const void **b, int ldb, const void *beta, void **c, int ldc, int batch_size) { struct matrix_info_t { oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; matrix_info->value_info[1] = beta_value; matrix_info->size_info[0] = m; matrix_info->size_info[1] = n; matrix_info->size_info[2] = k; matrix_info->ld_info[0] = lda; matrix_info->ld_info[1] = ldb; matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); }); }); } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, long long int stride_a, const void *b, int ldb, long long int stride_b, const void *beta, void *c, int ldc, long long int stride_c, int batch_size) { Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm_batch( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } template <bool is_hermitian, class T, class Tbeta> inline void rk_impl(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { // For symmetric matrix, this function performs: C = alpha*OP(A)*(OP(B))^T + beta*C // For Hermitian matrix, this function performs: C = alpha*OP(A)*(OP(B))^H + beta*C // The gemmt() function performs: C = alpha*OPA(A)*OPB(B) + beta*C // So the OPB need be updated before we call gemmt(). using Ty = typename dpct::DataType<T>::T2; using Ts = typename dpct::DataType<Tbeta>::T2; Ty alpha_value = dpct::get_value(reinterpret_cast<const Ty *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); oneapi::mkl::transpose trans_A = trans, trans_B = trans; int origin_b_rows = trans == oneapi::mkl::transpose::nontrans ? n : k; int origin_b_cols = trans == oneapi::mkl::transpose::nontrans ? k : n; if ((is_hermitian && trans == oneapi::mkl::transpose::trans) || (!is_hermitian && !std::is_floating_point_v<Ty> && trans == oneapi::mkl::transpose::conjtrans)) { // In this case, OPB need be a conjugate operation, // but only notrans, conjtrans and trans are available. // So we need do a conjtrans operation first, then do a trans operation. trans_B = oneapi::mkl::transpose::trans; auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); #ifdef DPCT_USM_LEVEL_NONE auto new_B_buffer = sycl::buffer<Ty, 1>(sycl::range<1>(origin_b_rows * origin_b_cols)); auto from_buffer = dpct::get_buffer<Ty>(b); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), from_buffer, ldb, origin_b_rows * ldb, new_B_buffer, origin_b_cols, origin_b_rows * origin_b_cols, 1); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, new_B_buffer, origin_b_cols, beta_value, data_c, ldc); #else working_memory<T> new_B(origin_b_rows * origin_b_cols * sizeof(T), q); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), reinterpret_cast<const Ty *>(b), ldb, origin_b_rows * ldb, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, origin_b_rows * origin_b_cols, 1); sycl::event e = oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, beta_value, data_c, ldc); new_B.set_event(e); #endif } else { if constexpr (is_hermitian) { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::conjtrans : oneapi::mkl::transpose::nontrans; } else { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans; } auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_b = get_memory(reinterpret_cast<const Ty *>(b)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } } template <class Ta, class Tb, class Ts> inline void trsm_batch_impl(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, int lda, void **b, int ldb, int batch_size) { struct matrix_info_t { matrix_info_t(oneapi::mkl::side side_info, oneapi::mkl::uplo uplo_info, oneapi::mkl::transpose transpose_info, oneapi::mkl::diag diag_info, Ts value_info, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::int64_t groupsize_info) : side_info(side_info), uplo_info(uplo_info), transpose_info(transpose_info), diag_info(diag_info), value_info(value_info), groupsize_info(groupsize_info) { size_info[0] = m; size_info[1] = n; ld_info[0] = lda; ld_info[1] = ldb; } oneapi::mkl::side side_info; oneapi::mkl::uplo uplo_info; oneapi::mkl::transpose transpose_info; oneapi::mkl::diag diag_info; Ts value_info; std::int64_t size_info[2]; std::int64_t ld_info[2]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); matrix_info_t *matrix_info = new matrix_info_t(left_right, upper_lower, trans, unit_diag, alpha_value, m, n, lda, ldb, batch_size); sycl::event e = oneapi::mkl::blas::column_major::trsm_batch( q, &(matrix_info->side_info), &(matrix_info->uplo_info), &(matrix_info->transpose_info), &(matrix_info->diag_info), matrix_info->size_info, matrix_info->size_info + 1, &(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<Tb **>(b), matrix_info->ld_info + 1, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete matrix_info; }); }); } template <typename T> inline void getrfnp_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *info, int batch_size) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); std::int64_t stride_a = n * lda; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrfnp_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, batch_size); Ty *a_strided_mem = (Ty *)dpct::dpct_malloc(stride_a * batch_size * sizeof(Ty), exec_queue); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct::dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct::dpct_memcpy(a_strided_mem + i * stride_a, host_a[i], n * lda * sizeof(T)); #ifdef DPCT_USM_LEVEL_NONE { sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_strided_mem); oneapi::mkl::lapack::getrfnp_batch(exec_queue, n, n, a_buffer, lda, stride_a, batch_size, scratchpad, scratchpad_size); } std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic)); #else Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); sycl::event e = oneapi::mkl::lapack::getrfnp_batch( exec_queue, n, n, a_strided_mem, lda, stride_a, batch_size, scratchpad, scratchpad_size); std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic, {e})); std::vector<void *> ptrs{scratchpad, a_strided_mem}; dpct::async_dpct_free(ptrs, events, exec_queue); #endif exec_queue.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { free(host_a); }); }); #endif } } // namespace detail inline oneapi::mkl::transpose get_transpose(int t) { if (t == 0) { return oneapi::mkl::transpose::nontrans; } else if (t == 1) { return oneapi::mkl::transpose::trans; } else { return oneapi::mkl::transpose::conjtrans; } } /// Computes the LU factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in, out] a Array of pointers to matrices. These matrices will be /// overwritten by lower triangulars with unit diagonal elements and upper /// triangulars. /// \param [in] lda The leading dimension of the matrices. /// \param [out] ipiv An array stores the pivot indices. If \p ipiv is nullptr, /// non-pivoting LU factorization is computed. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrf_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *ipiv, int *info, int batch_size) { if (ipiv == nullptr) { detail::getrfnp_batch_wrapper(exec_queue, n, a, lda, info, batch_size); return; } using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, stride_ipiv, batch_size); T *a_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_buffer_ptr); oneapi::mkl::lapack::getrf_batch(exec_queue, n, n, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); auto to_buffer = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = ipiv_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = to_buffer.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * n + id.get(1)] = static_cast<int>(from_acc[id.get(0) * stride_ipiv + id.get(1)]); }); }); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); std::vector<void *> ptrs{host_a}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; oneapi::mkl::lapack::getrf_batch(exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); sycl::event e = exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv[idx] = static_cast<int>(ipiv_int64[idx]); }); }); std::vector<void *> ptrs{scratchpad, ipiv_int64, ipiv_int64_ptr, a_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Solves a system of linear equations with a batch of LU-factored square /// coefficient matrices, with multiple right-hand sides. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] trans Indicates the form of the linear equations. /// \param [in] n The order of the matrices. /// \param [in] nrhs The number of right hand sides. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [in, out] b Array of pointers to matrices, whose columns are /// the right-hand sides for the systems of equations. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrs_batch_wrapper(sycl::queue &exec_queue, oneapi::mkl::transpose trans, int n, int nrhs, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_b = nrhs * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, trans, n, nrhs, lda, stride_a, stride_ipiv, ldb, stride_b, batch_size); T *a_buffer_ptr, *b_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); dpct_memcpy(b_buffer_ptr + i * stride_b, host_b[i], nrhs * ldb * sizeof(T)); } { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getrs_batch(exec_queue, trans, n, nrhs, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, b_buffer, ldb, stride_b, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, nrhs * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t nrhs_int64 = nrhs; std::int64_t lda_int64 = lda; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, &trans, &n_int64, &nrhs_int64, &lda_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; sycl::event e = oneapi::mkl::lapack::getrs_batch( exec_queue, &trans, &n_int64, &nrhs_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, (Ty **)b_shared, &ldb_int64, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the inverses of a batch of LU-factored matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [out] b Array of pointers to inverse matrices. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getri_batch_wrapper(sycl::queue &exec_queue, int n, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_b = n * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, n, ldb, stride_b, stride_ipiv, batch_size); T *b_buffer_ptr; b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_buffer_ptr + i * stride_b, host_a[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } { auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getri_batch(exec_queue, n, b_buffer, ldb, stride_b, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, n * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, &n_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) { ipiv_int64_ptr[i] = ipiv_int64 + n * i; // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_shared[i], a_shared[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } sycl::event e = oneapi::mkl::lapack::getri_batch( exec_queue, &n_int64, (Ty **)b_shared, &ldb_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the QR factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] m The number of rows in the matrices. /// \param [in] n The number of columns in the matrices. /// \param [in, out] a Array of pointers to matrices. These /// matrices will be overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [out] tau An array stores the scalars. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void geqrf_batch_wrapper(sycl::queue exec_queue, int m, int n, T *a[], int lda, T *tau[], int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_tau = std::max(1, std::min(m, n)); std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, m, n, lda, stride_a, stride_tau, batch_size); T *a_buffer_ptr, *tau_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); tau_buffer_ptr = (T *)dpct_malloc(stride_tau * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_tau = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_tau, tau, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto tau_buffer = get_buffer<Ty>(tau_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; oneapi::mkl::lapack::geqrf_batch(exec_queue, m, n, a_buffer, lda, stride_a, tau_buffer, stride_tau, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events_a; std::vector<sycl::event> events_tau; for (std::int64_t i = 0; i < batch_size; ++i) { events_a.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); events_tau.push_back(detail::dpct_memcpy( exec_queue, host_tau[i], tau_buffer_ptr + i * stride_tau, std::max(1, std::min(m, n)) * sizeof(T), automatic)); } std::vector<void *> ptr_a{host_a}; std::vector<void *> ptr_tau{host_tau}; std::thread mem_free_thread_a( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_a, events_a); std::thread mem_free_thread_tau( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_tau, events_tau); mem_free_thread_a.detach(); mem_free_thread_tau.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **tau_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(tau_shared, tau, batch_size * sizeof(T *)).wait(); sycl::event e = oneapi::mkl::lapack::geqrf_batch( exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, (Ty **)tau_shared, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, a_shared, tau_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the Euclidean norm of a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void nrm2(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::nrm2_impl<float, float>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::nrm2_impl<double, double>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::nrm2_impl<std::complex<float>, float>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::nrm2_impl<std::complex<double>, double>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::nrm2_impl<sycl::half, sycl::half>( q, n, x, incx, result); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes the dot product of two vectors. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dot(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<false>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the dot product of two vectors, conjugating the first vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dotc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<true>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the product of a vector by a scalar. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. inline void scal(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, void *x, library_data_t x_type, int incx) { std::uint64_t key = detail::get_type_combination_id(x_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float): { detail::scal_impl<float, float>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_double): { detail::scal_impl<double, double>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_float): { detail::scal_impl<std::complex<float>, std::complex<float>>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_double): { detail::scal_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_half): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::scal_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a vector-scalar product and adds the result to a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. inline void axpy(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, const void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy) { std::uint64_t key = detail::get_type_combination_id(x_type, alpha_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::axpy_impl<float, float>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::axpy_impl<double, double>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::axpy_impl<std::complex<float>, std::complex<float>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::axpy_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::axpy_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx, y, incy); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Performs rotation of points in the plane. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [in] c Scaling factor. /// \param [in] s Scaling factor. /// \param [in] cs_type Data type of the scaling factors. inline void rot(sycl::queue &q, int n, void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy, const void *c, const void *s, library_data_t cs_type) { std::uint64_t key = detail::get_type_combination_id(x_type, cs_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::rot_impl<float, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::rot_impl<double, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::rot_impl<std::complex<float>, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::rot_impl<std::complex<double>, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::rot_impl<std::complex<float>, float, std::complex<float>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::rot_impl<std::complex<double>, double, std::complex<double>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::rot_impl<sycl::half, sycl::half, sycl::half>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_bfloat16, library_data_t::real_bfloat16): { detail::rot_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16>(q, n, x, incx, y, incy, c, s); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, const void *b, library_data_t b_type, int ldb, const void *beta, void *c, library_data_t c_type, int ldc, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>( q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a[], library_data_t a_type, int lda, const void *b[], library_data_t b_type, int ldb, const void *beta, void *c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] stride_a Stride between the different A matrices. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] stride_b Stride between the different B matrices. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, long long int stride_a, const void *b, library_data_t b_type, int ldb, long long int stride_b, const void *beta, void *c, library_data_t c_type, int ldc, long long int stride_c, int batch_size, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, std::int32_t>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b, &beta_half, c, ldc, stride_c, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// This routines perform a special rank-k update of a symmetric matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T> inline void syrk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const T *beta, T *c, int ldc) { detail::rk_impl<false, T, T>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routines perform a special rank-k update of a Hermitian matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T, class Tbeta> inline void herk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { detail::rk_impl<true, T, Tbeta>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routine performs a group of trsm operations. Each trsm solves an /// equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A multiplies X on the left or on the right. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of the B matrices. /// \param [in] n Number of columns of the B matrices. /// \param [in] alpha Scaling factor for the solutions. /// \param [in] a Input matrices A. /// \param [in] a_type Data type of the matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in, out] b Input and output matrices B. /// \param [in] b_type Data type of the matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [in] batch_size Specifies the number of trsm operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void trsm_batch(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, library_data_t a_type, int lda, void **b, library_data_t b_type, int ldb, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::uint64_t key = detail::get_type_combination_id(a_type, b_type, scaling_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::trsm_batch_impl<float, float, float>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::trsm_batch_impl<double, double, double>( q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::trsm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::trsm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a triangular matrix-general matrix product. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A is on the left or right side of the /// multiplication. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of B. /// \param [in] n Number of columns of B. /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in] b Input matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [out] c Output matrices C. /// \param [in] ldc Leading dimension of the matrices C. template <class T> inline void trmm(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const T *alpha, const T *a, int lda, const T *b, int ldb, T *c, int ldc) { using Ty = typename DataType<T>::T2; auto alpha_val = dpct::get_value(alpha, q); if (b != c) { dpct::matrix_mem_copy(c, b, ldc, ldb, m, n, dpct::device_to_device, q); } auto data_a = detail::get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = detail::get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::trmm(q, left_right, upper_lower, trans, unit_diag, m, n, alpha_val, data_a, lda, data_c, ldc); } } // namespace dpct #endif // __DPCT_BLAS_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/atomic.hpp
//==---- atomic.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ATOMIC_HPP__ #define __DPCT_ATOMIC_HPP__ #include <sycl/sycl.hpp> namespace dpct { /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_add(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_add(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_sub(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_sub(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_sub<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_and(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_and(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_and<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_and<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_and<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_and<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_or(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_or(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_or<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_or<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_or<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_or<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_xor(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_xor(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_xor<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_min(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_min(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_min<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_min<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_min<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_min<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_max(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_max(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_max<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_max<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_max<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_max<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically set \p operand to the value stored in \p addr, if old value stored in /// \p addr is equal to zero or greater than \p operand, else decrease the value stored /// in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_dec(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old == 0 || old > operand) { if (atm.compare_exchange_strong(old, operand)) break; } else if (atm.compare_exchange_strong(old, old - 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old >= operand) { if (atm.compare_exchange_strong(old, 0)) break; } else if (atm.compare_exchange_strong(old, old + 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_exchange(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_exchange(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_exchange<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_exchange<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_exchange<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_exchange<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in, out] addr Multi_ptr. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( sycl::multi_ptr<T, addressSpace> addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(*addr); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( sycl::multi_ptr<T1, addressSpace> addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(*addr); T1 expected_value = expected; atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in] addr The pointer to the data. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( T *addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( T1 *addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { T1 expected_value = expected; auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomic extension to implement standard APIs in std::atomic namespace detail{ template <typename T> struct IsValidAtomicType { static constexpr bool value = (std::is_same<T, int>::value || std::is_same<T, unsigned int>::value || std::is_same<T, long>::value || std::is_same<T, unsigned long>::value || std::is_same<T, long long>::value || std::is_same<T, unsigned long long>::value || std::is_same<T, float>::value || std::is_same<T, double>::value || std::is_pointer<T>::value); }; } // namespace detail template <typename T, sycl::memory_scope DefaultScope = sycl::memory_scope::system, sycl::memory_order DefaultOrder = sycl::memory_order::seq_cst, sycl::access::address_space Space = sycl::access::address_space::generic_space> class atomic{ static_assert( detail::IsValidAtomicType<T>::value, "Invalid atomic type. Valid types are int, unsigned int, long, " "unsigned long, long long, unsigned long long, float, double " "and pointer types"); T __d; public: /// default memory synchronization order static constexpr sycl::memory_order default_read_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_read_order; static constexpr sycl::memory_order default_write_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_write_order; static constexpr sycl::memory_scope default_scope = DefaultScope; static constexpr sycl::memory_order default_read_modify_write_order = DefaultOrder; /// Default constructor. constexpr atomic() noexcept = default; /// Constructor with initialize value. constexpr atomic(T d) noexcept : __d(d){}; /// atomically replaces the value of the referenced object with a non-atomic argument /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. void store(T operand, sycl::memory_order memoryOrder = default_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); atm.store(operand, memoryOrder, memoryScope); } /// atomically obtains the value of the referenced object /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object T load(sycl::memory_order memoryOrder = default_read_order, sycl::memory_scope memoryScope = default_scope) const noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm( const_cast<T &>(__d)); return atm.load(memoryOrder, memoryScope); } /// atomically replaces the value of the referenced object and obtains the value held previously /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T exchange(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.exchange(operand, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, memoryOrder, memoryScope); } /// atomically adds the argument to the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic addition /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_add(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_add(operand, memoryOrder, memoryScope); } /// atomically subtracts the argument from the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic subtraction /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_sub(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_sub(operand, memoryOrder, memoryScope); } }; } // namespace dpct #endif // __DPCT_ATOMIC_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/rng_utils.hpp
//==---- rng_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_RNG_UTILS_HPP__ #define __DPCT_RNG_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. #include <oneapi/mkl/rng/device.hpp> #endif #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace rng { #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. namespace device { /// The random number generator on device. /// \tparam engine_t The device random number generator engine. It can only be /// oneapi::mkl::rng::device::mrg32k3a<1> or /// oneapi::mkl::rng::device::mrg32k3a<4> or /// oneapi::mkl::rng::device::philox4x32x10<1> or /// oneapi::mkl::rng::device::philox4x32x10<4>. template <typename engine_t> class rng_generator { static_assert( std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>, "engine_t can only be oneapi::mkl::rng::device::mrg32k3a<1> or " "oneapi::mkl::rng::device::mrg32k3a<4> or " "oneapi::mkl::rng::device::philox4x32x10<1> or " "oneapi::mkl::rng::device::philox4x32x10<4> or " "oneapi::mkl::rng::device::mcg59<1>."); static constexpr bool _is_engine_vec_size_one = std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>; static constexpr std::uint64_t default_seed = 0; oneapi::mkl::rng::device::bits<std::uint32_t> _distr_bits; oneapi::mkl::rng::device::uniform_bits<std::uint32_t> _distr_uniform_bits; oneapi::mkl::rng::device::gaussian<float> _distr_gaussian_float; oneapi::mkl::rng::device::gaussian<double> _distr_gaussian_double; oneapi::mkl::rng::device::lognormal<float> _distr_lognormal_float; oneapi::mkl::rng::device::lognormal<double> _distr_lognormal_double; oneapi::mkl::rng::device::poisson<std::uint32_t> _distr_poisson; oneapi::mkl::rng::device::uniform<float> _distr_uniform_float; oneapi::mkl::rng::device::uniform<double> _distr_uniform_double; engine_t _engine; public: /// Default constructor of rng_generator rng_generator() { _engine = engine_t(default_seed); } /// Constructor of rng_generator if engine type is not mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. /// The number is calculated as: num_to_skip[0] + num_to_skip[1] * 2^64 + /// num_to_skip[2] * 2^128 + ... + num_to_skip[n-1] * 2^(64*(n-1)) template <typename T = engine_t, typename std::enable_if<!std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::initializer_list<std::uint64_t> num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Constructor of rng_generator if engine type is mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. template <typename T = engine_t, typename std::enable_if<std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::uint64_t num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Generate random number(s) obeys distribution \tparam distr_t. /// \tparam T The distribution of the random number. It can only be /// oneapi::mkl::rng::device::bits<std::uint32_t>, /// oneapi::mkl::rng::device::uniform_bits<std::uint32_t>, /// oneapi::mkl::rng::device::gaussian<float>, /// oneapi::mkl::rng::device::gaussian<double>, /// oneapi::mkl::rng::device::lognormal<float>, /// oneapi::mkl::rng::device::lognormal<double>, /// oneapi::mkl::rng::device::poisson<std::uint32_t>, /// oneapi::mkl::rng::device::uniform<float> or /// oneapi::mkl::rng::device::uniform<double> /// \tparam vec_size The length of the return vector. It can only be 1, 2 /// or 4. /// \param distr_params The parameter(s) for lognormal or poisson /// distribution. /// \return The vector of the random number(s). template <typename distr_t, int vec_size, class... distr_params_t> auto generate(distr_params_t... distr_params) { static_assert(vec_size == 1 || vec_size == 2 || vec_size == 4, "vec_size is not supported."); static_assert( std::disjunction_v< std::is_same<distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::poisson<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<double>>>, "distribution is not supported."); if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_bits); } if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_uniform_bits); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<float>>) { return generate_vec<vec_size>(_distr_gaussian_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<double>>) { return generate_vec<vec_size>(_distr_gaussian_double); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<float>>) { return generate_vec<vec_size>(_distr_lognormal_float, distr_params..., 0.0f, 1.0f); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<double>>) { return generate_vec<vec_size>(_distr_lognormal_double, distr_params..., 0.0, 1.0); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::poisson< std::uint32_t>>) { return generate_vec<vec_size>(_distr_poisson, distr_params...); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<float>>) { return generate_vec<vec_size>(_distr_uniform_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<double>>) { return generate_vec<vec_size>(_distr_uniform_double); } } /// Get the random number generator engine. /// \return The reference of the internal random number generator engine. engine_t &get_engine() { return _engine; } private: template <int vec_size, typename distr_t, class... distr_params_t> auto generate_vec(distr_t &distr, distr_params_t... distr_params) { if constexpr (sizeof...(distr_params_t)) { typename distr_t::param_type pt(distr_params...); distr.param(pt); } if constexpr (vec_size == 4) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 4> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); res.z() = oneapi::mkl::rng::device::generate(distr, _engine); res.w() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { return oneapi::mkl::rng::device::generate(distr, _engine); } } else if constexpr (vec_size == 1) { if constexpr (_is_engine_vec_size_one) { return oneapi::mkl::rng::device::generate(distr, _engine); } else { return oneapi::mkl::rng::device::generate_single(distr, _engine); } } else if constexpr (vec_size == 2) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate_single(distr, _engine); res.y() = oneapi::mkl::rng::device::generate_single(distr, _engine); return res; } } } }; } // namespace device #endif namespace host { namespace detail { class rng_generator_base { public: /// Set the seed of host rng_generator. /// \param seed The engine seed. virtual void set_seed(const std::uint64_t seed) = 0; /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. virtual void set_dimensions(const std::uint32_t dimensions) = 0; /// Set the queue of host rng_generator. /// \param queue The engine queue. virtual void set_queue(sycl::queue *queue) = 0; /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned int *output, std::int64_t n) = 0; /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) = 0; /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(float *output, std::int64_t n, float m, float s) = 0; /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(double *output, std::int64_t n, double m, double s) = 0; /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) = 0; /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) = 0; /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. virtual inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) = 0; /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(float *output, std::int64_t n) = 0; /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(double *output, std::int64_t n) = 0; /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. virtual void skip_ahead(const std::uint64_t num_to_skip) = 0; protected: sycl::queue *_queue{&dpct::get_default_queue()}; std::uint64_t _seed{0}; std::uint32_t _dimensions{1}; }; /// The random number generator on host. template <typename engine_t = oneapi::mkl::rng::philox4x32x10> class rng_generator : public rng_generator_base { public: /// Constructor of rng_generator. rng_generator() : _engine(create_engine(_queue, _seed, _dimensions)) {} /// Set the seed of host rng_generator. /// \param seed The engine seed. void set_seed(const std::uint64_t seed) { if (seed == _seed) { return; } _seed = seed; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. void set_dimensions(const std::uint32_t dimensions) { if (dimensions == _dimensions) { return; } _dimensions = dimensions; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the queue of host rng_generator. /// \param queue The engine queue. void set_queue(sycl::queue *queue) { if (queue == _queue) { return; } _queue = queue; _engine = create_engine(_queue, _seed, _dimensions); } /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned int *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned int) == sizeof(std::uint32_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint32_t>>( (std::uint32_t *)output, n); #endif } /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned long long) == sizeof(std::uint64_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint64_t>>( (std::uint64_t *)output, n); #endif } /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(float *output, std::int64_t n, float m, float s) { generate<oneapi::mkl::rng::lognormal<float>>(output, n, m, s); } /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(double *output, std::int64_t n, double m, double s) { generate<oneapi::mkl::rng::lognormal<double>>(output, n, m, s); } /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) { generate<oneapi::mkl::rng::gaussian<float>>(output, n, mean, stddev); } /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) { generate<oneapi::mkl::rng::gaussian<double>>(output, n, mean, stddev); } /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) { generate<oneapi::mkl::rng::poisson<unsigned int>>(output, n, lambda); } /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(float *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<float>>(output, n); } /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(double *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<double>>(output, n); } /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. void skip_ahead(const std::uint64_t num_to_skip) { #ifndef __INTEL_MKL__ oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #else if constexpr (std::is_same_v<engine_t, oneapi::mkl::rng::mt2203>) throw std::runtime_error("no skip_ahead method of mt2203 engine."); else oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #endif } private: static inline engine_t create_engine(sycl::queue *queue, const std::uint64_t seed, const std::uint32_t dimensions) { #ifdef __INTEL_MKL__ return std::is_same_v<engine_t, oneapi::mkl::rng::sobol> ? engine_t(*queue, dimensions) : engine_t(*queue, seed); #else return engine_t(*queue, seed); #endif } template <typename distr_t, typename buffer_t, class... distr_params_t> void generate(buffer_t *output, const std::int64_t n, const distr_params_t... distr_params) { auto output_buf = dpct::detail::get_memory(output); oneapi::mkl::rng::generate(distr_t(distr_params...), _engine, n, output_buf); } engine_t _engine{}; }; } // namespace detail } // namespace host enum class random_engine_type { philox4x32x10, mrg32k3a, mt2203, mt19937, sobol, mcg59 }; typedef std::shared_ptr<rng::host::detail::rng_generator_base> host_rng_ptr; /// Create a host random number generator. /// \param type The random engine type. /// \return The pointer of random number generator. inline host_rng_ptr create_host_rng(const random_engine_type type) { switch (type) { case random_engine_type::philox4x32x10: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::philox4x32x10>>(); case random_engine_type::mrg32k3a: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mrg32k3a>>(); #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else case random_engine_type::mt2203: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt2203>>(); case random_engine_type::mt19937: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt19937>>(); case random_engine_type::sobol: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::sobol>>(); case random_engine_type::mcg59: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mcg59>>(); #endif } } } // namespace rng } // namespace dpct #endif // __DPCT_RNG_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/numeric.h
//==---- numeric.h --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_NUMERIC_H__ #define __DPCT_NUMERIC_H__ namespace dpct { template <typename Policy, typename InputIt1, typename InputIt2, typename T> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init); } template <typename Policy, typename InputIt1, typename InputIt2, typename T, typename BinaryOperation1, typename BinaryOperation2> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1, BinaryOperation2 op2) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init, op1, op2); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/iterators.h
//==---- iterators.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ITERATORS_H__ #define __DPCT_ITERATORS_H__ #include <oneapi/dpl/iterator> #include "functional.h" namespace dpct { namespace internal { // Wrapper class returned from a dereferenced transform_iterator which was // created using // make_transform_output_iterator(). Used to apply the supplied transform // function when writing into an object of this class. // // Example: // int a[] = {0, 1, 2, 3, 4}; // int* p = a; // auto f = [](auto v) {return v*v;}; // auto tr_out = dpct::make_transform_output_iterator(p+1, f); // auto wrap = *tr_out; // wrap is a transform_output_ref_wrapper // std::cout<<*(p+1)<<std::endl; // '1' // wrap = 2; // apply function, store 2*2=4 // std::cout<<*(p+1)<<std::endl; // '4' template <typename T, typename _UnaryFunc> class transform_output_ref_wrapper { private: T __my_reference_; _UnaryFunc __my_unary_func_; public: template <typename U> transform_output_ref_wrapper(U &&__reference, _UnaryFunc __unary_func) : __my_reference_(std::forward<U>(__reference)), __my_unary_func_(__unary_func) {} // When writing to an object of this type, apply the supplied unary function, // then write to the wrapped reference template <typename UnaryInputType> transform_output_ref_wrapper &operator=(const UnaryInputType &e) { __my_reference_ = __my_unary_func_(e); return *this; } }; // Unary functor to create a transform_output_reference_wrapper when a // transform_iterator is dereferenced, so that a // the supplied unary function may be applied on write, resulting in a // transform_output_iterator template <typename _UnaryFunc> struct _Unary_Out { _Unary_Out(_UnaryFunc __f_) : __f(__f_) {} _UnaryFunc __f; template <typename T> auto operator()(T &&val) const { return transform_output_ref_wrapper<T, _UnaryFunc>(std::forward<T>(val), __f); } }; } // end namespace internal using std::advance; using std::distance; template <typename T> oneapi::dpl::counting_iterator<T> make_counting_iterator(const T &input) { return oneapi::dpl::counting_iterator<T>(input); } template <typename _Tp> class constant_iterator { public: typedef std::false_type is_hetero; typedef std::true_type is_passed_directly; typedef std::ptrdiff_t difference_type; typedef _Tp value_type; typedef _Tp *pointer; // There is no storage behind the iterator, so we return a value instead of // reference. typedef const _Tp reference; typedef const _Tp const_reference; typedef std::random_access_iterator_tag iterator_category; explicit constant_iterator(_Tp __init) : __my_value_(__init), __my_counter_(0) {} private: // used to construct iterator instances with different counter values required // by arithmetic operators constant_iterator(const _Tp &__value, const difference_type &__offset) : __my_value_(__value), __my_counter_(__offset) {} public: // non-const variants of access operators are not provided so unintended // writes are caught at compile time. const_reference operator*() const { return __my_value_; } const_reference operator[](difference_type) const { return __my_value_; } difference_type operator-(const constant_iterator &__it) const { return __my_counter_ - __it.__my_counter_; } constant_iterator &operator+=(difference_type __forward) { __my_counter_ += __forward; return *this; } constant_iterator &operator-=(difference_type __backward) { return *this += -__backward; } constant_iterator &operator++() { return *this += 1; } constant_iterator &operator--() { return *this -= 1; } constant_iterator operator++(int) { constant_iterator __it(*this); ++(*this); return __it; } constant_iterator operator--(int) { constant_iterator __it(*this); --(*this); return __it; } constant_iterator operator-(difference_type __backward) const { return constant_iterator(__my_value_, __my_counter_ - __backward); } constant_iterator operator+(difference_type __forward) const { return constant_iterator(__my_value_, __my_counter_ + __forward); } friend constant_iterator operator+(difference_type __forward, const constant_iterator __it) { return __it + __forward; } bool operator==(const constant_iterator &__it) const { return __my_value_ == __it.__my_value_ && this->__my_counter_ == __it.__my_counter_; } bool operator!=(const constant_iterator &__it) const { return !(*this == __it); } bool operator<(const constant_iterator &__it) const { return *this - __it < 0; } bool operator>(const constant_iterator &__it) const { return __it < *this; } bool operator<=(const constant_iterator &__it) const { return !(*this > __it); } bool operator>=(const constant_iterator &__it) const { return !(*this < __it); } private: _Tp __my_value_; uint64_t __my_counter_; }; template <typename _Tp> constant_iterator<_Tp> make_constant_iterator(_Tp __value) { return constant_iterator<_Tp>(__value); } // key_value_pair class to represent a key and value, specifically a // dereferenced arg_index_input_iterator template <typename _KeyTp, typename _ValueTp> class key_value_pair { public: key_value_pair() = default; key_value_pair(const _KeyTp &_key, const _ValueTp &_value) : key(_key), value(_value) {} bool operator==(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key == _kvp.key) && (value == _kvp.value); } bool operator!=(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key != _kvp.key) || (value != _kvp.value); } _KeyTp key; _ValueTp value; }; namespace detail { template <typename KeyTp, typename _ValueTp> struct make_key_value_pair { template <typename ValRefTp> key_value_pair<KeyTp, _ValueTp> operator()(const oneapi::dpl::__internal::tuple<KeyTp, ValRefTp> &tup) const { return ::dpct::key_value_pair<KeyTp, _ValueTp>(::std::get<0>(tup), ::std::get<1>(tup)); } }; template <class T> struct __zip_iterator_impl; template <class... Ts> struct __zip_iterator_impl<std::tuple<Ts...>> { using type = oneapi::dpl::zip_iterator<Ts...>; }; } // end namespace detail // dpct::zip_iterator can only accept std::tuple type as template argument for // compatibility purpose. Please use oneapi::dpl::zip_iterator if you want to // pass iterator's types directly. template <typename... Ts> using zip_iterator = typename detail::__zip_iterator_impl<Ts...>::type; // arg_index_input_iterator is an iterator over a input iterator, with a index. // When dereferenced, it returns a key_value_pair, which can be interrogated for // the index key or the value from the input iterator template <typename InputIteratorT, typename OffsetT = ptrdiff_t, typename OutputValueT = typename ::std::iterator_traits<InputIteratorT>::value_type> class arg_index_input_iterator : public oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>> { using arg_index_input_iterator_wrap = oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>>; public: typedef OffsetT difference_type; // signal to __get_sycl_range that this iterator is as a direct pass iterator using is_zip = ::std::true_type; arg_index_input_iterator(const arg_index_input_iterator_wrap &__arg_wrap) : arg_index_input_iterator_wrap(__arg_wrap) {} arg_index_input_iterator(InputIteratorT __iter) : arg_index_input_iterator_wrap( oneapi::dpl::make_zip_iterator( oneapi::dpl::counting_iterator(OffsetT(0)), __iter), detail::make_key_value_pair<OffsetT, OutputValueT>()) {} arg_index_input_iterator &operator=(const arg_index_input_iterator &__input) { arg_index_input_iterator_wrap::operator=(__input); return *this; } arg_index_input_iterator &operator++() { arg_index_input_iterator_wrap::operator++(); return *this; } arg_index_input_iterator &operator--() { arg_index_input_iterator_wrap::operator--(); return *this; } arg_index_input_iterator operator++(int) { arg_index_input_iterator __it(*this); ++(*this); return __it; } arg_index_input_iterator operator--(int) { arg_index_input_iterator __it(*this); --(*this); return __it; } arg_index_input_iterator operator+(difference_type __forward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator+(__forward)); } arg_index_input_iterator operator-(difference_type __backward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator-(__backward)); } arg_index_input_iterator &operator+=(difference_type __forward) { arg_index_input_iterator_wrap::operator+=(__forward); return *this; } arg_index_input_iterator &operator-=(difference_type __backward) { arg_index_input_iterator_wrap::operator-=(__backward); return *this; } friend arg_index_input_iterator operator+(difference_type __forward, const arg_index_input_iterator &__it) { return __it + __forward; } difference_type operator-(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator-(__it); } bool operator==(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator==(__it); } bool operator!=(const arg_index_input_iterator &__it) const { return !(*this == __it); } bool operator<(const arg_index_input_iterator &__it) const { return *this - __it < 0; } bool operator>(const arg_index_input_iterator &__it) const { return __it < *this; } bool operator<=(const arg_index_input_iterator &__it) const { return !(*this > __it); } bool operator>=(const arg_index_input_iterator &__it) const { return !(*this < __it); } // returns an arg_index_input_iterator with the same iter position, but a // count reset to 0 arg_index_input_iterator create_normalized() { return arg_index_input_iterator( ::std::get<1>(arg_index_input_iterator_wrap::base().base())); } }; template <typename IterT> struct io_iterator_pair { inline io_iterator_pair() : selector(false) {} inline io_iterator_pair(const IterT &first, const IterT &second) : selector(false) { iter[0] = first; iter[1] = second; } inline IterT first() const { return selector ? iter[1] : iter[0]; } inline IterT second() const { return selector ? iter[0] : iter[1]; } inline void swap() { selector = !selector; } bool selector; IterT iter[2]; }; template <typename _Iter, typename _UnaryFunc> auto make_transform_output_iterator(_Iter __it, _UnaryFunc __unary_func) { return oneapi::dpl::transform_iterator( __it, internal::_Unary_Out<_UnaryFunc>(__unary_func)); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/algorithm.h
//==---- algorithm.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ALGORITHM_H__ #define __DPCT_ALGORITHM_H__ #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "functional.h" #include "iterators.h" #include "vector.h" namespace dpct { template <typename Policy, typename Iter1, typename Iter2, typename Pred, typename T> void replace_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::transform(std::forward<Policy>(policy), first, last, mask, first, internal::replace_if_fun<typename std::iterator_traits<Iter1>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred, typename T> Iter3 replace_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::transform(std::forward<Policy>(policy), first, last, mask, result, internal::replace_if_fun<typename std::iterator_traits<Iter3>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using internal::__buffer; using ValueType = typename std::iterator_traits<Iter1>::value_type; __buffer<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.get(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(std::forward<Policy>(policy), _tmp.get(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using ValueType = typename std::iterator_traits<Iter1>::value_type; std::vector<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( policy, make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.begin(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(policy, _tmp.begin(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 remove_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; auto ret_val = std::remove_copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class BinaryPred> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_first, values_first), ret_val); return std::make_pair(keys_first + n1, values_first + n1); } template <class Policy, class Iter1, class Iter2> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; return unique(std::forward<Policy>(policy), keys_first, keys_last, values_first, std::equal_to<T>()); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryPred> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::unique_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; auto comp = std::equal_to<T>(); return unique_copy(std::forward<Policy>(policy), keys_first, keys_last, values_first, keys_result, values_result, comp); } template <typename Policy, typename Iter, typename Pred> Iter partition_point(Policy &&policy, Iter first, Iter last, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); if (std::is_partitioned(std::forward<Policy>(policy), first, last, p)) return std::find_if_not(std::forward<Policy>(policy), first, last, p); else return first; } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::copy_if( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(pred)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class UnaryOperation, class Pred> Iter2 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, result), oneapi::dpl::make_zip_iterator(first, result) + n, internal::transform_if_fun<T, Pred, UnaryOperation>(pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class UnaryOperation, class Pred> Iter3 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; using Ref1 = typename std::iterator_traits<Iter1>::reference; using Ref2 = typename std::iterator_traits<Iter2>::reference; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask, result), oneapi::dpl::make_zip_iterator(first, mask, result) + n, internal::transform_if_unary_zip_mask_fun<T, Pred, UnaryOperation>( pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryOperation, class Pred> Iter4 transform_if(Policy &&policy, Iter1 first1, Iter1 last1, Iter2 first2, Iter3 mask, Iter4 result, BinaryOperation binary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); const auto n = std::distance(first1, last1); using ZipIterator = typename oneapi::dpl::zip_iterator<Iter1, Iter2, Iter3, Iter4>; using T = typename std::iterator_traits<ZipIterator>::value_type; std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first1, first2, mask, result), oneapi::dpl::make_zip_iterator(last1, first2 + n, mask + n, result + n), internal::transform_if_zip_mask_fun<T, Pred, BinaryOperation>(pred, binary_op)); return result + n; } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> void scatter(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); oneapi::dpl::copy(policy, first, last, oneapi::dpl::make_permutation_iterator(result, map)); } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> OutputIter gather(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 input_first, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = ::std::distance(map_first, map_last); return oneapi::dpl::copy(policy, perm_begin, perm_begin + n, result); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> void scatter_if(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, InputIter3 mask, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); transform_if(policy, first, last, mask, oneapi::dpl::make_permutation_iterator(result, map), [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> OutputIter gather_if(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 mask, InputIter3 input_first, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = std::distance(map_first, map_last); return transform_if(policy, perm_begin, perm_begin + n, mask, result, [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6, typename Comp> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init, T step) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, internal::sequence_fun<T>(init, step)); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); iota(std::forward<Policy>(policy), first, last, init, T(1)); } template <class Policy, class Iter> void iota(Policy &&policy, Iter first, Iter last) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; iota(std::forward<Policy>(policy), first, last, DiffSize(0), DiffSize(1)); } template <class Policy, class Iter1, class Iter2, class Comp> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto first = oneapi::dpl::make_zip_iterator(keys_first, values_first); auto last = first + std::distance(keys_first, keys_last); std::sort(std::forward<Policy>(policy), first, last, internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter1, class Iter2, class Comp> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::stable_sort( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); stable_sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter, class Operator> void for_each_index(Policy &&policy, Iter first, Iter last, Operator unary_op) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, unary_op); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Comp> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::partition_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(out_true, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(out_false, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::make_pair(std::get<0>(ret_val.first.base()), std::get<0>(ret_val.second.base())); } template <typename Policy, typename Iter1, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::partition_copy(std::forward<Policy>(policy), first, last, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition_copy(std::forward<Policy>(policy), first, last, mask, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; internal::__buffer<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.get()); auto ret_val = std::stable_partition(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.get()), oneapi::dpl::make_zip_iterator( last, _tmp.get() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; std::vector<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.begin()); auto ret_val = std::stable_partition( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.begin()), oneapi::dpl::make_zip_iterator(last, _tmp.begin() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_execution_policy<Policy, Iter1> partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition(std::forward<Policy>(policy), first, last, mask, p); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); namespace internal { // Transforms key to a specific bit range and sorts the transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transformed_key_t> inline void transform_and_sort(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto trans_key = translate_key<key_t_value_t, transformed_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange // desired. auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, [=](const auto a, const auto b) { return comp(trans_key(a), trans_key(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<transformed_key_t>()); else partial_sort_with_comp(::std::less<transformed_key_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline void sort_only(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; if constexpr (::std::is_floating_point<key_t_value_t>::value) { if (descending) { // Comparison operator that is not std::greater() ensures stability of // -0.0 and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_descending = [=](const auto a, const auto b) { return a > b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_descending); } else { // Comparison operator that is not std::less() ensures stability of -0.0 // and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_ascending = [=](const auto a, const auto b) { return a < b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_ascending); } } else { if (descending) { oneapi::dpl::partial_sort_copy( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, ::std::greater<key_t_value_t>()); } else { oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n); } } } // Transforms key from a pair to a specific bit range and sorts the pairs by the // transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transform_key_t, typename value_t, typename value_out_t> inline void transform_and_sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); auto trans_key = translate_key<key_t_value_t, transform_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange desired // and also to select the key from the zipped pair. auto load_val = [=](const auto a) { return trans_key(std::get<0>(a)); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline void sort_only_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to select the key from the zipped pair. auto load_val = [=](const auto a) { return std::get<0>(a); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } // overload for key_out_t != std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<!::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_pairs_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort_pairs<decltype(policy), key_t, key_out_t, T, value_t, value_out_t>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_pairs_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_pairs_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_pairs_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_pairs_f.template operator()<uint64_t>(0); } } // overload for key_out_t == std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { // create temporary keys_out to discard, memory footprint could be improved by // a specialized iterator with a single // unchanging dummy key_t element using key_t_value_t = typename std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> temp_keys_out{sycl::range<1>(n)}; internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(temp_keys_out), values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_keys(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_pairs(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_keys(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename OffsetIteratorT> inline void mark_segments(_ExecutionPolicy &&policy, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, int64_t n, int64_t nsegments, sycl::buffer<::std::size_t, 1> segments) { ::std::size_t work_group_size = policy.queue() .get_device() .template get_info<sycl::info::device::max_work_group_size>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); ::std::size_t sub_group_size = sg_sizes.empty() ? 0 : sg_sizes.back(); float avg_seg_size = (float)n / (float)nsegments; if (avg_seg_size > work_group_size) { // If average segment size is larger than workgroup, use workgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(work_group_size, ([=](sycl::id<1> id) { for (::std::size_t seg = 0; seg < nsegments; seg++) { ::std::size_t i = begin_offsets[seg]; ::std::size_t end = end_offsets[seg]; while (i + id < end) { segments_acc[i + id] = seg; i += work_group_size; } } })); }) .wait(); } else if (sub_group_size > 0 && avg_seg_size > sub_group_size / 2) { // If average segment size is larger than half a subgroup, use subgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for( sycl::nd_range<1>{work_group_size, work_group_size}, ([=](sycl::nd_item<1> item) { auto sub_group = item.get_sub_group(); ::std::size_t num_subgroups = sub_group.get_group_range().size(); ::std::size_t local_size = sub_group.get_local_range().size(); ::std::size_t sub_group_id = sub_group.get_group_id(); while (sub_group_id < nsegments) { ::std::size_t subgroup_local_id = sub_group.get_local_id(); ::std::size_t i = begin_offsets[sub_group_id]; ::std::size_t end = end_offsets[sub_group_id]; while (i + subgroup_local_id < end) { segments_acc[i + subgroup_local_id] = sub_group_id; i += local_size; } sub_group_id += num_subgroups; } })); }) .wait(); } else { // If average segment size is small as compared to subgroup, use single // work item to mark each segment policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(nsegments, ([=](sycl::id<1> seg) { for (::std::size_t i = begin_offsets[seg]; i < end_offsets[seg]; i++) { segments_acc[i] = seg; } })); }) .wait(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(segments), oneapi::dpl::begin(segments_sorted), n, descending); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), oneapi::dpl::begin(keys_temp), keys_out, n, false); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; using value_t_value_t = typename ::std::iterator_traits<value_t>::value_type; sycl::buffer<value_t_value_t, 1> values_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); auto zip_seg_vals = oneapi::dpl::make_zip_iterator(oneapi::dpl::begin(segments), values_in); auto zip_seg_vals_out = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(values_temp)); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), zip_seg_vals, zip_seg_vals_out, n, descending); auto zip_keys_vals = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(values_temp)); auto zip_keys_vals_out = oneapi::dpl::make_zip_iterator(keys_out, values_out); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), zip_keys_vals, zip_keys_vals_out, n, false); } } // end namespace internal template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename value_t> inline void sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort<decltype(policy), key_t, key_out_t, T>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_f.template operator()<uint64_t>(0); } } template <typename _ExecutionPolicy, typename key_t> inline void sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_keys(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) keys.swap(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> segmented_sort_keys( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_keys_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_keys_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_keys_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename OffsetIteratorT> inline void segmented_sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_keys(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> segmented_sort_pairs( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_pairs_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_pairs_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_pairs_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename value_t, typename OffsetIteratorT> inline void segmented_sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_pairs(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmax(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::max_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmin(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::min_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable, typename StrictWeakOrdering> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value, StrictWeakOrdering comp) { ::std::vector<::std::int64_t> res_lower(1); ::std::vector<::std::int64_t> res_upper(1); ::std::vector<ValueLessComparable> value_vec(1, value); ::oneapi::dpl::lower_bound(policy, start, end, value_vec.begin(), value_vec.end(), res_lower.begin(), comp); ::oneapi::dpl::upper_bound(::std::forward<_ExecutionPolicy>(policy), start, end, value_vec.begin(), value_vec.end(), res_upper.begin(), comp); auto result = ::std::make_pair(start + res_lower[0], start + res_upper[0]); return result; } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value) { return equal_range(::std::forward<_ExecutionPolicy>(policy), start, end, value, internal::__less()); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmin(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::max()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::min_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmax(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::lowest()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::max_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/memory.h
//==---- memory.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_H__ #define __DPCT_MEMORY_H__ #include <sycl/sycl.hpp> // Memory management section: // device_pointer, device_reference, swap, device_iterator, malloc_device, // device_new, free_device, device_delete namespace dpct { namespace detail { template <typename T> struct make_allocatable { using type = T; }; template <> struct make_allocatable<void> { using type = dpct::byte_t; }; #if defined(__LIBSYCL_MAJOR_VERSION) && defined(__LIBSYCL_MINOR_VERSION) && \ defined(__LIBSYCL_PATCH_VERSION) #define _DPCT_LIBSYCL_VERSION \ (__LIBSYCL_MAJOR_VERSION * 10000 + __LIBSYCL_MINOR_VERSION * 100 + \ __LIBSYCL_PATCH_VERSION) #else #define _DPCT_LIBSYCL_VERSION 0 #endif template <typename _DataT> using __buffer_allocator = #if _DPCT_LIBSYCL_VERSION >= 60000 sycl::buffer_allocator<typename make_allocatable<_DataT>::type>; #else sycl::buffer_allocator; #endif } // namespace detail #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_pointer; #else template <typename T> class device_pointer; #endif template <typename T> struct device_reference { using pointer = device_pointer<T>; using value_type = T; template <typename OtherT> device_reference(const device_reference<OtherT> &input) : value(input.value) {} device_reference(const pointer &input) : value((*input).value) {} device_reference(value_type &input) : value(input) {} template <typename OtherT> device_reference &operator=(const device_reference<OtherT> &input) { value = input; return *this; }; device_reference &operator=(const device_reference &input) { T val = input.value; value = val; return *this; }; device_reference &operator=(const value_type &x) { value = x; return *this; }; pointer operator&() const { return pointer(&value); }; operator value_type() const { return T(value); } device_reference &operator++() { ++value; return *this; }; device_reference &operator--() { --value; return *this; }; device_reference operator++(int) { device_reference ref(*this); ++(*this); return ref; }; device_reference operator--(int) { device_reference ref(*this); --(*this); return ref; }; device_reference &operator+=(const T &input) { value += input; return *this; }; device_reference &operator-=(const T &input) { value -= input; return *this; }; device_reference &operator*=(const T &input) { value *= input; return *this; }; device_reference &operator/=(const T &input) { value /= input; return *this; }; device_reference &operator%=(const T &input) { value %= input; return *this; }; device_reference &operator&=(const T &input) { value &= input; return *this; }; device_reference &operator|=(const T &input) { value |= input; return *this; }; device_reference &operator^=(const T &input) { value ^= input; return *this; }; device_reference &operator<<=(const T &input) { value <<= input; return *this; }; device_reference &operator>>=(const T &input) { value >>= input; return *this; }; void swap(device_reference &input) { T tmp = (*this); *this = (input); input = (tmp); } T &value; }; template <typename T> void swap(device_reference<T> &x, device_reference<T> &y) { x.swap(y); } template <typename T> void swap(T &x, T &y) { T tmp = x; x = y; y = tmp; } namespace internal { // struct for checking if iterator is heterogeneous or not template <typename Iter, typename Void = void> // for non-heterogeneous iterators struct is_hetero_iterator : std::false_type {}; template <typename Iter> // for heterogeneous iterators struct is_hetero_iterator< Iter, typename std::enable_if<Iter::is_hetero::value, void>::type> : std::true_type {}; } // namespace internal #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode, typename Allocator> class device_iterator; template <typename ValueType, typename Allocator, typename Derived> class device_pointer_base { protected: sycl::buffer<ValueType, 1, Allocator> buffer; std::size_t idx; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(sycl::buffer<ValueType, 1> in, std::size_t i = 0) : buffer(in), idx(i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer_base(OtherT *ptr) : buffer( dpct::detail::mem_mgr::instance() .translate_ptr(ptr) .buffer.template reinterpret<ValueType, 1>(sycl::range<1>( dpct::detail::mem_mgr::instance().translate_ptr(ptr).size / sizeof(ValueType)))), idx(ptr - (ValueType*)dpct::detail::mem_mgr::instance() .translate_ptr(ptr).alloc_ptr) {} #endif device_pointer_base(const std::size_t count) : buffer(sycl::range<1>(count / sizeof(ValueType))), idx() {} // buffer has no default ctor we pass zero-range to create an empty buffer device_pointer_base() : buffer(sycl::range<1>(0)) {} device_pointer_base(const device_pointer_base &in) : buffer(in.buffer), idx(in.idx) {} pointer get() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() { auto res = (buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } Derived operator+(difference_type forward) const { return Derived{buffer, idx + forward}; } Derived operator-(difference_type backward) const { return Derived{buffer, idx - backward}; } Derived operator++(int) { Derived p(buffer, idx); idx += 1; return p; } Derived operator--(int) { Derived p(buffer, idx); idx -= 1; return p; } difference_type operator-(const Derived &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - std::distance(oneapi::dpl::begin(buffer), it); } std::size_t get_idx() const { return idx; } // required sycl::buffer<ValueType, 1, Allocator> get_buffer() { return buffer; } // required }; template <typename T, sycl::access_mode Mode, typename Allocator> class device_pointer : public device_pointer_base<T, Allocator, device_pointer<T, Mode, Allocator>> { private: using base_type = device_pointer_base<T, Allocator, device_pointer>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<T, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; template <sycl::access_mode Mode, typename Allocator> class device_pointer<void, Mode, Allocator> : public device_pointer_base<dpct::byte_t, Allocator, device_pointer<void, Mode, Allocator>> { private: using base_type = device_pointer_base<dpct::byte_t, Allocator, device_pointer>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<value_type, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; #else template <typename T> class device_iterator; template <typename ValueType, typename Derived> class device_pointer_base { protected: ValueType *ptr; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(ValueType *p) : ptr(p) {} device_pointer_base(const std::size_t count) { sycl::queue default_queue = dpct::get_default_queue(); ptr = static_cast<ValueType *>(sycl::malloc_shared( count, default_queue.get_device(), default_queue.get_context())); } device_pointer_base() {} pointer get() const { return ptr; } operator ValueType *() { return ptr; } operator ValueType *() const { return ptr; } ValueType &operator[](difference_type idx) { return ptr[idx]; } ValueType &operator[](difference_type idx) const { return ptr[idx]; } Derived operator+(difference_type forward) const { return Derived{ptr + forward}; } Derived operator-(difference_type backward) const { return Derived{ptr - backward}; } Derived operator++(int) { Derived p(ptr); ++ptr; return p; } Derived operator--(int) { Derived p(ptr); --ptr; return p; } difference_type operator-(const Derived &it) const { return ptr - it.ptr; } }; template <typename T> class device_pointer : public device_pointer_base<T, device_pointer<T>> { private: using base_type = device_pointer_base<T, device_pointer<T>>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using const_reference = const T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(T *p) : base_type(p) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer &operator=(const device_iterator<T> &in) { this->ptr = static_cast<device_pointer<T>>(in).ptr; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; template <> class device_pointer<void> : public device_pointer_base<dpct::byte_t, device_pointer<void>> { private: using base_type = device_pointer_base<dpct::byte_t, device_pointer<void>>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using const_reference = const value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(void *p) : base_type(static_cast<value_type *>(p)) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} pointer get() const { return static_cast<pointer>(this->ptr); } operator void *() { return this->ptr; } operator void *() const { return this->ptr; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; #endif #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_iterator : public device_pointer<T, Mode, Allocator> { using Base = device_pointer<T, Mode, Allocator>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; // required static constexpr sycl::access_mode mode = Mode; // required device_iterator() : Base() {} device_iterator(sycl::buffer<T, 1, Allocator> vec, std::size_t index) : Base(vec, index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T, inMode, Allocator> &in) : Base(in.buffer, in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::buffer = in.buffer; Base::idx = in.idx; return *this; } reference operator*() const { return const_cast<device_iterator *>(this) ->buffer.template get_access<mode>()[Base::idx]; } reference operator[](difference_type i) const { return *(*this + i); } device_iterator &operator++() { ++Base::idx; return *this; } device_iterator &operator--() { --Base::idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = Base::idx + forward; return {Base::buffer, new_idx}; } device_iterator &operator+=(difference_type forward) { Base::idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::buffer, Base::idx - backward}; } device_iterator &operator-=(difference_type backward) { Base::idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return Base::idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return Base::idx - std::distance(oneapi::dpl::begin(Base::buffer), it); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return Base::idx; } // required sycl::buffer<T, 1, Allocator> get_buffer() { return Base::buffer; } // required }; #else template <typename T> class device_iterator : public device_pointer<T> { using Base = device_pointer<T>; protected: std::size_t idx; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = typename Base::pointer; using reference = typename Base::reference; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required static constexpr sycl::access_mode mode = sycl::access_mode::read_write; // required device_iterator() : Base(nullptr), idx(0) {} device_iterator(T *vec, std::size_t index) : Base(vec), idx(index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T> &in) : Base(in.ptr), idx(in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::operator=(in); idx = in.idx; return *this; } reference operator*() const { return *(Base::ptr + idx); } reference operator[](difference_type i) { return Base::ptr[idx + i]; } reference operator[](difference_type i) const { return Base::ptr[idx + i]; } device_iterator &operator++() { ++idx; return *this; } device_iterator &operator--() { --idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = idx + forward; return {Base::ptr, new_idx}; } device_iterator &operator+=(difference_type forward) { idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::ptr, idx - backward}; } device_iterator &operator-=(difference_type backward) { idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - it.get_idx(); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return idx; } // required device_iterator &get_buffer() { return *this; } // required std::size_t size() const { return idx; } }; #endif template <typename T> device_pointer<T> malloc_device(const std::size_t num_elements) { return device_pointer<T>(num_elements * sizeof(T)); } static inline device_pointer<void> malloc_device(const std::size_t num_bytes) { return device_pointer<void>(num_bytes); } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const T &value, const std::size_t count = 1) { std::vector<T> result(count, value); p.buffer = sycl::buffer<T, 1>(result.begin(), result.end()); return p + count; } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const std::size_t count = 1) { return device_new(p, T{}, count); } template <typename T> device_pointer<T> device_new(const std::size_t count = 1) { return device_pointer<T>(count); } template <typename T> void free_device(device_pointer<T> ptr) {} template <typename T> typename std::enable_if<!std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T> p, const std::size_t count = 1) { for (std::size_t i = 0; i < count; ++i) { p[i].~T(); } } template <typename T> typename std::enable_if<std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T>, const std::size_t count = 1) {} template <typename T> device_pointer<T> get_device_pointer(T *ptr) { return device_pointer<T>(ptr); } template <typename T> device_pointer<T> get_device_pointer(const device_pointer<T> &ptr) { return device_pointer<T>(ptr); } template <typename T> T *get_raw_pointer(const device_pointer<T> &ptr) { return ptr.get(); } template <typename Pointer> Pointer get_raw_pointer(const Pointer &ptr) { return ptr; } template <typename T> const T &get_raw_reference(const device_reference<T> &ref) { return ref.value; } template <typename T> T &get_raw_reference(device_reference<T> &ref) { return ref.value; } template <typename T> const T &get_raw_reference(const T &ref) { return ref; } template <typename T> T &get_raw_reference(T &ref) { return ref; } } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/vector.h
//==---- vector.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_VECTOR_H__ #define __DPCT_VECTOR_H__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <sycl/sycl.hpp> #include "memory.h" #include <algorithm> #include <iterator> #include <vector> #include "../device.hpp" namespace dpct { namespace internal { template <typename Iter, typename Void = void> // for non-iterators struct is_iterator : std::false_type {}; template <typename Iter> // For iterators struct is_iterator< Iter, typename std::enable_if< !std::is_void<typename Iter::iterator_category>::value, void>::type> : std::true_type {}; template <typename T> // For pointers struct is_iterator<T *> : std::true_type {}; } // end namespace internal #ifndef DPCT_USM_LEVEL_NONE template <typename T, typename Allocator = sycl::usm_allocator<T, sycl::usm::alloc::shared>> class device_vector { public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename ::std::iterator_traits<iterator>::difference_type; using size_type = ::std::size_t; private: Allocator _alloc; size_type _size; size_type _capacity; pointer _storage; size_type _min_capacity() const { return size_type(1); } void _set_capacity_and_alloc() { _capacity = ::std::max(_size * 2, _min_capacity()); _storage = _alloc.allocate(_capacity); } public: template <typename OtherA> operator ::std::vector<T, OtherA>() const { auto __tmp = ::std::vector<T, OtherA>(this->size()); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _alloc(get_default_queue()), _size(0), _capacity(_min_capacity()) { _set_capacity_and_alloc(); } ~device_vector() /*= default*/ { _alloc.deallocate(_storage, _capacity); }; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _alloc(get_default_queue()), _size(n) { _set_capacity_and_alloc(); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), T(value)); } } device_vector(const device_vector &other) : _alloc(get_default_queue()) { _size = other.size(); _capacity = other.capacity(); _storage = _alloc.allocate(_capacity); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } device_vector(device_vector &&other) : _alloc(get_default_queue()), _size(other.size()), _capacity(other.capacity()), _storage(other._storage) { other._size = 0; other._capacity = 0; other._storage = nullptr; } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && ::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if<::std::is_pointer<InputIterator>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { auto ptr_type = sycl::get_pointer_type(first, get_default_context()); if (ptr_type != sycl::usm::alloc::host && ptr_type != sycl::usm::alloc::unknown) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } else { sycl::buffer<T, 1> buf(first, last); auto buf_first = oneapi::dpl::begin(buf); auto buf_last = oneapi::dpl::end(buf); ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), buf_first, buf_last, begin()); } } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && !::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()), _size(::std::distance(first, last)) { _set_capacity_and_alloc(); ::std::vector<T> _tmp(first, last); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), _tmp.begin(), _tmp.end(), this->begin()); } } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _storage(v.real_begin()), _size(v.size()), _capacity(v.capacity()) {} template <typename OtherAllocator> device_vector(::std::vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _size(v.size()) { _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), this->begin()); } } template <typename OtherAllocator> device_vector &operator=(const ::std::vector<T, OtherAllocator> &v) { resize(v.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), begin()); } return *this; } device_vector &operator=(const device_vector &other) { // Copy assignment operator: resize(other.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: device_vector dummy(::std::move(other)); this->swap(dummy); return *this; } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(_storage, 0); } iterator end() { return device_iterator<T>(_storage, size()); } const_iterator begin() const noexcept { return device_iterator<T>(_storage, 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(_storage, size()); } const_iterator cend() const { return end(); } T *real_begin() { return _storage; } const T *real_begin() const { return _storage; } void swap(device_vector &v) { ::std::swap(_size, v._size); ::std::swap(_capacity, v._capacity); ::std::swap(_storage, v._storage); ::std::swap(_alloc, v._alloc); } reference operator[](size_type n) { return _storage[n]; } const_reference operator[](size_type n) const { return _storage[n]; } void reserve(size_type n) { if (n > capacity()) { // allocate buffer for new size auto tmp = _alloc.allocate(2 * n); // copy content (old buffer to new buffer) ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); // deallocate old memory _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = 2 * n; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin() + _size, begin() + new_size, x); } _size = new_size; } size_type max_size(void) const { return ::std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _capacity; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return _storage; } const_pointer data(void) const { return _storage; } void shrink_to_fit(void) { if (_size != capacity()) { size_type tmp_capacity = ::std::max(_size, _min_capacity()); auto tmp = _alloc.allocate(tmp_capacity); if (_size > 0) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); } _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = tmp_capacity; } } void assign(size_type n, const T &x) { resize(n); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), begin() + n, x); } } template <typename InputIterator> void assign(InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); resize(n); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } void clear(void) { _size = 0; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = ::std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } auto m = ::std::distance(last, end()); if (m <= 0) { return end(); } auto tmp = _alloc.allocate(m); // copy remainder to temporary buffer. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), last, end(), tmp); // override (erase) subsequence in storage. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, first); _alloc.deallocate(tmp, m); _size -= n; return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = ::std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), end() - n, end(), x); } else { auto i_n = ::std::distance(begin(), position); // allocate temporary storage auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); // copy remainder ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, position + n, x); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); if (position == end()) { resize(size() + n); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, end()); } else { auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, position); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } Allocator get_allocator() const { return _alloc; } }; #else template <typename T, typename Allocator = detail::__buffer_allocator<T>> class device_vector { static_assert( std::is_same<Allocator, detail::__buffer_allocator<T>>::value, "device_vector doesn't support custom allocator when USM is not used."); public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename std::iterator_traits<iterator>::difference_type; using size_type = std::size_t; private: using Buffer = sycl::buffer<T, 1>; using Range = sycl::range<1>; // Using mem_mgr to handle memory allocation void *_storage; size_type _size; size_type _min_capacity() const { return size_type(1); } void *alloc_store(size_type num_bytes) { return detail::mem_mgr::instance().mem_alloc(num_bytes); } public: template <typename OtherA> operator std::vector<T, OtherA>() const { auto __tmp = std::vector<T, OtherA>(this->size()); std::copy(oneapi::dpl::execution::dpcpp_default, this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _storage(alloc_store(_min_capacity() * sizeof(T))), _size(0) {} ~device_vector() = default; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _storage(alloc_store(std::max(n, _min_capacity()) * sizeof(T))), _size(n) { auto buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(buf), oneapi::dpl::begin(buf) + n, T(value)); } device_vector(const device_vector &other) : _storage(other._storage), _size(other.size()) {} device_vector(device_vector &&other) : _storage(std::move(other._storage)), _size(other.size()) {} template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value && std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if<std::is_pointer<InputIterator>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); Buffer tmp_buf(first, last); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); std::vector<T> tmp(first, last); Buffer tmp_buf(tmp); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.real_begin(), v.real_begin() + v.size(), dst); } template <typename OtherAllocator> device_vector(std::vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { std::copy(oneapi::dpl::execution::dpcpp_default, v.begin(), v.end(), oneapi::dpl::begin(get_buffer())); } device_vector &operator=(const device_vector &other) { // Copy assignment operator: _size = other.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(other.get_buffer()), oneapi::dpl::end(other.get_buffer()), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: _size = other.size(); this->_storage = std::move(other._storage); return *this; } template <typename OtherAllocator> device_vector &operator=(const std::vector<T, OtherAllocator> &v) { Buffer data(v.begin(), v.end()); _size = v.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(data), oneapi::dpl::end(data), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } Buffer get_buffer() const { return detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template reinterpret<T, 1>(sycl::range<1>(capacity())); } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(get_buffer(), 0); } iterator end() { return device_iterator<T>(get_buffer(), _size); } const_iterator begin() const noexcept { return device_iterator<T>(get_buffer(), 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(get_buffer(), _size); } const_iterator cend() const { return end(); } T *real_begin() { return (detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); } const T *real_begin() const { return const_cast<device_vector *>(this) ->detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>() .get_pointer(); } void swap(device_vector &v) { void *temp = v._storage; v._storage = this->_storage; this->_storage = temp; std::swap(_size, v._size); } reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } void reserve(size_type n) { if (n > capacity()) { // create new buffer (allocate for new size) void *a = alloc_store(n * sizeof(T)); // copy content (old buffer to new buffer) if (_storage != nullptr) { auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(n)); auto src_buf = get_buffer(); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf), oneapi::dpl::end(src_buf), oneapi::dpl::begin(tmp)); // deallocate old memory detail::mem_mgr::instance().mem_free(_storage); } _storage = a; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { auto src_buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf) + _size, oneapi::dpl::begin(src_buf) + new_size, x); } _size = new_size; } size_type max_size(void) const { return std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _storage != nullptr ? detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.size() / sizeof(T) : 0; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return reinterpret_cast<pointer>(_storage); } const_pointer data(void) const { return reinterpret_cast<const_pointer>(_storage); } void shrink_to_fit(void) { if (_size != capacity()) { void *a = alloc_store(_size * sizeof(T)); auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(get_buffer()), oneapi::dpl::begin(get_buffer()) + _size, oneapi::dpl::begin(tmp)); detail::mem_mgr::instance().mem_free(_storage); _storage = a; } } void assign(size_type n, const T &x) { resize(n); std::fill(oneapi::dpl::execution::dpcpp_default, begin(), begin() + n, x); } template <typename InputIterator> void assign(InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); resize(n); if (internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value) std::copy(oneapi::dpl::execution::dpcpp_default, first, last, begin()); else { Buffer tmp(first, last); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), begin()); } } void clear(void) { _size = 0; detail::mem_mgr::instance().mem_free(_storage); _storage = nullptr; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } Buffer tmp{Range(std::distance(last, end()))}; // copy remainder to temporary buffer. std::copy(oneapi::dpl::execution::dpcpp_default, last, end(), oneapi::dpl::begin(tmp)); // override (erase) subsequence in storage. std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), first); resize(_size - n); return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); std::fill(oneapi::dpl::execution::dpcpp_default, end() - n, end(), x); } else { auto i_n = std::distance(begin(), position); // allocate temporary storage Buffer tmp{Range(std::distance(position, end()))}; // copy remainder std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::fill(oneapi::dpl::execution::dpcpp_default, position, position + n, x); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); if (position == end()) { resize(size() + n); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, end()); } else { Buffer tmp{Range(std::distance(position, end()))}; std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, position); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } }; #endif } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/dpcpp_extensions.h
//==---- dpcpp_extensions.h ------------------*- C++ -*---------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------===// #ifndef __DPCT_DPCPP_EXTENSIONS_H__ #define __DPCT_DPCPP_EXTENSIONS_H__ #include <sycl/sycl.hpp> #include <stdexcept> #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS #include <sycl/ext/oneapi/experimental/user_defined_reductions.hpp> #endif #include "../dpct.hpp" namespace dpct { namespace group { namespace detail { template <typename... _Args> constexpr auto __reduce_over_group(_Args... __args) { return sycl::reduce_over_group(__args...); } template <typename... _Args> constexpr auto __group_broadcast(_Args... __args) { return sycl::group_broadcast(__args...); } template <typename... _Args> constexpr auto __exclusive_scan_over_group(_Args... __args) { return sycl::exclusive_scan_over_group(__args...); } template <typename... _Args> constexpr auto __inclusive_scan_over_group(_Args... __args) { return sycl::inclusive_scan_over_group(__args...); } } // end namespace detail /// Perform an exclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void exclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], T init, BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); T input = inputs[0]; if (item.get_local_linear_id() == 0) { outputs[0] = init; } else { outputs[0] = exclusive_result; } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { T output = binary_op(input, outputs[i - 1]); input = inputs[i]; outputs[i] = output; } } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns exclusive scan of the first i /// work-items where item is the i-th work item. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, T init, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__exclusive_scan_over_group(item.get_group(), input, init, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns exclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = detail::__exclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); T group_prefix = prefix_callback_op(group_aggregate); if (item.get_local_linear_id() == 0) { output = group_prefix; } else { output = binary_op(group_prefix, output); } return output; } namespace detail { typedef uint16_t digit_counter_type; typedef uint32_t packed_counter_type; template <int N, int CURRENT_VAL = N, int COUNT = 0> struct log2 { enum { VALUE = log2<N, (CURRENT_VAL >> 1), COUNT + 1>::VALUE }; }; template <int N, int COUNT> struct log2<N, 0, COUNT> { enum { VALUE = (1 << (COUNT - 1) < N) ? COUNT : COUNT - 1 }; }; __dpct_inline__ uint32_t bfe(uint32_t source, uint32_t bit_start, uint32_t num_bits) { const uint32_t MASK = (1 << num_bits) - 1; return (source >> bit_start) & MASK; } template <int RADIX_BITS, bool DESCENDING = false> class radix_rank { public: static size_t get_local_memory_size(size_t group_threads) { return group_threads * PADDED_COUNTER_LANES * sizeof(packed_counter_type); } radix_rank(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item, int VALUES_PER_THREAD> __dpct_inline__ void rank_keys(const Item &item, uint32_t (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD], int current_bit, int num_bits) { digit_counter_type thread_prefixes[VALUES_PER_THREAD]; digit_counter_type *digit_counters[VALUES_PER_THREAD]; digit_counter_type *buffer = reinterpret_cast<digit_counter_type *>(_local_memory); reset_local_memory(item); item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { uint32_t digit = bfe(keys[i], current_bit, num_bits); uint32_t sub_counter = digit >> LOG_COUNTER_LANES; uint32_t counter_lane = digit & (COUNTER_LANES - 1); if (DESCENDING) { sub_counter = PACKING_RATIO - 1 - sub_counter; counter_lane = COUNTER_LANES - 1 - counter_lane; } digit_counters[i] = &buffer[counter_lane * item.get_local_range().size() * PACKING_RATIO + item.get_local_linear_id() * PACKING_RATIO + sub_counter]; thread_prefixes[i] = *digit_counters[i]; *digit_counters[i] = thread_prefixes[i] + 1; } item.barrier(sycl::access::fence_space::local_space); scan_counters(item); item.barrier(sycl::access::fence_space::local_space); for (int i = 0; i < VALUES_PER_THREAD; ++i) { ranks[i] = thread_prefixes[i] + *digit_counters[i]; } } private: template <typename Item> __dpct_inline__ void reset_local_memory(const Item &item) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[i * item.get_local_range().size() + item.get_local_linear_id()] = 0; } } template <typename Item> __dpct_inline__ packed_counter_type upsweep(const Item &item) { packed_counter_type sum = 0; packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; i++) { cached_segment[i] = ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i]; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { sum += cached_segment[i]; } return sum; } template <typename Item> __dpct_inline__ void exclusive_downsweep(const Item &item, packed_counter_type raking_partial) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); packed_counter_type sum = raking_partial; #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { packed_counter_type value = cached_segment[i]; cached_segment[i] = sum; sum += value; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i] = cached_segment[i]; } } struct prefix_callback { __dpct_inline__ packed_counter_type operator()(packed_counter_type block_aggregate) { packed_counter_type block_prefix = 0; #pragma unroll for (int packed = 1; packed < PACKING_RATIO; packed++) { block_prefix += block_aggregate << (sizeof(digit_counter_type) * 8 * packed); } return block_prefix; } }; template <typename Item> __dpct_inline__ void scan_counters(const Item &item) { packed_counter_type raking_partial = upsweep(item); prefix_callback callback; packed_counter_type exclusive_partial = exclusive_scan( item, raking_partial, sycl::ext::oneapi::plus<packed_counter_type>(), callback); exclusive_downsweep(item, exclusive_partial); } private: static constexpr int PACKING_RATIO = sizeof(packed_counter_type) / sizeof(digit_counter_type); static constexpr int LOG_PACKING_RATIO = log2<PACKING_RATIO>::VALUE; static constexpr int LOG_COUNTER_LANES = RADIX_BITS - LOG_PACKING_RATIO; static constexpr int COUNTER_LANES = 1 << LOG_COUNTER_LANES; static constexpr int PADDED_COUNTER_LANES = COUNTER_LANES + 1; packed_counter_type cached_segment[PADDED_COUNTER_LANES]; uint8_t *_local_memory; }; template <typename T, typename U> struct base_traits { static __dpct_inline__ U twiddle_in(U key) { throw std::runtime_error("Not implemented"); } static __dpct_inline__ U twiddle_out(U key) { throw std::runtime_error("Not implemented"); } }; template <typename U> struct base_traits<uint32_t, U> { static __dpct_inline__ U twiddle_in(U key) { return key; } static __dpct_inline__ U twiddle_out(U key) { return key; } }; template <typename U> struct base_traits<int, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { return key ^ HIGH_BIT; } static __dpct_inline__ U twiddle_out(U key) { return key ^ HIGH_BIT; } }; template <typename U> struct base_traits<float, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { U mask = (key & HIGH_BIT) ? U(-1) : HIGH_BIT; return key ^ mask; } static __dpct_inline__ U twiddle_out(U key) { U mask = (key & HIGH_BIT) ? HIGH_BIT : U(-1); return key ^ mask; } }; template <typename T> struct traits : base_traits<T, T> {}; template <> struct traits<uint32_t> : base_traits<uint32_t, uint32_t> {}; template <> struct traits<int> : base_traits<int, uint32_t> {}; template <> struct traits<float> : base_traits<float, uint32_t> {}; } // namespace detail namespace detail { template <int N> struct power_of_two { enum { VALUE = ((N & (N - 1)) == 0) }; }; __dpct_inline__ uint32_t shr_add(uint32_t x, uint32_t shift, uint32_t addend) { return (x >> shift) + addend; } } // namespace detail /// Implements scatter to blocked exchange pattern used in radix sort algorithm. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread template <typename T, int VALUES_PER_THREAD> class exchange { public: static size_t get_local_memory_size(size_t group_threads) { size_t padding_values = (INSERT_PADDING) ? ((group_threads * VALUES_PER_THREAD) >> LOG_LOCAL_MEMORY_BANKS) : 0; return (group_threads * VALUES_PER_THREAD + padding_values) * sizeof(T); } exchange(uint8_t *local_memory) : _local_memory(local_memory) {} /// Rearrange elements from rank order to blocked order template <typename Item> __dpct_inline__ void scatter_to_blocked(Item item, T (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD]) { T *buffer = reinterpret_cast<T *>(_local_memory); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = ranks[i]; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); buffer[offset] = keys[i]; } item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = (item.get_local_id(0) * VALUES_PER_THREAD) + i; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); keys[i] = buffer[offset]; } } private: static constexpr int LOG_LOCAL_MEMORY_BANKS = 5; static constexpr bool INSERT_PADDING = (VALUES_PER_THREAD > 4) && (detail::power_of_two<VALUES_PER_THREAD>::VALUE); uint8_t *_local_memory; }; /// Implements radix sort to sort integer data elements assigned to all threads /// in the group. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread /// \tparam DECENDING boolean value indicating if data elements are sorted in /// decending order. template <typename T, int VALUES_PER_THREAD, bool DESCENDING = false> class radix_sort { public: static size_t get_local_memory_size(size_t group_threads) { size_t ranks_size = detail::radix_rank<RADIX_BITS>::get_local_memory_size(group_threads); size_t exchange_size = exchange<T, VALUES_PER_THREAD>::get_local_memory_size(group_threads); return sycl::max(ranks_size, exchange_size); } radix_sort(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item> __dpct_inline__ void sort(const Item &item, T (&keys)[VALUES_PER_THREAD], int begin_bit = 0, int end_bit = 8 * sizeof(T)) { uint32_t(&unsigned_keys)[VALUES_PER_THREAD] = reinterpret_cast<uint32_t(&)[VALUES_PER_THREAD]>(keys); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_in(unsigned_keys[i]); } while (true) { int pass_bits = sycl::min(RADIX_BITS, end_bit - begin_bit); int ranks[VALUES_PER_THREAD]; detail::radix_rank<RADIX_BITS, DESCENDING>(_local_memory) .template rank_keys(item, unsigned_keys, ranks, begin_bit, pass_bits); begin_bit += RADIX_BITS; item.barrier(sycl::access::fence_space::local_space); exchange<T, VALUES_PER_THREAD>(_local_memory) .scatter_to_blocked(item, keys, ranks); item.barrier(sycl::access::fence_space::local_space); if (begin_bit >= end_bit) break; } #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_out(unsigned_keys[i]); } } private: static constexpr int RADIX_BITS = 4; uint8_t *_local_memory; }; /// Perform a reduction of the data elements assigned to all threads in the /// group. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the reduce operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ T reduce(Item item, T (&inputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; i++) { result = binary_op(result, inputs[i]); } return detail::__reduce_over_group(item.get_group(), result, binary_op); } /// Perform a reduction on a limited number of the work items in a subgroup /// /// \param item A work-item in a group. /// \param value value per work item which is to be reduced /// \param items_to_reduce num work items at the start of the subgroup to reduce /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation> __dpct_inline__ typename ::std::enable_if_t<sycl::has_known_identity_v<BinaryOperation, T>, T> reduce_over_partial_group(const Item &item, const T &value, const ::std::uint16_t &items_to_reduce, BinaryOperation binary_op) { T value_temp = (item.get_local_linear_id() < items_to_reduce) ? value : sycl::known_identity_v<BinaryOperation, T>; return detail::__reduce_over_group(item.get_sub_group(), value_temp, binary_op); } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns inclusive scan of the input elements assigned to /// work-items in the group. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void inclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); if (item.get_local_linear_id() == 0) { outputs[0] = inputs[0]; } else { outputs[0] = binary_op(inputs[0], exclusive_result); } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { outputs[i] = binary_op(inputs[i], outputs[i - 1]); } } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Pointer to the input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns inclusive scan of the input /// elements assigned to work-items in the group. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__inclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = output; } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an inclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns inclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = inclusive_scan(item, input, binary_op, group_aggregate); T group_prefix = prefix_callback_op(group_aggregate); return binary_op(group_prefix, output); } } // namespace group namespace device { namespace detail { template <typename... _Args> constexpr auto __joint_reduce(_Args... __args) { return sycl::joint_reduce(__args...); } } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); queue.submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } sycl::multi_ptr<T, sycl::access::address_space::global_space> input_ptr = inputs; T group_aggregate = detail::__joint_reduce( item.get_group(), input_ptr + segment_begin, input_ptr + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS namespace experimental { namespace detail { template <typename _Tp, typename... _Ts> struct __is_any { constexpr static bool value = std::disjunction_v< std::is_same<std::remove_cv_t<_Tp>, std::remove_cv_t<_Ts>>...>; }; template <typename _Tp, typename _Bp> struct __in_native_op_list { constexpr static bool value = __is_any<_Bp, sycl::plus<_Tp>, sycl::bit_or<_Tp>, sycl::bit_xor<_Tp>, sycl::bit_and<_Tp>, sycl::maximum<_Tp>, sycl::minimum<_Tp>, sycl::multiplies<_Tp>>::value; }; template <typename _Tp, typename _Bp> struct __is_native_op { constexpr static bool value = __in_native_op_list<_Tp, _Bp>::value || __in_native_op_list<void, _Bp>::value; }; } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. Compared with dpct::device::segmented_reduce, this experimental /// feature support user define reductions. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); if constexpr (!detail::__is_native_op<T, BinaryOperation>::value) { queue.submit([&](sycl::handler &cgh) { size_t temp_memory_size = GROUP_SIZE * sizeof(T); auto scratch = sycl::local_accessor<std::byte, 1>(temp_memory_size, cgh); cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } // Create a handle that associates the group with an allocation it // can use auto handle = sycl::ext::oneapi::experimental::group_with_scratchpad( item.get_group(), sycl::span(&scratch[0], temp_memory_size)); T group_aggregate = sycl::ext::oneapi::experimental::joint_reduce( handle, inputs + segment_begin, inputs + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } else { dpct::device::segmented_reduce<GROUP_SIZE>(queue, inputs, outputs, segment_count, begin_offsets, end_offsets, binary_op, init); } } } // namespace experimental #endif // SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS } // namespace device } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/guided_MonteCarloMultiGPU_SYCLMigration/01_dpct_output/include/dpct/dpl_extras/functional.h
//==---- functional.h -----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FUNCTIONAL_H__ #define __DPCT_FUNCTIONAL_H__ #include <functional> #include <oneapi/dpl/functional> #include <oneapi/dpl/iterator> #if ONEDPL_USE_DPCPP_BACKEND #include <oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_utils.h> #endif #include <tuple> #include <utility> namespace dpct { struct null_type {}; namespace internal { template <class _ExecPolicy, class _T> using enable_if_execution_policy = typename std::enable_if<oneapi::dpl::execution::is_execution_policy< typename std::decay<_ExecPolicy>::type>::value, _T>::type; template <typename _T> struct is_hetero_execution_policy : ::std::false_type {}; template <typename... PolicyParams> struct is_hetero_execution_policy< oneapi::dpl::execution::device_policy<PolicyParams...>> : ::std::true_type { }; template <typename _T> struct is_fpga_execution_policy : ::std::false_type {}; #if _ONEDPL_FPGA_DEVICE template <unsigned int unroll_factor, typename... PolicyParams> struct is_hetero_execution_policy< execution::fpga_policy<unroll_factor, PolicyParams...>> : ::std::true_type { }; #endif template <class _ExecPolicy, class _T> using enable_if_hetero_execution_policy = typename std::enable_if< is_hetero_execution_policy<typename std::decay<_ExecPolicy>::type>::value, _T>::type; #if _ONEDPL_CPP14_INTEGER_SEQUENCE_PRESENT template <std::size_t... _Sp> using index_sequence = std::index_sequence<_Sp...>; template <std::size_t _Np> using make_index_sequence = std::make_index_sequence<_Np>; #else template <std::size_t... _Sp> class index_sequence {}; template <std::size_t _Np, std::size_t... _Sp> struct make_index_sequence_impl : make_index_sequence_impl<_Np - 1, _Np - 1, _Sp...> {}; template <std::size_t... _Sp> struct make_index_sequence_impl<0, _Sp...> { using type = index_sequence<_Sp...>; }; template <std::size_t _Np> using make_index_sequence = typename make_index_sequence_impl<_Np>::type; #endif // Minimal buffer implementations for temporary storage in mapping rules // Some of our algorithms need to start with raw memory buffer, // not an initialized array, because initialization/destruction // would make the span be at least O(N). #if ONEDPL_USE_DPCPP_BACKEND template <typename _Tp> class __buffer { sycl::buffer<_Tp, 1> __buf; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t __n) : __buf(sycl::range<1>(__n)) {} // Return pointer to buffer, or NULL if buffer could not be obtained. auto get() -> decltype(oneapi::dpl::begin(__buf)) const { return oneapi::dpl::begin(__buf); } }; #else template <typename _Tp> class __buffer { std::unique_ptr<_Tp> _M_ptr; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(const std::size_t __n) : _M_ptr(new _Tp[__n]) {} // Return pointer to buffer, or NULL if buffer could not be obtained. _Tp *get() const { return _M_ptr.get(); } }; #endif // Implements C++14 std::less<void> specialization to allow parameter type // deduction. class __less { public: template <typename _Xp, typename _Yp> bool operator()(_Xp &&__x, _Yp &&__y) const { return std::forward<_Xp>(__x) < std::forward<_Yp>(__y); } }; template <typename Policy, typename NewName> struct rebind_policy { using type = Policy; }; template <typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::device_policy<KernelName>, NewName> { using type = oneapi::dpl::execution::device_policy<NewName>; }; #if _ONEDPL_FPGA_DEVICE template <unsigned int factor, typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::fpga_policy<factor, KernelName>, NewName> { using type = oneapi::dpl::execution::fpga_policy<factor, NewName>; }; #endif template <typename T1, typename T2, typename R1 = typename std::iterator_traits<T1>::reference, typename R2 = typename std::iterator_traits<T2>::reference> struct perm_fun { typedef R2 result_of; perm_fun(T1 input) : source(input) {} R2 operator()(R1 x) const { return *(source + x); } private: T1 source; }; // Functor compares first element (key) from tied sequence. template <typename Compare = class internal::__less> struct compare_key_fun { typedef bool result_of; compare_key_fun(Compare _comp = internal::__less()) : comp(_comp) {} template <typename _T1, typename _T2> result_of operator()(_T1 &&a, _T2 &&b) const { using std::get; return comp(get<0>(a), get<0>(b)); } private: mutable Compare comp; }; // Functor evaluates second element of tied sequence with predicate. // Used by: copy_if, remove_copy_if, stable_partition_copy // Lambda: template <typename Predicate> struct predicate_key_fun { typedef bool result_of; predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return pred(get<1>(a)); } private: mutable Predicate pred; }; // Used by: remove_if template <typename Predicate> struct negate_predicate_key_fun { typedef bool result_of; negate_predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return !pred(get<1>(a)); } private: mutable Predicate pred; }; template <typename T> struct sequence_fun { using result_type = T; sequence_fun(T _init, T _step) : init(_init), step(_step) {} template <typename _T> result_type operator()(_T &&i) const { return static_cast<T>(init + step * i); } private: const T init; const T step; }; //[binary_pred](Ref a, Ref b){ return(binary_pred(get<0>(a),get<0>(b))); template <typename Predicate> struct unique_fun { typedef bool result_of; unique_fun(Predicate _pred) : pred(_pred) {} template <typename _T> result_of operator()(_T &&a, _T &&b) const { using std::get; return pred(get<0>(a), get<0>(b)); } private: mutable Predicate pred; }; // Lambda: [pred, &new_value](Ref1 a, Ref2 s) {return pred(s) ? new_value : a; // }); template <typename T, typename Predicate> struct replace_if_fun { public: typedef T result_of; replace_if_fun(Predicate _pred, T _new_value) : pred(_pred), new_value(_new_value) {} template <typename _T1, typename _T2> T operator()(_T1 &&a, _T2 &&s) const { return pred(s) ? new_value : a; } private: mutable Predicate pred; const T new_value; }; //[pred,op](Ref a){return pred(a) ? op(a) : a; } template <typename T, typename Predicate, typename Operator> struct transform_if_fun { transform_if_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<0>(t))) get<1>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; //[pred, op](Ref1 a, Ref2 s) { return pred(s) ? op(a) : a; }); template <typename T, typename Predicate, typename Operator> struct transform_if_unary_zip_mask_fun { transform_if_unary_zip_mask_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<1>(t))) get<2>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; template <typename T, typename Predicate, typename BinaryOperation> class transform_if_zip_mask_fun { public: transform_if_zip_mask_fun(Predicate _pred = oneapi::dpl::identity(), BinaryOperation _op = oneapi::dpl::identity()) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T &&t) const { using std::get; if (pred(get<2>(t))) get<3>(t) = op(get<0>(t), get<1>(t)); } private: mutable Predicate pred; mutable BinaryOperation op; }; // This following code is similar to a section of code in // oneDPL/include/oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_radix_sort.h // It has a similar approach, and could be consolidated. // Outside of some differences in approach, there are two significant // differences in function. // // 1) This code allows the output type of the bit range translation to be fit // into to the minimal type required to provide that many bits. The code in // oneDPL to calculate the bucket for the radix is similar but its output is // always std::uint32_t. The assumption that the bit range desired will fit in // 32 bits is not true for this code. // // 2) This code ensures that for floating point type, -0.0f and 0.0f map to the // same value. This allows the output of this translation to be used to provide // a sort which ensures the stability of these values for floating point types. template <int N> struct uint_byte_map {}; template <> struct uint_byte_map<1> { using type = uint8_t; }; template <> struct uint_byte_map<2> { using type = uint16_t; }; template <> struct uint_byte_map<4> { using type = uint32_t; }; template <> struct uint_byte_map<8> { using type = uint64_t; }; template <typename T> struct uint_map { using type = typename uint_byte_map<sizeof(T)>::type; }; template <typename T, typename OutKeyT> class translate_key { using uint_type_t = typename uint_map<T>::type; public: translate_key(int begin_bit, int end_bit) { shift = begin_bit; mask = ~OutKeyT(0); // all ones mask = mask >> (sizeof(OutKeyT) * 8 - (end_bit - begin_bit)); // setup appropriate mask flip_sign = uint_type_t(1) << (sizeof(uint_type_t) * 8 - 1); // sign bit flip_key = ~uint_type_t(0); // 0xF...F } inline OutKeyT operator()(const T &key) const { uint_type_t intermediate; if constexpr (std::is_floating_point<T>::value) { // normal case (both -0.0f and 0.0f equal -0.0f) if (key != T(-0.0f)) { uint_type_t is_negative = reinterpret_cast<const uint_type_t &>(key) >> (sizeof(uint_type_t) * 8 - 1); intermediate = reinterpret_cast<const uint_type_t &>(key) ^ ((is_negative * flip_key) | flip_sign); } else // special case for -0.0f to keep stability with 0.0f { T negzero = T(-0.0f); intermediate = reinterpret_cast<const uint_type_t &>(negzero); } } else if constexpr (std::is_signed<T>::value) { intermediate = reinterpret_cast<const uint_type_t &>(key) ^ flip_sign; } else { intermediate = key; } return static_cast<OutKeyT>(intermediate >> shift) & mask; // shift, cast, and mask } private: uint8_t shift; OutKeyT mask; uint_type_t flip_sign; uint_type_t flip_key; }; } // end namespace internal } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/MonteCarloPi/src/monte_carlo_pi.cpp
#include <sycl/sycl.hpp> #include <iostream> #include <math.h> #include <stdlib.h> #include <time.h> // dpc_common.hpp can be found in the dev-utilities include folder. // e.g., $ONEAPI_ROOT/dev-utilities/<version>/include/dpc_common.hpp #include "dpc_common.hpp" #include "monte_carlo_pi.hpp" #define STB_IMAGE_IMPLEMENTATION #include "stb/stb_image.h" #define STB_IMAGE_WRITE_IMPLEMENTATION #include "stb/stb_image_write.h" using namespace sycl; // Number of samples constexpr int size_n = 10000; // Must be greater than size_wg // Size of parallel work groups constexpr int size_wg = 32; // Number of parallel work groups const int num_wg = (int)ceil((float)size_n / (float)size_wg); // Output image dimensions constexpr int img_dimensions = 1024; // Consts for drawing the image plot constexpr float circle_outline = 0.025; // Radius of the circle in the image plot constexpr int radius = img_dimensions / 2; // Returns the pixel index corresponding to a set of simulation coordinates SYCL_EXTERNAL int GetPixelIndex(float x, float y) { int img_x = x * radius + radius; int img_y = y * radius + radius; return img_y * img_dimensions + img_x; } // Returns a random float between -1.0 and 1.0 float GetRandCoordinate() { return (float)rand() / (RAND_MAX / 2.0) - 1.0; } // Creates an array representing the image data and inscribes a circle void DrawPlot(rgb image_plot[]) { for (int i = 0; i < img_dimensions * img_dimensions; ++i) { // calculate unit coordinates relative to the center of the image float x = (float)(i % img_dimensions - radius) / radius; float y = (float)(i / img_dimensions - radius) / radius; // draw the circumference of the circle if ((x * x + y * y) > 1 - circle_outline && (x * x + y * y) < 1) { image_plot[i].red = 255; image_plot[i].green = 255; image_plot[i].blue = 255; } } } // Performs the Monte Carlo simulation procedure for calculating pi, with size_n // number of samples. float MonteCarloPi(rgb image_plot[]) { int total = 0; // Stores the total number of simulated points falling within // the circle coordinate coords[size_n]; // Array for storing the RNG coordinates // Generate Random Coordinates for (int i = 0; i < size_n; ++i) { coords[i].x = GetRandCoordinate(); coords[i].y = GetRandCoordinate(); } // Set up sycl queue queue q(default_selector_v); std::cout << "\nRunning on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; try { // Set up buffers buffer imgplot_buf(image_plot, range(img_dimensions * img_dimensions)); buffer coords_buf(coords, range(size_n)); buffer total_buf(&total, range(1)); // Perform Monte Carlo simulation and reduce results q.submit([&](handler& h) { // Set up accessors auto imgplot_acc = imgplot_buf.get_access(h); auto coords_acc = coords_buf.get_access(h); auto total_acc = total_buf.get_access(h); auto reduc = reduction(total_buf, h, std::plus<int>()); // Monte Carlo Procedure + Reduction h.parallel_for(nd_range<1>(num_wg * size_wg, size_wg), reduc, [=](nd_item<1> it, auto& total_acc) { // Index for accessing buffers int i = it.get_global_id(); if (i < size_n) { // Only runs if a work item's ID has a // corresponding sample coordinate // Get random coords float x = coords_acc[i].x; float y = coords_acc[i].y; // Check if coordinates are bounded by a circle of // radius 1 float hypotenuse_sqr = x * x + y * y; if (hypotenuse_sqr <= 1.0) { // If bounded // increment total total_acc += 1; // Draw sample point in image plot imgplot_acc[GetPixelIndex(x, y)].red = 0; imgplot_acc[GetPixelIndex(x, y)].green = 255; imgplot_acc[GetPixelIndex(x, y)].blue = 0; } else { // Draw sample point in image plot imgplot_acc[GetPixelIndex(x, y)].red = 255; imgplot_acc[GetPixelIndex(x, y)].green = 0; imgplot_acc[GetPixelIndex(x, y)].blue = 0; } } }); }); q.wait_and_throw(); } catch (sycl::exception e) { std::cout << "SYCL exception caught: " << e.what() << "\n"; exit(1); } // return calculated value of pi return 4.0 * (float)total / size_n; } int main() { // Validate constants if (size_n < size_wg) { std::cout << "ERROR: size_n must be greater than or equal to size_wg\n"; exit(1); } // Initialize random seed srand(time(NULL)); // Allocate memory for the output image std::vector<rgb> image_plot(img_dimensions * img_dimensions); // Draw the inscribed circle for the image plot DrawPlot(image_plot.data()); // Perform Monte Carlo simulation to estimate pi (with timing) std::cout << "Calculating estimated value of pi...\n"; dpc_common::TimeInterval t; float pi = MonteCarloPi(image_plot.data()); float proc_time = t.Elapsed(); std::cout << "The estimated value of pi (N = " << size_n << ") is: " << pi << "\n"; std::cout << "\nComputation complete. The processing time was " << proc_time << " seconds.\n"; // Write image to file stbi_write_bmp("MonteCarloPi.bmp", img_dimensions, img_dimensions, 3, image_plot.data()); std::cout << "The simulation plot graph has been written to 'MonteCarloPi.bmp'\n"; return 0; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/MapReduce/MonteCarloPi/src/monte_carlo_pi.hpp
struct rgb { unsigned char red; unsigned char green; unsigned char blue; }; struct coordinate { float x; float y; };
hpp