repo_name
stringclasses
10 values
file_path
stringlengths
29
222
content
stringlengths
24
926k
extention
stringclasses
5 values
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/helper_timer.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Helper Timing Functions #ifndef COMMON_HELPER_TIMER_H_ #define COMMON_HELPER_TIMER_H_ #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // includes, system #include <vector> // includes, project #include <exception.h> // Definition of the StopWatch Interface, this is used if we don't want to use // the CUT functions But rather in a self contained class interface class StopWatchInterface { public: StopWatchInterface() {} virtual ~StopWatchInterface() {} public: //! Start time measurement virtual void start() = 0; //! Stop time measurement virtual void stop() = 0; //! Reset time counters to zero virtual void reset() = 0; //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned virtual float getTime() = 0; //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time virtual float getAverageTime() = 0; }; ////////////////////////////////////////////////////////////////// // Begin Stopwatch timer class definitions for all OS platforms // ////////////////////////////////////////////////////////////////// #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // includes, system #define WINDOWS_LEAN_AND_MEAN #include <windows.h> #undef min #undef max //! Windows specific implementation of StopWatch class StopWatchWin : public StopWatchInterface { public: //! Constructor, default StopWatchWin() : start_time(), end_time(), diff_time(0.0f), total_time(0.0f), running(false), clock_sessions(0), freq(0), freq_set(false) { if (!freq_set) { // helper variable LARGE_INTEGER temp; // get the tick frequency from the OS QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER *>(&temp)); // convert to type in which it is needed freq = (static_cast<double>(temp.QuadPart)) / 1000.0; // rememeber query freq_set = true; } } // Destructor ~StopWatchWin() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // member variables //! Start of measurement LARGE_INTEGER start_time; //! End of measurement LARGE_INTEGER end_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; //! tick frequency double freq; //! flag if the frequency has been set bool freq_set; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::start() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::stop() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&end_time)); diff_time = static_cast<float>(((static_cast<double>(end_time.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); total_time += diff_time; clock_sessions++; running = false; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { LARGE_INTEGER temp; QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&temp)); retval += static_cast<float>(((static_cast<double>(temp.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } #else // Declarations for Stopwatch on Linux and Mac OSX // includes, system #include <sys/time.h> #include <ctime> //! Windows specific implementation of StopWatch class StopWatchLinux : public StopWatchInterface { public: //! Constructor, default StopWatchLinux() : start_time(), diff_time(0.0), total_time(0.0), running(false), clock_sessions(0) {} // Destructor virtual ~StopWatchLinux() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // helper functions //! Get difference between start time and current time inline float getDiffTime(); private: // member variables //! Start of measurement struct timeval start_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::start() { gettimeofday(&start_time, 0); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::stop() { diff_time = getDiffTime(); total_time += diff_time; running = false; clock_sessions++; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { gettimeofday(&start_time, 0); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { retval += getDiffTime(); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getDiffTime() { struct timeval t_time; gettimeofday(&t_time, 0); // time difference in milli-seconds return static_cast<float>(1000.0 * (t_time.tv_sec - start_time.tv_sec) + (0.001 * (t_time.tv_usec - start_time.tv_usec))); } #endif // WIN32 //////////////////////////////////////////////////////////////////////////////// //! Timer functionality exported //////////////////////////////////////////////////////////////////////////////// //! Create a new timer //! @return true if a time has been created, otherwise false //! @param name of the new timer, 0 if the creation failed //////////////////////////////////////////////////////////////////////////////// inline bool sdkCreateTimer(StopWatchInterface **timer_interface) { // printf("sdkCreateTimer called object %08x\n", (void *)*timer_interface); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchWin()); #else *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchLinux()); #endif return (*timer_interface != NULL) ? true : false; } //////////////////////////////////////////////////////////////////////////////// //! Delete a timer //! @return true if a time has been deleted, otherwise false //! @param name of the timer to delete //////////////////////////////////////////////////////////////////////////////// inline bool sdkDeleteTimer(StopWatchInterface **timer_interface) { // printf("sdkDeleteTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { delete *timer_interface; *timer_interface = NULL; } return true; } //////////////////////////////////////////////////////////////////////////////// //! Start the time with name \a name //! @param name name of the timer to start //////////////////////////////////////////////////////////////////////////////// inline bool sdkStartTimer(StopWatchInterface **timer_interface) { // printf("sdkStartTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->start(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Stop the time with name \a name. Does not reset. //! @param name name of the timer to stop //////////////////////////////////////////////////////////////////////////////// inline bool sdkStopTimer(StopWatchInterface **timer_interface) { // printf("sdkStopTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->stop(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Resets the timer's counter. //! @param name name of the timer to reset. //////////////////////////////////////////////////////////////////////////////// inline bool sdkResetTimer(StopWatchInterface **timer_interface) { // printf("sdkResetTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->reset(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Return the average time for timer execution as the total time //! for the timer dividied by the number of completed (stopped) runs the timer //! has made. //! Excludes the current running time if the timer is currently running. //! @param name name of the timer to return the time of //////////////////////////////////////////////////////////////////////////////// inline float sdkGetAverageTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetAverageTimerValue called object %08x\n", (void // *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getAverageTime(); } else { return 0.0f; } } //////////////////////////////////////////////////////////////////////////////// //! Total execution time for the timer over all runs since the last reset //! or timer creation. //! @param name name of the timer to obtain the value of. //////////////////////////////////////////////////////////////////////////////// inline float sdkGetTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetTimerValue called object %08x\n", (void *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getTime(); } else { return 0.0f; } } #endif // COMMON_HELPER_TIMER_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/helper_string.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, timers, etc) #ifndef COMMON_HELPER_STRING_H_ #define COMMON_HELPER_STRING_H_ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <string> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE #endif #ifndef STRCASECMP #define STRCASECMP _stricmp #endif #ifndef STRNCASECMP #define STRNCASECMP _strnicmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy_s(sFilePath, nLength, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #ifndef SPRINTF #define SPRINTF sprintf_s #endif #else // Linux Includes #include <string.h> #include <strings.h> #ifndef STRCASECMP #define STRCASECMP strcasecmp #endif #ifndef STRNCASECMP #define STRNCASECMP strncasecmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy(sFilePath, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #ifndef SPRINTF #define SPRINTF sprintf #endif #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // CUDA Utility Helper Functions inline int stringRemoveDelimiter(char delimiter, const char *string) { int string_start = 0; while (string[string_start] == delimiter) { string_start++; } if (string_start >= static_cast<int>(strlen(string) - 1)) { return 0; } return string_start; } inline int getFileExtension(char *filename, char **extension) { int string_length = static_cast<int>(strlen(filename)); while (filename[string_length--] != '.') { if (string_length == 0) break; } if (string_length > 0) string_length += 2; if (string_length == 0) *extension = NULL; else *extension = &filename[string_length]; return string_length; } inline bool checkCmdLineFlag(const int argc, const char **argv, const char *string_ref) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; const char *equal_pos = strchr(string_argv, '='); int argv_length = static_cast<int>( equal_pos == 0 ? strlen(string_argv) : equal_pos - string_argv); int length = static_cast<int>(strlen(string_ref)); if (length == argv_length && !STRNCASECMP(string_argv, string_ref, length)) { bFound = true; continue; } } } return bFound; } // This function wraps the CUDA Driver API into a template function template <class T> inline bool getCmdLineArgumentValue(const int argc, const char **argv, const char *string_ref, T *value) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; *value = (T)atoi(&string_argv[length + auto_inc]); } bFound = true; i = argc; } } } return bFound; } inline int getCmdLineArgumentInt(const int argc, const char **argv, const char *string_ref) { bool bFound = false; int value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = atoi(&string_argv[length + auto_inc]); } else { value = 0; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline float getCmdLineArgumentFloat(const int argc, const char **argv, const char *string_ref) { bool bFound = false; float value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = static_cast<float>(atof(&string_argv[length + auto_inc])); } else { value = 0.f; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline bool getCmdLineArgumentString(const int argc, const char **argv, const char *string_ref, char **string_retval) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); char *string_argv = const_cast<char *>(&argv[i][string_start]); int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { *string_retval = &string_argv[length + 1]; bFound = true; continue; } } } if (!bFound) { *string_retval = NULL; } return bFound; } ////////////////////////////////////////////////////////////////////////////// //! Find the path for a file assuming that //! files are found in the searchPath. //! //! @return the path if succeeded, otherwise 0 //! @param filename name of the file //! @param executable_path optional absolute path of the executable ////////////////////////////////////////////////////////////////////////////// inline char *sdkFindFilePath(const char *filename, const char *executable_path) { // <executable_name> defines a variable that is replaced with the name of the // executable // Typical relative search paths to locate needed companion files (e.g. sample // input data, or JIT source files) The origin for the relative search may be // the .exe file, a .bat file launching an .exe, a browser .exe launching the // .exe or .bat, etc const char *searchPath[] = { "./", // same dir "./data/", // same dir "../../../../Samples/<executable_name>/", // up 4 in tree "../../../Samples/<executable_name>/", // up 3 in tree "../../Samples/<executable_name>/", // up 2 in tree "../../../../Samples/<executable_name>/data/", // up 4 in tree "../../../Samples/<executable_name>/data/", // up 3 in tree "../../Samples/<executable_name>/data/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/data/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/data/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/data/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/data/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/data/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/data/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/data/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/data/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/data/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/data/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/data/", // up 2 in tree "../../../../Common/data/", // up 4 in tree "../../../Common/data/", // up 3 in tree "../../Common/data/" // up 2 in tree }; // Extract the executable name std::string executable_name; if (executable_path != 0) { executable_name = std::string(executable_path); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Windows path delimiter size_t delimiter_pos = executable_name.find_last_of('\\'); executable_name.erase(0, delimiter_pos + 1); if (executable_name.rfind(".exe") != std::string::npos) { // we strip .exe, only if the .exe is found executable_name.resize(executable_name.size() - 4); } #else // Linux & OSX path delimiter size_t delimiter_pos = executable_name.find_last_of('/'); executable_name.erase(0, delimiter_pos + 1); #endif } // Loop over all search paths and return the first hit for (unsigned int i = 0; i < sizeof(searchPath) / sizeof(char *); ++i) { std::string path(searchPath[i]); size_t executable_name_pos = path.find("<executable_name>"); // If there is executable_name variable in the searchPath // replace it with the value if (executable_name_pos != std::string::npos) { if (executable_path != 0) { path.replace(executable_name_pos, strlen("<executable_name>"), executable_name); } else { // Skip this path entry if no executable argument is given continue; } } #ifdef _DEBUG printf("sdkFindFilePath <%s> in %s\n", filename, path.c_str()); #endif // Test if the file exists path.append(filename); FILE *fp; FOPEN(fp, path.c_str(), "rb"); if (fp != NULL) { fclose(fp); // File found // returning an allocated array here for backwards compatibility reasons char *file_path = reinterpret_cast<char *>(malloc(path.length() + 1)); STRCPY(file_path, path.length() + 1, path.c_str()); return file_path; } if (fp) { fclose(fp); } } // File not found printf("\nerror: sdkFindFilePath: file <%s> not found!\n", filename); return 0; } #endif // COMMON_HELPER_STRING_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/helper_image.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (image,bitmap) #ifndef COMMON_HELPER_IMAGE_H_ #define COMMON_HELPER_IMAGE_H_ #include <assert.h> #include <exception.h> #include <math.h> #include <stdint.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> #ifndef MIN #define MIN(a, b) ((a < b) ? a : b) #endif #ifndef MAX #define MAX(a, b) ((a > b) ? a : b) #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #include <helper_string.h> // namespace unnamed (internal) namespace helper_image_internal { //! size of PGM file header const unsigned int PGMHeaderSize = 0x40; // types //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterFromUByte; //! Data converter from unsigned char / unsigned byte template <> struct ConverterFromUByte<unsigned char> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<unsigned char>(val); } }; //! Data converter from unsigned char / unsigned byte to float template <> struct ConverterFromUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<float>(val) / 255.0f; } }; //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterToUByte; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<unsigned char> { //! Conversion operator (essentially a passthru //! @return converted value //! @param val value to convert unsigned char operator()(const unsigned char &val) { return val; } }; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert unsigned char operator()(const float &val) { return static_cast<unsigned char>(val * 255.0f); } }; } // namespace helper_image_internal #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #else #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #endif inline bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels) { FILE *fp = NULL; if (FOPEN_FAIL(FOPEN(fp, file, "rb"))) { std::cerr << "__LoadPPM() : Failed to open file: " << file << std::endl; return false; } // check header char header[helper_image_internal::PGMHeaderSize]; if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (strncmp(header, "P5", 2) == 0) { *channels = 1; } else if (strncmp(header, "P6", 2) == 0) { *channels = 3; } else { std::cerr << "__LoadPPM() : File is not a PPM or PGM image" << std::endl; *channels = 0; return false; } // parse header, read maxval, width and height unsigned int width = 0; unsigned int height = 0; unsigned int maxval = 0; unsigned int i = 0; while (i < 3) { if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (header[0] == '#') { continue; } if (i == 0) { i += SSCANF(header, "%u %u %u", &width, &height, &maxval); } else if (i == 1) { i += SSCANF(header, "%u %u", &height, &maxval); } else if (i == 2) { i += SSCANF(header, "%u", &maxval); } } // check if given handle for the data is initialized if (NULL != *data) { if (*w != width || *h != height) { std::cerr << "__LoadPPM() : Invalid image dimensions." << std::endl; } } else { *data = (unsigned char *)malloc(sizeof(unsigned char) * width * height * *channels); *w = width; *h = height; } // read and close file if (fread(*data, sizeof(unsigned char), width * height * *channels, fp) == 0) { std::cerr << "__LoadPPM() read data returned error." << std::endl; } fclose(fp); return true; } template <class T> inline bool sdkLoadPGM(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = NULL; unsigned int channels; if (true != __loadPPM(file, &idata, w, h, &channels)) { return false; } unsigned int size = *w * *h * channels; // initialize mem if necessary // the correct size is checked / set in loadPGMc() if (NULL == *data) { *data = reinterpret_cast<T *>(malloc(sizeof(T) * size)); } // copy and cast data std::transform(idata, idata + size, *data, helper_image_internal::ConverterFromUByte<T>()); free(idata); return true; } template <class T> inline bool sdkLoadPPM4(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = reinterpret_cast<T *>(malloc(sizeof(T) * size * 4)); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels) { assert(NULL != data); assert(w > 0); assert(h > 0); std::fstream fh(file, std::fstream::out | std::fstream::binary); if (fh.bad()) { std::cerr << "__savePPM() : Opening file failed." << std::endl; return false; } if (channels == 1) { fh << "P5\n"; } else if (channels == 3) { fh << "P6\n"; } else { std::cerr << "__savePPM() : Invalid number of channels." << std::endl; return false; } fh << w << "\n" << h << "\n" << 0xff << std::endl; for (unsigned int i = 0; (i < (w * h * channels)) && fh.good(); ++i) { fh << data[i]; } fh.flush(); if (fh.bad()) { std::cerr << "__savePPM() : Writing data failed." << std::endl; return false; } fh.close(); return true; } template <class T> inline bool sdkSavePGM(const char *file, T *data, unsigned int w, unsigned int h) { unsigned int size = w * h; unsigned char *idata = (unsigned char *)malloc(sizeof(unsigned char) * size); std::transform(data, data + size, idata, helper_image_internal::ConverterToUByte<T>()); // write file bool result = __savePPM(file, idata, w, h, 1); // cleanup free(idata); return result; } inline bool sdkSavePPM4ub(const char *file, unsigned char *data, unsigned int w, unsigned int h) { // strip 4th component int size = w * h; unsigned char *ndata = (unsigned char *)malloc(sizeof(unsigned char) * size * 3); unsigned char *ptr = ndata; for (int i = 0; i < size; i++) { *ptr++ = *data++; *ptr++ = *data++; *ptr++ = *data++; data++; } bool result = __savePPM(file, ndata, w, h, 3); free(ndata); return result; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFile(const char *filename, T **data, unsigned int *len, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // intermediate storage for the data read std::vector<T> data_read; // open file for reading FILE *fh = NULL; // check if filestream is valid if (FOPEN_FAIL(FOPEN(fh, filename, "r"))) { printf("Unable to open input file: %s\n", filename); return false; } // read all data elements T token; while (!feof(fh)) { fscanf(fh, "%f", &token); data_read.push_back(token); } // the last element is read twice data_read.pop_back(); fclose(fh); // check if the given handle is already initialized if (NULL != *data) { if (*len != data_read.size()) { std::cerr << "sdkReadFile() : Initialized memory given but " << "size mismatch with signal read " << "(data read / data init = " << (unsigned int)data_read.size() << " / " << *len << ")" << std::endl; return false; } } else { // allocate storage for the data read *data = reinterpret_cast<T *>(malloc(sizeof(T) * data_read.size())); // store signal size *len = static_cast<unsigned int>(data_read.size()); } // copy data memcpy(*data, &data_read.front(), sizeof(T) * data_read.size()); return true; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFileBlocks(const char *filename, T **data, unsigned int *len, unsigned int block_num, unsigned int block_size, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // open file for reading FILE *fh = fopen(filename, "rb"); if (fh == NULL && verbose) { std::cerr << "sdkReadFile() : Opening file failed." << std::endl; return false; } // check if the given handle is already initialized // allocate storage for the data read data[block_num] = reinterpret_cast<T *>(malloc(block_size)); // read all data elements fseek(fh, block_num * block_size, SEEK_SET); *len = fread(data[block_num], sizeof(T), block_size / sizeof(T), fh); fclose(fh); return true; } ////////////////////////////////////////////////////////////////////////////// //! Write a data file \filename //! @return true if writing the file succeeded, otherwise false //! @param filename name of the source file //! @param data data to write //! @param len number of data elements in data, -1 on error //! @param epsilon epsilon for comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool sdkWriteFile(const char *filename, const T *data, unsigned int len, const S epsilon, bool verbose, bool append = false) { assert(NULL != filename); assert(NULL != data); // open file for writing // if (append) { std::fstream fh(filename, std::fstream::out | std::fstream::ate); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write/append." << std::endl; } /* } else { std::fstream fh(filename, std::fstream::out); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write." << std::endl; } } */ // check if filestream is valid if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Opening file failed." << std::endl; } return false; } // first write epsilon fh << "# " << epsilon << "\n"; // write data for (unsigned int i = 0; (i < len) && (fh.good()); ++i) { fh << data[i] << ' '; } // Check if writing succeeded if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Writing file failed." << std::endl; } return false; } // file ends with nl fh << std::endl; return true; } ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference timer_interface to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareData(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); bool result = true; unsigned int error_count = 0; for (unsigned int i = 0; i < len; ++i) { float diff = static_cast<float>(reference[i]) - static_cast<float>(data[i]); bool comp = (diff <= epsilon) && (diff >= -epsilon); result &= comp; error_count += !comp; #if 0 if (!comp) { std::cerr << "ERROR, i = " << i << ",\t " << reference[i] << " / " << data[i] << " (reference / data)\n"; } #endif } if (threshold == 0.0f) { return (result) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return (len * threshold > error_count) ? true : false; } } #ifndef __MIN_EPSILON_ERROR #define __MIN_EPSILON_ERROR 1e-3f #endif ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference handle to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison //! @param epsilon threshold % of (# of bytes) for pass/fail ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareDataAsFloatThreshold(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); // If we set epsilon to be 0, let's set a minimum threshold float max_error = MAX((float)epsilon, __MIN_EPSILON_ERROR); int error_count = 0; bool result = true; for (unsigned int i = 0; i < len; ++i) { float diff = fabs(static_cast<float>(reference[i]) - static_cast<float>(data[i])); bool comp = (diff < max_error); result &= comp; if (!comp) { error_count++; } } if (threshold == 0.0f) { if (error_count) { printf("total # of errors = %d\n", error_count); } return (error_count == 0) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return ((len * threshold > error_count) ? true : false); } } inline void sdkDumpBin(void *data, unsigned int bytes, const char *filename) { printf("sdkDumpBin: <%s>\n", filename); FILE *fp; FOPEN(fp, filename, "wb"); fwrite(data, bytes, 1, fp); fflush(fp); fclose(fp); } inline bool sdkCompareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { unsigned int *src_buffer, *ref_buffer; FILE *src_fp = NULL, *ref_fp = NULL; uint64_t error_count = 0; size_t fsize = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file); error_count++; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <unsigned int> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf( "compareBin2Bin <unsigned int>" " unable to open ref_file: %s\n", ref_file_path); error_count++; } if (src_fp && ref_fp) { src_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); ref_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); fsize = fread(src_buffer, nelements, sizeof(unsigned int), src_fp); fsize = fread(ref_buffer, nelements, sizeof(unsigned int), ref_fp); printf( "> compareBin2Bin <unsigned int> nelements=%d," " epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize)); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize)); if (!compareData<unsigned int, float>(ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { float *src_buffer = NULL, *ref_buffer = NULL; FILE *src_fp = NULL, *ref_fp = NULL; size_t fsize = 0; uint64_t error_count = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <float> unable to open src_file: %s\n", src_file); error_count = 1; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", exec_path); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path); error_count = 1; } if (src_fp && ref_fp) { src_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); ref_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); printf( "> compareBin2Bin <float> nelements=%d, epsilon=%4.2f," " threshold=%4.2f\n", nelements, epsilon, threshold); fsize = fread(src_buffer, sizeof(float), nelements, src_fp); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize * sizeof(float))); fsize = fread(ref_buffer, sizeof(float), nelements, ref_fp); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize * sizeof(float))); if (!compareDataAsFloatThreshold<float, float>( ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareL2fe(const float *reference, const float *data, const unsigned int len, const float epsilon) { assert(epsilon >= 0); float error = 0; float ref = 0; for (unsigned int i = 0; i < len; ++i) { float diff = reference[i] - data[i]; error += diff * diff; ref += reference[i] * reference[i]; } float normRef = sqrtf(ref); if (fabs(ref) < 1e-7) { #ifdef _DEBUG std::cerr << "ERROR, reference l2-norm is 0\n"; #endif return false; } float normError = sqrtf(error); error = normError / normRef; bool result = error < epsilon; #ifdef _DEBUG if (!result) { std::cerr << "ERROR, l2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; } #endif return result; } inline bool sdkLoadPPMub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned int channels; return __loadPPM(file, data, w, h, &channels); } inline bool sdkLoadPPM4ub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = (unsigned char *)malloc(sizeof(unsigned char) * size * 4); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool sdkComparePPM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data, *ref_data; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PPMvsPPM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPM4ub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PPMvsPPM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPM4ub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PPMvsPPM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PPMvsPPM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) { std::cerr << "PPMvsPPM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; } if (compareData(ref_data, src_data, src_width * src_height * 4, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } inline bool sdkComparePGM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data = 0, *ref_data = 0; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PGMvsPGM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPMub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PGMvsPGM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPMub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PGMvsPGM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PGMvsPGM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) std::cerr << "PGMvsPGM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; if (compareData(ref_data, src_data, src_width * src_height, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } #endif // COMMON_HELPER_IMAGE_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/exception.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CUda UTility Library */ #ifndef COMMON_EXCEPTION_H_ #define COMMON_EXCEPTION_H_ // includes, system #include <stdlib.h> #include <exception> #include <iostream> #include <stdexcept> #include <string> //! Exception wrapper. //! @param Std_Exception Exception out of namespace std for easy typing. template <class Std_Exception> class Exception : public Std_Exception { public: //! @brief Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const char *detailed = "-"); //! Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const std::string &detailed); //! Destructor virtual ~Exception() throw(); private: //! Constructor, default (private) Exception(); //! Constructor, standard //! @param str string returned by what() explicit Exception(const std::string &str); }; //////////////////////////////////////////////////////////////////////////////// //! Exception handler function for arbitrary exceptions //! @param ex exception to handle //////////////////////////////////////////////////////////////////////////////// template <class Exception_Typ> inline void handleException(const Exception_Typ &ex) { std::cerr << ex.what() << std::endl; exit(EXIT_FAILURE); } //! Convenience macros //! Exception caused by dynamic program behavior, e.g. file does not exist #define RUNTIME_EXCEPTION(msg) \ Exception<std::runtime_error>::throw_it(__FILE__, __LINE__, msg) //! Logic exception in program, e.g. an assert failed #define LOGIC_EXCEPTION(msg) \ Exception<std::logic_error>::throw_it(__FILE__, __LINE__, msg) //! Out of range exception #define RANGE_EXCEPTION(msg) \ Exception<std::range_error>::throw_it(__FILE__, __LINE__, msg) //////////////////////////////////////////////////////////////////////////////// //! Implementation // includes, system #include <sstream> //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const char *detailed) { std::stringstream s; // Quiet heavy-weight but exceptions are not for // performance / release versions s << "Exception in file '" << file << "' in line " << line << "\n" << "Detailed description: " << detailed << "\n"; throw Exception(s.str()); } //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const std::string &msg) { throw_it(file, line, msg.c_str()); } //////////////////////////////////////////////////////////////////////////////// //! Constructor, default (private). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception() : Std_Exception("Unknown Exception.\n") {} //////////////////////////////////////////////////////////////////////////////// //! Constructor, standard (private). //! String returned by what(). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception(const std::string &s) : Std_Exception(s) {} //////////////////////////////////////////////////////////////////////////////// //! Destructor //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::~Exception() throw() {} // functions, exported #endif // COMMON_EXCEPTION_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/helper_cuda.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // These are CUDA Helper functions for initialization and error checking #ifndef COMMON_HELPER_CUDA_H_ #define COMMON_HELPER_CUDA_H_ #pragma once #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <helper_string.h> #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // Note, it is required that your SDK sample to include the proper header // files, please refer the CUDA examples for examples of the needed CUDA // headers, which may change depending on which CUDA functions are used. // CUDA Runtime error messages #ifdef __DPCT_HPP__ static const char *_cudaGetErrorEnum(dpct::err0 error) { /* DPCT1009:16: SYCL uses exceptions to report errors and does not use the error codes. The original code was commented out and a warning string was inserted. You need to rewrite this code. */ return "cudaGetErrorName is not supported" /*cudaGetErrorName(error)*/; } #endif #ifdef CUDA_DRIVER_API // CUDA Driver API errors static const char *_cudaGetErrorEnum(CUresult error) { static char unknown[] = "<unknown>"; const char *ret = NULL; cuGetErrorName(error, &ret); return ret ? ret : unknown; } #endif #ifdef CUBLAS_API_H_ // cuBLAS API errors static const char *_cudaGetErrorEnum(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "<unknown>"; } #endif #ifdef _CUFFT_H_ // cuFFT API errors static const char *_cudaGetErrorEnum(cufftResult error) { switch (error) { case CUFFT_SUCCESS: return "CUFFT_SUCCESS"; case CUFFT_INVALID_PLAN: return "CUFFT_INVALID_PLAN"; case CUFFT_ALLOC_FAILED: return "CUFFT_ALLOC_FAILED"; case CUFFT_INVALID_TYPE: return "CUFFT_INVALID_TYPE"; case CUFFT_INVALID_VALUE: return "CUFFT_INVALID_VALUE"; case CUFFT_INTERNAL_ERROR: return "CUFFT_INTERNAL_ERROR"; case CUFFT_EXEC_FAILED: return "CUFFT_EXEC_FAILED"; case CUFFT_SETUP_FAILED: return "CUFFT_SETUP_FAILED"; case CUFFT_INVALID_SIZE: return "CUFFT_INVALID_SIZE"; case CUFFT_UNALIGNED_DATA: return "CUFFT_UNALIGNED_DATA"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "CUFFT_INCOMPLETE_PARAMETER_LIST"; case CUFFT_INVALID_DEVICE: return "CUFFT_INVALID_DEVICE"; case CUFFT_PARSE_ERROR: return "CUFFT_PARSE_ERROR"; case CUFFT_NO_WORKSPACE: return "CUFFT_NO_WORKSPACE"; case CUFFT_NOT_IMPLEMENTED: return "CUFFT_NOT_IMPLEMENTED"; case CUFFT_LICENSE_ERROR: return "CUFFT_LICENSE_ERROR"; case CUFFT_NOT_SUPPORTED: return "CUFFT_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSPARSEAPI // cuSPARSE API errors static const char *_cudaGetErrorEnum(cusparseStatus_t error) { switch (error) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSOLVER_COMMON_H_ // cuSOLVER API errors static const char *_cudaGetErrorEnum(cusolverStatus_t error) { switch (error) { case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCESS"; case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; case CUSOLVER_STATUS_MAPPING_ERROR: return "CUSOLVER_STATUS_MAPPING_ERROR"; case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSOLVER_STATUS_NOT_SUPPORTED: return "CUSOLVER_STATUS_NOT_SUPPORTED "; case CUSOLVER_STATUS_ZERO_PIVOT: return "CUSOLVER_STATUS_ZERO_PIVOT"; case CUSOLVER_STATUS_INVALID_LICENSE: return "CUSOLVER_STATUS_INVALID_LICENSE"; } return "<unknown>"; } #endif #ifdef CURAND_H_ // cuRAND API errors static const char *_cudaGetErrorEnum(int error) { switch (error) { case 0: return "CURAND_STATUS_SUCCESS"; case 100: return "CURAND_STATUS_VERSION_MISMATCH"; case 101: return "CURAND_STATUS_NOT_INITIALIZED"; case 102: return "CURAND_STATUS_ALLOCATION_FAILED"; case 103: return "CURAND_STATUS_TYPE_ERROR"; case 104: return "CURAND_STATUS_OUT_OF_RANGE"; case 105: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case 106: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case 201: return "CURAND_STATUS_LAUNCH_FAILURE"; case 202: return "CURAND_STATUS_PREEXISTING_FAILURE"; case 203: return "CURAND_STATUS_INITIALIZATION_FAILED"; case 204: return "CURAND_STATUS_ARCH_MISMATCH"; case 999: return "CURAND_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NVJPEGAPI // nvJPEG API errors static const char *_cudaGetErrorEnum(nvjpegStatus_t error) { switch (error) { case NVJPEG_STATUS_SUCCESS: return "NVJPEG_STATUS_SUCCESS"; case NVJPEG_STATUS_NOT_INITIALIZED: return "NVJPEG_STATUS_NOT_INITIALIZED"; case NVJPEG_STATUS_INVALID_PARAMETER: return "NVJPEG_STATUS_INVALID_PARAMETER"; case NVJPEG_STATUS_BAD_JPEG: return "NVJPEG_STATUS_BAD_JPEG"; case NVJPEG_STATUS_JPEG_NOT_SUPPORTED: return "NVJPEG_STATUS_JPEG_NOT_SUPPORTED"; case NVJPEG_STATUS_ALLOCATOR_FAILURE: return "NVJPEG_STATUS_ALLOCATOR_FAILURE"; case NVJPEG_STATUS_EXECUTION_FAILED: return "NVJPEG_STATUS_EXECUTION_FAILED"; case NVJPEG_STATUS_ARCH_MISMATCH: return "NVJPEG_STATUS_ARCH_MISMATCH"; case NVJPEG_STATUS_INTERNAL_ERROR: return "NVJPEG_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NV_NPPIDEFS_H // NPP API errors static const char *_cudaGetErrorEnum(NppStatus error) { switch (error) { case NPP_NOT_SUPPORTED_MODE_ERROR: return "NPP_NOT_SUPPORTED_MODE_ERROR"; case NPP_ROUND_MODE_NOT_SUPPORTED_ERROR: return "NPP_ROUND_MODE_NOT_SUPPORTED_ERROR"; case NPP_RESIZE_NO_OPERATION_ERROR: return "NPP_RESIZE_NO_OPERATION_ERROR"; case NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY: return "NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_BAD_ARG_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFF_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECT_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUAD_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEM_ALLOC_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTO_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_INPUT: return "NPP_INVALID_INPUT"; case NPP_POINTER_ERROR: return "NPP_POINTER_ERROR"; case NPP_WARNING: return "NPP_WARNING"; case NPP_ODD_ROI_WARNING: return "NPP_ODD_ROI_WARNING"; #else // These are for CUDA 5.5 or higher case NPP_BAD_ARGUMENT_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFFICIENT_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECTANGLE_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUADRANGLE_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEMORY_ALLOCATION_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_HOST_POINTER_ERROR: return "NPP_INVALID_HOST_POINTER_ERROR"; case NPP_INVALID_DEVICE_POINTER_ERROR: return "NPP_INVALID_DEVICE_POINTER_ERROR"; #endif case NPP_LUT_NUMBER_OF_LEVELS_ERROR: return "NPP_LUT_NUMBER_OF_LEVELS_ERROR"; case NPP_TEXTURE_BIND_ERROR: return "NPP_TEXTURE_BIND_ERROR"; case NPP_WRONG_INTERSECTION_ROI_ERROR: return "NPP_WRONG_INTERSECTION_ROI_ERROR"; case NPP_NOT_EVEN_STEP_ERROR: return "NPP_NOT_EVEN_STEP_ERROR"; case NPP_INTERPOLATION_ERROR: return "NPP_INTERPOLATION_ERROR"; case NPP_RESIZE_FACTOR_ERROR: return "NPP_RESIZE_FACTOR_ERROR"; case NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR: return "NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_MEMFREE_ERR: return "NPP_MEMFREE_ERR"; case NPP_MEMSET_ERR: return "NPP_MEMSET_ERR"; case NPP_MEMCPY_ERR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERR: return "NPP_MIRROR_FLIP_ERR"; #else case NPP_MEMFREE_ERROR: return "NPP_MEMFREE_ERROR"; case NPP_MEMSET_ERROR: return "NPP_MEMSET_ERROR"; case NPP_MEMCPY_ERROR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERROR: return "NPP_MIRROR_FLIP_ERROR"; #endif case NPP_ALIGNMENT_ERROR: return "NPP_ALIGNMENT_ERROR"; case NPP_STEP_ERROR: return "NPP_STEP_ERROR"; case NPP_SIZE_ERROR: return "NPP_SIZE_ERROR"; case NPP_NULL_POINTER_ERROR: return "NPP_NULL_POINTER_ERROR"; case NPP_CUDA_KERNEL_EXECUTION_ERROR: return "NPP_CUDA_KERNEL_EXECUTION_ERROR"; case NPP_NOT_IMPLEMENTED_ERROR: return "NPP_NOT_IMPLEMENTED_ERROR"; case NPP_ERROR: return "NPP_ERROR"; case NPP_SUCCESS: return "NPP_SUCCESS"; case NPP_WRONG_INTERSECTION_QUAD_WARNING: return "NPP_WRONG_INTERSECTION_QUAD_WARNING"; case NPP_MISALIGNED_DST_ROI_WARNING: return "NPP_MISALIGNED_DST_ROI_WARNING"; case NPP_AFFINE_QUAD_INCORRECT_WARNING: return "NPP_AFFINE_QUAD_INCORRECT_WARNING"; case NPP_DOUBLE_SIZE_WARNING: return "NPP_DOUBLE_SIZE_WARNING"; case NPP_WRONG_INTERSECTION_ROI_WARNING: return "NPP_WRONG_INTERSECTION_ROI_WARNING"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x6000 /* These are 6.0 or higher */ case NPP_LUT_PALETTE_BITSIZE_ERROR: return "NPP_LUT_PALETTE_BITSIZE_ERROR"; case NPP_ZC_MODE_NOT_SUPPORTED_ERROR: return "NPP_ZC_MODE_NOT_SUPPORTED_ERROR"; case NPP_QUALITY_INDEX_ERROR: return "NPP_QUALITY_INDEX_ERROR"; case NPP_CHANNEL_ORDER_ERROR: return "NPP_CHANNEL_ORDER_ERROR"; case NPP_ZERO_MASK_VALUE_ERROR: return "NPP_ZERO_MASK_VALUE_ERROR"; case NPP_NUMBER_OF_CHANNELS_ERROR: return "NPP_NUMBER_OF_CHANNELS_ERROR"; case NPP_COI_ERROR: return "NPP_COI_ERROR"; case NPP_DIVISOR_ERROR: return "NPP_DIVISOR_ERROR"; case NPP_CHANNEL_ERROR: return "NPP_CHANNEL_ERROR"; case NPP_STRIDE_ERROR: return "NPP_STRIDE_ERROR"; case NPP_ANCHOR_ERROR: return "NPP_ANCHOR_ERROR"; case NPP_MASK_SIZE_ERROR: return "NPP_MASK_SIZE_ERROR"; case NPP_MOMENT_00_ZERO_ERROR: return "NPP_MOMENT_00_ZERO_ERROR"; case NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR: return "NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR"; case NPP_THRESHOLD_ERROR: return "NPP_THRESHOLD_ERROR"; case NPP_CONTEXT_MATCH_ERROR: return "NPP_CONTEXT_MATCH_ERROR"; case NPP_FFT_FLAG_ERROR: return "NPP_FFT_FLAG_ERROR"; case NPP_FFT_ORDER_ERROR: return "NPP_FFT_ORDER_ERROR"; case NPP_SCALE_RANGE_ERROR: return "NPP_SCALE_RANGE_ERROR"; case NPP_DATA_TYPE_ERROR: return "NPP_DATA_TYPE_ERROR"; case NPP_OUT_OFF_RANGE_ERROR: return "NPP_OUT_OFF_RANGE_ERROR"; case NPP_DIVIDE_BY_ZERO_ERROR: return "NPP_DIVIDE_BY_ZERO_ERROR"; case NPP_RANGE_ERROR: return "NPP_RANGE_ERROR"; case NPP_NO_MEMORY_ERROR: return "NPP_NO_MEMORY_ERROR"; case NPP_ERROR_RESERVED: return "NPP_ERROR_RESERVED"; case NPP_NO_OPERATION_WARNING: return "NPP_NO_OPERATION_WARNING"; case NPP_DIVIDE_BY_ZERO_WARNING: return "NPP_DIVIDE_BY_ZERO_WARNING"; #endif #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x7000 /* These are 7.0 or higher */ case NPP_OVERFLOW_ERROR: return "NPP_OVERFLOW_ERROR"; case NPP_CORRUPTED_DATA_ERROR: return "NPP_CORRUPTED_DATA_ERROR"; #endif } return "<unknown>"; } #endif template <typename T> void check(T result, char const *const func, const char *const file, int const line) { } #ifdef __DPCT_HPP__ // This will output the proper CUDA error strings in the event // that a CUDA host call returns an error #define checkCudaErrors(val) check((val), #val, __FILE__, __LINE__) // This will output the proper error string when calling cudaGetLastError #define getLastCudaError(msg) __getLastCudaError(msg, __FILE__, __LINE__) inline void __getLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:17: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } // This will only print the proper error string when calling cudaGetLastError // but not exit program incase error detected. #define printLastCudaError(msg) __printLastCudaError(msg, __FILE__, __LINE__) inline void __printLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:19: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } #endif #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // Float To Int conversion inline int ftoi(float value) { return (value >= 0 ? static_cast<int>(value + 0.5) : static_cast<int>(value - 0.5)); } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the # of cores per SM typedef struct dpct_type_113531 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { {0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128}, {0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128}, {0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128}, {0x87, 128}, {0x89, 128}, {0x90, 128}, {-1, -1}}; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoCores for SM %d.%d is undefined." " Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index - 1].Cores); return nGpuArchCoresPerSM[index - 1].Cores; } inline const char* _ConvertSMVer2ArchName(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the GPU Arch name) typedef struct dpct_type_281558 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version const char* name; } sSMtoArchName; sSMtoArchName nGpuArchNameSM[] = { {0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"}, {0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"}, {0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"}, {0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"}, {0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"}, {0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"}, {-1, "Graphics Device"}}; int index = 0; while (nGpuArchNameSM[index].SM != -1) { if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) { return nGpuArchNameSM[index].name; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoArchName for SM %d.%d is undefined." " Default to use %s\n", major, minor, nGpuArchNameSM[index - 1].name); return nGpuArchNameSM[index - 1].name; } // end of GPU Architecture definitions #ifdef __DPCT_HPP__ // General GPU Device CUDA Initialization inline int gpuDeviceInit(int devID) { int device_count; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuDeviceInit() CUDA error: " "no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } if (devID < 0) { devID = 0; } if (devID > device_count - 1) { fprintf(stderr, "\n"); fprintf(stderr, ">> %d CUDA capable GPU device(s) detected. <<\n", device_count); fprintf(stderr, ">> gpuDeviceInit (-device=%d) is not a valid" " GPU device. <<\n", devID); fprintf(stderr, "\n"); return -devID; } int computeMode = -1, major = 0, minor = 0; /* DPCT1035:21: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); /* DPCT1035:22: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode == 0) { fprintf(stderr, "Error: device is running in <Compute Mode " "Prohibited>, no threads can use cudaSetDevice().\n"); return -1; } if (major < 1) { fprintf(stderr, "gpuDeviceInit(): GPU device does not support CUDA.\n"); exit(EXIT_FAILURE); } /* DPCT1093:23: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); printf("gpuDeviceInit() CUDA Device [%d]: \"%s\n", devID, _ConvertSMVer2ArchName(major, minor)); return devID; } // This function returns the best GPU (with maximum GFLOPS) inline int gpuGetMaxGflopsDeviceId() try { int current_device = 0, sm_per_multiproc = 0; int max_perf_device = 0; int device_count = 0; int devices_prohibited = 0; uint64_t max_compute_perf = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the best CUDA capable GPU device current_device = 0; while (current_device < device_count) { int computeMode = -1, major = 0, minor = 0; /* DPCT1035:24: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list /* DPCT1035:25: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode != 0) { if (major == 9999 && minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(major, minor); } int multiProcessorCount = 0, clockRate = 0; checkCudaErrors( DPCT_CHECK_ERROR(multiProcessorCount = dpct::dev_mgr::instance() .get_device(current_device) .get_max_compute_units())); dpct::err0 result = DPCT_CHECK_ERROR(clockRate = dpct::dev_mgr::instance() .get_device(current_device) .get_max_clock_frequency()); uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate; if (compute_perf > max_compute_perf) { max_compute_perf = compute_perf; max_perf_device = current_device; } } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } return max_perf_device; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } // Initialization code to find the best CUDA Device inline int findCudaDevice(int argc, const char **argv) { int devID = 0; // If the command-line has a device number specified, use it if (checkCmdLineFlag(argc, argv, "device")) { devID = getCmdLineArgumentInt(argc, argv, "device="); if (devID < 0) { printf("Invalid command line parameter\n "); exit(EXIT_FAILURE); } else { devID = gpuDeviceInit(devID); if (devID < 0) { printf("exiting...\n"); exit(EXIT_FAILURE); } } } else { // Otherwise pick the device with highest Gflops/s devID = gpuGetMaxGflopsDeviceId(); /* DPCT1093:26: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, _ConvertSMVer2ArchName(major, minor), major, minor); } return devID; } inline int findIntegratedGPU() { int current_device = 0; int device_count = 0; int devices_prohibited = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the integrated GPU which is compute capable while (current_device < device_count) { int computeMode = -1, integrated = -1; /* DPCT1035:27: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors( DPCT_CHECK_ERROR(integrated = dpct::dev_mgr::instance() .get_device(current_device) .get_integrated())); // If GPU is integrated and is not running on Compute Mode prohibited, // then cuda can map to GLES resource /* DPCT1035:28: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (integrated && (computeMode != 0)) { /* DPCT1093:29: The "current_device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(current_device))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, _ConvertSMVer2ArchName(major, minor), major, minor); return current_device; } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No GLES-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } // General check for CUDA GPU SM Capabilities inline bool checkCudaCapabilities(int major_version, int minor_version) { int dev; int major = 0, minor = 0; checkCudaErrors(dev = dpct::dev_mgr::instance().current_device_id()); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(dev).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(dev).get_minor_version())); if ((major > major_version) || (major == major_version && minor >= minor_version)) { printf(" Device %d: <%16s >, Compute SM %d.%d detected\n", dev, _ConvertSMVer2ArchName(major, minor), major, minor); return true; } else { printf( " No GPU device was found that can support " "CUDA compute capability %d.%d.\n", major_version, minor_version); return false; } } #endif // end of CUDA Helper Functions #endif // COMMON_HELPER_CUDA_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Common/helper_functions.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, // timers, image helpers, etc) #ifndef COMMON_HELPER_FUNCTIONS_H_ #define COMMON_HELPER_FUNCTIONS_H_ #ifdef WIN32 #pragma warning(disable : 4996) #endif // includes, project #include <assert.h> #include <exception.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> // includes, timer, string parsing, image helpers #include <helper_image.h> // helper functions for image compare, dump, data comparisons #include <helper_string.h> // helper functions for string parsing #include <helper_timer.h> // helper functions for timers #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #endif // COMMON_HELPER_FUNCTIONS_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/addKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// /// CUDA kernel /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// void AddKernel(const float *op1, const float *op2, int count, float *sum, const sycl::nd_item<3> &item_ct1) { const int pos = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); if (pos >= count) return; sum[pos] = op1[pos] + op2[pos]; } /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// static void Add(const float *op1, const float *op2, int count, float *sum, sycl::queue q) { sycl::range<3> threads(1, 1, 256); sycl::range<3> blocks(1, 1, iDivUp(count, threads[2])); q.parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { AddKernel(op1, op2, count, sum, item_ct1); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/flowSYCL.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_CUDA_H #define FLOW_CUDA_H void ComputeFlowCUDA( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nSolverIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_GOLD_H #define FLOW_GOLD_H void ComputeFlowGold( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/flowSYCL.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" // include kernels #include "downscaleKernel.dp.hpp" #include "upscaleKernel.dp.hpp" #include "warpingKernel.dp.hpp" #include "derivativesKernel.dp.hpp" #include "solverKernel.dp.hpp" #include "addKernel.dp.hpp" /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocations, control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowCUDA(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on Device...\n"); sycl::queue q{aspect_selector(sycl::aspect::ext_intel_legacy_image), sycl::property::queue::in_order()}; std::cout << "\nRunning on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // pI0 and pI1 will hold device pointers const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; // device memory pointers float *d_tmp; float *d_du0; float *d_dv0; float *d_du1; float *d_dv1; float *d_Ix; float *d_Iy; float *d_Iz; float *d_u; float *d_v; float *d_nu; float *d_nv; const int dataSize = stride * height * sizeof(float); checkCudaErrors(DPCT_CHECK_ERROR(d_tmp = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_du0 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv0 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_du1 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv1 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Ix = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iy = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iz = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( d_u = (float *)sycl::malloc_device(dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( d_v = (float *)sycl::malloc_device(dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_nu = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_nv = (float *)sycl::malloc_device( dataSize, q))); // prepare pyramid int currentLevel = nLevels - 1; // allocate GPU memory for input images checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel) = (const float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel) = (const float *)sycl::malloc_device( dataSize, q))); checkCudaErrors( DPCT_CHECK_ERROR(q.memcpy((void *)pI0[currentLevel], I0, dataSize).wait())); checkCudaErrors( DPCT_CHECK_ERROR(q.memcpy((void *)pI1[currentLevel], I1, dataSize).wait())); pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), q))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), q))); Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1], q); Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1], q); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } checkCudaErrors( DPCT_CHECK_ERROR(q.memset(d_u, 0, stride * height * sizeof(float)))); checkCudaErrors( DPCT_CHECK_ERROR(q.memset(d_v, 0, stride * height * sizeof(float)))); checkCudaErrors( DPCT_CHECK_ERROR(q.wait())); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_du0, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_dv0, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_du1, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_dv1, 0, dataSize))); // on current level we compute optical flow // between frame 0 and warped frame 1 WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], d_u, d_v, d_tmp, q); ComputeDerivatives(pI0[currentLevel], d_tmp, pW[currentLevel], pH[currentLevel], pS[currentLevel], d_Ix, d_Iy, d_Iz, q); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(d_du0, d_dv0, d_Ix, d_Iy, d_Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, d_du1, d_dv1, q); Swap(d_du0, d_du1); Swap(d_dv0, d_dv1); } // update u, v Add(d_u, d_du0, pH[currentLevel] * pS[currentLevel], d_u, q); Add(d_v, d_dv0, pH[currentLevel] * pS[currentLevel], d_v, q); } if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(d_u, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, d_nu, q); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(d_v, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, d_nv, q); Swap(d_u, d_nu); Swap(d_v, d_nv); } } checkCudaErrors(DPCT_CHECK_ERROR( q.memcpy(u, d_u, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memcpy(v, d_v, dataSize))); checkCudaErrors( DPCT_CHECK_ERROR(q.wait())); // cleanup for (int i = 0; i < nLevels; ++i) { checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI0[i], q))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI1[i], q))); } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_tmp, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du0, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv0, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du1, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv1, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Ix, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iy, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iz, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nu, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nv, q))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_u, q))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_v, q))); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/common.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /////////////////////////////////////////////////////////////////////////////// // Header for common includes and utility functions /////////////////////////////////////////////////////////////////////////////// #ifndef COMMON_H #define COMMON_H /////////////////////////////////////////////////////////////////////////////// // Common includes /////////////////////////////////////////////////////////////////////////////// #include <stdlib.h> #include <stdio.h> #include <time.h> #include <memory.h> #include <math.h> #include <helper_cuda.h> /////////////////////////////////////////////////////////////////////////////// // Common constants /////////////////////////////////////////////////////////////////////////////// const int StrideAlignment = 8; /////////////////////////////////////////////////////////////////////////////// // Common functions /////////////////////////////////////////////////////////////////////////////// // Align up n to the nearest multiple of m inline int iAlignUp(int n, int m = StrideAlignment) { int mod = n % m; if (mod) return n + m - mod; else return n; } // round up n/m inline int iDivUp(int n, int m) { return (n + m - 1) / m; } // swap two values template <typename T> inline void Swap(T &a, T &b) { T t = a; a = b; b = t; } #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/downscaleKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void DownscaleKernel(int width, int height, int stride, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> tex_acc, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); if (ix >= width || iy >= height) { return; } int srcx = ix * 2; int srcy = iy * 2; auto inputCoords1 = sycl::float2(srcx + 0, srcy + 0); auto inputCoords2 = sycl::float2(srcx + 0, srcy + 1); auto inputCoords3 = sycl::float2(srcx + 1, srcy + 0); auto inputCoords4 = sycl::float2(srcx + 1, srcy + 1); out[ix + iy * stride] = 0.25f * (tex_acc.read(inputCoords1, texDesc)[0] + tex_acc.read(inputCoords2, texDesc)[0] + tex_acc.read(inputCoords3, texDesc)[0] + tex_acc.read(inputCoords4, texDesc)[0]); } /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out, sycl::queue q) { sycl::range<3> threads(1, 8, 32); sycl::range<3> blocks(1, iDivUp(newHeight, threads[1]), iDivUp(newWidth, threads[2])); int dataSize = height * stride * sizeof(float); float *src_h = (float *)malloc(dataSize); q.memcpy(src_h, src, dataSize).wait(); float *src_p = (float *)sycl::malloc_shared(height * stride * sizeof(sycl::float4), q); for (int i = 0; i < 4 * height * stride; i++) src_p[i] = 0.f; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { int index = i * stride + j; src_p[index * 4 + 0] = src_h[index]; src_p[index * 4 + 1] = src_p[index * 4 + 2] = src_p[index * 4 + 3] = 0.f; } } auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::nearest); auto texFine = sycl::image<2>(src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(width, height), sycl::range<1>(stride * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto tex_acc = texFine.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { DownscaleKernel(newWidth, newHeight, newStride, out, tex_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/main.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ const static char *const sSDKsample = "HSOpticalFlow"; // CPU-GPU discrepancy threshold for self-test const float THRESHOLD = 0.05f; #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" #include "flowGold.h" #include "flowSYCL.h" #include <helper_functions.h> #include <cmath> #include <chrono> using Time = std::chrono::steady_clock; using ms = std::chrono::milliseconds; using float_ms = std::chrono::duration<float, ms::period>; /////////////////////////////////////////////////////////////////////////////// /// \brief save optical flow in format described on vision.middlebury.edu/flow /// \param[in] name output file name /// \param[in] w optical flow field width /// \param[in] h optical flow field height /// \param[in] s optical flow field row stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void WriteFloFile(const char *name, int w, int h, int s, const float *u, const float *v) { FILE *stream; stream = fopen(name, "wb"); if (stream == 0) { printf("Could not save flow to \"%s\"\n", name); return; } float data = 202021.25f; fwrite(&data, sizeof(float), 1, stream); fwrite(&w, sizeof(w), 1, stream); fwrite(&h, sizeof(h), 1, stream); for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; fwrite(u + pos, sizeof(float), 1, stream); fwrite(v + pos, sizeof(float), 1, stream); } } fclose(stream); } /////////////////////////////////////////////////////////////////////////////// /// \brief /// load 4-channel unsigned byte image /// and convert it to single channel FP32 image /// \param[out] img_data pointer to raw image data /// \param[out] img_w image width /// \param[out] img_h image height /// \param[out] img_s image row stride /// \param[in] name image file name /// \param[in] exePath executable file path /// \return true if image is successfully loaded or false otherwise /////////////////////////////////////////////////////////////////////////////// bool LoadImageAsFP32(float *&img_data, int &img_w, int &img_h, int &img_s, const char *name, const char *exePath) { printf("Loading \"%s\" ...\n", name); char *name_ = sdkFindFilePath(name, exePath); if (!name_) { printf("File not found\n"); return false; } unsigned char *data = 0; unsigned int w = 0, h = 0; bool result = sdkLoadPPM4ub(name_, &data, &w, &h); if (result == false) { printf("Invalid file format\n"); return false; } img_w = w; img_h = h; img_s = iAlignUp(img_w); img_data = new float[img_s * h]; // source is 4 channel image const int widthStep = 4 * img_w; for (int i = 0; i < img_h; ++i) { for (int j = 0; j < img_w; ++j) { img_data[j + i * img_s] = ((float)data[j * 4 + i * widthStep]) / 255.0f; } } return true; } /////////////////////////////////////////////////////////////////////////////// /// \brief compare given flow field with gold (L1 norm) /// \param[in] width optical flow field width /// \param[in] height optical flow field height /// \param[in] stride optical flow field row stride /// \param[in] h_uGold horizontal displacement, gold /// \param[in] h_vGold vertical displacement, gold /// \param[in] h_u horizontal displacement /// \param[in] h_v vertical displacement /// \return true if discrepancy is lower than a given threshold /////////////////////////////////////////////////////////////////////////////// bool CompareWithGold(int width, int height, int stride, const float *h_uGold, const float *h_vGold, const float *h_u, const float *h_v) { float error = 0.0f; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int pos = j + i * stride; error += fabsf(h_u[pos] - h_uGold[pos]) + fabsf(h_v[pos] - h_vGold[pos]); } } error /= (float)(width * height); printf("L1 error : %.6f\n", error); return (error < 1.0f); } /////////////////////////////////////////////////////////////////////////////// /// application entry point /////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // welcome message printf("%s Starting...\n\n", sSDKsample); // find images const char *const sourceFrameName = "frame10.ppm"; const char *const targetFrameName = "frame11.ppm"; // image dimensions int width; int height; // row access stride int stride; // flow is computed from source image to target image float *h_source; // source image, host memory float *h_target; // target image, host memory // load image from file if (!LoadImageAsFP32(h_source, width, height, stride, sourceFrameName, argv[0])) { exit(EXIT_FAILURE); } if (!LoadImageAsFP32(h_target, width, height, stride, targetFrameName, argv[0])) { exit(EXIT_FAILURE); } // allocate host memory for CPU results float *h_uGold = new float[stride * height]; float *h_vGold = new float[stride * height]; // allocate host memory for GPU results float *h_u = new float[stride * height]; float *h_v = new float[stride * height]; // smoothness // if image brightness is not within [0,1] // this paramter should be scaled appropriately const float alpha = 0.2f; // number of pyramid levels const int nLevels = 5; // number of solver iterations on each level const int nSolverIters = 500; // number of warping iterations const int nWarpIters = 3; // start Host Timer auto startGoldTime = Time::now(); ComputeFlowGold(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_uGold, h_vGold); // stop Host timer auto stopGoldTime = Time::now(); // start Device Timer auto startSYCLTime = Time::now(); ComputeFlowCUDA(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_u, h_v); // stop Device Timer auto stopSYCLTime = Time::now(); auto Gold_duration = std::chrono::duration_cast<float_ms>(stopGoldTime - startGoldTime) .count(); printf("Processing time on CPU: %f (ms)\n", Gold_duration); auto SYCL_duration = std::chrono::duration_cast<float_ms>(stopSYCLTime - startSYCLTime) .count(); printf("Processing time on Device: %f (ms)\n", SYCL_duration); // compare results (L1 norm) bool status = CompareWithGold(width, height, stride, h_uGold, h_vGold, h_u, h_v); WriteFloFile("FlowGPU.flo", width, height, stride, h_u, h_v); WriteFloFile("FlowCPU.flo", width, height, stride, h_uGold, h_vGold); // free resources delete[] h_uGold; delete[] h_vGold; delete[] h_u; delete[] h_v; delete[] h_source; delete[] h_target; // report self-test status exit(status ? EXIT_SUCCESS : EXIT_FAILURE); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common.h" #include "flowGold.h" #include <cmath> /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read from arbitrary position within image using bilinear interpolation /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2D(const float *t, int w, int h, int s, float x, float y) { // integer parts in floating point format float intPartX, intPartY; x -= 0.5f; y -= 0.5f; // get fractional parts of coordinates float dx = fabsf(modff(x, &intPartX)); float dy = fabsf(modff(y, &intPartY)); // assume pixels are squares // one of the corners int ix0 = (int)intPartX; int iy0 = (int)intPartY; // mirror out-of-range position if (ix0 < 0) ix0 = 0; if (iy0 < 0) iy0 = 0; if (ix0 >= w) ix0 = w - 1; if (iy0 >= h) iy0 = h - 1; // corner which is opposite to (ix0, iy0) int ix1 = ix0 + 1; int iy1 = iy0 + 1; if (ix1 >= w) ix1 = w - 1; if (iy1 >= h) iy1 = h - 1; float res = t[ix0 + iy0 * s] * (1.0f - dx) * (1.0f - dy); res += t[ix1 + iy0 * s] * dx * (1.0f - dy); res += t[ix0 + iy1 * s] * (1.0f - dx) * dy; res += t[ix1 + iy1 * s] * dx * dy; return res; } /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read specific texel value /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2Di(const float *src, int w, int h, int s, int x, int y) { if (x < 0) x = 0; if (y < 0) y = 0; if (x >= w) x = w - 1; if (y >= h) y = h - 1; return src[x + y * s]; } /////////////////////////////////////////////////////////////////////////////// /// \brief resize image /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] newWidth image new width /// \param[in] newHeight image new height /// \param[in] newStride image new stride /// \param[out] out downscaled image data /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { const int srcX = j * 2; const int srcY = i * 2; // average 4 neighbouring pixels float sum; sum = Tex2Di(src, width, height, stride, srcX + 0, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 0, srcY + 1); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 1); // normalize sum *= 0.25f; out[j + i * newStride] = sum; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field /// \param[in] src field component to upscale /// \param[in] width field current width /// \param[in] height field current height /// \param[in] stride field current stride /// \param[in] newWidth field new width /// \param[in] newHeight field new height /// \param[in] newStride field new stride /// \param[in] scale value scale factor (multiplier) /// \param[out] out upscaled field component /////////////////////////////////////////////////////////////////////////////// static void Upscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float scale, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { // position within smaller image float x = ((float)j - 0.5f) * 0.5f; float y = ((float)i - 0.5f) * 0.5f; out[j + i * newStride] = Tex2D(src, width, height, stride, x, y) * scale; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, int w, int h, int s, const float *u, const float *v, float *out) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; // warped coords float x = (float)j + u[pos]; float y = (float)i + v[pos]; out[pos] = Tex2D(src, w, h, s, x, y); } } } /////////////////////////////////////////////////////////////////////////////// /// \brief computes image derivatives for a pair of images /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w images width /// \param[in] h images height /// \param[in] s images stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, int w, int h, int s, float *Ix, float *Iy, float *Iz) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; float t0, t1; // derivative filter is (1, -8, 0, 8, -1)/12 // x derivative t0 = Tex2Di(I0, w, h, s, j - 2, i); t0 -= Tex2Di(I0, w, h, s, j - 1, i) * 8.0f; t0 += Tex2Di(I0, w, h, s, j + 1, i) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j + 2, i); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j - 2, i); t1 -= Tex2Di(I1, w, h, s, j - 1, i) * 8.0f; t1 += Tex2Di(I1, w, h, s, j + 1, i) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j + 2, i); t1 /= 12.0f; // spatial derivatives are averaged Ix[pos] = (t0 + t1) * 0.5f; // t derivative Iz[pos] = I1[pos] - I0[pos]; // y derivative t0 = Tex2Di(I0, w, h, s, j, i - 2); t0 -= Tex2Di(I0, w, h, s, j, i - 1) * 8.0f; t0 += Tex2Di(I0, w, h, s, j, i + 1) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j, i + 2); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j, i - 2); t1 -= Tex2Di(I1, w, h, s, j, i - 1) * 8.0f; t1 += Tex2Di(I1, w, h, s, j, i + 1) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j, i + 2); t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method /// /// It is one iteration of Jacobi method for a corresponding linear system /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; int left, right, up, down; // handle borders if (j != 0) left = pos - 1; else left = pos; if (j != w - 1) right = pos + 1; else right = pos; if (i != 0) down = pos - s; else down = pos; if (i != h - 1) up = pos + s; else up = pos; float sumU = (du0[left] + du0[right] + du0[up] + du0[down]) * 0.25f; float sumV = (dv0[left] + dv0[right] + dv0[up] + dv0[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocation and control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowGold(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on CPU...\n"); float *u0 = u; float *v0 = v; const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; const int pixelCountAligned = height * stride; float *tmp = new float[pixelCountAligned]; float *du0 = new float[pixelCountAligned]; float *dv0 = new float[pixelCountAligned]; float *du1 = new float[pixelCountAligned]; float *dv1 = new float[pixelCountAligned]; float *Ix = new float[pixelCountAligned]; float *Iy = new float[pixelCountAligned]; float *Iz = new float[pixelCountAligned]; float *nu = new float[pixelCountAligned]; float *nv = new float[pixelCountAligned]; // prepare pyramid int currentLevel = nLevels - 1; pI0[currentLevel] = I0; pI1[currentLevel] = I1; pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); pI0[currentLevel - 1] = new float[ns * nh]; pI1[currentLevel - 1] = new float[ns * nh]; Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1]); Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1]); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } // initial approximation memset(u, 0, stride * height * sizeof(float)); memset(v, 0, stride * height * sizeof(float)); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { memset(du0, 0, pixelCountAligned * sizeof(float)); memset(dv0, 0, pixelCountAligned * sizeof(float)); memset(du1, 0, pixelCountAligned * sizeof(float)); memset(dv1, 0, pixelCountAligned * sizeof(float)); WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], u, v, tmp); // on current level we compute optical flow // between frame 0 and warped frame 1 ComputeDerivatives(pI0[currentLevel], tmp, pW[currentLevel], pH[currentLevel], pS[currentLevel], Ix, Iy, Iz); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(du0, dv0, Ix, Iy, Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, du1, dv1); Swap(du0, du1); Swap(dv0, dv1); } // update u, v for (int i = 0; i < pH[currentLevel] * pS[currentLevel]; ++i) { u[i] += du0[i]; v[i] += dv0[i]; } } // end for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(u, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, nu); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(v, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, nv); Swap(u, nu); Swap(v, nv); } } // end for (; currentLevel < nLevels; ++currentLevel) if (u != u0) { // solution is not in the specified array // copy memcpy(u0, u, pixelCountAligned * sizeof(float)); memcpy(v0, v, pixelCountAligned * sizeof(float)); Swap(u, nu); Swap(v, nv); } // cleanup // last level is not being freed here // because it refers to input images for (int i = 0; i < nLevels - 1; ++i) { delete[] pI0[i]; delete[] pI1[i]; } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; delete[] tmp; delete[] du0; delete[] dv0; delete[] du1; delete[] dv1; delete[] Ix; delete[] Iy; delete[] Iz; delete[] nu; delete[] nv; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/warpingKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with a given displacement field, CUDA kernel. /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void WarpingKernel(int width, int height, int stride, const float *u, const float *v, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texToWarp, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float x = ((float)ix + u[pos]); float y = ((float)iy + v[pos]); auto inputCoord = sycl::float2(x, y); out[pos] = texToWarp.read(inputCoord, texDesc)[0]; } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field, CUDA kernel wrapper. /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, int w, int h, int s, const float *u, const float *v, float *out, sycl::queue q) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); int dataSize = s * h * sizeof(float); float *src_h = (float *)malloc(dataSize); q.memcpy(src_h, src, dataSize).wait(); float *src_p = (float *)sycl::malloc_shared(h * s * sizeof(sycl::float4), q); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; src_p[index * 4 + 0] = src_h[index]; src_p[index * 4 + 1] = src_p[index * 4 + 2] = src_p[index * 4 + 3] = 0.f; } } auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::linear); auto texToWarp = sycl::image<2>(src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texToWarp_acc = texToWarp.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { WarpingKernel(w, h, s, u, v, out, texToWarp_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/derivativesKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// void ComputeDerivativesKernel(int width, int height, int stride, float *Ix, float *Iy, float *Iz, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texSource, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texTarget, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float t0, t1; auto x_inputCoords1 = sycl::float2(ix - 2.0f, iy); auto x_inputCoords2 = sycl::float2(ix - 1.0f, iy); auto x_inputCoords3 = sycl::float2(ix + 1.0f, iy); auto x_inputCoords4 = sycl::float2(ix + 2.0f, iy); t0 = texSource.read(x_inputCoords1, texDesc)[0]; t0 -= texSource.read(x_inputCoords2, texDesc)[0] * 8.0f; t0 += texSource.read(x_inputCoords3, texDesc)[0] * 8.0f; t0 -= texSource.read(x_inputCoords4, texDesc)[0]; t0 /= 12.0f; t1 = texTarget.read(x_inputCoords1, texDesc)[0]; t1 -= texTarget.read(x_inputCoords2, texDesc)[0] * 8.0f; t1 += texTarget.read(x_inputCoords3, texDesc)[0] * 8.0f; t1 -= texTarget.read(x_inputCoords4, texDesc)[0]; t1 /= 12.0f; Ix[pos] = (t0 + t1) * 0.5f; // t derivative auto inputCoord = sycl::float2(ix, iy); Iz[pos] = texTarget.read(inputCoord, texDesc)[0] - texSource.read(inputCoord, texDesc)[0]; // y derivative auto y_inputCoords1 = sycl::float2(ix, iy - 2.0f); auto y_inputCoords2 = sycl::float2(ix, iy - 1.0f); auto y_inputCoords3 = sycl::float2(ix, iy + 1.0f); auto y_inputCoords4 = sycl::float2(ix, iy + 2.0f); t0 = texSource.read(y_inputCoords1, texDesc)[0]; t0 -= texSource.read(y_inputCoords2, texDesc)[0] * 8.0f; t0 += texSource.read(y_inputCoords3, texDesc)[0] * 8.0f; t0 -= texSource.read(y_inputCoords4, texDesc)[0]; t0 /= 12.0f; t1 = texTarget.read(y_inputCoords1, texDesc)[0]; t1 -= texTarget.read(y_inputCoords2, texDesc)[0] * 8.0f; t1 += texTarget.read(y_inputCoords3, texDesc)[0] * 8.0f; t1 -= texTarget.read(y_inputCoords4, texDesc)[0]; t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w image width /// \param[in] h image height /// \param[in] s image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, int w, int h, int s, float *Ix, float *Iy, float *Iz, sycl::queue q) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); int dataSize = s * h * sizeof(float); float *I0_h = (float *)malloc(dataSize); float *I1_h = (float *)malloc(dataSize); q.memcpy(I0_h, I0, dataSize).wait(); q.memcpy(I1_h, I1, dataSize).wait(); float *I0_p = (float *)sycl::malloc_shared(h * s * sizeof(sycl::float4), q); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; I0_p[index * 4 + 0] = I0_h[index]; I0_p[index * 4 + 1] = I0_p[index * 4 + 2] = I0_p[index * 4 + 3] = 0.f; } } float *I1_p = (float *)sycl::malloc_shared(h * s * sizeof(sycl::float4), q); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; I1_p[index * 4 + 0] = I1_h[index]; I1_p[index * 4 + 1] = I1_p[index * 4 + 2] = I1_p[index * 4 + 3] = 0.f; } } auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::nearest); auto texSource = sycl::image<2>(I0_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); auto texTarget = sycl::image<2>(I1_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texSource_acc = texSource.template get_access<sycl::float4, sycl::access::mode::read>(cgh); auto texTarget_acc = texTarget.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { ComputeDerivativesKernel( w, h, s, Ix, Iy, Iz, texSource_acc, texTarget_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/solverKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// Template parameters are describe CTA size /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// template <int bx, int by> void JacobiIteration(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1, const sycl::nd_item<3> &item_ct1, volatile float *du, volatile float *dv) { // Handle to thread block group auto cta = item_ct1.get_group(); const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); // position within global memory array const int pos = sycl::min(ix, w - 1) + sycl::min(iy, h - 1) * s; // position within shared memory array const int shMemPos = item_ct1.get_local_id(2) + 1 + (item_ct1.get_local_id(1) + 1) * (bx + 2); // Load data to shared memory. // load tile being processed du[shMemPos] = du0[pos]; dv[shMemPos] = dv0[pos]; // load necessary neighbouring elements // We clamp out-of-range coordinates. // It is equivalent to mirroring // because we access data only one step away from borders. if (item_ct1.get_local_id(1) == 0) { // beginning of the tile const int bsx = item_ct1.get_group(2) * item_ct1.get_local_range(2); const int bsy = item_ct1.get_group(1) * item_ct1.get_local_range(1); // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; /* DPCT1064:30: Migrated min call is used in a macro/template definition and may not be valid for all macro/template uses. Adjust the code. */ x = dpct::min((unsigned int)(bsx + item_ct1.get_local_id(2)), w - 1); // row just below the tile y = sycl::max(bsy - 1, 0); gmPos = y * s + x; smPos = item_ct1.get_local_id(2) + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // row above the tile y = sycl::min(bsy + by, h - 1); smPos += (by + 1) * (bx + 2); gmPos = y * s + x; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } else if (item_ct1.get_local_id(1) == 1) { // beginning of the tile const int bsx = item_ct1.get_group(2) * item_ct1.get_local_range(2); const int bsy = item_ct1.get_group(1) * item_ct1.get_local_range(1); // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; /* DPCT1064:31: Migrated min call is used in a macro/template definition and may not be valid for all macro/template uses. Adjust the code. */ y = dpct::min((unsigned int)(bsy + item_ct1.get_local_id(2)), h - 1); // column to the left x = sycl::max(bsx - 1, 0); smPos = bx + 2 + item_ct1.get_local_id(2) * (bx + 2); gmPos = x + y * s; // check if we are within tile if (item_ct1.get_local_id(2) < by) { du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // column to the right x = sycl::min(bsx + bx, w - 1); gmPos = y * s + x; smPos += bx + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } } /* DPCT1065:13: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); if (ix >= w || iy >= h) return; // now all necessary data are loaded to shared memory int left, right, up, down; left = shMemPos - 1; right = shMemPos + 1; up = shMemPos + bx + 2; down = shMemPos - bx - 2; float sumU = (du[left] + du[right] + du[up] + du[down]) * 0.25f; float sumV = (dv[left] + dv[right] + dv[up] + dv[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel wrapper. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1, sycl::queue q) { // CTA size sycl::range<3> threads(1, 6, 32); // grid size sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); /* DPCT1049:14: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ q.submit([&](sycl::handler &cgh) { sycl::local_accessor<float, 1> du_acc_ct1( sycl::range<1>((32 + 2) * (6 + 2)), cgh); sycl::local_accessor<float, 1> dv_acc_ct1( sycl::range<1>((32 + 2) * (6 + 2)), cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { JacobiIteration<32, 6>(du0, dv0, Ix, Iy, Iz, w, h, s, alpha, du1, dv1, item_ct1, du_acc_ct1.get_pointer(), dv_acc_ct1.get_pointer()); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/Samples/5_Domain_Specific/HSOpticalFlow/upscaleKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field, CUDA kernel /// \param[in] width field width /// \param[in] height field height /// \param[in] stride field stride /// \param[in] scale scale factor (multiplier) /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void UpscaleKernel(int width, int height, int stride, float scale, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texCoarse_acc, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); if (ix >= width || iy >= height) return; float x = ((float)ix - 0.5f) * 0.5f; float y = ((float)iy - 0.5f) * 0.5f; auto inputCoord = sycl::float2(x, y); // exploit hardware interpolation // and scale interpolated vector to match next pyramid level resolution out[ix + iy * stride] = texCoarse_acc.read(inputCoord, texDesc)[0] * scale; } /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field, kernel wrapper /// \param[in] src field component to upscale /// \param[in] width field current width /// \param[in] height field current height /// \param[in] stride field current stride /// \param[in] newWidth field new width /// \param[in] newHeight field new height /// \param[in] newStride field new stride /// \param[in] scale value scale factor (multiplier) /// \param[out] out upscaled field component /////////////////////////////////////////////////////////////////////////////// static void Upscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float scale, float *out, sycl::queue q) { sycl::range<3> threads(1, 8, 32); sycl::range<3> blocks(1, iDivUp(newHeight, threads[1]), iDivUp(newWidth, threads[2])); int dataSize = stride * height * sizeof(float); float *src_h = (float *)malloc(dataSize); q.memcpy(src_h, src, dataSize).wait(); float *src_p = (float *)sycl::malloc_shared(height * stride * sizeof(sycl::float4), q); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { int index = i * stride + j; src_p[index * 4 + 0] = src_h[index]; src_p[index * 4 + 1] = src_p[index * 4 + 2] = src_p[index * 4 + 3] = 0.f; } } auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::linear); auto texCoarse = sycl::image<2>( src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(width, height), sycl::range<1>(stride * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texCoarse_acc = texCoarse.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { UpscaleKernel(newWidth, newHeight, newStride, scale, out, texCoarse_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/ccl_utils.hpp
//==---- ccl_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_CCL_UTILS_HPP__ #define __DPCT_CCL_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/ccl.hpp> #include <unordered_map> #include <memory> #include "device.hpp" namespace dpct { namespace ccl { namespace detail { /// Get stored kvs with specified kvs address. inline std::shared_ptr<oneapi::ccl::kvs> & get_kvs(const oneapi::ccl::kvs::address_type &addr) { struct hash { std::size_t operator()(const oneapi::ccl::kvs::address_type &in) const { return std::hash<std::string_view>()(std::string_view(in.data(), in.size())); } }; static std::unordered_map<oneapi::ccl::kvs::address_type, std::shared_ptr<oneapi::ccl::kvs>, hash> kvs_map; return kvs_map[addr]; } /// Help class to init ccl environment. class ccl_init_helper { public: ccl_init_helper() { oneapi::ccl::init(); } }; } // namespace detail /// Get concatenated library version as an integer. static inline int get_version() { oneapi::ccl::init(); auto ver = oneapi::ccl::get_library_version(); return ver.major * 10000 + ver.minor * 100 + ver.update; } /// Create main kvs and return its address. static inline oneapi::ccl::kvs::address_type create_kvs_address() { oneapi::ccl::init(); auto ptr = oneapi::ccl::create_main_kvs(); auto addr = ptr->get_address(); detail::get_kvs(addr) = ptr; return addr; } /// Get stored kvs with /p addr if exist. Otherwise, create kvs with /p addr. static inline std::shared_ptr<oneapi::ccl::kvs> create_kvs(const oneapi::ccl::kvs::address_type &addr) { oneapi::ccl::init(); auto &ptr = detail::get_kvs(addr); if (!ptr) ptr = oneapi::ccl::create_kvs(addr); return ptr; } /// dpct communicator extension class communicator_wrapper : public dpct::ccl::detail::ccl_init_helper { public: communicator_wrapper( int size, int rank, oneapi::ccl::kvs::address_type id, const oneapi::ccl::comm_attr &attr = oneapi::ccl::default_comm_attr) : _device_comm(oneapi::ccl::create_device( static_cast<sycl::device &>(dpct::get_current_device()))), _context_comm(oneapi::ccl::create_context(dpct::get_default_context())), _comm(oneapi::ccl::create_communicator( size, rank, _device_comm, _context_comm, dpct::ccl::create_kvs(id), attr)) { _queue_init = false; _ccl_stream_ptr = nullptr; } ~communicator_wrapper() { delete _ccl_stream_ptr; }; /// Return the rank in a oneapi::ccl::communicator /// \returns The rank corresponding to communicator object int rank() const { return _comm.rank(); } /// Retrieves the number of rank in oneapi::ccl::communicator /// \returns The number of the ranks int size() const { return _comm.size(); } /// Return underlying native device, which was used in oneapi::ccl::communicator sycl::device get_device() const { return _comm.get_device().get_native(); } /// \brief allreduce is a collective communication operation that performs the global reduction operation /// on values from all ranks of communicator and distributes the result back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void allreduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::allreduce(sendbuff, recvbuff, count, dtype, rtype, _comm, stream); }, queue_ptr); } /// \brief reduce is a collective communication operation that performs the /// global reduction operation on values from all ranks of the communicator /// and returns the result to the root rank. /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, /// must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param root the rank that gets the result of reduction /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, int root, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce(sendbuff, recvbuff, count, dtype, rtype, root, _comm, stream); }, queue_ptr); } /// \brief broadcast is a collective communication operation that broadcasts data /// from one rank of communicator (denoted as root) to all other ranks. /// Only support in-place operation /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result /// \param count the number of elements of type @c dtype in @c buf /// \param dtype thedatatype of elements in @c buf /// \param root the rank that broadcasts @c buf /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void broadcast(void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, int root, sycl::queue *queue_ptr) { if (sendbuff != recvbuff) { throw std::runtime_error( "oneCCL broadcast only support in-place operation. " "send_buf and recv_buf must be same."); return; } call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::broadcast(recvbuff, count, dtype, root, _comm, stream); }, queue_ptr); } /// \brief reduce_scatter is a collective communication operation that performs the global reduction operation /// on values from all ranks of the communicator and scatters the result in blocks back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param recv_count the number of elements of type @c dtype in receive block /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce_scatter(const void *sendbuff, void *recvbuff, size_t recv_count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce_scatter(sendbuff, recvbuff, recv_count, dtype, rtype, _comm, stream); }, queue_ptr); } private: oneapi::ccl::device _device_comm; oneapi::ccl::context _context_comm; oneapi::ccl::communicator _comm; sycl::queue _queue; bool _queue_init; oneapi::ccl::stream *_ccl_stream_ptr; template <class Fn> void call_func_wrapper(Fn func, sycl::queue *qptr) { if (_queue_init && *qptr != _queue) { call_func_async(func, qptr); } else { if(!_queue_init) { _queue = *qptr; _queue_init = true; _ccl_stream_ptr = new oneapi::ccl::stream(oneapi::ccl::create_stream(_queue)); } std::invoke(func, *_ccl_stream_ptr); } } class call_func_async { sycl::queue *_q_ptr; struct call_async_impl { oneapi::ccl::stream _ccl_stream_impl; oneapi::ccl::event _ccl_event_impl; template <class Fn> explicit call_async_impl(Fn func, sycl::queue *qptr) : _ccl_stream_impl(oneapi::ccl::create_stream(*qptr)), _ccl_event_impl(std::invoke(func, _ccl_stream_impl)) {} }; call_async_impl *_imp; public: template <class Fn> explicit call_func_async(Fn func, sycl::queue *qptr) : _q_ptr(qptr), _imp(new call_async_impl(func, qptr)) {} ~call_func_async() { _q_ptr->submit([&](sycl::handler &cgh) { cgh.host_task([=] { _imp->_ccl_event_impl.wait(); delete _imp; }); }); } }; }; typedef dpct::ccl::communicator_wrapper *comm_ptr; } // namespace ccl } // namespace dpct #endif // __DPCT_CCL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/util.hpp
//==---- util.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_UTIL_HPP__ #define __DPCT_UTIL_HPP__ #include <sycl/sycl.hpp> #include <complex> #include <type_traits> #include <cassert> #include <cstdint> // TODO: Remove these function definitions once they exist in the DPC++ compiler #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffle(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleDown(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleUp(__spv::Scope::Flag, T, unsigned) noexcept; #endif namespace dpct { namespace detail { template <typename tag, typename T> class generic_error_type { public: generic_error_type() = default; generic_error_type(T value) : value{value} {} operator T() const { return value; } private: T value; }; } // namespace detail using err0 = detail::generic_error_type<struct err0_tag, int>; using err1 = detail::generic_error_type<struct err1_tag, int>; template <int... Ints> struct integer_sequence {}; template <int Size, int... Ints> struct make_index_sequence : public make_index_sequence<Size - 1, Size - 1, Ints...> {}; template <int... Ints> struct make_index_sequence<0, Ints...> : public integer_sequence<Ints...> {}; template <typename T> struct DataType { using T2 = T; }; template <typename T> struct DataType<sycl::vec<T, 2>> { using T2 = std::complex<T>; }; inline void matrix_mem_copy(void *to_ptr, const void *from_ptr, int to_ld, int from_ld, int rows, int cols, int elem_size, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { if (to_ptr == from_ptr && to_ld == from_ld) { return; } if (to_ld == from_ld) { size_t copy_size = elem_size * ((cols - 1) * (size_t)to_ld + rows); if (async) detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction); else detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction).wait(); } else { if (async) detail::dpct_memcpy(queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction); else sycl::event::wait(detail::dpct_memcpy( queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction)); } } /// Copy matrix data. The default leading dimension is column. /// \param [out] to_ptr A pointer points to the destination location. /// \param [in] from_ptr A pointer points to the source location. /// \param [in] to_ld The leading dimension the destination matrix. /// \param [in] from_ld The leading dimension the source matrix. /// \param [in] rows The number of rows of the source matrix. /// \param [in] cols The number of columns of the source matrix. /// \param [in] direction The direction of the data copy. /// \param [in] queue The queue where the routine should be executed. /// \param [in] async If this argument is true, the return of the function /// does NOT guarantee the copy is completed. template <typename T> inline void matrix_mem_copy(T *to_ptr, const T *from_ptr, int to_ld, int from_ld, int rows, int cols, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { using Ty = typename DataType<T>::T2; matrix_mem_copy((void *)to_ptr, (void *)from_ptr, to_ld, from_ld, rows, cols, sizeof(Ty), direction, queue, async); } /// Cast the high or low 32 bits of a double to an integer. /// \param [in] d The double value. /// \param [in] use_high32 Cast the high 32 bits of the double if true; /// otherwise cast the low 32 bits. inline int cast_double_to_int(double d, bool use_high32 = true) { sycl::vec<double, 1> v0{d}; auto v1 = v0.as<sycl::int2>(); if (use_high32) return v1[1]; return v1[0]; } /// Combine two integers, the first as the high 32 bits and the second /// as the low 32 bits, into a double. /// \param [in] high32 The integer as the high 32 bits /// \param [in] low32 The integer as the low 32 bits inline double cast_ints_to_double(int high32, int low32) { sycl::int2 v0{low32, high32}; auto v1 = v0.as<sycl::vec<double, 1>>(); return v1; } /// Reverse the bit order of an unsigned integer /// \param [in] a Input unsigned integer value /// \returns Value of a with the bit order reversed template <typename T> inline T reverse_bits(T a) { static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value, "unsigned integer required"); if (!a) return 0; T mask = 0; size_t count = 4 * sizeof(T); mask = ~mask >> count; while (count) { a = ((a & mask) << count) | ((a & ~mask) >> count); count = count >> 1; mask = mask ^ (mask << count); } return a; } /// \param [in] a The first value contains 4 bytes /// \param [in] b The second value contains 4 bytes /// \param [in] s The selector value, only lower 16bit used /// \returns the permutation result of 4 bytes selected in the way /// specified by \p s from \p a and \p b inline unsigned int byte_level_permute(unsigned int a, unsigned int b, unsigned int s) { unsigned int ret; ret = ((((std::uint64_t)b << 32 | a) >> (s & 0x7) * 8) & 0xff) | (((((std::uint64_t)b << 32 | a) >> ((s >> 4) & 0x7) * 8) & 0xff) << 8) | (((((std::uint64_t)b << 32 | a) >> ((s >> 8) & 0x7) * 8) & 0xff) << 16) | (((((std::uint64_t)b << 32 | a) >> ((s >> 12) & 0x7) * 8) & 0xff) << 24); return ret; } /// Find position of first least significant set bit in an integer. /// ffs(0) returns 0. /// /// \param [in] a Input integer value /// \returns The position template <typename T> inline int ffs(T a) { static_assert(std::is_integral<T>::value, "integer required"); return (sycl::ctz(a) + 1) % (sizeof(T) * 8 + 1); } /// select_from_sub_group allows work-items to obtain a copy of a value held by /// any other work-item in the sub_group. The input sub_group will be divided /// into several logical sub_groups with id range [0, \p logical_sub_group_size /// - 1]. Each work-item in logical sub_group gets value from another work-item /// whose id is \p remote_local_id. If \p remote_local_id is outside the /// logical sub_group id range, \p remote_local_id will modulo with \p /// logical_sub_group_size. The \p logical_sub_group_size must be a power of 2 /// and not exceed input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; return sycl::select_from_group( g, x, start_index + remote_local_id % logical_sub_group_size); } /// shift_sub_group_left move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the left. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is caller's id adds \p delta. If calculated id is outside the logical /// sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; T result = sycl::shift_group_left(g, x, delta); if ((id + delta) >= end_index) { result = x; } return result; } /// shift_sub_group_right move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the right. The input sub_group will be divided into /// several logical_sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical_sub_group gets value from another work-item whose /// id is caller's id subtracts \p delta. If calculated id is outside the /// logical sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; T result = sycl::shift_group_right(g, x, delta); if ((id - start_index) < delta) { result = x; } return result; } /// permute_sub_group_by_xor permutes values by exchanging values held by pairs /// of work-items identified by computing the bitwise exclusive OR of the /// work-item id and some fixed mask. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is bitwise exclusive OR of the caller's id and \p mask. If calculated id /// is outside the logical sub_group id range, the work-item will get value from /// itself. The \p logical_sub_group_size must be a power of 2 and not exceed /// input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; return sycl::select_from_group(g, x, target_offset < logical_sub_group_size ? start_index + target_offset : id); } namespace experimental { /// Masked version of select_from_sub_group, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(unsigned int member_mask, sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; unsigned logical_remote_id = start_index + remote_local_id % logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)remote_local_id; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_left, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleDown(__spv::Scope::Subgroup, x, delta); if ((id + delta) >= end_index) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_left " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_right, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleUp(__spv::Scope::Subgroup, x, delta); if ((id - start_index) < delta) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_right " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY && __INTEL_LLVM_COMPILER } /// Masked version of permute_sub_group_by_xor, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(unsigned int member_mask, sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; unsigned logical_remote_id = (target_offset < logical_sub_group_size) ? start_index + target_offset : id; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of permute_sub_group_by_xor " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)mask; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } } // namespace experimental /// Computes the multiplication of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cmul(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 * t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the division of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cdiv(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 / t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the magnitude of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> T cabs(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); return std::abs(t); } /// Computes the complex conjugate of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> sycl::vec<T, 2> conj(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); t = std::conj(t); return sycl::vec<T, 2>(t.real(), t.imag()); } inline int get_sycl_language_version() { #ifdef SYCL_LANGUAGE_VERSION return SYCL_LANGUAGE_VERSION; #else return 202000; #endif } namespace experimental { /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <int dimensions = 3> inline void nd_range_barrier(const sycl::nd_item<dimensions> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { static_assert(dimensions == 3, "dimensions must be 3."); unsigned int num_groups = item.get_group_range(2) * item.get_group_range(1) * item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(2) + item.get_group(1) + item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <> inline void nd_range_barrier(const sycl::nd_item<1> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { unsigned int num_groups = item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// The logical-group is a logical collection of some work-items within a /// work-group. /// Note: Please make sure that the logical-group size is a power of 2 in the /// range [1, current_sub_group_size]. class logical_group { sycl::nd_item<3> _item; sycl::group<3> _g; uint32_t _logical_group_size; uint32_t _group_linear_range_in_parent; public: /// Dividing \p parent_group into several logical-groups. /// \param [in] item Current work-item. /// \param [in] parent_group The group to be divided. /// \param [in] size The logical-group size. logical_group(sycl::nd_item<3> item, sycl::group<3> parent_group, uint32_t size) : _item(item), _g(parent_group), _logical_group_size(size) { _group_linear_range_in_parent = (_g.get_local_linear_range() - 1) / _logical_group_size + 1; } /// Returns the index of the work-item within the logical-group. uint32_t get_local_linear_id() const { return _item.get_local_linear_id() % _logical_group_size; } /// Returns the index of the logical-group in the parent group. uint32_t get_group_linear_id() const { return _item.get_local_linear_id() / _logical_group_size; } /// Returns the number of work-items in the logical-group. uint32_t get_local_linear_range() const { if (_g.get_local_linear_range() % _logical_group_size == 0) { return _logical_group_size; } uint32_t last_item_group_id = _g.get_local_linear_range() / _logical_group_size; uint32_t first_of_last_group = last_item_group_id * _logical_group_size; if (_item.get_local_linear_id() >= first_of_last_group) { return _g.get_local_linear_range() - first_of_last_group; } else { return _logical_group_size; } } /// Returns the number of logical-group in the parent group. uint32_t get_group_linear_range() const { return _group_linear_range_in_parent; } }; // The original source of the function calculate_max_active_wg_per_xecore was // under the license below: // // Copyright Intel Corporation // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // /// This function is used for occupancy calculation, it computes the max active /// work-group number per Xe-Core. Ref to /// https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator /// \param [out] num_wg Active work-group number. /// \param [in] wg_size Work-group size. /// \param [in] slm_size Share local memory size. /// \param [in] sg_size Sub-group size. /// \param [in] used_barrier Whether barrier is used. /// \param [in] used_large_grf Whether large General Register File is used. /// \return If no error, returns 0. /// If \p wg_size exceeds the max work-group size, the max work-group size will /// be used instead of \p wg_size and returns -1. inline int calculate_max_active_wg_per_xecore(int *num_wg, int wg_size, int slm_size = 0, int sg_size = 32, bool used_barrier = false, bool used_large_grf = false) { int ret = 0; const int slm_size_per_xe_core = 64 * 1024; const int max_barrier_registers = 32; dpct::device_ext &dev = dpct::get_current_device(); size_t max_wg_size = dev.get_info<sycl::info::device::max_work_group_size>(); if (wg_size > max_wg_size) { wg_size = max_wg_size; ret = -1; } int num_threads_ss = 56; int max_num_wg = 56; if (dev.has(sycl::aspect::ext_intel_gpu_eu_count_per_subslice) && dev.has(sycl::aspect::ext_intel_gpu_hw_threads_per_eu)) { auto eu_count = dev.get_info<sycl::info::device::ext_intel_gpu_eu_count_per_subslice>(); auto threads_count = dev.get_info<sycl::ext::intel::info::device::gpu_hw_threads_per_eu>(); num_threads_ss = eu_count * threads_count; max_num_wg = eu_count * threads_count; } if (used_barrier) { max_num_wg = max_barrier_registers; } // Calculate num_wg_slm int num_wg_slm = 0; if (slm_size == 0) { num_wg_slm = max_num_wg; } else { num_wg_slm = std::floor((float)slm_size_per_xe_core / slm_size); } // Calculate num_wg_threads if (used_large_grf) num_threads_ss = num_threads_ss / 2; int num_threads = std::ceil((float)wg_size / sg_size); int num_wg_threads = std::floor((float)num_threads_ss / num_threads); // Calculate num_wg *num_wg = std::min(num_wg_slm, num_wg_threads); *num_wg = std::min(*num_wg, max_num_wg); return ret; } } // namespace experimental /// If x <= 2, then return a pointer to the deafult queue; /// otherwise, return x reinterpreted as a dpct::queue_ptr. inline queue_ptr int_as_queue_ptr(uintptr_t x) { return x <= 2 ? &get_default_queue() : reinterpret_cast<queue_ptr>(x); } template <int n_nondefault_params, int n_default_params, typename T> class args_selector; /// args_selector is a helper class for extracting arguments from an /// array of pointers to arguments or buffer of arguments to pass to a /// kernel function. /// /// \param R(Ts...) The type of the kernel /// \param n_nondefault_params The number of nondefault parameters of the kernel /// (excluding parameters that like sycl::nd_item, etc.) /// \param n_default_params The number of default parameters of the kernel /// /// Example usage: /// With the following kernel: /// void foo(sycl::float2 *x, int n, sycl::nd_item<3> item_ct1, float f=.1) {} /// and with the declaration: /// args_selector<2, 1, decltype(foo)> selector(kernelParams, extra); /// we have: /// selector.get<0>() returns a reference to sycl::float*, /// selector.get<1>() returns a reference to int, /// selector.get<2>() returns a reference to float template <int n_nondefault_params, int n_default_params, typename R, typename... Ts> class args_selector<n_nondefault_params, n_default_params, R(Ts...)> { private: void **kernel_params; char *args_buffer; template <int i> static constexpr int account_for_default_params() { constexpr int n_total_params = sizeof...(Ts); if constexpr (i >= n_nondefault_params) { return n_total_params - n_default_params + (i - n_nondefault_params); } else { return i; } } public: /// Get the type of the ith argument of R(Ts...) /// \param [in] i Index of parameter to get /// \returns Type of ith parameter template <int i> using arg_type = std::tuple_element_t<account_for_default_params<i>(), std::tuple<Ts...>>; private: template <int i> static constexpr int get_offset() { if constexpr (i == 0) { // we can assume args_buffer is properly aligned to the // first argument return 0; } else { constexpr int prev_off = get_offset<i-1>(); constexpr int prev_past_end = prev_off + sizeof(arg_type<i-1>); using T = arg_type<i>; // is the past-the-end of the i-1st element properly aligned // with the ith element's alignment? if constexpr (prev_past_end % alignof(T) == 0) { return prev_past_end; } // otherwise bump prev_past_end to match alignment else { return prev_past_end + (alignof(T) - (prev_past_end % alignof(T))); } } } static char *get_args_buffer(void **extra) { if (!extra) return nullptr; for (; (std::size_t) *extra != 0; ++extra) { if ((std::size_t) *extra == 1) { return static_cast<char*>(*(extra+1)); } } return nullptr; } public: /// If kernel_params is nonnull, then args_selector will /// extract arguments from kernel_params. Otherwise, it /// will extract them from extra. /// \param [in] kernel_params Array of pointers to arguments /// a or null pointer. /// \param [in] extra Array containing pointer to argument buffer. args_selector(void **kernel_params, void **extra) : kernel_params(kernel_params), args_buffer(get_args_buffer(extra)) {} /// Get a reference to the ith argument extracted from kernel_params /// or extra. /// \param [in] i Index of argument to get /// \returns Reference to the ith argument template <int i> arg_type<i> &get() { if (kernel_params) { return *static_cast<arg_type<i>*>(kernel_params[i]); } else { return *reinterpret_cast<arg_type<i>*>(args_buffer + get_offset<i>()); } } }; #ifdef _WIN32 #define DPCT_EXPORT __declspec(dllexport) #else #define DPCT_EXPORT #endif } // namespace dpct #endif // __DPCT_UTIL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/image.hpp
//==---- image.hpp --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_IMAGE_HPP__ #define __DPCT_IMAGE_HPP__ #include <sycl/sycl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { enum class image_channel_data_type { signed_int, unsigned_int, fp, }; class image_channel; class image_wrapper_base; namespace detail { /// Image object type traits, with accessor type and sampled data type defined. /// The data type of an image accessor must be one of sycl::int4, sycl::uint4, /// sycl::float4 and sycl::half4. The data type of accessors with 8bits/16bits /// channel width will be 32 bits. sycl::half is an exception. template <class T> struct image_trait { using acc_data_t = sycl::vec<T, 4>; template <int dimensions> using accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image>; template <int dimensions> using array_accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image_array>; using data_t = T; using elem_t = T; static constexpr image_channel_data_type data_type = std::is_integral<T>::value ? (std::is_signed<T>::value ? image_channel_data_type::signed_int : image_channel_data_type::unsigned_int) : image_channel_data_type::fp; static constexpr int channel_num = 1; }; template <> struct image_trait<std::uint8_t> : public image_trait<std::uint32_t> { using data_t = std::uint8_t; using elem_t = data_t; }; template <> struct image_trait<std::uint16_t> : public image_trait<std::uint32_t> { using data_t = std::uint16_t; using elem_t = data_t; }; template <> struct image_trait<std::int8_t> : public image_trait<std::int32_t> { using data_t = std::int8_t; using elem_t = data_t; }; template <> struct image_trait<std::int16_t> : public image_trait<std::int32_t> { using data_t = std::int16_t; using elem_t = data_t; }; template <> struct image_trait<char> : public image_trait<typename std::conditional< std::is_signed<char>::value, signed char, unsigned char>::type> {}; template <class T> struct image_trait<sycl::vec<T, 1>> : public image_trait<T> {}; template <class T> struct image_trait<sycl::vec<T, 2>> : public image_trait<T> { using data_t = sycl::vec<T, 2>; static constexpr int channel_num = 2; }; template <class T> struct image_trait<sycl::vec<T, 3>> : public image_trait<sycl::vec<T, 4>> { static constexpr int channel_num = 3; }; template <class T> struct image_trait<sycl::vec<T, 4>> : public image_trait<T> { using data_t = sycl::vec<T, 4>; static constexpr int channel_num = 4; }; /// Functor to fetch data from read result of an image accessor. template <class T> struct fetch_data { using return_t = typename image_trait<T>::data_t; using acc_data_t = typename image_trait<T>::acc_data_t; return_t operator()(acc_data_t &&original_data) { return (return_t)original_data.r(); } }; template <class T> struct fetch_data<sycl::vec<T, 1>> : public fetch_data<T> {}; template <class T> struct fetch_data<sycl::vec<T, 2>> { using return_t = typename image_trait<sycl::vec<T, 2>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 2>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g()); } }; template <class T> struct fetch_data<sycl::vec<T, 3>> : public fetch_data<sycl::vec<T, 4>> {}; template <class T> struct fetch_data<sycl::vec<T, 4>> { using return_t = typename image_trait<sycl::vec<T, 4>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 4>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g(), origin_data.b(), origin_data.a()); } }; /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims); /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims); /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims); } // namespace detail /// Image channel info, include channel number, order, data width and type class image_channel { image_channel_data_type _type = image_channel_data_type::signed_int; /// Number of channels. unsigned _channel_num = 0; /// Total size of all channels in bytes. unsigned _total_size = 0; /// Size of each channel in bytes. unsigned _channel_size = 0; public: /// Create image channel info according to template argument \p T. template <class T> static image_channel create() { image_channel channel; channel.set_channel_size(detail::image_trait<T>::channel_num, sizeof(typename detail::image_trait<T>::elem_t) * 8); channel.set_channel_data_type(detail::image_trait<T>::data_type); return channel; } image_channel() = default; image_channel_data_type get_channel_data_type() { return _type; } void set_channel_data_type(image_channel_data_type type) { _type = type; } unsigned get_total_size() { return _total_size; } unsigned get_channel_num() { return _channel_num; } void set_channel_num(unsigned channel_num) { _channel_num = channel_num; _total_size = _channel_size * _channel_num; } /// image_channel constructor. /// \param r Channel r width in bits. /// \param g Channel g width in bits. Should be same with \p r, or zero. /// \param b Channel b width in bits. Should be same with \p g, or zero. /// \param a Channel a width in bits. Should be same with \p b, or zero. /// \param data_type Image channel data type: signed_nt, unsigned_int or fp. image_channel(int r, int g, int b, int a, image_channel_data_type data_type) { _type = data_type; if (a) { assert(r == a && "SYCL doesn't support different channel size"); assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(4, a); } else if (b) { assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(3, b); } else if (g) { assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(2, g); } else { set_channel_size(1, r); } } sycl::image_channel_type get_channel_type() const { if (_channel_size == 4) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int32; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int32; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp32; } else if (_channel_size == 2) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int16; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int16; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp16; } else { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int8; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int8; } assert(false && "unexpected channel data kind and channel size"); return sycl::image_channel_type::signed_int32; } void set_channel_type(sycl::image_channel_type type) { switch (type) { case sycl::image_channel_type::unsigned_int8: _type = image_channel_data_type::unsigned_int; _channel_size = 1; break; case sycl::image_channel_type::unsigned_int16: _type = image_channel_data_type::unsigned_int; _channel_size = 2; break; case sycl::image_channel_type::unsigned_int32: _type = image_channel_data_type::unsigned_int; _channel_size = 4; break; case sycl::image_channel_type::signed_int8: _type = image_channel_data_type::signed_int; _channel_size = 1; break; case sycl::image_channel_type::signed_int16: _type = image_channel_data_type::signed_int; _channel_size = 2; break; case sycl::image_channel_type::signed_int32: _type = image_channel_data_type::signed_int; _channel_size = 4; break; case sycl::image_channel_type::fp16: _type = image_channel_data_type::fp; _channel_size = 2; break; case sycl::image_channel_type::fp32: _type = image_channel_data_type::fp; _channel_size = 4; break; default: break; } _total_size = _channel_size * _channel_num; } sycl::image_channel_order get_channel_order() const { switch (_channel_num) { case 1: return sycl::image_channel_order::r; case 2: return sycl::image_channel_order::rg; case 3: return sycl::image_channel_order::rgb; case 4: return sycl::image_channel_order::rgba; default: return sycl::image_channel_order::r; } } /// Get the size for each channel in bits. unsigned get_channel_size() const { return _channel_size * 8; } /// Set channel size. /// \param in_channel_num Channels number to set. /// \param channel_size Size for each channel in bits. void set_channel_size(unsigned in_channel_num, unsigned channel_size) { if (in_channel_num < _channel_num) return; _channel_num = in_channel_num; _channel_size = channel_size / 8; _total_size = _channel_size * _channel_num; } }; /// 2D or 3D matrix data for image. class image_matrix { image_channel _channel; int _range[3] = {1, 1, 1}; int _dims = 0; void *_host_data = nullptr; /// Set range of each dimension. template <int dimensions> void set_range(sycl::range<dimensions> range) { for (int i = 0; i < dimensions; ++i) _range[i] = range[i]; _dims = dimensions; } template <int... DimIdx> sycl::range<sizeof...(DimIdx)> get_range(integer_sequence<DimIdx...>) { return sycl::range<sizeof...(DimIdx)>(_range[DimIdx]...); } public: /// Constructor with channel info and dimension size info. template <int dimensions> image_matrix(image_channel channel, sycl::range<dimensions> range) : _channel(channel) { set_range(range); _host_data = std::malloc(range.size() * _channel.get_total_size()); } image_matrix(sycl::image_channel_type channel_type, unsigned channel_num, size_t x, size_t y) { _channel.set_channel_type(channel_type); _channel.set_channel_num(channel_num); _dims = 1; _range[0] = x; if (y) { _dims = 2; _range[1] = y; } _host_data = std::malloc(_range[0] * _range[1] * _channel.get_total_size()); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image() { return create_image<dimensions>(_channel); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image(image_channel channel) { return new sycl::image<dimensions>( _host_data, channel.get_channel_order(), channel.get_channel_type(), get_range(make_index_sequence<dimensions>()), sycl::property::image::use_host_ptr()); } /// Get channel info. inline image_channel get_channel() { return _channel; } /// Get range of the image. sycl::range<3> get_range() { return sycl::range<3>(_range[0], _range[1], _range[2]); } /// Get matrix dims. inline int get_dims() { return _dims; } /// Convert to pitched data. pitched_data to_pitched_data() { return pitched_data(_host_data, _range[0], _range[0], _range[1]); } ~image_matrix() { if (_host_data) std::free(_host_data); _host_data = nullptr; } }; using image_matrix_p = image_matrix *; enum class image_data_type { matrix, linear, pitch, unsupport }; /// Image data info. class image_data { public: image_data() { _type = image_data_type::unsupport; } image_data(image_matrix_p matrix_data) { set_data(matrix_data); } image_data(void *data_ptr, size_t x_size, image_channel channel) { set_data(data_ptr, x_size, channel); } image_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { set_data(data_ptr, x_size, y_size, pitch_size, channel); } void set_data(image_matrix_p matrix_data) { _type = image_data_type::matrix; _data = matrix_data; _channel = matrix_data->get_channel(); } void set_data(void *data_ptr, size_t x_size, image_channel channel) { _type = image_data_type::linear; _data = data_ptr; _x = x_size; _channel = channel; } void set_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { _type = image_data_type::pitch; _data = data_ptr; _x = x_size; _y = y_size; _pitch = pitch_size; _channel = channel; } image_data_type get_data_type() const { return _type; } void set_data_type(image_data_type type) { _type = type; } void *get_data_ptr() const { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_x() const { return _x; } void set_x(size_t x) { _x = x; } size_t get_y() const { return _y; } void set_y(size_t y) { _y = y; } size_t get_pitch() const { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } image_channel get_channel() const { return _channel; } void set_channel(image_channel channel) { _channel = channel; } image_channel_data_type get_channel_data_type() { return _channel.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _channel.set_channel_data_type(type); } unsigned get_channel_size() { return _channel.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _channel.set_channel_size(channel_num, channel_size); } unsigned get_channel_num() { return _channel.get_channel_num(); } void set_channel_num(unsigned num) { return _channel.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _channel.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _channel.set_channel_type(type); } private: image_data_type _type; void *_data = nullptr; size_t _x, _y, _pitch; image_channel _channel; }; /// Image sampling info, include addressing mode, filtering mode and /// normalization info. class sampling_info { sycl::addressing_mode _addressing_mode = sycl::addressing_mode::clamp_to_edge; sycl::filtering_mode _filtering_mode = sycl::filtering_mode::nearest; sycl::coordinate_normalization_mode _coordinate_normalization_mode = sycl::coordinate_normalization_mode::unnormalized; public: sycl::addressing_mode get_addressing_mode() { return _addressing_mode; } void set(sycl::addressing_mode addressing_mode) { _addressing_mode = addressing_mode; } sycl::filtering_mode get_filtering_mode() { return _filtering_mode; } void set(sycl::filtering_mode filtering_mode) { _filtering_mode = filtering_mode; } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _coordinate_normalization_mode; } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _coordinate_normalization_mode = coordinate_normalization_mode; } bool is_coordinate_normalized() { return _coordinate_normalization_mode == sycl::coordinate_normalization_mode::normalized; } void set_coordinate_normalization_mode(int is_normalized) { _coordinate_normalization_mode = is_normalized ? sycl::coordinate_normalization_mode::normalized : sycl::coordinate_normalization_mode::unnormalized; } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } sycl::sampler get_sampler() { return sycl::sampler(_coordinate_normalization_mode, _addressing_mode, _filtering_mode); } }; /// Image base class. class image_wrapper_base { sampling_info _sampling_info; image_data _data; public: virtual ~image_wrapper_base() = 0; void attach(image_data data) { set_data(data); } /// Attach matrix data to this class. void attach(image_matrix *matrix) { detach(); image_wrapper_base::set_data(image_data(matrix)); } /// Attach matrix data to this class. void attach(image_matrix *matrix, image_channel channel) { attach(matrix); image_wrapper_base::set_channel(channel); } /// Attach linear data to this class. void attach(const void *ptr, size_t count) { attach(ptr, count, get_channel()); } /// Attach linear data to this class. void attach(const void *ptr, size_t count, image_channel channel) { detach(); image_wrapper_base::set_data(image_data(const_cast<void *>(ptr), count, channel)); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch) { attach(data, x, y, pitch, get_channel()); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch, image_channel channel) { detach(); image_wrapper_base::set_data( image_data(const_cast<void *>(data), x, y, pitch, channel)); } /// Detach data. virtual void detach() {} sampling_info get_sampling_info() { return _sampling_info; } void set_sampling_info(sampling_info info) { _sampling_info = info; } const image_data &get_data() { return _data; } void set_data(image_data data) { _data = data; } image_channel get_channel() { return _data.get_channel(); } void set_channel(image_channel channel) { _data.set_channel(channel); } image_channel_data_type get_channel_data_type() { return _data.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _data.set_channel_data_type(type); } unsigned get_channel_size() { return _data.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _data.set_channel_size(channel_num, channel_size); } sycl::addressing_mode get_addressing_mode() { return _sampling_info.get_addressing_mode(); } void set(sycl::addressing_mode addressing_mode) { _sampling_info.set(addressing_mode); } sycl::filtering_mode get_filtering_mode() { return _sampling_info.get_filtering_mode(); } void set(sycl::filtering_mode filtering_mode) { _sampling_info.set(filtering_mode); } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _sampling_info.get_coordinate_normalization_mode(); } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _sampling_info.set(coordinate_normalization_mode); } bool is_coordinate_normalized() { return _sampling_info.is_coordinate_normalized(); } void set_coordinate_normalization_mode(int is_normalized) { _sampling_info.set_coordinate_normalization_mode(is_normalized); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } unsigned get_channel_num() { return _data.get_channel_num(); } void set_channel_num(unsigned num) { return _data.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _data.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _data.set_channel_type(type); } sycl::sampler get_sampler() { return _sampling_info.get_sampler(); } }; inline image_wrapper_base::~image_wrapper_base() {} using image_wrapper_base_p = image_wrapper_base *; template <class T, int dimensions, bool IsImageArray> class image_accessor_ext; /// Image class, wrapper of sycl::image. template <class T, int dimensions, bool IsImageArray = false> class image_wrapper : public image_wrapper_base { sycl::image<dimensions> *_image = nullptr; #ifndef DPCT_USM_LEVEL_NONE std::vector<char> _host_buffer; #endif void create_image(sycl::queue q) { auto &data = get_data(); if (data.get_data_type() == image_data_type::matrix) { _image = static_cast<image_matrix_p>(data.get_data_ptr()) ->create_image<dimensions>(data.get_channel()); return; } auto ptr = data.get_data_ptr(); auto channel = data.get_channel(); if (detail::get_pointer_attribute(q, ptr) == detail::pointer_access_attribute::device_only) { #ifdef DPCT_USM_LEVEL_NONE ptr = get_buffer(ptr) .template get_access<sycl::access_mode::read_write>() .get_pointer(); #else auto sz = data.get_x(); if (data.get_data_type() == image_data_type::pitch) sz *= channel.get_total_size() * data.get_y(); _host_buffer.resize(sz); q.memcpy(_host_buffer.data(), ptr, sz).wait(); ptr = _host_buffer.data(); #endif } if constexpr (dimensions == 1) { assert(data.get_data_type() == image_data_type::linear); _image = new sycl::image<1>( ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<1>(data.get_x() / channel.get_total_size())); } else if constexpr (dimensions == 2) { assert(data.get_data_type() == image_data_type::pitch); _image = new sycl::image<2>(ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<2>(data.get_x(), data.get_y()), sycl::range<1>(data.get_pitch())); } else { throw std::runtime_error("3D image only support matrix data"); } return; } public: using acc_data_t = typename detail::image_trait<T>::acc_data_t; using accessor_t = typename image_accessor_ext<T, IsImageArray ? (dimensions - 1) : dimensions, IsImageArray>::accessor_t; image_wrapper() { set_channel(image_channel::create<T>()); } ~image_wrapper() { detach(); } /// Get image accessor. accessor_t get_access(sycl::handler &cgh, sycl::queue &q = get_default_queue()) { if (!_image) create_image(q); return accessor_t(*_image, cgh); } /// Detach data. void detach() override { if (_image) delete _image; _image = nullptr; } }; /// Wrap sampler and image accessor together. template <class T, int dimensions, bool IsImageArray = false> class image_accessor_ext { public: using accessor_t = typename detail::image_trait<T>::template accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 3> typename std::enable_if<Available, data_t>::type read(float x, float y, float z) { return detail::fetch_data<T>()( _img_acc.read(sycl::float4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, class Coord2, bool Available = dimensions == 3 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value &&std::is_integral<Coord2>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y, Coord2 z) { return detail::fetch_data<T>()( _img_acc.read(sycl::int4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(float x, float y) { return detail::fetch_data<T>()( _img_acc.read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, bool Available = dimensions == 2 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y) { return detail::fetch_data<T>()( _img_acc.read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(float x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } /// Read data from accessor. template <class CoordT, bool Available = dimensions == 1 && std::is_integral<CoordT>::value> typename std::enable_if<Available, data_t>::type read(CoordT x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } }; template <class T, int dimensions> class image_accessor_ext<T, dimensions, true> { public: using accessor_t = typename detail::image_trait<T>::template array_accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, float x, float y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, int x, int y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, float x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, int x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } }; /// Create image wrapper according to image data and sampling info. /// \return Pointer to image wrapper base class. /// \param data Image data used to create image wrapper. /// \param info Image sampling info used to create image wrapper. /// \returns Pointer to base class of created image wrapper object. static inline image_wrapper_base *create_image_wrapper(image_data data, sampling_info info) { image_channel channel; int dims = 1; if (data.get_data_type() == image_data_type::matrix) { auto matrix = (image_matrix_p)data.get_data_ptr(); channel = matrix->get_channel(); dims = matrix->get_dims(); } else { if (data.get_data_type() == image_data_type::pitch) { dims = 2; } channel = data.get_channel(); } if (auto ret = detail::create_image_wrapper(channel, dims)) { ret->set_sampling_info(info); ret->set_data(data); return ret; } return nullptr; } namespace detail { /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims) { switch (dims) { case 1: return new image_wrapper<T, 1>(); case 2: return new image_wrapper<T, 2>(); case 3: return new image_wrapper<T, 3>(); default: return nullptr; } } /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims) { switch (channel_num) { case 1: return create_image_wrapper<T>(dims); case 2: return create_image_wrapper<sycl::vec<T, 2>>(dims); case 3: return create_image_wrapper<sycl::vec<T, 3>>(dims); case 4: return create_image_wrapper<sycl::vec<T, 4>>(dims); default: return nullptr; } } /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims) { switch (channel.get_channel_type()) { case sycl::image_channel_type::fp16: return create_image_wrapper<sycl::half>(channel.get_channel_num(), dims); case sycl::image_channel_type::fp32: return create_image_wrapper<float>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int8: return create_image_wrapper<std::int8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int16: return create_image_wrapper<std::int16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int32: return create_image_wrapper<std::int32_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int8: return create_image_wrapper<std::uint8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int16: return create_image_wrapper<std::uint16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int32: return create_image_wrapper<std::uint32_t>(channel.get_channel_num(), dims); default: return nullptr; } } } // namespace detail } // namespace dpct #endif // !__DPCT_IMAGE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/kernel.hpp
//==---- kernel.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_KERNEL_HPP__ #define __DPCT_KERNEL_HPP__ #include <sycl/sycl.hpp> #ifdef _WIN32 #include <unordered_set> #include <windows.h> #else #include <dlfcn.h> #endif #if defined(__has_include) && __has_include(<filesystem>) #include <filesystem> #elif defined(__has_include) && __has_include(<experimental/filesystem>) #include <experimental/filesystem> #else #error "SYCLomatic runtime requires C++ filesystem support" #endif #include <random> #include <image.hpp> #include <fstream> namespace dpct { typedef void (*kernel_functor)(sycl::queue &, const sycl::nd_range<3> &, unsigned int, void **, void **); struct kernel_function_info { int max_work_group_size = 0; }; static inline void get_kernel_function_info(kernel_function_info *kernel_info, const void *function) { kernel_info->max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); } static inline kernel_function_info get_kernel_function_info(const void *function) { kernel_function_info kernel_info; kernel_info.max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); return kernel_info; } namespace detail { #if defined(__has_include) && __has_include(<filesystem>) namespace fs = std::filesystem; #else namespace fs = std::experimental::filesystem; #endif /// Write data to temporary file and return absolute path to temporary file. /// Temporary file is created in a temporary directory both of which have random /// names with only the user having access permissions. Only one temporary file /// will be created in the temporary directory. static inline fs::path write_data_to_file(char const *const data, size_t size) { std::error_code ec; if (sizeof(size_t) >= sizeof(std::streamsize) && size > (std::numeric_limits<std::streamsize>::max)()) throw std::runtime_error("data file too large"); // random number generator std::random_device dev; std::mt19937 prng(dev()); std::uniform_int_distribution<uint64_t> rand(0); // find temporary directory auto tmp_dir = fs::temp_directory_path(ec); if (ec) throw std::runtime_error("could not find temporary directory"); // create private directory std::stringstream directory; fs::path directory_path; constexpr int max_attempts = 5; int i; for (i = 0; i < max_attempts; i++) { directory << std::hex << rand(prng); directory_path = tmp_dir / directory.str(); if (fs::create_directory(directory_path)) { break; } } if (i == max_attempts) throw std::runtime_error("could not create directory"); // only allow owner permissions to private directory fs::permissions(directory_path, fs::perms::owner_all, ec); if (ec) throw std::runtime_error("could not set directory permissions"); // random filename in private directory std::stringstream filename; filename << std::hex << rand(prng); #ifdef _WIN32 auto filepath = directory_path / (filename.str() + ".dll"); #else auto filepath = directory_path / filename.str(); #endif // write data to temporary file auto outfile = std::ofstream(filepath, std::ios::out | std::ios::binary); if (outfile) { // only allow program to write file fs::permissions(filepath, fs::perms::owner_write, ec); if (ec) throw std::runtime_error("could not set permissions"); outfile.write(data, size); if (!outfile.good()) throw std::runtime_error("could not write data"); outfile.close(); // only allow program to read/execute file fs::permissions(filepath, fs::perms::owner_read | fs::perms::owner_exec, ec); if (ec) throw std::runtime_error("could not set permissions"); } else throw std::runtime_error("could not write data"); // check temporary file contents auto infile = std::ifstream(filepath, std::ios::in | std::ios::binary); if (infile) { bool mismatch = false; size_t cnt = 0; while (1) { char c; infile.get(c); if (infile.eof()) break; if (c != data[cnt++]) mismatch = true; } if (cnt != size || mismatch) throw std::runtime_error("file contents not written correctly"); } else throw std::runtime_error("could not validate file"); if (!filepath.is_absolute()) throw std::runtime_error("temporary filepath is not absolute"); return filepath; } static inline uint16_t extract16(unsigned char const *const ptr) { uint16_t ret = 0; ret |= static_cast<uint16_t>(ptr[0]) << 0; ret |= static_cast<uint16_t>(ptr[1]) << 8; return (ret); } static inline uint32_t extract32(unsigned char const *const ptr) { uint32_t ret = 0; ret |= static_cast<uint32_t>(ptr[0]) << 0; ret |= static_cast<uint32_t>(ptr[1]) << 8; ret |= static_cast<uint32_t>(ptr[2]) << 16; ret |= static_cast<uint32_t>(ptr[3]) << 24; return (ret); } static inline uint64_t extract64(unsigned char const *const ptr) { uint64_t ret = 0; ret |= static_cast<uint64_t>(ptr[0]) << 0; ret |= static_cast<uint64_t>(ptr[1]) << 8; ret |= static_cast<uint64_t>(ptr[2]) << 16; ret |= static_cast<uint64_t>(ptr[3]) << 24; ret |= static_cast<uint64_t>(ptr[4]) << 32; ret |= static_cast<uint64_t>(ptr[5]) << 40; ret |= static_cast<uint64_t>(ptr[6]) << 48; ret |= static_cast<uint64_t>(ptr[7]) << 56; return (ret); } static inline uint64_t get_lib_size(char const *const blob) { #ifdef _WIN32 /////////////////////////////////////////////////////////////////////// // Analyze DOS stub unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); if (ublob[0] != 0x4d || ublob[1] != 0x5a) { throw std::runtime_error("Blob is not a Windows DLL."); } uint32_t pe_header_offset = extract32(ublob + 0x3c); /////////////////////////////////////////////////////////////////////// // Ananlyze PE-header unsigned char const *const pe_header = ublob + pe_header_offset; // signature uint32_t pe_signature = extract32(pe_header + 0); if (pe_signature != 0x00004550) { throw std::runtime_error("PE-header signature is not 0x00004550"); } // machine uint16_t machine = extract16(pe_header + 4); if (machine != 0x8664) { throw std::runtime_error("Only DLLs for x64 supported"); } // number of sections uint16_t number_of_sections = extract16(pe_header + 6); // sizeof optional header uint16_t sizeof_optional_header = extract16(pe_header + 20); // magic uint16_t magic = extract16(pe_header + 24); if (magic != 0x10b && magic != 0x20b) { throw std::runtime_error("MAGIC is not 0x010b or 0x020b"); } /////////////////////////////////////////////////////////////////////// // Analyze tail of optional header constexpr int coff_header_size = 24; unsigned char const *const tail_of_optional_header = pe_header + coff_header_size + sizeof_optional_header; if (extract64(tail_of_optional_header - 8) != 0) { throw std::runtime_error("Optional header not zero-padded"); } /////////////////////////////////////////////////////////////////////// // Analyze last section header constexpr int section_header_size = 40; unsigned char const *const last_section_header = tail_of_optional_header + section_header_size * (number_of_sections - 1); uint32_t sizeof_raw_data = extract32(last_section_header + 16); uint32_t pointer_to_raw_data = extract32(last_section_header + 20); return sizeof_raw_data + pointer_to_raw_data; #else if (blob[0] != 0x7F || blob[1] != 'E' || blob[2] != 'L' || blob[3] != 'F') throw std::runtime_error("Blob is not in ELF format"); if (blob[4] != 0x02) throw std::runtime_error("Only 64-bit headers are supported"); if (blob[5] != 0x01) throw std::runtime_error("Only little-endian headers are supported"); unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); uint64_t e_shoff = extract64(ublob + 0x28); uint16_t e_shentsize = extract16(ublob + 0x3A); uint16_t e_shnum = extract16(ublob + 0x3C); return e_shoff + (e_shentsize * e_shnum); #endif } #ifdef _WIN32 class path_lib_record { public: void operator=(const path_lib_record &) = delete; ~path_lib_record() { for (auto entry : lib_to_path) { FreeLibrary(static_cast<HMODULE>(entry.first)); fs::permissions(entry.second, fs::perms::owner_all); fs::remove_all(entry.second.remove_filename()); } } static void record_lib_path(fs::path path, void *library) { lib_to_path[library] = path; } static void remove_lib(void *library) { auto path = lib_to_path[library]; std::error_code ec; FreeLibrary(static_cast<HMODULE>(library)); fs::permissions(path, fs::perms::owner_all); if (fs::remove_all(path.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); lib_to_path.erase(library); } private: static inline std::unordered_map<void *, fs::path> lib_to_path; }; #endif } // namespace detail class kernel_library { public: kernel_library() : ptr{nullptr} {} kernel_library(void *ptr) : ptr{ptr} {} operator void *() const { return ptr; } private: void *ptr; #ifdef _WIN32 static inline detail::path_lib_record single_instance_to_trigger_destructor; #endif }; namespace detail { static inline kernel_library load_dl_from_data(char const *const data, size_t size) { fs::path filename = write_data_to_file(data, size); #ifdef _WIN32 void *so = LoadLibraryW(filename.wstring().c_str()); #else void *so = dlopen(filename.c_str(), RTLD_LAZY); #endif if (so == nullptr) throw std::runtime_error("Failed to load kernel library"); #ifdef _WIN32 detail::path_lib_record::record_lib_path(filename, so); #else std::error_code ec; // Windows DLL cannot be deleted while in use if (fs::remove_all(filename.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); #endif return so; } } // namespace detail /// Load kernel library and return a handle to use the library. /// \param [in] name The name of the library. static inline kernel_library load_kernel_library(const std::string &name) { std::ifstream ifs; ifs.open(name, std::ios::in | std::ios::binary); std::stringstream buffer; buffer << ifs.rdbuf(); const std::string buffer_string = buffer.str(); return detail::load_dl_from_data(buffer_string.c_str(), buffer_string.size()); } /// Load kernel library whose image is alreay in memory and return a handle to /// use the library. /// \param [in] image A pointer to the image in memory. static inline kernel_library load_kernel_library_mem(char const *const image) { const size_t size = detail::get_lib_size(image); return detail::load_dl_from_data(image, size); } /// Unload kernel library. /// \param [in,out] library Handle to the library to be closed. static inline void unload_kernel_library(const kernel_library &library) { #ifdef _WIN32 detail::path_lib_record::remove_lib(library); #else dlclose(library); #endif } class kernel_function { public: kernel_function() : ptr{nullptr} {} kernel_function(dpct::kernel_functor ptr) : ptr{ptr} {} operator void *() const { return ((void *)ptr); } void operator()(sycl::queue &q, const sycl::nd_range<3> &range, unsigned int a, void **args, void **extra) { ptr(q, range, a, args, extra); } private: dpct::kernel_functor ptr; }; /// Find kernel function in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the kernel function. static inline dpct::kernel_function get_kernel_function(kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( GetProcAddress(static_cast<HMODULE>(static_cast<void *>(library)), (name + std::string("_wrapper")).c_str())); #else dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( dlsym(library, (name + std::string("_wrapper")).c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get function"); return fn; } /// Invoke a kernel function. /// \param [in] function kernel function. /// \param [in] queue SYCL queue used to execute kernel /// \param [in] groupRange SYCL group range /// \param [in] localRange SYCL local range /// \param [in] localMemSize The size of local memory required by the kernel /// function. /// \param [in] kernelParams Array of pointers to kernel arguments. /// \param [in] extra Extra arguments. static inline void invoke_kernel_function(dpct::kernel_function &function, sycl::queue &queue, sycl::range<3> groupRange, sycl::range<3> localRange, unsigned int localMemSize, void **kernelParams, void **extra) { function(queue, sycl::nd_range<3>(groupRange * localRange, localRange), localMemSize, kernelParams, extra); } /// Find image wrapper in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the target image wrapper. static inline dpct::image_wrapper_base_p get_image_wrapper(dpct::kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>(GetProcAddress( static_cast<HMODULE>(static_cast<void *>(library)), name.c_str())); #else dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>( dlsym(library, name.c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get image"); return fn; } } // namespace dpct #endif // __DPCT_KERNEL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpct.hpp
//==---- dpct.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_HPP__ #define __DPCT_HPP__ #include <sycl/sycl.hpp> #include <iostream> #include <limits.h> #include <math.h> template <class... Args> class dpct_kernel_name; template <int Arg> class dpct_kernel_scalar; #include "atomic.hpp" #include "device.hpp" #include "image.hpp" #include "kernel.hpp" #include "math.hpp" #include "memory.hpp" #include "util.hpp" #if defined(_MSC_VER) #define __dpct_align__(n) __declspec(align(n)) #define __dpct_inline__ __forceinline #else #define __dpct_align__(n) __attribute__((aligned(n))) #define __dpct_inline__ __inline__ __attribute__((always_inline)) #endif #if defined(_MSC_VER) #define __dpct_noinline__ __declspec(noinline) #else #define __dpct_noinline__ __attribute__((noinline)) #endif #define DPCT_COMPATIBILITY_TEMP (600) namespace dpct{ enum error_code { success = 0, default_error = 999 }; } #define DPCT_CHECK_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const &e) { \ std::cerr << e.what() << std::endl; \ return dpct::default_error; \ } \ }() #define DPCT_PI_F (3.14159274101257f) #define DPCT_PI (3.141592653589793115998) #endif // __DPCT_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dnnl_utils.hpp
//==---- dnnl_utils.hpp ---------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DNNL_UTILS_HPP__ #define __DPCT_DNNL_UTILS_HPP__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <oneapi/dpl/numeric> #include <oneapi/mkl.hpp> #include <oneapi/mkl/rng/device.hpp> #include <sycl/sycl.hpp> #include <oneapi/dnnl/dnnl.hpp> #include <oneapi/dnnl/dnnl_sycl.hpp> #include <unordered_map> #include <algorithm> #include <list> #include "memory.hpp" #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace dnnl { /// Get concatenated library version as an integer. static inline size_t get_version() { const ::dnnl::version_t *ver = ::dnnl::version(); return ver->major * 1000 + ver->minor * 100 + ver->patch; } class engine_ext; typedef oneapi::mkl::rng::philox4x32x10 rng_engine_t; /// An enum class representing memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class memory_format_tag { nchw, nhwc, nchw_blocked }; /// An enum class representing RNN data memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class rnn_memory_format_tag { tnc, ntc }; /// A class holding the description of an N-dimensions memory. class memory_desc_ext { ::dnnl::memory::desc _desc; public: /// Convert dpct::library_data_t to dnnl::memory::data_type. static ::dnnl::memory::data_type to_dnnl_data_type(dpct::library_data_t dt); /// Convert dnnl::memory::data_type to dpct::library_data_t. static dpct::library_data_t to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size); /// Convert dpct::dnnl::memory_format_tag to dnnl::memory::format_tag. static ::dnnl::memory::format_tag to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag); memory_desc_ext() = default; memory_desc_ext(::dnnl::memory::desc &desc) : _desc(desc) {} memory_desc_ext(::dnnl::memory::desc &&desc) : _desc(std::move(desc)) {} /// Setting a 4D memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. void set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w); /// Setting a 3D RNN data memory with given parameters. /// \param [in] tag RNN data format tag. /// \param [in] dt Data type. /// \param [in] t Number of sequence length. /// \param [in] n Number of batch. /// \param [in] c Height of input channel. void set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c); /// Setting a 4D memory with given parameters. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. /// \param [in] n_stride Stride between two continuous images. /// \param [in] c_stride Stride between two continuous channels. /// \param [in] h_stride Stride between two continuous rows. /// \param [in] w_stride Stride between two continuous columns. void set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride); /// Setting a ND memory with given parameters. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. \param [in] strides Array of dimension ndims that /// contain the stride of each memory dimension. void set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]); /// Setting a ND memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. void set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]); /// Getting a ::dnnl::memory::desc from a memory_desc_ext. /// \returns The ::dnnl::memory::desc. const ::dnnl::memory::desc &get_desc() const { return _desc; } /// Setting holding desc with given dnnl memory descriptor. void set_desc(::dnnl::memory::desc desc) { _desc = desc; } /// Getting a size of a memory_desc_ext in bytes. /// \returns The size. size_t get_size() const { return _desc.get_size(); } /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. /// \param [out] n_stride Stride between two continuous images. /// \param [out] c_stride Stride between two continuous channels. /// \param [out] h_stride Stride between two continuous rows. /// \param [out] w_stride Stride between two continuous columns. void get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const; /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. void get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const; /// Getting parameters from a 3D RNN data memory. /// \param [out] dt Data type. /// \param [out] tag RNN data format tag. /// \param [out] t Number of sequence length. /// \param [out] n Number of batch. /// \param [out] c Height of input channel. void get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. /// \param [out] strides Array of dimension requested_ndims that contain the /// stride of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const; /// Getting dims from a ND memory. /// \return The dims. std::vector<int64_t> get_dims() const { return _desc.get_dims(); } /// Getting strides from a ND memory. /// \return The strides. std::vector<int64_t> get_strides() const { return _desc.get_strides(); } /// Getting element num from a ND memory. /// \return The element number. size_t get_element_num() const { auto dims = _desc.get_dims(); if (dims.empty()) { return 0; } size_t result = 1; for (auto &dim : dims) { result *= dim; } return result; } operator bool() const { return bool(_desc); } memory_desc_ext &operator=(std::nullptr_t) { _desc.reset(nullptr); return *this; } }; /// A class holding description for an activation operation. class activation_desc { ::dnnl::algorithm _alg; float _alpha; float _beta; public: /// Setting an activation descriptor with given parameters. /// \param [in] alg Activation algorithm. /// \param [in] alpha Value of alpha parameter. void set(::dnnl::algorithm alg, float alpha) { _alg = alg; if(alg == ::dnnl::algorithm::eltwise_clip) { _alpha = 0; _beta = alpha; } else { _alpha = alpha; } } /// Getting parameters form an activation descriptor. /// \param [out] alg Activation algorithm. /// \param [out] alpha Value of alpha parameter. void get(::dnnl::algorithm *alg, float *alpha) const { *alg = _alg; if(_alg == ::dnnl::algorithm::eltwise_clip) { *alpha = _beta; } else { *alpha = _alpha; } } /// Setting the alpha parameter of an activation descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of an activation descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the algorithm parameter of an activation descriptor. /// \param [in] alg Activation algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Getting the alpha parameter from an activation descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from an activation descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the algorithm parameter from an activation descriptor. /// \param [out] alg Activation algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } }; /// A class holding description for a local response normalization operation. class lrn_desc { unsigned int _local_size; float _alpha; float _beta; float _k; public: /// Setting a local response normalization descriptor with given parameters. /// \param [in] local_size Value of local_size parameter. /// \param [in] alpha Value of alpha parameter. /// \param [in] beta Value of beta parameter. /// \param [in] k Value of k parameter. void set(unsigned int local_size, float alpha, float beta, float k) { _local_size = local_size; _alpha = alpha; _beta = beta; _k = k; } /// Getting parameters form a local response normalization descriptor. /// \param [out] local_size Value of local_size parameter. /// \param [out] alpha Value of alpha parameter. /// \param [out] beta Value of beta parameter. /// \param [out] k Value of k parameter. void get(unsigned int *local_size, float *alpha, float *beta, float *k) const { *local_size = _local_size; *alpha = _alpha; *beta = _beta; *k = _k; } /// Setting the local size parameter of a local response normalization /// descriptor. /// \param [in] local_size Value of local_size parameter. void set_local_size(unsigned int local_size) { _local_size = local_size; } /// Setting the alpha parameter of a local response normalization descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of a local response normalization descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the k parameter of a local response normalization descriptor. /// \param [in] k Value of k parameter. void set_k(float k) { _k = k; } /// Getting the local size parameter from a local response normalization /// descriptor. /// \param [out] local_size Value of local_size parameter. unsigned int get_local_size() const { return _local_size; } /// Getting the alpha parameter from a local response normalization /// descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from a local response normalization descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the k parameter from a local response normalization descriptor. /// \param [out] k Value of k parameter. float get_k() const { return _k; } }; /// An enum class representing softmax algorithm. enum class softmax_algorithm { normal, log }; /// An enum class representing softmax mode. enum class softmax_mode { instance, channel }; /// A class holding description for a pooling operation. class pooling_desc { ::dnnl::algorithm _alg; std::vector<int64_t> _stride; std::vector<int64_t> _kernel; std::vector<int64_t> _padding; public: /// Setting a 2D pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] kernel_h Value of height of kernel. /// \param [in] kernel_w Value of width of kernel. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. void set(::dnnl::algorithm alg, int kernel_h, int kernel_w, int padding_h, int padding_w, int stride_h, int stride_w) { _alg = alg; _stride = {stride_h, stride_w}; _kernel = {kernel_h, kernel_w}; _padding = {padding_h, padding_w}; } /// Setting a ND pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] ndims Dimension of the pooling operation. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [in] padding Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set(::dnnl::algorithm alg, int ndims, int kernel[], int padding[], int stride[]) { _alg = alg; _stride = std::vector<int64_t>(stride, stride + ndims); _kernel = std::vector<int64_t>(kernel, kernel + ndims); _padding = std::vector<int64_t>(padding, padding + ndims); } /// Getting parameters from a 2D pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] kernel_h Value of height of kernel. /// \param [out] kernel_w Value of width of kernel. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. void get(::dnnl::algorithm *alg, int *kernel_h, int *kernel_w, int *padding_h, int *padding_w, int *stride_h, int *stride_w) const { *alg = _alg; *kernel_h = _kernel[0]; *kernel_w = _kernel[1]; *padding_h = _padding[0]; *padding_w = _padding[1]; *stride_h = _stride[0]; *stride_w = _stride[1]; } /// Getting parameters from a ND pooling descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [out] padding Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] stride Array of dimension ndims containing the stride size of /// each dimension. void get(int requested_ndims, ::dnnl::algorithm *alg, int *ndims, int kernel[], int padding[], int stride[]) const { *alg = _alg; *ndims = _stride.size(); for (int i = 0; i < requested_ndims; i++) { kernel[i] = _kernel[i]; padding[i] = _padding[i]; stride[i] = _stride[i]; } } /// Setting the algorithm parameter of a pooling descriptor. /// \param [in] alg Pooling algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Setting the stride parameter of a pooling descriptor. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set_stride(const std::vector<int64_t> &stride) { _stride = stride; } /// Setting the kernel parameter of a pooling descriptor. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. void set_kernel(const std::vector<int64_t> &kernel) { _kernel = kernel; } /// Setting the padding parameter of a pooling descriptor. /// \param [in] padding Array of dimension ndims containing the padding size /// of each dimension. void set_padding(const std::vector<int64_t> &padding) { _padding = padding; } /// Getting the algorithm parameter from a pooling descriptor. /// \param [out] alg Pooling algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } /// Getting the stride parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _stride; } /// Getting the kernel parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the kernel size of each /// dimension. const std::vector<int64_t> &get_kernel() const { return _kernel; } /// Getting the padding parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _padding; } /// Getting the output dimensions of a memory after 2D pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); *out_n = dims[0]; *out_c = dims[1]; *out_h = 1 + (dims[2] + 2 * _padding[0] - _kernel[0]) / _stride[0]; *out_w = 1 + (dims[3] + 2 * _padding[1] - _kernel[1]) / _stride[1]; } /// Getting the output dimensions of a memory after ND pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _padding[i - 2] - _kernel[i - 2]) / _stride[i - 2]; } } }; /// An enum class representing reduction operations. enum class reduction_op { max, min, sum, mul, mean, amax, mul_no_zeros, norm1, norm2 }; /// An enum class representing batch normalization mode. enum class batch_normalization_mode { per_activation, spatial }; /// An enum class representing batch normalization operations. enum class batch_normalization_ops { none, activation, add_activation }; /// An enum class representing binary operations. enum class binary_op { add, sub, mul, div, min, max, sqrt, neg }; /// An struct representing convolution algorithm infomation. struct convolution_algorithm_info { ::dnnl::algorithm algo = ::dnnl::algorithm::convolution_auto; int status = 0; }; /// A class holding description for a convolution operation. class convolution_desc { std::vector<int64_t> _strides; std::vector<int64_t> _dilates; std::vector<int64_t> _paddings; int _group_count = 1; ::dnnl::fpmath_mode _math_mode = ::dnnl::fpmath_mode::strict; public: /// Setting a group count to be used in the convolution. /// \param [in] group_count Value of group count. void set_group_count(int group_count) { _group_count = group_count; } /// Getting a group count specified in the given convolution descriptor. /// \returns Value of group count. int get_group_count() { return _group_count; } /// Setting floating point math mode to be used in the convolution. /// \param [in] math_mode Value of math_mode. void set_math_mode(::dnnl::fpmath_mode math_mode) { _math_mode = math_mode; } /// Getting floating point math mode specified in the given convolution descriptor. /// \returns Value of math mode. ::dnnl::fpmath_mode get_math_mode() { return _math_mode; } /// Setting a 2D convolution descriptor with given parameters. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. /// \param [in] dilate_h Value of height of dilate. /// \param [in] dilate_w Value of width of dilate. void set(int padding_h, int padding_w, int stride_h, int stride_w, int dilate_h, int dilate_w) { _strides = {stride_h, stride_w}; _dilates = {dilate_h - 1, dilate_w - 1}; _paddings = {padding_h, padding_w}; } /// Setting a ND convolution descriptor with given parameters. /// \param [in] ndims Dimension of the convolution operation. /// \param [in] paddings Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [in] dilates Array of dimension ndims containing the kernel size of /// each dimension. void set(int ndims, int paddings[], int strides[], int dilates[]) { _strides = std::vector<int64_t>(strides, strides + ndims); _paddings = std::vector<int64_t>(paddings, paddings + ndims); _dilates = std::vector<int64_t>(dilates, dilates + ndims); for (auto &dilate : _dilates) { dilate--; } } /// Getting parameters from a 2D convolution descriptor. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. /// \param [out] dilate_h Value of height of dilate. /// \param [out] dilate_w Value of width of dilate. void get(int *padding_h, int *padding_w, int *stride_h, int *stride_w, int *dilate_h, int *dilate_w) const { *dilate_h = _dilates[0]; *dilate_w = _dilates[1]; *padding_h = _paddings[0]; *padding_w = _paddings[1]; *stride_h = _strides[0]; *stride_w = _strides[1]; } /// Getting parameters from a ND convolution descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given convolution descriptor. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] paddings Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [out] dilates Array of dimension ndims containing the dilate size of /// each dimension. void get(int requested_ndims, int *ndims, int paddings[], int strides[], int dilates[]) const { *ndims = _strides.size(); for (int i = 0; i < requested_ndims; i++) { dilates[i] = _dilates[i]; paddings[i] = _paddings[i]; strides[i] = _strides[i]; } } /// Getting the stride parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _strides; } /// Getting the kernel parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the dilate size of each /// dimension. const std::vector<int64_t> &get_dilate() const { return _dilates; } /// Getting the padding parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _paddings; } /// Getting the output dimensions of a memory after 2D convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); *out_n = dims[0]; *out_c = weight_dims[0]; *out_h = 1 + (dims[2] + 2 * _paddings[0] - (1 + (_dilates[0] * (weight_dims[2] - 1)))) / _strides[0]; *out_w = 1 + (dims[3] + 2 * _paddings[1] - (1 + (_dilates[1] * (weight_dims[3] - 1)))) / _strides[1]; } /// Getting the output dimensions of a memory after ND convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = weight_dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _paddings[i - 2] - (1 + (_dilates[i - 2] * (weight_dims[i] - 1)))) / _strides[i - 2]; } } convolution_desc &operator=(std::nullptr_t) { return *this = convolution_desc(); } operator bool() const { return !(_strides.size() == 0 && _dilates.size() == 0 && _paddings.size() == 0); } }; /// An enum class representing rnn mode. enum class rnn_mode { vanilla_relu, vanilla_tanh, lstm, gru }; /// An enum class representing rnn bias mode. enum class rnn_bias_mode { none, single }; /// An enum class representing rnn direction. enum class rnn_direction {unidirectional, bidirectional}; /// A class holding description for a RNN operation. class rnn_desc { rnn_mode _mode; rnn_bias_mode _bias_mode; rnn_direction _direction; dpct::library_data_t _dt; int _input_size; int _hidden_size; int _projection_size; int _layer_size; public: void set(rnn_mode mode, rnn_bias_mode bias_mode, rnn_direction direction, dpct::library_data_t dt, int input_size, int hidden_size, int projection_size, int layer_size) { _mode = mode; _bias_mode = bias_mode; _direction = direction; _input_size = input_size; _hidden_size = hidden_size; _projection_size = projection_size; _layer_size = layer_size; _dt = dt; } void get(rnn_mode *mode, rnn_bias_mode *bias_mode, rnn_direction *direction, dpct::library_data_t *dt, int *input_size, int *hidden_size, int *projection_size, int *layer_size) const { *mode = _mode; *bias_mode = _bias_mode; *direction = _direction; *input_size = _input_size; *hidden_size = _hidden_size; *projection_size = _projection_size; *layer_size = _layer_size; *dt = _dt; } }; /// A class holding description for a Dropout operation. class dropout_desc { struct dropout_desc_imp { float _p = 0.5f; unsigned long long _seed = 1; void *_state = nullptr; std::vector<std::uint8_t> _host_state; rng_engine_t _rng_engine; dropout_desc_imp() : _rng_engine(dpct::get_default_queue(), 1) {} }; std::shared_ptr<dropout_desc_imp> _imp; void generate(sycl::queue *q, std::int64_t required_state_size, std::int64_t num, void *buffer) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::event e_gen = oneapi::mkl::rng::generate( oneapi::mkl::rng::bernoulli<std::int32_t>(1.f - _imp->_p), _imp->_rng_engine, num, (std::int32_t *)buffer); sycl::event e_save = q->submit([&](sycl::handler &cgh) { cgh.depends_on(e_gen); cgh.host_task([=] { oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); }); }); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size, e_save); #endif } public: operator bool() const { return bool(_imp); } dropout_desc &operator=(std::nullptr_t) { _imp.reset(); return *this; } /// Initializing a dropout descriptor. void init(){ _imp = std::make_shared<dropout_desc_imp>(); } /// Setting a dropout descriptor with given parameters. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); /// Getting parameters from a dropout descriptor. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void get(float *p, void **states, unsigned long long *seed) const noexcept { *seed = _imp->_seed; *states = _imp->_state; *p = _imp->_p; } /// Getting the probability of value set to zero. /// \returns Probability. float get_probability() const noexcept { return _imp->_p; } /// Restoreing a dropout descriptor from stored state. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); friend class engine_ext; }; namespace detail { typedef std::string primitive_cache_key_type; typedef std::list<primitive_cache_key_type> usage_list_type; typedef struct { ::dnnl::primitive *primitive; usage_list_type::iterator usage_it; std::function<void(::dnnl::primitive *)> destructor; sycl::event e; } primitive_cache_value_type; typedef std::unordered_map<primitive_cache_key_type, primitive_cache_value_type> cache_map_type; // The primitive cache uses LRU replacement policy, and the default cache // capacity is 1024. class primitive_cache { int _capacity = 1024; usage_list_type usage; cache_map_type cache_map; void touch(cache_map_type::iterator it, sycl::event e = {}, bool update_event = false) { if (it->second.usage_it != usage.begin()) { const primitive_cache_key_type &key = it->first; usage.erase(it->second.usage_it); usage.push_front(key); it->second.usage_it = usage.begin(); } if (update_event) { it->second.e = e; } } void async_destruct_primitive(const primitive_cache_value_type &value) { dpct::get_current_device().default_queue().submit([&](sycl::handler &cgh) { cgh.depends_on(value.e); cgh.host_task([=] { value.destructor(value.primitive); }); }); } public: ::dnnl::primitive *get(const primitive_cache_key_type &key) { auto it = cache_map.find(key); if (it == cache_map.end()) { return nullptr; } touch(it); return it->second.primitive; } void put(const primitive_cache_key_type &key, ::dnnl::primitive *value, std::function<void(::dnnl::primitive *)> destructor, sycl::event e) { auto it = cache_map.find(key); if (it != cache_map.end()) { touch(it, e, true); } else { if (cache_map.size() == _capacity) { auto last_primitive = cache_map.find(usage.back()); async_destruct_primitive(last_primitive->second); cache_map.erase(usage.back()); usage.pop_back(); } usage.push_front(key); cache_map[key] = {value, usage.begin(), destructor, e}; } } ~primitive_cache() { for (auto &v : cache_map) { async_destruct_primitive(v.second); } } }; } // namespace detail /// A class holding the oneDNN engine. class engine_ext { struct output_argument_info { float _alpha; float _beta; int _name; memory_desc_ext _desc; void *_data; output_argument_info(float alpha, float beta, int name, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(name), _desc(desc), _data(data) {} output_argument_info(float alpha, float beta, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(0), _desc(desc), _data(data) {} }; ::dnnl::engine _eng; ::dnnl::stream _s; sycl::queue *_q = nullptr; std::map<void *, ::dnnl::memory> workspace_map; std::int64_t _random_engine_state_size = -1; detail::primitive_cache _primitive_cache; ::dnnl::memory &get_workspace(void *key) { return workspace_map[key]; } void insert_workspace(void *key, ::dnnl::memory workspace) { workspace_map[key] = workspace; } const ::dnnl::stream &get_stream() const { return _s; } const ::dnnl::engine &get_engine() const { return _eng; } void *allocate(const memory_desc_ext &desc, int count = 1) const; ::dnnl::memory::desc compress_spatial_dimensions_to_channel(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode); sycl::event batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var); sycl::event batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var); ::dnnl::memory::desc transfer_memory_desc_to_channel_major_format(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc bn_reorder_memory_to_channel_major_format(bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches); ::dnnl::memory::desc transfer_memory_desc_to_format_tag_any(const ::dnnl::memory::desc &desc){ return ::dnnl::memory::desc(desc.get_dims(), desc.get_data_type(), ::dnnl::memory::format_tag::any); } void allocate_and_reorder_memory_to_optimal(::dnnl::memory::desc &from_desc, void *&from, ::dnnl::memory::desc &to_desc, void *&to, std::vector<void *> &caches) { if (from_desc != to_desc) { to = allocate(to_desc); caches.push_back(to); async_reorder(1.f, from_desc, from, 0.f, to_desc, to); } } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive(args_type &&...args); template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive_with_pd(const typename primitive_type::primitive_desc &pd); template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc create_primitive_desc(args_type &&...args); template <typename primitive_desc_type> std::string generate_cache_key(const primitive_desc_type &pd); void serialize_dims(std::stringstream &ss, const std::vector<int64_t> &dims) { ss.write((char *)dims.data(), dims.size() * sizeof(int64_t)); }; void serialize_mem_desc(std::stringstream &ss, const ::dnnl::memory::desc &desc) { if (desc.is_zero()) { return; } auto format_kind = desc.get_format_kind(); ss << desc.get_ndims() << (std::uint8_t)desc.get_data_type() << (std::uint8_t)format_kind; serialize_dims(ss, desc.get_dims()); serialize_dims(ss, desc.get_strides()); if (format_kind == ::dnnl::memory::format_kind::blocked) { ss << desc.get_inner_nblks(); serialize_dims(ss, desc.get_inner_blks()); serialize_dims(ss, desc.get_inner_idxs()); } }; sycl::event execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size = nullptr, size_t *workspace_size = nullptr, size_t *scratchpad_size = nullptr); sycl::event rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query); sycl::event execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num); void async_free(sycl::queue *q, sycl::event e, std::unordered_map<int, ::dnnl::memory> *args, std::vector<void *> device_ptrs = {}) { q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { if (args) { delete args; } for (auto ptr : device_ptrs) { if (ptr) { sycl::free(ptr, *_q); } } }); }); }; bool scale_parameter_preprocess(const std::vector<output_argument_info> &args); template <typename primitive_type> sycl::event execute_primitive(const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &extra_args = {}, const std::vector<void *> &device_ptrs = {}); template <typename T> sycl::event fill_with_type(sycl::queue *q, void *src, const void *value, size_t size_with_byte) { return q->fill<T>(static_cast<T *>(src), *static_cast<const T *>(value), size_with_byte / sizeof(T)); } template <typename T> struct no_zero_op { T operator()(T e) { if (!e) { return 1; } return e; } }; template <typename T> void transform_no_zero_with_type(sycl::queue *q, void *src, void *dst, size_t num) { std::transform(oneapi::dpl::execution::make_device_policy(*q), static_cast<T *>(src), static_cast<T *>(src) + num, static_cast<T *>(dst), no_zero_op<T>()); } void transform_no_zero(const memory_desc_ext &desc, void *src, void *dst); ::dnnl::memory::desc get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc); void get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num); public: engine_ext() {} operator bool() const { return bool(_eng) && bool(_s) && bool(_q); } engine_ext &operator=(std::nullptr_t) { _eng.reset(nullptr); _s.reset(nullptr); _q = nullptr; return *this; } /// Creating oneDNN engine. void create_engine() { _eng = ::dnnl::sycl_interop::make_engine( dpct::get_current_device(), dpct::get_current_device().get_context()); _s = ::dnnl::sycl_interop::make_stream( _eng, dpct::get_current_device().default_queue()); _q = &dpct::get_current_device().default_queue(); } /// Setting the user's SYCL queue for an oneDNN engine. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { if (!q) { throw std::runtime_error("set_queue: pointer must not be nullptr."); } if (!_eng) { throw std::runtime_error("set_queue: current engine is invalid."); } if (q->get_context() != ::dnnl::sycl_interop::get_context(_eng)) { throw std::runtime_error( "set_queue: queue is mismatch with current engine context."); } _q = q; _s = ::dnnl::sycl_interop::make_stream(_eng, *q); } /// Retrieving the user's SYCL queue set in the oneDNN engine. /// \returns Pointer to the SYCL queue. sycl::queue *get_queue() const { return _q; } /// Setting all elements of a memory to a given value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. void fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. void scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. void pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. void pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. void lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. void lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Setting all elements of a memory to a given value asynchronously. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. /// \returns An event representing the fill operations. sycl::event async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reorder operations. sycl::event async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor asynchronously. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. /// \returns An event representing the scale operations. sycl::event async_scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the sum operations. sycl::event async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified binary operation. /// \param [in] alpha_0 Value to scaling factors used to scale the src_0 /// value. /// \param [in] src_desc_0 Source 0 memory descriptor. /// \param [in] src_0 Pointer to source 0 data. /// \param [in] alpha_1 Value to scaling factors used to scale the src_1 /// value. /// \param [in] src_desc_1 Source 1 memory descriptor. /// \param [in] src_1 Pointer to source 1 data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the binary operations. sycl::event async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified reduction operation. /// \param [in] alpha Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reduction operations. sycl::event async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the activation forward operations. sycl::event async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the activation backward operations. sycl::event async_activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value asynchronously. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. /// \returns An event representing the pooling forward operations. sycl::event async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. /// \returns An event representing the pooling backward operations. sycl::event async_pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the softmax forward operations. sycl::event async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the softmax backward operations. sycl::event async_softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value /// asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the lrn forward operations. sycl::event async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the lrn backward operations. sycl::event async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] desc Derived memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] scale_bias_desc Derived scale and bias memory descriptor. /// \param [out] mean_var_desc Derived mean and var memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Get the size of workspace that needed by batch normalization. The data stored /// in workspace must be preserved between forward and backward. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] src_desc Source memory descriptor. /// \returns Size of workspace. size_t get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [in] diff_scale Pointer to differential scale data. /// \param [in] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_desc Differential scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] mean_var_desc Differential mean, variance memory descriptor. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] adesc Activation operation descriptor. /// \param [in] alpha_0 Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] alpha_1 Value to scaling factors used to scale the summand /// value. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] bias_desc Bias memory descriptor. /// \param [in] bias Pointer to bias data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst); /// Computing the data gradient of a specified convolution function asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the convolution backward data operations. sycl::event async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing the weight gradient of a specified convolution function /// asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_weight_desc Differential weight memory descriptor. /// \param [out] diff_weight Pointer to differential weight data. /// \returns An event representing the convolution backward weight operations. sycl::event async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight); /// Computing the bias gradient of a specified convolution function /// asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_bias_desc Differential bias memory descriptor. /// \param [out] diff_bias Pointer to differential bias data. /// \returns An event representing the convolution backward bias operations. sycl::event async_convolution_backward_bias(float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias); /// Getting the required weight space size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [out] weight_space_size Size of required weight space. void rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size); /// Getting the required scratchpad size and workspace size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [out] scratchpad_size Size of required scratchpad. /// \param [out] workspace_size Size of required workspace. void rnn_get_scratchpad_workspace_size(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size); /// Computing a specified rnn function value asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] dst_iter Pointer to output recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] dst_c_iter Pointer to output recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn forward operations. sycl::event async_rnn_forward(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Computing the data and weight gradient of a specified rnn function /// asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [out] diff_src Pointer to differential source data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] diff_dst_iter Pointer to differential output recurrent hidden state data. /// \param [out] diff_src_iter Pointer to differential input recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] diff_dst_c_iter Pointer to differential output recurrent cell state data. /// \param [out] diff_src_c_iter Pointer to differential input recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [out] diff_weight Pointer to differential weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn backward operations. sycl::event async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Getting the required state size for specified dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of state. size_t get_dropout_state_size(); /// Getting the required workspace size for dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of workspace. static size_t get_dropout_workspace_size(const memory_desc_ext &src_desc); /// Computing a specified dropout function value asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout forward operations. sycl::event async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size); /// Computing the gradient of a specified dropout function asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout backward operations. sycl::event async_dropout_backward(dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size); }; inline void dropout_desc::restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("restore: state_size less than required state size."); } sycl::queue *q = engine.get_queue(); _imp->_p = p; _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); q->memcpy(_imp->_host_state.data(), _imp->_state, required_state_size).wait(); _imp->_rng_engine = oneapi::mkl::rng::load_state<rng_engine_t>( *q, _imp->_host_state.data()); } #endif } inline void dropout_desc::set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else _imp->_p = p; if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("set: no sufficient memory to save states."); } sycl::queue *q = engine.get_queue(); _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); _imp->_rng_engine = rng_engine_t(*q, seed); oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size).wait(); } #endif } inline ::dnnl::memory::data_type memory_desc_ext::to_dnnl_data_type(dpct::library_data_t dt) { using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dpct::library_data_t::real_half: return dnnl_dt::f16; case dpct::library_data_t::real_bfloat16: return dnnl_dt::bf16; case dpct::library_data_t::real_float: return dnnl_dt::f32; case dpct::library_data_t::real_int32: return dnnl_dt::s32; case dpct::library_data_t::real_int8: return dnnl_dt::s8; case dpct::library_data_t::real_uint8: return dnnl_dt::u8; case dpct::library_data_t::real_int8_4: return dnnl_dt::s8; case dpct::library_data_t::real_int8_32: return dnnl_dt::s8; case dpct::library_data_t::real_uint8_4: return dnnl_dt::u8; default: throw std::runtime_error("to_dnnl_data_type: unsupported data type."); } } inline dpct::library_data_t memory_desc_ext::to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size) { using dpct_dt = dpct::library_data_t; using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dnnl_dt::f16: return dpct_dt::real_half; case dnnl_dt::bf16: return dpct_dt::real_bfloat16; case dnnl_dt::f32: return dpct_dt::real_float; case dnnl_dt::s32: return dpct_dt::real_int32; case dnnl_dt::s8: if (block_size == 4) { return dpct_dt::real_int8_4; } else if (block_size == 32) { return dpct_dt::real_int8_32; } else { return dpct_dt::real_int8; } case dnnl_dt::u8: if (block_size == 4) { return dpct_dt::real_uint8_4; } else { return dpct_dt::real_uint8; } default: throw std::runtime_error("to_dpct_library_data_t: unsupported data type " "dnnl::memory::data_type::undef."); } } inline ::dnnl::memory::format_tag memory_desc_ext::to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag) { using dpct_dt = dpct::library_data_t; using dpct_tag = memory_format_tag; using dnnl_tag = ::dnnl::memory::format_tag; switch (tag) { case dpct_tag::nchw: return dnnl_tag::nchw; case dpct_tag::nhwc: return dnnl_tag::nhwc; default: if (dt == dpct_dt::real_int8_32) { return dnnl_tag::nChw32c; } else { return dnnl_tag::nChw4c; } } } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), {n_stride, c_stride, h_stride, w_stride}); } inline void memory_desc_ext::set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), {strides, strides + ndims}); } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c) { if (tag == rnn_memory_format_tag::tnc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::tnc); } else if(tag == rnn_memory_format_tag::ntc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::ntc); } else { throw std::runtime_error("set: unsupported memory format tag."); } } inline void memory_desc_ext::get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const { unsigned block_size = 1; auto dims = _desc.get_dims(); auto inner_blks = _desc.get_inner_blks(); auto strides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; *n_stride = strides[0] / block_size; *c_stride = strides[1] / block_size; *h_stride = strides[2] / block_size; *w_stride = strides[3] / block_size; } inline void memory_desc_ext::get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); auto inner_blks = _desc.get_inner_blks(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (strides[1] == 1 && dims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; } inline void memory_desc_ext::get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const { auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); if (strides[0] >= strides[1]) { *tag = rnn_memory_format_tag::tnc; } else { *tag = rnn_memory_format_tag::ntc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), 1); *t = dims[0]; *n = dims[1]; *c = dims[2]; } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const { unsigned block_size = 1; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; strides[index] = astrides[index] / block_size; } } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (astrides[1] == 1 && adims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; } } inline void engine_ext::get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num) { if (!desc.is_zero()) { auto dims = desc.get_dims(); auto strides = desc.get_strides(); if (strides[0] >= strides[1]) { *tag = ::dnnl::memory::format_tag::tnc; *seq_length = dims[0]; *batch_size = dims[1]; } else { *tag = ::dnnl::memory::format_tag::ntc; *seq_length = dims[1]; *batch_size = dims[0]; } } if (direction == rnn_direction::bidirectional) { *direction_num = 2; } else { *direction_num = 1; } if (mode == rnn_mode::lstm) { *gate_num = 4; } else if (mode == rnn_mode::gru) { *gate_num = 3; } else { *gate_num = 1; } if (*projection_size != hidden_size) { *output_size = *projection_size; } else { *projection_size = 0; *output_size = hidden_size; } *dnnl_dt = memory_desc_ext::to_dnnl_data_type(dt); } inline void *engine_ext::allocate(const memory_desc_ext &data_desc, int count) const { size_t mem_size = data_desc.get_size(); void *mem = sycl::malloc_device(mem_size * count, *_q); return mem; } inline void engine_ext::transform_no_zero(const memory_desc_ext &desc, void *src, void *dst) { ::dnnl::memory::data_type dt = desc.get_desc().get_data_type(); size_t element_num = desc.get_element_num(); switch (dt) { case ::dnnl::memory::data_type::f32: transform_no_zero_with_type<float>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::f16: transform_no_zero_with_type<sycl::half>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s32: transform_no_zero_with_type<int32_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s8: transform_no_zero_with_type<int8_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::u8: transform_no_zero_with_type<uint8_t>(_q, src, dst, element_num); break; default: throw std::runtime_error("transform_no_zero: unsupported data type."); } } inline ::dnnl::memory::desc engine_ext::get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc) { if (group_count == 1) { return weight_desc.get_desc(); } auto help_weight_desc = weight_desc.get_desc(); int ndims = help_weight_desc.get_ndims(); if (!help_weight_desc.get_inner_blks().empty()) { throw std::runtime_error("get_group_weight_desc: group convolution with " "blocked weight memory unimplemented."); } std::vector<int64_t> new_size; auto old_size = weight_desc.get_dims(); new_size.push_back(group_count); new_size.push_back(old_size[0] / group_count); for (int index = 1; index < old_size.size(); index++) { new_size.push_back(old_size[index]); } std::vector<int64_t> strides = help_weight_desc.get_strides(); ::dnnl::memory::format_tag tag; bool is_nhwc = (strides[1] == 1 && old_size[1] != 1); if (ndims == 4) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::gohwi; } else { tag = ::dnnl::memory::format_tag::goihw; } } else if (ndims == 5) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::godhwi; } else { tag = ::dnnl::memory::format_tag::goidhw; } } help_weight_desc = ::dnnl::memory::desc(new_size, weight_desc.get_desc().get_data_type(), tag); return help_weight_desc; } inline ::dnnl::memory::desc engine_ext::compress_spatial_dimensions_to_channel( const ::dnnl::memory::desc &desc) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); auto inner_blks = desc.get_inner_blks(); assert(ndims >= 4 && "ndims is at least 4."); std::vector<int64_t> compressed_dims(ndims); compressed_dims[0] = dims[0]; compressed_dims[1] = dims[1]; for (int index = 2; index < ndims; index++) { compressed_dims[1] = compressed_dims[1] * dims[index]; compressed_dims[index] = 1; } if (!inner_blks.empty() && inner_blks[0] == 4) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw4c); } else if (!inner_blks.empty() && inner_blks[0] == 32) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw32c); } std::vector<int64_t> strides(ndims, 1); strides[0] = compressed_dims[1]; return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), strides); } inline ::dnnl::memory::desc engine_ext::get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); assert(ndims >= 4 && "ndims is at least 4."); int channel_num = 1; if (mode == batch_normalization_mode::spatial) { channel_num = dims[1]; } else { for (int index = 1; index < ndims; index++) { channel_num = channel_num * dims[index]; } } return ::dnnl::memory::desc({channel_num}, desc.get_data_type(), ::dnnl::memory::format_tag::a); } inline ::dnnl::memory::desc engine_ext::transfer_memory_desc_to_channel_major_format( const ::dnnl::memory::desc &desc) { if (!desc.get_inner_blks().empty()) { return desc; } int ndims = desc.get_ndims(); auto dims = desc.get_dims(); if (ndims == 4) { return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::nchw); } return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::ncdhw); } /// If the alpha = 0 and beta = 1, then the destination (dst = alpha * out + /// beta * prior_dst) have no change. In this case this function returns true /// means the operation can exit directly. inline bool engine_ext::scale_parameter_preprocess( const std::vector<output_argument_info> &args) { bool direct_exit = true; for (auto &arg : args) { if (arg._alpha == 0.f) { if (arg._beta != 1.f) { async_scale(arg._beta, arg._desc, arg._data); } } else { direct_exit = false; } } return direct_exit; } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { derive_batch_normalization_memory_desc(scale_bias_desc, src_desc, mode); derive_batch_normalization_memory_desc(mean_var_desc, src_desc, mode); } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { int src_ndims = src_desc.get_desc().get_ndims(); auto inner_blks = src_desc.get_desc().get_inner_blks(); if (src_desc.get_desc().get_ndims() != 4 || src_desc.get_desc().get_ndims() != 5) { throw std::runtime_error("derive_batch_normalization_memory_desc: only 4d " "and 5d memory descriptor supported."); } std::vector<int64_t> dims = src_desc.get_dims(); dims[0] = 1; if (mode == batch_normalization_mode::spatial) { dims[2] = 1; dims[3] = 1; if (src_ndims == 5) { dims[4] = 1; } } auto data_type = src_desc.get_desc().get_data_type(); if (data_type == ::dnnl::memory::data_type::f16) { data_type = ::dnnl::memory::data_type::f32; } if (!inner_blks.empty() && inner_blks[0] == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw4c)); } else if (!inner_blks.empty() && inner_blks[0] == 32) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw32c)); } else { if (src_ndims == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nchw)); } else { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::ncdhw)); } } } template <typename primitive_type> sycl::event engine_ext::execute_primitive( const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &output_args, const std::vector<void *> &device_ptrs) { std::vector<void *> caches; int output_arg_num = output_args.size(); for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { auto cache = allocate(output_args[i]._desc); caches.push_back(cache); args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, cache)}); } else { args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, output_args[i]._data)}); } } auto e = ::dnnl::sycl_interop::execute( *(static_cast<primitive_type *>(primitive.second)), _s, *args); _primitive_cache.put( primitive.first, primitive.second, [](::dnnl::primitive *p) { delete static_cast<primitive_type *>(p); }, e); int cache_index = 0; for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { e = async_sum(output_args[i]._alpha, output_args[i]._desc, caches[cache_index++], output_args[i]._beta, output_args[i]._desc, output_args[i]._data); } else { if (output_args[i]._alpha != 1.f) { e = async_scale(output_args[i]._alpha, output_args[i]._desc, output_args[i]._data); } } } caches.insert(caches.end(), device_ptrs.begin(), device_ptrs.end()); async_free(_q, e, args, caches); return e; } inline ::dnnl::memory::desc engine_ext::bn_reorder_memory_to_channel_major_format( bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches) { ::dnnl::memory::desc result; result = transfer_memory_desc_to_channel_major_format(desc); if ((result != desc) || !src) { *cache = allocate(desc); if (is_input && src) { async_reorder(1.f, desc, src, 0.f, result, *cache); } caches.push_back(*cache); } return result; } inline sycl::event engine_ext::batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var) { if (scale_parameter_preprocess( {{alpha_data, beta_data, diff_src_desc, diff_src}, {alpha_param, beta_param, diff_scale_bias_desc, diff_scale}, {alpha_param, beta_param, diff_scale_bias_desc, diff_bias}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_diff_dst = nullptr, *reordered_diff_src = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_diff_scale = nullptr, *reordered_diff_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_diff_scale_bias_desc = diff_scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_diff_src_desc = help_diff_src_desc; ::dnnl::memory::desc actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; help_diff_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_scale_bias_desc, scale, &reordered_scale, caches); actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (bias) { bn_reorder_memory_to_channel_major_format(true, help_diff_scale_bias_desc, bias, &reordered_bias, caches); } bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_scale, &reordered_diff_scale, caches); bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_bias, &reordered_diff_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( true, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); bn_reorder_memory_to_channel_major_format(true, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } else { if ((help_src_desc != help_diff_dst_desc) || (help_src_desc != help_diff_src_desc) || (help_diff_dst_desc != help_diff_src_desc)) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; } } help_diff_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_diff_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); auto forward_primitive = create_primitive_desc<::dnnl::batch_normalization_forward>( ::dnnl::prop_kind::forward_training, help_src_desc, help_diff_dst_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift); auto primitive = create_primitive<::dnnl::batch_normalization_backward>( ::dnnl::prop_kind::backward, help_diff_src_desc, help_diff_dst_desc, help_src_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift, forward_primitive); void *dst_cache = nullptr; if (!saved_mean && !saved_var) { dst_cache = allocate(diff_dst_desc); if (!reordered_saved_mean) { reordered_saved_mean = allocate(mean_var_desc); caches.push_back(reordered_saved_mean); } if (!reordered_saved_var) { reordered_saved_var = allocate(mean_var_desc); caches.push_back(reordered_saved_var); } if (!bias) { _q->fill(reordered_bias, 0, diff_scale_bias_desc.get_size()); } batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, diff_dst_desc, dst_cache, diff_scale_bias_desc, scale, bias ? bias : reordered_bias, mean_var_desc, reordered_saved_mean, reordered_saved_var, nullptr, nullptr); caches.push_back(dst_cache); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_diff_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_src_desc, _eng, reordered_diff_dst ? reordered_diff_dst : diff_dst)}}}; sycl::event e = execute_primitive( primitive, execution_args, {{alpha_data, beta_data, DNNL_ARG_DIFF_SRC, help_diff_src_desc, reordered_diff_src ? reordered_diff_src : diff_src}, {alpha_param, beta_param, DNNL_ARG_DIFF_SCALE, help_diff_scale_bias_desc, reordered_diff_scale ? reordered_diff_scale : diff_scale}, {alpha_param, beta_param, DNNL_ARG_DIFF_SHIFT, help_diff_scale_bias_desc, reordered_diff_bias ? reordered_diff_bias : diff_bias}}); if (actual_diff_src_desc != diff_src_desc.get_desc() && reordered_diff_src) { e = async_reorder(1.f, actual_diff_src_desc, reordered_diff_src, 0.f, diff_src_desc, diff_src); } if (actual_diff_scale_bias_desc != diff_scale_bias_desc.get_desc() && reordered_diff_scale && reordered_diff_bias) { async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_scale, 0.f, diff_scale_bias_desc, diff_scale); e = async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_bias, 0.f, diff_scale_bias_desc, diff_bias); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_dst = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_scale_bias_desc = scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_dst_desc = help_dst_desc; ::dnnl::memory::desc actual_mean_var_desc = help_mean_var_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; help_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_scale_bias_desc, scale, &reordered_scale, caches); bn_reorder_memory_to_channel_major_format(true, help_scale_bias_desc, bias, &reordered_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( is_infer, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); actual_mean_var_desc = help_mean_var_desc; bn_reorder_memory_to_channel_major_format(is_infer, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } else { if (help_src_desc != help_dst_desc) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; } } help_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); ::dnnl::prop_kind kind; ::dnnl::normalization_flags flag = ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift; if (is_infer) { kind = ::dnnl::prop_kind::forward_inference; flag = ::dnnl::normalization_flags::use_global_stats | flag; } else { kind = ::dnnl::prop_kind::forward_training; } auto primitive = create_primitive<::dnnl::batch_normalization_forward>( kind, help_src_desc, help_dst_desc, epsilon, flag); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_SHIFT, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_bias ? reordered_bias : bias)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}}; sycl::event e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, help_dst_desc, reordered_dst ? reordered_dst : dst}}); if (!is_infer && running_var) { auto src_ndim = src_desc.get_desc().get_ndims(); auto src_dims = src_desc.get_dims(); int element_num = src_dims[0]; if (mode == batch_normalization_mode::spatial) { for (int index = 2; index < src_ndim; index++) { element_num *= src_dims[index]; } } float unbias_factor = element_num / (element_num - 1.f); async_scale(1.f - factor, mean_var_desc, running_var); e = async_sum(factor * unbias_factor, mean_var_desc, reordered_saved_var ? reordered_saved_var : saved_var, 1.f, mean_var_desc, running_var); } if (!is_infer && running_mean) { e = async_sum(factor, mean_var_desc, reordered_saved_mean ? reordered_saved_mean : saved_mean, (1.f - factor), mean_var_desc, running_mean); } if (reordered_dst && (actual_dst_desc != dst_desc.get_desc())) { e = async_reorder(1.f, actual_dst_desc, reordered_dst, 0.f, dst_desc, dst); } if (!is_infer && reordered_saved_mean && reordered_saved_var && saved_mean && saved_var && (actual_mean_var_desc != mean_var_desc.get_desc())) { e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_mean, 0.f, mean_var_desc, saved_mean); e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_var, 0.f, mean_var_desc, saved_var); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; std::vector<void *> data = {src, dst, src_iter, dst_iter, src_iter_c, dst_iter_c, weight, workspace, scratchpad}; std::vector<int> offset(6, 0); void *input_layer_cache = nullptr, *hidden_layer_cache = nullptr; sycl::event e; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { // Here to combine the oneDNN bidirectional_sum and // bidirectional_concat config, so call execute_rnn_forward_primitive // twice. if (layer_size > 1) { if (!is_get_execution_args) { input_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); _q->memcpy(input_layer_cache, src, src_desc.get_size()); } data[0] = input_layer_cache; data[1] = hidden_layer_cache; e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1, weight_size_query, workspace_size_query, scratchpad_size_query); data[0] = ((layer_size - 1) % 2 == 0) ? input_layer_cache : hidden_layer_cache; data[1] = dst; } e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } else { e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } if (is_get_execution_args) { return e; } if (input_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(input_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline sycl::event engine_ext::execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size, size_t *workspace_size, size_t *scratchpad_size) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; std::unordered_map<int, ::dnnl::memory> *execution_args; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); } if (weight_size) { *weight_size += (weight_layer_desc.get_size() + weight_iter_desc.get_size() + projection_desc.get_size() + bias_desc.get_size()) * iter_num; return e; } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto pd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( kind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::gru) { auto pd = create_primitive_desc<::dnnl::gru_forward>( kind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::gru_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::lstm) { auto pd = create_primitive_desc<::dnnl::lstm_forward>( kind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::lstm_forward>(pd); key = r.first; p = r.second; } } for (int i = 0; i < iter_num; i++) { void *in_cache = data[0], *out_cache = data[1], *dst_iter_c_cache = nullptr, *dst_iter_cache = ((uint8_t *)(data[3]) + offset[1]); if (mode == rnn_mode::lstm) { dst_iter_c_cache = (uint8_t *)(data[4]) + offset[2]; } if (!workspace_size) { execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[0])}}, {DNNL_ARG_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[1])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[8])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data + offset)}}); offset += d.get_size(); }; insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[0]); insert_args(DNNL_ARG_DST_ITER, iter_desc, data[3], offset[1]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[5], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_LAYER, weight_layer_desc, data[6], offset[4]); insert_args(DNNL_ARG_WEIGHTS_ITER, weight_iter_desc, data[6], offset[4]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, projection_desc, data[6], offset[4]); } if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[6]) + offset[4], 0, bias_desc.get_size()); } insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[4]); if (kind == ::dnnl::prop_kind::forward_training) { insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[5]); } if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { execute_primitive<::dnnl::vanilla_rnn_forward>( {key, static_cast<::dnnl::vanilla_rnn_forward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { execute_primitive<::dnnl::gru_forward>( {key, static_cast<::dnnl::gru_forward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { execute_primitive<::dnnl::lstm_forward>( {key, static_cast<::dnnl::lstm_forward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[0], data[1]); } } if (kind == ::dnnl::prop_kind::forward_training) { if (workspace_size) { *workspace_size += (src_desc.get_size() + dst_desc.get_size() + iter_desc.get_size()); if (mode == rnn_mode::lstm) { *workspace_size += iter_c_desc.get_size(); } } else { _q->memcpy((uint8_t *)(data[7]) + offset[5], in_cache, src_desc.get_size()); offset[5] += src_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], out_cache, dst_desc.get_size()); offset[5] += dst_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_cache, iter_desc.get_size()); offset[5] += iter_desc.get_size(); if (mode == rnn_mode::lstm) { _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_c_cache, iter_c_desc.get_size()); offset[5] += iter_c_desc.get_size(); } } } } return e; } inline sycl::event engine_ext::execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; ::dnnl::prop_kind fkind = ::dnnl::prop_kind::forward_training; ::dnnl::prop_kind bkind = ::dnnl::prop_kind::backward; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc diff_weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc diff_weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc projection_desc, diff_projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); diff_projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldoi); } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto fpd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( fkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::vanilla_rnn_backward>( bkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::gru) { auto fpd = create_primitive_desc<::dnnl::gru_forward>( fkind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::gru_backward>( bkind, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::gru_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::lstm) { auto fpd = create_primitive_desc<::dnnl::lstm_forward>( fkind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); auto pd = create_primitive_desc<::dnnl::lstm_backward>( bkind, direction, src_desc, iter_desc, iter_c_desc, diff_weight_layer_desc, diff_weight_iter_desc, ::dnnl::memory::desc(), diff_projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::lstm_backward>(pd); key = r.first; p = r.second; } for (int i = 0; i < iter_num; i++) { auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[8])}}, {DNNL_ARG_DIFF_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[9])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[15])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { offset += d.get_size(); execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data - offset)}}); }; if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); } insert_args(DNNL_ARG_DST_ITER, iter_desc, data[7], offset[0]); insert_args(DNNL_ARG_DST_LAYER, dst_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_LAYER, src_desc, data[7], offset[0]); insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[1]); insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[3]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, diff_projection_desc, data[6], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_ITER, diff_weight_iter_desc, data[6], offset[3]); insert_args(DNNL_ARG_WEIGHTS_LAYER, diff_weight_layer_desc, data[6], offset[3]); insert_args(DNNL_ARG_DIFF_SRC_ITER, iter_desc, data[10], offset[4]); insert_args(DNNL_ARG_DIFF_DST_ITER, iter_desc, data[11], offset[5]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DIFF_SRC_ITER_C, iter_c_desc, data[12], offset[6]); insert_args(DNNL_ARG_DIFF_DST_ITER_C, iter_c_desc, data[13], offset[7]); } insert_args(DNNL_ARG_DIFF_BIAS, bias_desc, data[14], offset[8]); if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[14]) - offset[8], 0, bias_desc.get_size()); } if (projection_size) { insert_args(DNNL_ARG_DIFF_WEIGHTS_PROJECTION, projection_desc, data[14], offset[8]); } insert_args(DNNL_ARG_DIFF_WEIGHTS_ITER, weight_iter_desc, data[14], offset[8]); insert_args(DNNL_ARG_DIFF_WEIGHTS_LAYER, weight_layer_desc, data[14], offset[8]); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { e = execute_primitive<::dnnl::vanilla_rnn_backward>( {key, static_cast<::dnnl::vanilla_rnn_backward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { e = execute_primitive<::dnnl::gru_backward>( {key, static_cast<::dnnl::gru_backward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { e = execute_primitive<::dnnl::lstm_backward>( {key, static_cast<::dnnl::lstm_backward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[8], data[9]); } } return e; } #define GENERATE_RNN_PRIMITIVE_KEY(name) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_cell_kind() << (std::uint8_t)pd.get_direction() \ << (std::uint8_t)pd.get_algorithm(); \ serialize_mem_desc(ss, pd.src_layer_desc()); \ serialize_mem_desc(ss, pd.src_iter_desc()); \ serialize_mem_desc(ss, pd.dst_layer_desc()); \ serialize_mem_desc(ss, pd.dst_iter_desc()); \ serialize_mem_desc(ss, pd.diff_src_layer_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_desc()); \ serialize_mem_desc(ss, pd.diff_dst_layer_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_desc()); \ serialize_mem_desc(ss, pd.src_iter_c_desc()); \ serialize_mem_desc(ss, pd.dst_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_c_desc()); \ return ss.str(); \ } #define GENERATE_CONVOLUTION_PRIMITIVE_KEY(name, query_type) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_algorithm() \ << (std::uint8_t)pd.get_primitive_attr().get_fpmath_mode() \ << (std::uint8_t)pd.get_group_size(); \ serialize_dims(ss, pd.get_strides()); \ serialize_dims(ss, pd.get_dilations()); \ serialize_dims(ss, pd.get_padding_l()); \ serialize_mem_desc(ss, pd.src_desc()); \ serialize_mem_desc(ss, pd.diff_src_desc()); \ serialize_mem_desc(ss, pd.dst_desc()); \ serialize_mem_desc(ss, pd.diff_dst_desc()); \ serialize_mem_desc(ss, pd.query_type()); \ serialize_mem_desc(ss, pd.weights_desc()); \ serialize_mem_desc(ss, pd.diff_weights_desc()); \ return ss.str(); \ } GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_forward) GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_backward) GENERATE_RNN_PRIMITIVE_KEY(lstm_forward) GENERATE_RNN_PRIMITIVE_KEY(lstm_backward) GENERATE_RNN_PRIMITIVE_KEY(gru_forward) GENERATE_RNN_PRIMITIVE_KEY(gru_backward) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_forward, bias_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_data, scratchpad_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_weights, diff_bias_desc) template <typename primitive_desc_type> std::string engine_ext::generate_cache_key(const primitive_desc_type &pd) { std::stringstream ss; auto kind = pd.get_kind(); ss << (std::uint8_t)kind << (std::uint8_t)pd.get_prop_kind() << (std::uint8_t)pd.get_algorithm(); serialize_mem_desc(ss, pd.src_desc()); serialize_mem_desc(ss, pd.diff_src_desc()); serialize_mem_desc(ss, pd.dst_desc()); serialize_mem_desc(ss, pd.diff_dst_desc()); switch (kind) { case ::dnnl::primitive::kind::batch_normalization: ss << pd.get_epsilon() << (std::uint8_t)pd.get_flags(); case ::dnnl::primitive::kind::reduction: ss << pd.get_p(); break; case ::dnnl::primitive::kind::eltwise: ss << pd.get_alpha() << pd.get_beta(); case ::dnnl::primitive::kind::lrn: ss << pd.get_k(); break; case ::dnnl::primitive::kind::pooling: serialize_dims(ss, pd.get_strides()); serialize_dims(ss, pd.get_dilations()); serialize_dims(ss, pd.get_padding_l()); serialize_dims(ss, pd.get_kernel()); break; case ::dnnl::primitive::kind::softmax: ss << pd.get_axis(); break; default: break; } return ss.str(); } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive(args_type &&...args) { auto pd = create_primitive_desc<primitive_type>(std::forward<args_type>(args)...); return create_primitive_with_pd<primitive_type>(pd); } template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive_with_pd( const typename primitive_type::primitive_desc &pd) { detail::primitive_cache_key_type key = generate_cache_key(pd); primitive_type *p = (primitive_type *)_primitive_cache.get(key); if (!p) { p = new primitive_type(pd); } return {key, p}; } template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc engine_ext::create_primitive_desc(args_type &&...args) { return typename primitive_type::primitive_desc( _eng, std::forward<args_type>(args)...); } inline void engine_ext::fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { async_fill(src_desc, src, valuePtr).wait(); } inline void engine_ext::reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_reorder(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::scale(float alpha, const memory_desc_ext &src_desc, void *src) { async_scale(alpha, src_desc, src).wait(); } inline void engine_ext::sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_sum(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_activation_forward(desc, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_activation_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_pooling_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace).wait(); } inline void engine_ext::pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_pooling_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline void engine_ext::softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_softmax_forward(alg, mode, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_softmax_backward(alg, mode, alpha, dst_desc, dst, diff_dst_desc, diff_dst, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_lrn_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace) .wait(); } inline void engine_ext::lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_lrn_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline sycl::event engine_ext::async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { ::dnnl::memory::data_type dt = src_desc.get_desc().get_data_type(); unsigned mem_size = src_desc.get_size(); switch (dt) { case ::dnnl::memory::data_type::f32: return fill_with_type<float>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::f16: return fill_with_type<sycl::half>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s32: return fill_with_type<int32_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s8: return fill_with_type<int8_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::u8: return fill_with_type<uint8_t>(_q, src, valuePtr, mem_size); default: throw std::runtime_error("async_fill: unsupported data type."); } } inline sycl::event engine_ext::async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto pd = ::dnnl::reorder::primitive_desc(_eng, src_desc.get_desc(), _eng, dst_desc.get_desc()); auto primitive = create_primitive_with_pd<::dnnl::reorder>(pd); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_scale(float alpha, const memory_desc_ext &src_desc, void *src) { if (alpha == 1.f) { return sycl::event(); } void *src_cache = allocate(src_desc); _q->memcpy(src_cache, src, src_desc.get_size()); auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, ::dnnl::algorithm::eltwise_linear, src_desc.get_desc(), src_desc.get_desc(), alpha, 0.f); auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src_cache)}}; return execute_primitive(primitive, args, {}, {src_cache}); } inline sycl::event engine_ext::async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } void *dst_cache = allocate(dst_desc); _q->memcpy(dst_cache, dst, dst_desc.get_size()); auto pd = create_primitive_desc<::dnnl::sum>( std::vector<float>{alpha, beta}, std::vector<::dnnl::memory::desc>{src_desc.get_desc(), dst_desc.get_desc()}); std::stringstream ss; ss << (std::uint8_t)pd.get_kind() << alpha << beta; serialize_mem_desc(ss, pd.src_desc(0)); serialize_mem_desc(ss, pd.src_desc(1)); detail::primitive_cache_key_type key = ss.str(); ::dnnl::sum *p = (::dnnl::sum *)_primitive_cache.get(key); if (!p) { p = new ::dnnl::sum(pd); } auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}, {DNNL_ARG_MULTIPLE_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_MULTIPLE_SRC + 1, ::dnnl::memory(dst_desc.get_desc(), _eng, dst_cache)}}; return execute_primitive<::dnnl::sum>({key, p}, args, {}, {dst_cache}); } inline sycl::event engine_ext::async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst) { ::dnnl::algorithm onednn_algorithm; switch (op) { case binary_op::max: onednn_algorithm = ::dnnl::algorithm::binary_max; break; case binary_op::min: onednn_algorithm = ::dnnl::algorithm::binary_min; break; case binary_op::add: onednn_algorithm = ::dnnl::algorithm::binary_add; break; case binary_op::sub: onednn_algorithm = ::dnnl::algorithm::binary_sub; break; case binary_op::mul: onednn_algorithm = ::dnnl::algorithm::binary_mul; break; case binary_op::div: onednn_algorithm = ::dnnl::algorithm::binary_div; break; case binary_op::sqrt: onednn_algorithm = ::dnnl::algorithm::eltwise_sqrt; break; case binary_op::neg: onednn_algorithm = ::dnnl::algorithm::eltwise_linear; break; } if (onednn_algorithm == ::dnnl::algorithm::eltwise_sqrt || onednn_algorithm == ::dnnl::algorithm::eltwise_linear) { void *src_cache = nullptr, *dst_cache = nullptr; src_cache = allocate(src_desc_0); dst_cache = allocate(dst_desc); _q->memcpy(src_cache, src_0, src_desc_0.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_cache); async_scale(beta, dst_desc, dst_cache); // Let the output = 1 - input to simulate the behavior of neg. auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, onednn_algorithm, src_desc_0.get_desc(), dst_desc.get_desc(), -1.f, 1.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc_0.get_desc(), _eng, src_cache)}}}; execute_primitive( primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); auto e = async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(src_cache, *_q); sycl::free(dst_cache, *_q); }); }); return e; } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{}; void *src_0_cache = nullptr, *src_1_cache = nullptr, *dst_cache = nullptr; src_0_cache = allocate(src_desc_0); src_1_cache = allocate(src_desc_1); dst_cache = allocate(dst_desc); _q->memcpy(src_0_cache, src_0, src_desc_0.get_size()); _q->memcpy(src_1_cache, src_1, src_desc_1.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_0_cache); async_scale(alpha_1, src_desc_1, src_1_cache); async_scale(beta, dst_desc, dst_cache); execution_args->insert({DNNL_ARG_SRC_0, ::dnnl::memory(src_desc_0.get_desc(), _eng, src_0_cache)}); execution_args->insert({DNNL_ARG_SRC_1, ::dnnl::memory(src_desc_1.get_desc(), _eng, src_1_cache)}); auto primitive = create_primitive<::dnnl::binary>( onednn_algorithm, src_desc_0.get_desc(), src_desc_1.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(dst_cache, *_q); sycl::free(src_0_cache, *_q); sycl::free(src_1_cache, *_q); }); }); return e; } inline sycl::event engine_ext::async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } float p = 2.f; ::dnnl::algorithm onednn_algorithm; void *cache = nullptr; switch (op) { case reduction_op::amax: cache = allocate(src_desc); activation_desc adesc; adesc.set_algorithm(::dnnl::algorithm::eltwise_abs); async_activation_forward(adesc, 1.f, src_desc, src, 0.f, src_desc, cache); onednn_algorithm = ::dnnl::algorithm::reduction_max; src = cache; break; case reduction_op::max: onednn_algorithm = ::dnnl::algorithm::reduction_max; break; case reduction_op::min: onednn_algorithm = ::dnnl::algorithm::reduction_min; break; case reduction_op::sum: onednn_algorithm = ::dnnl::algorithm::reduction_sum; break; case reduction_op::mean: onednn_algorithm = ::dnnl::algorithm::reduction_mean; break; case reduction_op::mul: onednn_algorithm = ::dnnl::algorithm::reduction_mul; break; case reduction_op::mul_no_zeros: cache = allocate(src_desc); transform_no_zero(src_desc, src, cache); onednn_algorithm = ::dnnl::algorithm::reduction_mul; src = cache; break; case reduction_op::norm1: p = 1.f; onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_power_p_sum; break; case reduction_op::norm2: onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_sum; break; } auto primitive = create_primitive<::dnnl::reduction>( onednn_algorithm, src_desc.get_desc(), dst_desc.get_desc(), p, 0.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}}; if (cache) { return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc data_desc = dst_desc.get_desc(); auto alg = desc.get_algorithm(); if ((alg == ::dnnl::algorithm::eltwise_clip) || (alg == ::dnnl::algorithm::eltwise_linear) || (alg == ::dnnl::algorithm::eltwise_swish)) { data_desc = src_desc.get_desc(); } auto primitive = create_primitive<::dnnl::eltwise_backward>( alg, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), data_desc, desc.get_alpha(), desc.get_beta(), create_primitive_desc<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, alg, src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive_desc = create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::pooling_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive = create_primitive<::dnnl::pooling_backward>( desc.get_algorithm(), diff_src_desc.get_desc(), diff_dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding(), create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, src)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_src_desc, help_dst_desc, 1); return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, memory_desc_ext(help_dst_desc), dst}}); } inline sycl::event engine_ext::async_softmax_backward( softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(help_dst_desc, _eng, dst)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_dst_desc, _eng, diff_dst)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_backward>( softmax_alg, help_diff_src_desc, help_diff_dst_desc, help_dst_desc, 1, create_primitive_desc<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_diff_src_desc, help_dst_desc, 1)); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, memory_desc_ext(help_diff_src_desc), diff_src}}); } inline sycl::event engine_ext::async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive_desc = create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::lrn_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::lrn_backward>( ::dnnl::algorithm::lrn_across_channels, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), src_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k(), create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline size_t engine_ext::get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc) { if(ops == batch_normalization_ops::none) { return 0; } return src_desc.get_size(); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var) { return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; std::vector<void *> caches; if (has_post_op) { void *dst_cache = allocate(dst_desc); caches.push_back(dst_cache); batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, dst_desc, dst_cache, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, dst_cache); } async_activation_forward(adesc, 1.f, dst_desc, dst_cache, 0.f, dst_desc, dst_cache); e = async_sum(alpha, dst_desc, dst_cache, beta, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var) { return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; if (has_post_op) { if(workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_forward_training_ex: " "no sufficient workspace."); } batch_normalization_forward_internal( false, mode, epsilon, factor, 1.f, src_desc, src, 0.f, dst_desc, workspace, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, workspace); } return async_activation_forward(adesc, alpha, dst_desc, workspace, beta, dst_desc, dst); } return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_forward_training( mode, ops, adesc, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, summand_desc, summand, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, running_mean, running_var, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var) { return batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_mean_var_desc, scale, nullptr, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { std::vector<void *> caches; ::dnnl::memory::desc real_diff_dst_desc = diff_dst_desc.get_desc(); void *real_diff_dst = diff_dst; if (ops != batch_normalization_ops::none && workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_backward_ex: " "no sufficient workspace."); } if (ops == batch_normalization_ops::add_activation) { void *diff_summand_cache = allocate(diff_summand_desc); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_summand_desc, diff_summand_cache); caches.push_back(diff_summand_cache); async_sum(alpha_data, diff_summand_desc, diff_summand_cache, beta_data, diff_summand_desc, diff_summand); real_diff_dst_desc = diff_summand_desc.get_desc(); real_diff_dst = diff_summand_cache; } else if (ops == batch_normalization_ops::activation) { void *diff_dst_cache = allocate(diff_dst_desc); caches.push_back(diff_dst_cache); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_dst_desc, diff_dst_cache); real_diff_dst = diff_dst_cache; } sycl::event e = batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, real_diff_dst_desc, real_diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_desc, scale, bias, beta_param, diff_scale, diff_bias, mean_var_desc, saved_mean, saved_var); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_backward( mode, ops, adesc, epsilon, alpha_data, src_desc, src, dst_desc, dst, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, diff_summand_desc, diff_summand, alpha_param, diff_scale_bias_mean_var_desc, scale, bias, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto origin_src_md = src_desc.get_desc(); auto origin_dst_md = dst_desc.get_desc(); auto origin_weight_md = help_weight_desc; auto src_md = transfer_memory_desc_to_format_tag_any(origin_src_md); auto dst_md = transfer_memory_desc_to_format_tag_any(origin_dst_md); auto weight_md = transfer_memory_desc_to_format_tag_any(origin_weight_md); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_md, weight_md, dst_md, desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); ::dnnl::convolution_forward::primitive_desc pd = ::dnnl::convolution_forward::primitive_desc( const_cast<dnnl_primitive_desc_t>( primitive.second->get_primitive_desc())); auto optimal_src_md = pd.src_desc(); auto optimal_dst_md = pd.dst_desc(); auto optimal_weight_md = pd.weights_desc(); void *optimal_src = src, *optimal_dst = dst, *optimal_weight = weight; std::vector<void *> input_caches, output_caches; allocate_and_reorder_memory_to_optimal(origin_src_md, src, optimal_src_md, optimal_src, input_caches); allocate_and_reorder_memory_to_optimal(origin_dst_md, dst, optimal_dst_md, optimal_dst, output_caches); allocate_and_reorder_memory_to_optimal(origin_weight_md, weight, optimal_weight_md, optimal_weight, input_caches); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(optimal_src_md, _eng, optimal_src)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(optimal_weight_md, _eng, optimal_weight)}}}; auto e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, optimal_dst_md, optimal_dst}}, input_caches); if(origin_dst_md != optimal_dst_md){ e = async_reorder(1.f, optimal_dst_md, optimal_dst, 0.f, origin_dst_md, dst); } async_free(_q, e, nullptr, output_caches); return e; } inline sycl::event engine_ext::async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst) { int channel_num = bias_desc.get_element_num(); auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::memory::desc help_bias_desc = {{channel_num}, bias_desc.get_desc().get_data_type(), ::dnnl::memory::format_tag::a}; ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_desc.get_desc(), help_weight_desc, help_bias_desc, dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_BIAS, {::dnnl::memory(help_bias_desc, _eng, bias)}}}; void *cache = nullptr; if (alpha_0 != 1.f) { cache = allocate(help_weight_desc); _q->memcpy(cache, weight, weight_desc.get_size()); async_scale(alpha_0, help_weight_desc, cache); execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, cache)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } else { execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); } async_sum(alpha_1, summand_desc, summand, 1.f, dst_desc, dst); return async_activation_forward(adesc, 1.f, dst_desc, dst, 0.f, dst_desc, dst); } inline sycl::event engine_ext::async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_dst_desc, diff_dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_data>( ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight) { if (scale_parameter_preprocess( {{alpha, beta, diff_weight_desc, diff_weight}})) { return sycl::event(); } auto help_diff_weight_desc = get_group_weight_desc(desc.get_group_count(), diff_weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_weights>( ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_WEIGHTS, help_diff_weight_desc, diff_weight}}); } inline sycl::event engine_ext::async_convolution_backward_bias( float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias) { return async_reduction(reduction_op::sum, alpha, diff_dst_desc, diff_dst, beta, diff_bias_desc, diff_bias); } inline void engine_ext::rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size) { *weight_space_size = 0; rnn_forward_internal(desc, ::dnnl::prop_kind::forward_inference, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, weight_space_size, nullptr, nullptr); return; } inline void engine_ext::rnn_get_scratchpad_workspace_size( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size) { *workspace_size = 0; *scratchpad_size = 0; rnn_forward_internal(desc, kind, src_desc, nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, nullptr, workspace_size, scratchpad_size); return; } inline sycl::event engine_ext::async_rnn_forward( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { return rnn_forward_internal( desc, kind, src_desc, src, dst_desc, dst, iter_desc, src_iter, dst_iter, iter_c_desc, src_iter_c, dst_iter_c, weight_size, weight, workspace_size, workspace, scratchpad_size, scratchpad, false, nullptr, nullptr, nullptr); } inline sycl::event engine_ext::async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_memory_format_tag format_tag; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; void *last_layer_cache = nullptr; void *hidden_layer_cache = nullptr; sycl::event e; std::vector<int> offset(9, 0); std::vector<void *> data = { src, dst, (uint8_t *)src_iter + iter_desc.get_size(), nullptr, (uint8_t *)src_iter_c + iter_c_desc.get_size(), nullptr, (uint8_t *)weight + weight_size, (uint8_t *)workspace + workspace_size, diff_src, diff_dst, (uint8_t *)diff_src_iter + iter_desc.get_size(), (uint8_t *)diff_dst_iter + iter_desc.get_size(), (uint8_t *)diff_src_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_dst_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_weight + weight_size, scratchpad}; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { if (layer_size > 1) { last_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); data[8] = last_layer_cache; } e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); if (layer_size > 1) { data[8] = hidden_layer_cache; data[9] = last_layer_cache; e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1); _q->memcpy(diff_src, ((layer_size - 1) % 2 == 0) ? last_layer_cache : hidden_layer_cache, src_desc.get_size()); } } else { e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); } if (last_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(last_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline size_t engine_ext::get_dropout_state_size(){ #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::queue q; if(_random_engine_state_size == -1) { if(_q){ q = *_q; } else { q = dpct::get_current_device().default_queue(); } auto rand_engine = rng_engine_t(q, 0); _random_engine_state_size = oneapi::mkl::rng::get_state_size(rand_engine); } return _random_engine_state_size; #endif } inline size_t engine_ext::get_dropout_workspace_size(const memory_desc_ext &src_desc) { return src_desc.get_size(); } inline sycl::event engine_ext::async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size) { if (workspace_size < src_desc.get_size()) { throw std::runtime_error("async_dropout_forward: no sufficient workspace."); } float p = desc.get_probability(); if (p == 1.f) { return _q->memset(dst, 0, dst_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, src_desc, src, 0.f, dst_desc, dst); } float scale_factor = 1.f / (1.f - p); void *cache = workspace; memory_desc_ext rng_data_desc( ::dnnl::memory::desc(src_desc.get_dims(), ::dnnl::memory::data_type::s32, src_desc.get_strides())); if (src_desc.get_desc().get_data_type() != ::dnnl::memory::data_type::s32) { cache = allocate(rng_data_desc); } desc.generate(_q, _random_engine_state_size, rng_data_desc.get_element_num(), (std::int32_t *)cache); if (cache == workspace) { async_scale(scale_factor, src_desc, workspace); } else { async_reorder(scale_factor, rng_data_desc, cache, 0.f, src_desc, workspace); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC_1, ::dnnl::memory(src_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, src_desc.get_desc(), src_desc.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args); if (cache != workspace) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(cache, *_q); }); }); } return e; } inline sycl::event engine_ext::async_dropout_backward( dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size) { float p = desc.get_probability(); if (p == 1.f) { return _q->memset(diff_src, 0, diff_src_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, diff_dst_desc, diff_dst, 0.f, diff_src_desc, diff_src); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}, {DNNL_ARG_SRC_1, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(diff_src_desc.get_desc(), _eng, diff_src)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, diff_dst_desc.get_desc(), diff_dst_desc.get_desc(), diff_src_desc.get_desc()); return execute_primitive(primitive, execution_args); } } // namespace dnnl } // namespace dpct #endif // __DPCT_DNNL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/lapack_utils.hpp
//==---- lapack_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LAPACK_UTILS_HPP__ #define __DPCT_LAPACK_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace lapack { /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The symmetric matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The symmetric matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T> inline int sygvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, T *w, T *scratchpad, int scratchpad_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<T>(a); auto b_buffer = get_buffer<T>(b); auto w_buffer = get_buffer<T>(w); auto scratchpad_buffer = get_buffer<T>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class sygvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a, lda, b, ldb, w, scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes all the eigenvalues, and optionally, the eigenvectors of a complex /// generalized Hermitian positive-definite eigenproblem using a divide and /// conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The Hermitian matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The Hermitian matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [in] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename Tw> inline int hegvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, Tw *w, T *scratchpad, int scratchpad_size, int *info) { using Ty = typename DataType<T>::T2; #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<Ty>(a); auto b_buffer = get_buffer<Ty>(b); auto w_buffer = get_buffer<Tw>(w); auto scratchpad_buffer = get_buffer<Ty>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class hegvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, (Ty *)a, lda, (Ty *)b, ldb, w, (Ty *)scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes the Cholesky factorizations of a batch of symmetric (or Hermitian, /// for complex data) positive-definite matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrf_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, T *a[], int lda, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t lda_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->lda_info = lda; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrf_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->lda_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrf_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), (Ty **)a, &(matrix_info->lda_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrf_batch_scratchpad_size/potrf_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } /// Solves a batch of systems of linear equations with a Cholesky-factored /// symmetric (Hermitian) positive-definite coefficient matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] nrhs The number of right-hand sides. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b Array of pointers to matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrs_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, int nrhs, T *a[], int lda, T *b[], int ldb, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t nrhs_info; std::int64_t lda_info; std::int64_t ldb_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->nrhs_info = nrhs; matrix_info->lda_info = lda; matrix_info->ldb_info = ldb; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrs_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), &(matrix_info->lda_info), &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrs_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), (Ty **)a, &(matrix_info->lda_info), (Ty **)b, &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrs_batch_scratchpad_size/potrs_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } namespace detail { template <template <typename> typename functor_t, typename... args_t> inline int lapack_shim(sycl::queue &q, library_data_t a_type, int *info, std::string const &lapack_api_name, args_t &&...args) { auto handle_lapack_exception = [&](const oneapi::mkl::lapack::exception &e) { std::cerr << "Unexpected exception caught during call to LAPACK API: " << lapack_api_name << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl << "detail: " << e.detail() << std::endl; if (e.info() < std::numeric_limits<int>::min() || e.info() > std::numeric_limits<int>::max()) { throw std::runtime_error("e.info() exceeds the limit of int type"); } int info_val = static_cast<int>(e.info()); if (info) dpct::detail::dpct_memcpy(q, info, &info_val, sizeof(int), memcpy_direction::host_to_device) .wait(); return 1; }; try { switch (a_type) { case library_data_t::real_float: { functor_t<float>()(std::forward<args_t>(args)...); break; } case library_data_t::real_double: { functor_t<double>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_float: { functor_t<std::complex<float>>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_double: { functor_t<std::complex<double>>()(std::forward<args_t>(args)...); break; } default: throw std::runtime_error("the data type is unsupported"); } } catch (oneapi::mkl::lapack::batch_error const &be) { try { std::rethrow_exception(be.exceptions()[0]); } catch (oneapi::mkl::lapack::exception &e) { return handle_lapack_exception(e); } } catch (oneapi::mkl::lapack::exception const &e) { return handle_lapack_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; if (info) dpct::detail::dpct_memset(q, info, 0, sizeof(int)).wait(); return 1; } return 0; } template <typename T> class working_memory { public: working_memory(std::size_t element_number, const sycl::queue &q) : _q(q) { _ptr = dpct::detail::dpct_malloc(element_number * sizeof(T), _q); } auto get_memory() { return dpct::detail::get_memory(reinterpret_cast<T *>(_ptr)); } auto get_ptr() { return _ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_ptr) { dpct::async_dpct_free({_ptr}, {_e}, _q); } } private: void *_ptr = nullptr; sycl::event _e; sycl::queue _q; }; std::size_t byte_to_element_number(std::size_t size_in_byte, dpct::library_data_t element_type) { auto dv = std::lldiv( size_in_byte, dpct::detail::library_data_size[static_cast<unsigned int>(element_type)] / 8); if (dv.rem) { throw std::runtime_error( "size_in_byte is not divisible by the size of element (in bytes)"); } return dv.quot; } std::size_t element_number_to_byte(std::size_t size_in_element, dpct::library_data_t element_type) { auto dv = std::lldiv( dpct::detail::library_data_size[static_cast<unsigned int>(element_type)], 8); if (dv.rem) { throw std::runtime_error( "the size of element (in bits) is not divisible by 8"); } return size_in_element * dv.quot; } inline oneapi::mkl::jobsvd char2jobsvd(signed char job) { switch (job) { case 'A': return oneapi::mkl::jobsvd::vectors; case 'S': return oneapi::mkl::jobsvd::somevec; case 'O': return oneapi::mkl::jobsvd::vectorsina; case 'N': return oneapi::mkl::jobsvd::novec; default: throw std::runtime_error("the job type is unsupported"); } } template <typename T> struct getrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::getrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct getrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrf(q, m, n, a_data, lda, ipiv_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrs_impl { void operator()(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); std::int64_t device_ws_size = oneapi::mkl::lapack::getrs_scratchpad_size<T>( q, trans, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::getrs(q, trans, n, nrhs, a_data, lda, ipiv_data, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct geqrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::geqrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct geqrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto tau_data = dpct::detail::get_memory(reinterpret_cast<T *>(tau)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::geqrf(q, m, n, a_data, lda, tau_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrfnp_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::int64_t a_stride = m * lda; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrfnp_batch(q, m, n, a_data, lda, a_stride, 1, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct gesvd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::gesvd_scratchpad_size<T>( q, jobu, jobvt, m, n, lda, ldu, ldvt); } }; template <typename T> struct ElementType { using value_tpye = T; }; template <typename T> struct ElementType<std::complex<T>> { using value_tpye = T; }; template <typename T> struct gesvd_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto s_data = dpct::detail::get_memory( reinterpret_cast<typename ElementType<T>::value_tpye *>(s)); auto u_data = dpct::detail::get_memory(reinterpret_cast<T *>(u)); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::gesvd(q, jobu, jobvt, m, n, a_data, lda, s_data, u_data, ldu, vt_data, ldvt, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct gesvd_conj_impl : public gesvd_impl<T> { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using base = gesvd_impl<T>; base::operator()(q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); oneapi::mkl::blas::row_major::imatcopy(q, oneapi::mkl::transpose::conjtrans, n, n, T(1.0f), vt_data, ldvt, ldvt); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct potrf_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::potrf_scratchpad_size<T>(q, uplo, n, lda); } }; template <typename T> struct potrf_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::potrf(q, uplo, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct potrs_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { std::int64_t device_ws_size = oneapi::mkl::lapack::potrs_scratchpad_size<T>( q, uplo, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::potrs(q, uplo, n, nrhs, a_data, lda, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct value_type_trait { using value_type = T; }; template <typename T> struct value_type_trait<std::complex<T>> { using value_type = T; }; template <typename T> auto lamch_s() { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else if constexpr (std::is_same_v<T, float>) { return slamch("S"); } else if constexpr (std::is_same_v<T, double>) { return dlamch("S"); } throw std::runtime_error("the type is unsupported"); #endif } #define DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ device_ws_size = oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ device_ws_size = oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) #define DISPATCH_FLOAT_FOR_CALCULATION(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) template <typename T> struct syheevx_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evx_scratchpad_size<T>, q, jobz, range, uplo, n, lda, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> constexpr library_data_t get_library_data_t_from_type() { if constexpr (std::is_same_v<T, float>) { return library_data_t::real_float; } else if constexpr (std::is_same_v<T, double>) { return library_data_t::real_double; } else if constexpr (std::is_same_v<T, sycl::float2> || std::is_same_v<T, std::complex<float>>) { return library_data_t::complex_float; } else if constexpr (std::is_same_v<T, sycl::double2> || std::is_same_v<T, std::complex<double>>) { return library_data_t::complex_double; } throw std::runtime_error("the type is unsupported"); } template <typename T> struct syheevx_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(evx, q, jobz, range, uplo, n, a_data, lda, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvx_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvx_scratchpad_size<T>, q, itype, jobz, range, uplo, n, lda, ldb, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> struct syhegvx_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(gvx, q, itype, jobz, range, uplo, n, a_data, lda, b_data, ldb, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvd_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvd_scratchpad_size<T>, q, itype, jobz, uplo, n, lda, ldb); } }; template <typename T> struct syhegvd_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(gvd, q, itype, jobz, uplo, n, a_data, lda, b_data, ldb, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; oneapi::mkl::compz job2compz(const oneapi::mkl::job &job) { oneapi::mkl::compz ret; if (job == oneapi::mkl::job::novec) { ret = oneapi::mkl::compz::novectors; } else if (job == oneapi::mkl::job::vec) { ret = oneapi::mkl::compz::vectors; } else { throw std::runtime_error("the job type is unsupported"); } return ret; } template <typename T> struct syheev_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(ev_scratchpad_size<T>, q, jobz, uplo, n, lda); #endif } }; template <typename T> struct syheev_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(ev, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct syheevd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evd_scratchpad_size<T>, q, jobz, uplo, n, lda); } }; template <typename T> struct syheevd_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(evd, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; #undef DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE #undef DISPATCH_FLOAT_FOR_CALCULATION template <typename T> struct trtri_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else device_ws_size = oneapi::mkl::lapack::trtri_scratchpad_size<T>(q, uplo, diag, n, lda); #endif } }; template <typename T> struct trtri_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::trtri(q, uplo, diag, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; } // namespace detail /// Computes the size of workspace memory of getrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int getrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::getrf_scratchpad_size_impl>( q, a_type, nullptr, "getrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the LU factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by L and U. The unit /// diagonal elements of L are not stored. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] ipiv The pivot indices. If \p ipiv is nullptr, non-pivoting /// LU factorization is computed. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); if (ipiv == nullptr) { return detail::lapack_shim<detail::getrfnp_impl>( q, a_type, info, "getrfnp_batch", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); } return detail::lapack_shim<detail::getrf_impl>( q, a_type, info, "getrf", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); #endif } /// Solves a system of linear equations with a LU-factored square coefficient /// matrix, with multiple right-hand sides. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] trans Indicates the form of the linear equation. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in] a The input matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ipiv The pivot indices. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrs(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::getrs_impl>( q, a_type, info, "getrs_scratchpad_size/getrs", q, trans, n, nrhs, a_type, a, lda, ipiv, b_type, b, ldb, info); } /// Computes the size of workspace memory of geqrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int geqrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::geqrf_scratchpad_size_impl>( q, a_type, nullptr, "geqrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the QR factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] tau_type The data type of the array tau. /// \param [in] tau The array contains scalars that define elementary reflectors /// for the matrix Q in its decomposition in a product of elementary reflectors. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int geqrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::geqrf_impl>( q, a_type, info, "geqrf", q, m, n, a_type, a, lda, tau_type, tau, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu_enum, jobvt_enum, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] host_ws_size The host workspace size as a number of elements /// of type \param a_type. Currently the value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, int *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } std::size_t device_ws_size_64; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu, jobvt, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_64); *device_ws_size = device_ws_size_64; return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::gesvd_impl>( q, a_type, info, "gesvd", q, jobu_enum, jobvt_enum, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec. /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } detail::lapack_shim<detail::gesvd_conj_impl>( q, a_type, info, "gesvd", q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); return 0; } /// Computes the size of workspace memory of potrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int potrf_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::potrf_scratchpad_size_impl>( q, a_type, nullptr, "potrf_scratchpad_size", q, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the Cholesky factorization of a symmetric (Hermitian) /// positive-definite matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrf(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::potrf_impl>( q, a_type, info, "potrf", q, uplo, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); } /// Solves a system of linear equations with a Cholesky-factored symmetric /// (Hermitian) positive-definite coefficient matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrs(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::potrs_impl>( q, a_type, info, "potrs_scratchpad_size/potrs", q, uplo, n, nrhs, a_type, a, lda, b_type, b, ldb, info); } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, a_type, nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, vl, vu, il, iu, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheevx_impl>( q, a_type, info, "syevx/heevx", q, compz_jobz, range, uplo, n, a_type, a, lda, vl, vu, il, iu, m, w_type, w, device_ws, device_ws_size_in_element_number, info); q.wait(); return ret; } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syheevx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevx/heevx", q, compz_jobz, range, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, &vl, &vu, il, iu, &m64, detail::get_library_data_t_from_type<ValueT>(), w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvx/hegvx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syhegvx_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, int ldb, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvx_scratchpad_size/hegvx_scratchpad_size", q, itype, compz_jobz, range, uplo, n, lda, ldb, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a real /// generalized symmetric/Hermitian definite eigenproblem. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvx(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syhegvx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvx/hegvx", q, itype, compz_jobz, range, uplo, n, a, lda, b, ldb, &vl, &vu, il, iu, &m64, w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvd/hegvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syhegvd_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int ldb, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvd_scratchpad_size/hegvd_scratchpad_size", q, itype, jobz, uplo, n, lda, ldb, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric/Hermitian definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvd(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syhegvd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvd/hegvd", q, itype, jobz, uplo, n, a, lda, b, ldb, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syev/heev function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheev_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int *device_ws_size) { std::size_t device_ws_size_tmp; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheev_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syev_scratchpad_size/heev_scratchpad_size", q, compz_jobz, uplo, n, lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /// or Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheev(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); return detail::lapack_shim<detail::syheev_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syev/heev", q, compz_jobz, uplo, n, a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, a_type, nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::syheevd_impl>( q, a_type, info, "syevd/heevd", q, jobz, uplo, n, a_type, a, lda, w, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, T *a, std::int64_t lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syheevd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevd/heevd", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of trtri function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int trtri_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::trtri_scratchpad_size_impl>( q, a_type, nullptr, "trtri_scratchpad_size", q, uplo, diag, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the inverse of a triangular matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// the inverse matrix of A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int trtri(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::trtri_impl>( q, a_type, info, "trtri", q, uplo, diag, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); #endif } } // namespace lapack } // namespace dpct #endif // __DPCT_LAPACK_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/fft_utils.hpp
//==---- fft_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FFT_UTILS_HPP__ #define __DPCT_FFT_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <optional> #include <utility> #include "lib_common_utils.hpp" namespace dpct { namespace fft { /// An enumeration type to describe the FFT direction is forward or backward. enum fft_direction : int { forward = 0, backward }; /// An enumeration type to describe the types of FFT input and output data. enum fft_type : int { real_float_to_complex_float = 0, complex_float_to_real_float, real_double_to_complex_double, complex_double_to_real_double, complex_float_to_complex_float, complex_double_to_complex_double, }; /// A class to perform FFT calculation. class fft_engine { public: /// Default constructor. fft_engine() {} /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, library_data_t input_type, long long *onembed, long long ostride, long long odist, library_data_t output_type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<long long>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, library_data_t input_type, int *onembed, int ostride, int odist, library_data_t output_type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<int>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n1, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(1); _n[0] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 1; _batch = batch; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(2); _n[0] = n2; _n[1] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 2; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(3); _n[0] = n3; _n[1] = n2; _n[2] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 3; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Create the class for calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n1, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n1, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n3, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, dim, n, inembed, istride, idist, onembed, ostride, odist, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate FFT without commit any config. static fft_engine *create() { fft_engine *engine = new fft_engine(); return engine; } /// Destroy the class for calculate FFT. /// \param [in] engine Pointer returned from fft_engine::craete. static void destroy(fft_engine *engine) { delete engine; } #ifdef __INTEL_MKL__ /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 1-D FFT. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If it is not set, forward direction(if current FFT is /// complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n1, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n1, type, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 2-D FFT. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 3-D FFT. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n3, int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n3, n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } #endif /// Execute the FFT calculation. /// \param [in] input Pointer to the input data. /// \param [out] output Pointer to the output data. /// \param [in] direction The FFT direction. template <typename input_t, typename output_t> void compute(input_t *input, output_t *output, fft_direction direction) { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } else if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } } template <> void compute(float *input, sycl::float2 *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(sycl::float2 *input, float *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(double *input, sycl::double2 *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::double2 *input, double *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::float2 *input, sycl::float2 *output, fft_direction direction) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } template <> void compute(sycl::double2 *input, sycl::double2 *output, fft_direction direction) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } /// Setting the user's SYCL queue for calculation. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { _q = q; } #ifdef __INTEL_MKL__ /// Setting whether to use external or internal workspace. /// \param [in] flag True means using internal workspace. False means using /// external workspace. void use_internal_workspace(bool flag = true) { _use_external_workspace = !flag; } /// Specify the external workspace. /// \param [in] ptr Pointer to the workspace. void set_workspace(void *ptr) { if (!_use_external_workspace) { return; } if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sc->set_workspace(data); } } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dc->set_workspace(data); } } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sr->set_workspace(data); } } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dr->set_workspace(data); } } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } #endif /// Get the workspace size. /// \param [out] scratchpad_size Workspace size in bytes. void get_workspace_size(size_t *scratchpad_size) { if (scratchpad_size) { *scratchpad_size = _workspace_bytes; } } private: static std::pair<library_data_t, library_data_t> fft_type_to_data_type(fft_type type) { switch (type) { case fft_type::real_float_to_complex_float: { return std::make_pair(library_data_t::real_float, library_data_t::complex_float); } case fft_type::complex_float_to_real_float: { return std::make_pair(library_data_t::complex_float, library_data_t::real_float); } case fft_type::real_double_to_complex_double: { return std::make_pair(library_data_t::real_double, library_data_t::complex_double); } case fft_type::complex_double_to_real_double: { return std::make_pair(library_data_t::complex_double, library_data_t::real_double); } case fft_type::complex_float_to_complex_float: { return std::make_pair(library_data_t::complex_float, library_data_t::complex_float); } case fft_type::complex_double_to_complex_double: { return std::make_pair(library_data_t::complex_double, library_data_t::complex_double); } } } void config_and_commit_basic() { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { _desc_sc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_sc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_sc->commit(*_q); #endif } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { _desc_dc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_dc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_dc->commit(*_q); #endif } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { _desc_sr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_sr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); #endif } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { _desc_dr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_dr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); #endif } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } void config_and_commit_advanced() { #ifdef __INTEL_MKL__ #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); \ if (_use_external_workspace) { \ DESC->set_value(oneapi::mkl::dft::config_param::WORKSPACE, \ oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); \ } \ if (_is_estimate_call) { \ if (_q->get_device().is_gpu()) { \ DESC->get_value( \ oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, \ &_workspace_estimate_bytes); \ } \ } else { \ DESC->commit(*_q); \ if (_is_estimate_call) { \ DESC->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, \ &_workspace_bytes); \ } \ } \ } #else #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::NOT_INPLACE); \ DESC->commit(*_q); \ } #endif if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { CONFIG_AND_COMMIT(_desc_sc, SINGLE, COMPLEX, float); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { CONFIG_AND_COMMIT(_desc_dc, DOUBLE, COMPLEX, double); } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { CONFIG_AND_COMMIT(_desc_sr, SINGLE, REAL, float); } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { CONFIG_AND_COMMIT(_desc_dr, DOUBLE, REAL, double); } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } #undef CONFIG_AND_COMMIT } template <typename T> void init(int dim, T *n, T *inembed, T istride, T idist, library_data_t input_type, T *onembed, T ostride, T odist, library_data_t output_type, T batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement) { if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } _n.resize(dim); _inembed.resize(dim); _onembed.resize(dim); _input_type = input_type; _output_type = output_type; for (int i = 0; i < dim; i++) { _n[i] = n[i]; } if (inembed && onembed) { for (int i = 0; i < dim; i++) { _inembed[i] = inembed[i]; _onembed[i] = onembed[i]; } _istride = istride; _ostride = ostride; if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double)) { _fwd_dist = idist; _bwd_dist = odist; } else if ((_output_type == library_data_t::real_float && _input_type == library_data_t::complex_float) || (_output_type == library_data_t::real_double && _input_type == library_data_t::complex_double)) { _fwd_dist = odist; _bwd_dist = idist; } else { if (_is_user_specified_dir_and_placement && (_direction == fft_direction::backward)) { _fwd_dist = odist; _bwd_dist = idist; } else { _fwd_dist = idist; _bwd_dist = odist; } } } else { _is_basic = true; } _batch = batch; _dim = dim; if (_is_basic) config_and_commit_basic(); else config_and_commit_advanced(); } template <class Desc_t> void set_stride_advanced(std::shared_ptr<Desc_t> desc) { if (_dim == 1) { std::int64_t input_stride[2] = {0, _istride}; std::int64_t output_stride[2] = {0, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 2) { std::int64_t input_stride[3] = {0, _inembed[1] * _istride, _istride}; std::int64_t output_stride[3] = {0, _onembed[1] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 3) { std::int64_t input_stride[4] = {0, _inembed[2] * _inembed[1] * _istride, _inembed[2] * _istride, _istride}; std::int64_t output_stride[4] = {0, _onembed[2] * _onembed[1] * _ostride, _onembed[2] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } } template <class Desc_t> void swap_distance(std::shared_ptr<Desc_t> desc) { desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _bwd_dist); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _fwd_dist); std::int64_t temp = _bwd_dist; _bwd_dist = _fwd_dist; _fwd_dist = temp; } template <bool Is_inplace, class Desc_t> void set_stride_and_distance_basic(std::shared_ptr<Desc_t> desc) { std::int64_t forward_distance = 0; std::int64_t backward_distance = 0; #define SET_STRIDE \ { \ if (_direction == fft_direction::forward) { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ real_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ complex_stride); \ } else { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ complex_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ real_stride); \ } \ } if (_dim == 1) { if constexpr (Is_inplace) { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = 2 * (_n[0] / 2 + 1); backward_distance = _n[0] / 2 + 1; } else { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = _n[0]; backward_distance = _n[0] / 2 + 1; } } else if (_dim == 2) { if constexpr (Is_inplace) { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, 2 * (_n[1] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * 2 * (_n[1] / 2 + 1); backward_distance = _n[0] * (_n[1] / 2 + 1); } else { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, _n[1], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1]; backward_distance = _n[0] * (_n[1] / 2 + 1); } } else if (_dim == 3) { if constexpr (Is_inplace) { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * 2 * (_n[2] / 2 + 1), 2 * (_n[2] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * 2 * (_n[2] / 2 + 1); backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } else { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * _n[2], _n[2], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * _n[2]; backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } } #undef SET_STRIDE desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, forward_distance); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, backward_distance); } #define COMPUTE(DESC) \ { \ if (_is_inplace) { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input); \ } \ } else { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ auto data_output = \ dpct::detail::get_memory(reinterpret_cast<T *>(output)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input, data_output); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input, data_output); \ } \ } \ } template <class T, oneapi::mkl::dft::precision Precision> void compute_complex(T *input, T *output, fft_direction direction) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The complex domain descriptor need different config values if the // FFT direction or placement is different. // Here we check the conditions, and new config values are set and // re-committed if needed. if (direction != _direction || is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { if (direction != _direction) { swap_distance(_desc_sc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_sc->commit(*_q); } else { if (direction != _direction) { swap_distance(_desc_dc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_dc->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sc); } else { COMPUTE(_desc_dc); } } template <class T, oneapi::mkl::dft::precision Precision> void compute_real(T *input, T *output) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The real domain descriptor need different config values if the // FFT placement is different. // Here we check the condition, and new config values are set and // re-committed if needed. if (is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_sr); } else { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); } else { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_dr); } else { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sr); } else { COMPUTE(_desc_dr); } } #undef COMPUTE private: sycl::queue *_q = nullptr; int _dim; std::vector<std::int64_t> _n; std::vector<std::int64_t> _inembed; std::int64_t _istride; std::int64_t _fwd_dist; library_data_t _input_type; std::vector<std::int64_t> _onembed; std::int64_t _ostride; std::int64_t _bwd_dist; library_data_t _output_type; std::int64_t _batch = 1; bool _is_basic = false; bool _is_inplace = false; fft_direction _direction = fft_direction::forward; bool _is_user_specified_dir_and_placement = false; bool _use_external_workspace = false; void *_external_workspace_ptr = nullptr; size_t _workspace_bytes = 0; bool _is_estimate_call = false; size_t _workspace_estimate_bytes = 0; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>> _desc_sr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>> _desc_dr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_sc; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_dc; }; using fft_engine_ptr = fft_engine *; } // namespace fft } // namespace dpct #endif // __DPCT_FFT_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/lib_common_utils.hpp
//==---- lib_common_utils.hpp ---------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LIB_COMMON_UTILS_HPP__ #define __DPCT_LIB_COMMON_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { namespace detail { template <typename T> inline auto get_memory(T *x) { #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<std::remove_cv_t<T>>(x); #else return x; #endif } template <typename T> inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) { using Ty = typename DataType<T>::T2; Ty s_h; detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), automatic).wait(); return s_h; } } enum class version_field : int { major, minor, update, patch }; /// Returns the requested field of Intel(R) oneAPI Math Kernel Library version. /// \param field The version information field (major, minor, update or patch). /// \param result The result value. inline void mkl_get_version(version_field field, int *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else MKLVersion version; mkl_get_version(&version); if (version_field::major == field) { *result = version.MajorVersion; } else if (version_field::minor == field) { *result = version.MinorVersion; } else if (version_field::update == field) { *result = version.UpdateVersion; } else if (version_field::patch == field) { *result = 0; } else { throw std::runtime_error("unknown field"); } #endif } enum class library_data_t : unsigned char { real_float = 0, complex_float, real_double, complex_double, real_half, complex_half, real_bfloat16, complex_bfloat16, real_int4, complex_int4, real_uint4, complex_uint4, real_int8, complex_int8, real_uint8, complex_uint8, real_int16, complex_int16, real_uint16, complex_uint16, real_int32, complex_int32, real_uint32, complex_uint32, real_int64, complex_int64, real_uint64, complex_uint64, real_int8_4, real_int8_32, real_uint8_4, library_data_t_size }; namespace detail { template <typename ArgT> inline constexpr std::uint64_t get_type_combination_id(ArgT Val) { static_assert((unsigned char)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT"); return (std::uint64_t)Val; } template <typename FirstT, typename... RestT> inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal, RestT... RestVal) { static_assert((std::uint8_t)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(sizeof...(RestT) <= 8 && "Too many parameters"); static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT"); return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal); } inline constexpr std::size_t library_data_size[] = { 8 * sizeof(float), // real_float 8 * sizeof(std::complex<float>), // complex_float 8 * sizeof(double), // real_double 8 * sizeof(std::complex<double>), // complex_double 8 * sizeof(sycl::half), // real_half 8 * sizeof(std::complex<sycl::half>), // complex_half 16, // real_bfloat16 16 * 2, // complex_bfloat16 4, // real_int4 4 * 2, // complex_int4 4, // real_uint4 4 * 2, // complex_uint4 8, // real_int8 8 * 2, // complex_int8 8, // real_uint8 8 * 2, // complex_uint8 16, // real_int16 16 * 2, // complex_int16 16, // real_uint16 16 * 2, // complex_uint16 32, // real_int32 32 * 2, // complex_int32 32, // real_uint32 32 * 2, // complex_uint32 64, // real_int64 64 * 2, // complex_int64 64, // real_uint64 64 * 2, // complex_uint64 8, // real_int8_4 8, // real_int8_32 8 // real_uint8_4 }; } // namespace detail } // namespace dpct #endif // __DPCT_LIB_COMMON_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/sparse_utils.hpp
//==---- sparse_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_SPARSE_UTILS_HPP__ #define __DPCT_SPARSE_UTILS_HPP__ #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace sparse { /// Describes properties of a sparse matrix. /// The properties are matrix type, diag, uplo and index base. class matrix_info { public: /// Matrix types are: /// ge: General matrix /// sy: Symmetric matrix /// he: Hermitian matrix /// tr: Triangular matrix enum class matrix_type : int { ge = 0, sy, he, tr }; auto get_matrix_type() const { return _matrix_type; } auto get_diag() const { return _diag; } auto get_uplo() const { return _uplo; } auto get_index_base() const { return _index_base; } void set_matrix_type(matrix_type mt) { _matrix_type = mt; } void set_diag(oneapi::mkl::diag d) { _diag = d; } void set_uplo(oneapi::mkl::uplo u) { _uplo = u; } void set_index_base(oneapi::mkl::index_base ib) { _index_base = ib; } private: matrix_type _matrix_type = matrix_type::ge; oneapi::mkl::diag _diag = oneapi::mkl::diag::nonunit; oneapi::mkl::uplo _uplo = oneapi::mkl::uplo::upper; oneapi::mkl::index_base _index_base = oneapi::mkl::index_base::zero; }; /// Computes a CSR format sparse matrix-dense vector product. /// y = alpha * op(A) * x + beta * y /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] num_rows Number of rows of the matrix A. /// \param [in] num_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] x Data of the vector x. /// \param [in] beta Scaling factor for the vector x. /// \param [in, out] y Data of the vector y. template <typename T> void csrmv(sycl::queue &queue, oneapi::mkl::transpose trans, int num_rows, int num_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *x, const T *beta, T *y) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, num_rows, num_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(x))); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::optimize_gemv(queue, trans, *sparse_matrix_handle); oneapi::mkl::sparse::gemv(queue, trans, alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::sy: { oneapi::mkl::sparse::symv(queue, info->get_uplo(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::tr: { oneapi::mkl::sparse::optimize_trmv(queue, info->get_uplo(), trans, info->get_diag(), *sparse_matrix_handle); oneapi::mkl::sparse::trmv(queue, info->get_uplo(), trans, info->get_diag(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } default: throw std::runtime_error( "the spmv does not support matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } /// Computes a CSR format sparse matrix-dense matrix product. /// C = alpha * op(A) * B + beta * C /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] sparse_rows Number of rows of the matrix A. /// \param [in] dense_cols Number of columns of the matrix B or C. /// \param [in] sparse_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] b Data of the matrix B. /// \param [in] ldb Leading dimension of the matrix B. /// \param [in] beta Scaling factor for the matrix B. /// \param [in, out] c Data of the matrix C. /// \param [in] ldc Leading dimension of the matrix C. template <typename T> void csrmm(sycl::queue &queue, oneapi::mkl::transpose trans, int sparse_rows, int dense_cols, int sparse_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *b, int ldb, const T *beta, T *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, sparse_rows, sparse_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(b))); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::gemm(queue, oneapi::mkl::layout::row_major, trans, oneapi::mkl::transpose::nontrans, alpha_value, *sparse_matrix_handle, data_b, dense_cols, ldb, beta_value, data_c, ldc); break; } default: throw std::runtime_error( "the csrmm does not support matrix_info::matrix_type::sy, " "matrix_info::matrix_type::tr and matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Saving the optimization information for solving a system of linear /// equations. class optimize_info { public: /// Constructor optimize_info() { oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); } /// Destructor ~optimize_info() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destructor. /// \param [in] e The event which the destructor depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } private: oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; }; #endif #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Performs internal optimizations for solving a system of linear equations for /// a CSR format sparse matrix. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the sparse matrix. /// \param [in] row_col Number of rows of the sparse matrix. /// \param [in] info Matrix info of the sparse matrix. /// \param [in] val An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] optimize_info The result of the optimizations. template <typename T> void optimize_csrsv(sycl::queue &queue, oneapi::mkl::transpose trans, int row_col, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, std::shared_ptr<optimize_info> optimize_info) { using Ty = typename dpct::DataType<T>::T2; auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, optimize_info->get_matrix_handle(), row_col, row_col, info->get_index_base(), data_row_ptr, data_col_ind, data_val); if (info->get_matrix_type() != matrix_info::matrix_type::tr) return; #ifndef DPCT_USM_LEVEL_NONE sycl::event e; e = #endif oneapi::mkl::sparse::optimize_trsv(queue, info->get_uplo(), trans, info->get_diag(), optimize_info->get_matrix_handle()); #ifndef DPCT_USM_LEVEL_NONE optimize_info->add_dependency(e); #endif } #endif class sparse_matrix_desc; using sparse_matrix_desc_t = std::shared_ptr<sparse_matrix_desc>; /// Structure for describe a dense vector class dense_vector_desc { public: dense_vector_desc(std::int64_t ele_num, void *value, library_data_t value_type) : _ele_num(ele_num), _value(value), _value_type(value_type) {} void get_desc(std::int64_t *ele_num, const void **value, library_data_t *value_type) const noexcept { *ele_num = _ele_num; *value = _value; *value_type = _value_type; } void get_desc(std::int64_t *ele_num, void **value, library_data_t *value_type) const noexcept { get_desc(ele_num, const_cast<const void **>(value), value_type); } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } private: std::int64_t _ele_num; void *_value; library_data_t _value_type; }; /// Structure for describe a dense matrix class dense_matrix_desc { public: dense_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t leading_dim, void *value, library_data_t value_type, oneapi::mkl::layout layout) : _row_num(row_num), _col_num(col_num), _leading_dim(leading_dim), _value(value), _value_type(value_type), _layout(layout) {} void get_desc(std::int64_t *row_num, std::int64_t *col_num, std::int64_t *leading_dim, void **value, library_data_t *value_type, oneapi::mkl::layout *layout) const noexcept { *row_num = _row_num; *col_num = _col_num; *leading_dim = _leading_dim; *value = _value; *value_type = _value_type; *layout = _layout; } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } std::int64_t get_col_num() const noexcept { return _col_num; } std::int64_t get_leading_dim() const noexcept { return _leading_dim; } oneapi::mkl::layout get_layout() const noexcept { return _layout; } private: std::int64_t _row_num; std::int64_t _col_num; std::int64_t _leading_dim; void *_value; library_data_t _value_type; oneapi::mkl::layout _layout; }; /// Sparse matrix data format enum matrix_format : int { csr = 1, }; /// Sparse matrix attribute enum matrix_attribute : int { uplo = 0, diag }; #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Structure for describe a sparse matrix class sparse_matrix_desc { public: /// Constructor /// \param [out] desc The descriptor to be created /// \param [in] row_num Number of rows of the sparse matrix. /// \param [in] col_num Number of colums of the sparse matrix. /// \param [in] nnz Non-zero elements in the sparse matrix. /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr_type Data type of the \p row_ptr . /// \param [in] col_ind_type Data type of the \p col_ind . /// \param [in] base Indicates how input arrays are indexed. /// \param [in] value_type Data type of the \p value . /// \param [in] data_format The matrix data format. sparse_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t nnz, void *row_ptr, void *col_ind, void *value, library_data_t row_ptr_type, library_data_t col_ind_type, oneapi::mkl::index_base base, library_data_t value_type, matrix_format data_format) : _row_num(row_num), _col_num(col_num), _nnz(nnz), _row_ptr(row_ptr), _col_ind(col_ind), _value(value), _row_ptr_type(row_ptr_type), _col_ind_type(col_ind_type), _base(base), _value_type(value_type), _data_format(data_format) { if (_data_format != matrix_format::csr) { throw std::runtime_error("the sparse matrix data format is unsupported"); } oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); construct(); } /// Destructor ~sparse_matrix_desc() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destroy method. /// \param [in] e The event which the destroy method depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } /// Get the values saved in the descriptor /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. /// \param [out] row_ptr An array of length \p row_num + 1. /// \param [out] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] value An array containing the non-zero elements of the sparse matrix. /// \param [out] row_ptr_type Data type of the \p row_ptr . /// \param [out] col_ind_type Data type of the \p col_ind . /// \param [out] base Indicates how input arrays are indexed. /// \param [out] value_type Data type of the \p value . void get_desc(int64_t *row_num, int64_t *col_num, int64_t *nnz, void **row_ptr, void **col_ind, void **value, library_data_t *row_ptr_type, library_data_t *col_ind_type, oneapi::mkl::index_base *base, library_data_t *value_type) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; *row_ptr = _row_ptr; *col_ind = _col_ind; *value = _value; *row_ptr_type = _row_ptr_type; *col_ind_type = _col_ind_type; *base = _base; *value_type = _value_type; } /// Get the sparse matrix data format of this descriptor /// \param [out] format The matrix data format result void get_format(matrix_format *data_format) const noexcept { *data_format = _data_format; } /// Get the index base of this descriptor /// \param [out] base The index base result void get_base(oneapi::mkl::index_base *base) const noexcept { *base = _base; } /// Get the value pointer of this descriptor /// \param [out] value The value pointer result void get_value(void **value) const noexcept { *value = _value; } /// Set the value pointer of this descriptor /// \param [in] value The input value pointer void set_value(void *value) { // Assume the new data is different from the old data _value = value; construct(); } /// Get the size of the sparse matrix /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. void get_size(int64_t *row_num, int64_t *col_num, int64_t *nnz) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; } /// Set the sparse matrix attribute /// \param [in] attribute The attribute type /// \param [in] data The attribute value /// \param [in] data_size The data size of the attribute value void set_attribute(matrix_attribute attribute, const void *data, size_t data_size) { if (attribute == matrix_attribute::diag) { const oneapi::mkl::diag *diag_ptr = reinterpret_cast<const oneapi::mkl::diag *>(data); if (*diag_ptr == oneapi::mkl::diag::unit) { _diag = oneapi::mkl::diag::unit; } else if (*diag_ptr == oneapi::mkl::diag::nonunit) { _diag = oneapi::mkl::diag::nonunit; } else { throw std::runtime_error("unsupported diag value"); } } else if (attribute == matrix_attribute::uplo) { const oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<const oneapi::mkl::uplo *>(data); if (*uplo_ptr == oneapi::mkl::uplo::upper) { _uplo = oneapi::mkl::uplo::upper; } else if (*uplo_ptr == oneapi::mkl::uplo::lower) { _uplo = oneapi::mkl::uplo::lower; } else { throw std::runtime_error("unsupported uplo value"); } } else { throw std::runtime_error("unsupported attribute"); } } /// Get the sparse matrix attribute /// \param [out] attribute The attribute type /// \param [out] data The attribute value /// \param [out] data_size The data size of the attribute value void get_attribute(matrix_attribute attribute, void *data, size_t data_size) const { if (attribute == matrix_attribute::diag) { oneapi::mkl::diag *diag_ptr = reinterpret_cast<oneapi::mkl::diag *>(data); if (_diag.has_value()) { *diag_ptr = _diag.value(); } else { *diag_ptr = oneapi::mkl::diag::nonunit; } } else if (attribute == matrix_attribute::uplo) { oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<oneapi::mkl::uplo *>(data); if (_uplo.has_value()) { *uplo_ptr = _uplo.value(); } else { *uplo_ptr = oneapi::mkl::uplo::lower; } } else { throw std::runtime_error("unsupported attribute"); } } /// Set the pointers for describing the sparse matrix /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. void set_pointers(void *row_ptr, void *col_ind, void *value) { // Assume the new data is different from the old data _row_ptr = row_ptr; _col_ind = col_ind; _value = value; construct(); } /// Get the diag attribute /// \return diag value std::optional<oneapi::mkl::diag> get_diag() const noexcept { return _diag; } /// Get the uplo attribute /// \return uplo value std::optional<oneapi::mkl::uplo> get_uplo() const noexcept { return _uplo; } private: template <typename index_t, typename value_t> void set_data() { auto data_row_ptr = dpct::detail::get_memory(reinterpret_cast<index_t *>(_row_ptr)); auto data_col_ind = dpct::detail::get_memory(reinterpret_cast<index_t *>(_col_ind)); auto data_value = dpct::detail::get_memory(reinterpret_cast<value_t *>(_value)); oneapi::mkl::sparse::set_csr_data(get_default_queue(), _matrix_handle, _row_num, _col_num, _base, data_row_ptr, data_col_ind, data_value); get_default_queue().wait(); } void construct() { std::uint64_t key = dpct::detail::get_type_combination_id( _row_ptr_type, _col_ind_type, _value_type); switch (key) { case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_float): { set_data<std::int32_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_double): { set_data<std::int32_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_float): { set_data<std::int32_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_double): { set_data<std::int32_t, std::complex<double>>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_float): { set_data<std::int64_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_double): { set_data<std::int64_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_float): { set_data<std::int64_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_double): { set_data<std::int64_t, std::complex<double>>(); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } std::int64_t _row_num; std::int64_t _col_num; std::int64_t _nnz; void *_row_ptr; void *_col_ind; void *_value; library_data_t _row_ptr_type; library_data_t _col_ind_type; oneapi::mkl::index_base _base; library_data_t _value_type; oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; matrix_format _data_format; std::optional<oneapi::mkl::uplo> _uplo; std::optional<oneapi::mkl::diag> _diag; }; namespace detail { #ifdef DPCT_USM_LEVEL_NONE #define SPARSE_CALL(X) \ do { \ X; \ } while (0) #else #define SPARSE_CALL(X) \ do { \ sycl::event e = X; \ a->add_dependency(e); \ } while (0) #endif template <typename Ty> inline void spmv_impl(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(x->get_value())); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y->get_value())); if (a->get_diag().has_value() && a->get_uplo().has_value()) { oneapi::mkl::sparse::optimize_trmv(queue, a->get_uplo().value(), trans, a->get_diag().value(), a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::trmv( queue, a->get_uplo().value(), trans, a->get_diag().value(), alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } else { oneapi::mkl::sparse::optimize_gemv(queue, trans, a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::gemv(queue, trans, alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } } template <typename Ty> inline void spmm_impl(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(b->get_value())); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c->get_value())); SPARSE_CALL(oneapi::mkl::sparse::gemm( queue, b->get_layout(), trans_a, trans_b, alpha_value, a->get_matrix_handle(), data_b, b->get_col_num(), b->get_leading_dim(), beta_value, data_c, c->get_leading_dim())); } #undef SPARSE_CALL } // namespace detail /// Computes a sparse matrix-dense vector product: y = alpha * op(a) * x + beta * y. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans Specifies operation on input matrix. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] x Specifies the dense vector x. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] y Specifies the dense vector y. /// \param [in] data_type Specifies the data type of \param a, \param x and \param y . inline void spmv(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y, library_data_t data_type) { switch (data_type) { case library_data_t::real_float: { detail::spmv_impl<float>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::real_double: { detail::spmv_impl<double>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_float: { detail::spmv_impl<std::complex<float>>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_double: { detail::spmv_impl<std::complex<double>>(queue, trans, alpha, a, x, beta, y); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a sparse matrix-dense matrix product: c = alpha * op(a) * op(b) + beta * c. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans_a Specifies operation on input matrix a. /// \param [in] trans_b Specifies operation on input matrix b. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] b Specifies the dense matrix b. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] c Specifies the dense matrix c. /// \param [in] data_type Specifies the data type of \param a, \param b and \param c . inline void spmm(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c, library_data_t data_type) { if (b->get_layout() != c->get_layout()) throw std::runtime_error("the layout of b and c are different"); switch (data_type) { case library_data_t::real_float: { detail::spmm_impl<float>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::real_double: { detail::spmm_impl<double>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_float: { detail::spmm_impl<std::complex<float>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_double: { detail::spmm_impl<std::complex<double>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } #endif } // namespace sparse } // namespace dpct #endif // __DPCT_SPARSE_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/device.hpp
//==---- device.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DEVICE_HPP__ #define __DPCT_DEVICE_HPP__ #include <sycl/sycl.hpp> #include <algorithm> #include <array> #include <cstring> #include <iostream> #include <mutex> #include <set> #include <sstream> #include <map> #include <vector> #include <thread> #if defined(__linux__) #include <unistd.h> #include <sys/syscall.h> #endif #if defined(_WIN64) #define NOMINMAX #include <windows.h> #endif namespace dpct { /// SYCL default exception handler inline auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught asynchronous SYCL exception:" << std::endl << e.what() << std::endl << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; } } }; typedef sycl::event *event_ptr; typedef sycl::queue *queue_ptr; typedef char *device_ptr; /// Destroy \p event pointed memory. /// /// \param event Pointer to the sycl::event address. static void destroy_event(event_ptr event) { delete event; } class device_info { public: // get interface const char *get_name() const { return _name; } char *get_name() { return _name; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() const { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } bool get_host_unified_memory() const { return _host_unified_memory; } int get_major_version() const { return _major; } int get_minor_version() const { return _minor; } int get_integrated() const { return _integrated; } int get_max_clock_frequency() const { return _frequency; } int get_max_compute_units() const { return _max_compute_units; } int get_max_work_group_size() const { return _max_work_group_size; } int get_max_sub_group_size() const { return _max_sub_group_size; } int get_max_work_items_per_compute_unit() const { return _max_work_items_per_compute_unit; } int get_max_register_size_per_work_group() const { return _max_register_size_per_work_group; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() const { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } size_t get_global_mem_size() const { return _global_mem_size; } size_t get_local_mem_size() const { return _local_mem_size; } /// Returns the maximum clock rate of device's global memory in kHz. If /// compiler does not support this API then returns default value 3200000 kHz. unsigned int get_memory_clock_rate() const { return _memory_clock_rate; } /// Returns the maximum bus width between device and memory in bits. If /// compiler does not support this API then returns default value 64 bits. unsigned int get_memory_bus_width() const { return _memory_bus_width; } uint32_t get_device_id() const { return _device_id; } std::array<unsigned char, 16> get_uuid() const { return _uuid; } // set interface void set_name(const char* name) { size_t length = strlen(name); if (length < 256) { std::memcpy(_name, name, length + 1); } else { std::memcpy(_name, name, 255); _name[255] = '\0'; } } void set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) { _max_work_item_sizes = max_work_item_sizes; for (int i = 0; i < 3; ++i) _max_work_item_sizes_i[i] = max_work_item_sizes[i]; } void set_host_unified_memory(bool host_unified_memory) { _host_unified_memory = host_unified_memory; } void set_major_version(int major) { _major = major; } void set_minor_version(int minor) { _minor = minor; } void set_integrated(int integrated) { _integrated = integrated; } void set_max_clock_frequency(int frequency) { _frequency = frequency; } void set_max_compute_units(int max_compute_units) { _max_compute_units = max_compute_units; } void set_global_mem_size(size_t global_mem_size) { _global_mem_size = global_mem_size; } void set_local_mem_size(size_t local_mem_size) { _local_mem_size = local_mem_size; } void set_max_work_group_size(int max_work_group_size) { _max_work_group_size = max_work_group_size; } void set_max_sub_group_size(int max_sub_group_size) { _max_sub_group_size = max_sub_group_size; } void set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) { _max_work_items_per_compute_unit = max_work_items_per_compute_unit; } void set_max_nd_range_size(int max_nd_range_size[]) { for (int i = 0; i < 3; i++) { _max_nd_range_size[i] = max_nd_range_size[i]; _max_nd_range_size_i[i] = max_nd_range_size[i]; } } void set_memory_clock_rate(unsigned int memory_clock_rate) { _memory_clock_rate = memory_clock_rate; } void set_memory_bus_width(unsigned int memory_bus_width) { _memory_bus_width = memory_bus_width; } void set_max_register_size_per_work_group(int max_register_size_per_work_group) { _max_register_size_per_work_group = max_register_size_per_work_group; } void set_device_id(uint32_t device_id) { _device_id = device_id; } void set_uuid(std::array<unsigned char, 16> uuid) { _uuid = std::move(uuid); } private: char _name[256]; sycl::id<3> _max_work_item_sizes; int _max_work_item_sizes_i[3]; bool _host_unified_memory = false; int _major; int _minor; int _integrated = 0; int _frequency; // Set estimated value 3200000 kHz as default value. unsigned int _memory_clock_rate = 3200000; // Set estimated value 64 bits as default value. unsigned int _memory_bus_width = 64; int _max_compute_units; int _max_work_group_size; int _max_sub_group_size; int _max_work_items_per_compute_unit; int _max_register_size_per_work_group; size_t _global_mem_size; size_t _local_mem_size; size_t _max_nd_range_size[3]; int _max_nd_range_size_i[3]; uint32_t _device_id; std::array<unsigned char, 16> _uuid; }; /// dpct device extension class device_ext : public sycl::device { typedef std::mutex mutex_type; public: device_ext() : sycl::device(), _ctx(*this) {} ~device_ext() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); } device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) { std::lock_guard<mutex_type> lock(m_mutex); init_queues(); } int is_native_atomic_supported() { return 0; } int get_major_version() const { int major, minor; get_version(major, minor); return major; } int get_minor_version() const { int major, minor; get_version(major, minor); return minor; } int get_max_compute_units() const { return get_device_info().get_max_compute_units(); } /// Return the maximum clock frequency of this device in KHz. int get_max_clock_frequency() const { return get_device_info().get_max_clock_frequency(); } int get_integrated() const { return get_device_info().get_integrated(); } int get_max_sub_group_size() const { return get_device_info().get_max_sub_group_size(); } int get_max_register_size_per_work_group() const { return get_device_info().get_max_register_size_per_work_group(); } int get_max_work_group_size() const { return get_device_info().get_max_work_group_size(); } int get_mem_base_addr_align() const { return get_info<sycl::info::device::mem_base_addr_align>(); } size_t get_global_mem_size() const { return get_device_info().get_global_mem_size(); } /// Get the number of bytes of free and total memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; } else { free_memory = get_info<sycl::ext::intel::info::device::free_memory>(); } #else std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const { device_info prop; prop.set_name(get_info<sycl::info::device::name>().c_str()); int major, minor; get_version(major, minor); prop.set_major_version(major); prop.set_minor_version(minor); prop.set_max_work_item_sizes( #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION<20220902) // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes is an enum class element get_info<sycl::info::device::max_work_item_sizes>()); #else // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by an int get_info<sycl::info::device::max_work_item_sizes<3>>()); #endif prop.set_host_unified_memory( this->has(sycl::aspect::usm_host_allocations)); prop.set_max_clock_frequency( get_info<sycl::info::device::max_clock_frequency>() * 1000); prop.set_max_compute_units( get_info<sycl::info::device::max_compute_units>()); prop.set_max_work_group_size( get_info<sycl::info::device::max_work_group_size>()); prop.set_global_mem_size( get_info<sycl::info::device::global_mem_size>()); prop.set_local_mem_size(get_info<sycl::info::device::local_mem_size>()); #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6) if (this->has(sycl::aspect::ext_intel_memory_clock_rate)) { unsigned int tmp = this->get_info<sycl::ext::intel::info::device::memory_clock_rate>(); if (tmp != 0) prop.set_memory_clock_rate(1000 * tmp); } if (this->has(sycl::aspect::ext_intel_memory_bus_width)) { prop.set_memory_bus_width( this->get_info<sycl::ext::intel::info::device::memory_bus_width>()); } if (this->has(sycl::aspect::ext_intel_device_id)) { prop.set_device_id( this->get_info<sycl::ext::intel::info::device::device_id>()); } if (this->has(sycl::aspect::ext_intel_device_info_uuid)) { prop.set_uuid( this->get_info<sycl::ext::intel::info::device::uuid>()); } #elif defined(_MSC_VER) && !defined(__clang__) #pragma message("get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value.") #else #warning "get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value." #endif size_t max_sub_group_size = 1; std::vector<size_t> sub_group_sizes = get_info<sycl::info::device::sub_group_sizes>(); for (const auto &sub_group_size : sub_group_sizes) { if (max_sub_group_size < sub_group_size) max_sub_group_size = sub_group_size; } prop.set_max_sub_group_size(max_sub_group_size); prop.set_max_work_items_per_compute_unit( get_info<sycl::info::device::max_work_group_size>()); int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; prop.set_max_nd_range_size(max_nd_range_size); // Estimates max register size per work group, feel free to update the value // according to device properties. prop.set_max_register_size_per_work_group(65536); out = prop; } device_info get_device_info() const { device_info prop; get_device_info(prop); return prop; } void reset() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); init_queues(); } sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue &out_of_order_queue() { return *_q_out_of_order; } sycl::queue &default_queue() { #ifdef DPCT_USM_LEVEL_NONE return out_of_order_queue(); #else return in_order_queue(); #endif // DPCT_USM_LEVEL_NONE } void queues_wait_and_throw() { std::unique_lock<mutex_type> lock(m_mutex); std::vector<std::shared_ptr<sycl::queue>> current_queues( _queues); lock.unlock(); for (const auto &q : current_queues) { q->wait_and_throw(); } // Guard the destruct of current_queues to make sure the ref count is safe. lock.lock(); } sycl::queue *create_queue(bool enable_exception_handler = false) { #ifdef DPCT_USM_LEVEL_NONE return create_out_of_order_queue(enable_exception_handler); #else return create_in_order_queue(enable_exception_handler); #endif // DPCT_USM_LEVEL_NONE } sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler, sycl::property::queue::in_order()); } sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler); } void destroy_queue(sycl::queue *&queue) { std::lock_guard<mutex_type> lock(m_mutex); _queues.erase(std::remove_if(_queues.begin(), _queues.end(), [=](const std::shared_ptr<sycl::queue> &q) -> bool { return q.get() == queue; }), _queues.end()); queue = nullptr; } void set_saved_queue(sycl::queue* q) { std::lock_guard<mutex_type> lock(m_mutex); _saved_queue = q; } sycl::queue *get_saved_queue() const { std::lock_guard<mutex_type> lock(m_mutex); return _saved_queue; } sycl::context get_context() const { return _ctx; } private: void clear_queues() { _queues.clear(); _q_in_order = _q_out_of_order = _saved_queue = nullptr; } void init_queues() { _q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); _q_out_of_order = create_queue_impl(true); _saved_queue = &default_queue(); } /// Caller should acquire resource \p m_mutex before calling this function. template <class... Properties> sycl::queue *create_queue_impl(bool enable_exception_handler, Properties... properties) { sycl::async_handler eh = {}; if (enable_exception_handler) { eh = exception_handler; } _queues.push_back(std::make_shared<sycl::queue>( _ctx, *this, eh, sycl::property_list( #ifdef DPCT_PROFILING_ENABLED sycl::property::queue::enable_profiling(), #endif properties...))); return _queues.back().get(); } void get_version(int &major, int &minor) const { // Version string has the following format: // a. OpenCL<space><major.minor><space><vendor-specific-information> // b. <major.minor> std::string ver; ver = get_info<sycl::info::device::version>(); std::string::size_type i = 0; while (i < ver.size()) { if (isdigit(ver[i])) break; i++; } major = std::stoi(&(ver[i])); while (i < ver.size()) { if (ver[i] == '.') break; i++; } i++; minor = std::stoi(&(ver[i])); } sycl::queue *_q_in_order, *_q_out_of_order; sycl::queue *_saved_queue; sycl::context _ctx; std::vector<std::shared_ptr<sycl::queue>> _queues; mutable mutex_type m_mutex; }; static inline unsigned int get_tid() { #if defined(__linux__) return syscall(SYS_gettid); #elif defined(_WIN64) return GetCurrentThreadId(); #else #error "Only support Windows and Linux." #endif } /// device manager class dev_mgr { public: device_ext &current_device() { unsigned int dev_id=current_device_id(); check_id(dev_id); return *_devs[dev_id]; } device_ext &cpu_device() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); if (_cpu_device == -1) { throw std::runtime_error("no valid cpu device"); } else { return *_devs[_cpu_device]; } } device_ext &get_device(unsigned int id) const { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); return *_devs[id]; } unsigned int current_device_id() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); auto it=_thread2dev_map.find(get_tid()); if(it != _thread2dev_map.end()) return it->second; return DEFAULT_DEVICE_ID; } /// Select device with a device ID. /// \param [in] id The id of the device which can /// be obtained through get_device_id(const sycl::device). void select_device(unsigned int id) { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); _thread2dev_map[get_tid()]=id; } unsigned int device_count() { return _devs.size(); } unsigned int get_device_id(const sycl::device &dev) { unsigned int id = 0; for(auto dev_item : _devs) { if (*dev_item == dev) { break; } id++; } return id; } template <class DeviceSelector> std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { sycl::device selected_device = sycl::device(selector); unsigned int selected_device_id = get_device_id(selected_device); select_device(selected_device_id); } /// Returns the instance of device manager singleton. static dev_mgr &instance() { static dev_mgr d_m; return d_m; } dev_mgr(const dev_mgr &) = delete; dev_mgr &operator=(const dev_mgr &) = delete; dev_mgr(dev_mgr &&) = delete; dev_mgr &operator=(dev_mgr &&) = delete; private: mutable std::recursive_mutex m_mutex; dev_mgr() { sycl::device default_device = sycl::device(sycl::default_selector_v); _devs.push_back(std::make_shared<device_ext>(default_device)); std::vector<sycl::device> sycl_all_devs = sycl::device::get_devices(sycl::info::device_type::all); // Collect other devices except for the default device. if (default_device.is_cpu()) _cpu_device = 0; for (auto &dev : sycl_all_devs) { if (dev == default_device) { continue; } _devs.push_back(std::make_shared<device_ext>(dev)); if (_cpu_device == -1 && dev.is_cpu()) { _cpu_device = _devs.size() - 1; } } } void check_id(unsigned int id) const { if (id >= _devs.size()) { throw std::runtime_error("invalid device id"); } } std::vector<std::shared_ptr<device_ext>> _devs; /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current /// thread id in _thread2dev_map, which means default device should be used /// for the current thread. const unsigned int DEFAULT_DEVICE_ID = 0; /// thread-id to device-id map. std::map<unsigned int, unsigned int> _thread2dev_map; int _cpu_device = -1; }; /// Util function to get the default queue of current selected device depends on /// the USM config. Return the default out-of-ordered queue when USM-none is /// enabled, otherwise return the default in-ordered queue. static inline sycl::queue &get_default_queue() { return dev_mgr::instance().current_device().default_queue(); } /// Util function to get the default in-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_in_order_queue() { return dev_mgr::instance().current_device().in_order_queue(); } /// Util function to get the default out-of-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_out_of_order_queue() { return dev_mgr::instance().current_device().out_of_order_queue(); } /// Util function to get the id of current device in /// dpct device manager. static inline unsigned int get_current_device_id() { return dev_mgr::instance().current_device_id(); } /// Util function to get the current device. static inline device_ext &get_current_device() { return dev_mgr::instance().current_device(); } /// Util function to get a device by id. static inline device_ext &get_device(unsigned int id) { return dev_mgr::instance().get_device(id); } /// Util function to get the context of the default queue of current /// device in dpct device manager. static inline sycl::context get_default_context() { return dpct::get_current_device().get_context(); } /// Util function to get a CPU device. static inline device_ext &cpu_device() { return dev_mgr::instance().cpu_device(); } static inline unsigned int select_device(unsigned int id) { dev_mgr::instance().select_device(id); return id; } template <class DeviceSelector> static inline std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { dev_mgr::instance().select_device(selector); } static inline unsigned int get_device_id(const sycl::device &dev){ return dev_mgr::instance().get_device_id(dev); } /// Util function to check whether a device supports some kinds of sycl::aspect. inline void has_capability_or_fail(const sycl::device &dev, const std::initializer_list<sycl::aspect> &props) { for (const auto &it : props) { if (dev.has(it)) continue; switch (it) { case sycl::aspect::fp64: throw std::runtime_error("'double' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; case sycl::aspect::fp16: throw std::runtime_error("'half' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; default: #define __SYCL_ASPECT(ASPECT, ID) \ case sycl::aspect::ASPECT: \ return #ASPECT; #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID) #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE) auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string { switch (AspectNum) { #include <sycl/info/aspects.def> #include <sycl/info/aspects_deprecated.def> default: return "unknown aspect"; } }; #undef __SYCL_ASPECT_DEPRECATED_ALIAS #undef __SYCL_ASPECT_DEPRECATED #undef __SYCL_ASPECT throw std::runtime_error( "'" + getAspectNameStr(it) + "' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); } break; } } } // namespace dpct #endif // __DPCT_DEVICE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/memory.hpp
//==---- memory.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_HPP__ #define __DPCT_MEMORY_HPP__ #include "device.hpp" #include <sycl/sycl.hpp> #include <cassert> #include <cstdint> #include <cstring> #include <mutex> #include <unordered_map> #include <map> #include <utility> #include <thread> #include <type_traits> #if defined(__linux__) #include <sys/mman.h> #elif defined(_WIN64) #define NOMINMAX #include <windows.h> #else #error "Only support Windows and Linux." #endif namespace dpct { enum memcpy_direction { host_to_host, host_to_device, device_to_host, device_to_device, automatic }; enum memory_region { global = 0, // device global memory constant, // device constant memory local, // device local memory shared, // memory which can be accessed by host and device }; typedef uint8_t byte_t; /// Buffer type to be used in Memory Management runtime. typedef sycl::buffer<byte_t> buffer_t; /// Pitched 2D/3D memory data. class pitched_data { public: pitched_data() : pitched_data(nullptr, 0, 0, 0) {} pitched_data(void *data, size_t pitch, size_t x, size_t y) : _data(data), _pitch(pitch), _x(x), _y(y) {} void *get_data_ptr() { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_pitch() { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } size_t get_x() { return _x; } void set_x(size_t x) { _x = x; }; size_t get_y() { return _y; } void set_y(size_t y) { _y = y; } private: void *_data; size_t _pitch, _x, _y; }; namespace detail { class mem_mgr { mem_mgr() { // Reserved address space, no real memory allocation happens here. #if defined(__linux__) mapped_address_space = (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif defined(_WIN64) mapped_address_space = (byte_t *)VirtualAlloc( NULL, // NULL specified as the base address parameter mapped_region_size, // Size of allocation MEM_RESERVE, // Allocate reserved pages PAGE_NOACCESS); // Protection = no access #else #error "Only support Windows and Linux." #endif next_free = mapped_address_space; }; public: using buffer_id_t = int; struct allocation { buffer_t buffer; byte_t *alloc_ptr; size_t size; }; ~mem_mgr() { #if defined(__linux__) munmap(mapped_address_space, mapped_region_size); #elif defined(_WIN64) VirtualFree(mapped_address_space, 0, MEM_RELEASE); #else #error "Only support Windows and Linux." #endif }; mem_mgr(const mem_mgr &) = delete; mem_mgr &operator=(const mem_mgr &) = delete; mem_mgr(mem_mgr &&) = delete; mem_mgr &operator=(mem_mgr &&) = delete; /// Allocate void *mem_alloc(size_t size) { if (!size) return nullptr; std::lock_guard<std::mutex> lock(m_mutex); if (next_free + size > mapped_address_space + mapped_region_size) { throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool"); } // Allocation sycl::range<1> r(size); buffer_t buf(r); allocation A{buf, next_free, size}; // Map allocation to device pointer void *result = next_free; m_map.emplace(next_free + size, A); // Update pointer to the next free space. next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1); return result; } /// Deallocate void mem_free(const void *ptr) { if (!ptr) return; std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); m_map.erase(it); } /// map: device pointer -> allocation(buffer, alloc_ptr, size) allocation translate_ptr(const void *ptr) { std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); return it->second; } /// Check if the pointer represents device pointer or not. bool is_device_ptr(const void *ptr) const { std::lock_guard<std::mutex> lock(m_mutex); return (mapped_address_space <= ptr) && (ptr < mapped_address_space + mapped_region_size); } /// Returns the instance of memory manager singleton. static mem_mgr &instance() { static mem_mgr m; return m; } private: std::map<byte_t *, allocation> m_map; mutable std::mutex m_mutex; byte_t *mapped_address_space; byte_t *next_free; const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024; const size_t alignment = 256; /// This padding may be defined to some positive value to debug /// out of bound accesses. const size_t extra_padding = 0; std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr) { auto it = m_map.upper_bound((byte_t *)ptr); if (it == m_map.end()) { // Not a virtual pointer. throw std::runtime_error("can not get buffer from non-virtual pointer"); } const allocation &alloc = it->second; if (ptr < alloc.alloc_ptr) { // Out of bound. // This may happen if there's a gap between allocations due to alignment // or extra padding and pointer points to this gap. throw std::runtime_error("invalid virtual pointer"); } return it; } }; template <class T, memory_region Memory, size_t Dimension> class accessor; template <memory_region Memory, class T = byte_t> class memory_traits { public: static constexpr sycl::access::target target = sycl::access::target::device; static constexpr sycl::access_mode mode = (Memory == constant) ? sycl::access_mode::read : sycl::access_mode::read_write; static constexpr size_t type_size = sizeof(T); using element_t = typename std::conditional<Memory == constant, const T, T>::type; using value_t = typename std::remove_cv<T>::type; template <size_t Dimension = 1> using accessor_t = typename std::conditional< Memory == local, sycl::local_accessor<value_t, Dimension>, sycl::accessor<T, Dimension, mode, target>>::type; using pointer_t = T *; }; static inline void *dpct_malloc(size_t size, sycl::queue &q) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().mem_alloc(size * sizeof(byte_t)); #else return sycl::malloc_device(size, q.get_device(), q.get_context()); #endif // DPCT_USM_LEVEL_NONE } #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F)) static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z, sycl::queue &q) { pitch = PITCH_DEFAULT_ALIGN(x); return dpct_malloc(pitch * y * z, q); } /// Set \p value to the first \p size bytes starting from \p dev_ptr in \p q. /// /// \param q The queue in which the operation is done. /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns An event representing the memset operation. static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr, int value, size_t size) { #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); assert(mm.is_device_ptr(dev_ptr)); auto alloc = mm.translate_ptr(dev_ptr); size_t offset = (byte_t *)dev_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.fill(acc, (byte_t)value); }); #else return q.memset(dev_ptr, value, size); #endif // DPCT_USM_LEVEL_NONE } /// Set \p value to the 3D memory region pointed by \p data in \p q. \p size /// specifies the 3D memory size to set. /// /// \param q The queue in which the operation is done. /// \param data Pointer to the device memory region. /// \param value Value to be set. /// \param size Memory region size. /// \returns An event list representing the memset operations. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, pitched_data data, int value, sycl::range<3> size) { std::vector<sycl::event> event_list; size_t slice = data.get_pitch() * data.get_y(); unsigned char *data_surface = (unsigned char *)data.get_data_ptr(); for (size_t z = 0; z < size.get(2); ++z) { unsigned char *data_ptr = data_surface; for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0))); data_ptr += data.get_pitch(); } data_surface += slice; } return event_list; } /// memset 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, void *ptr, size_t pitch, int val, size_t x, size_t y) { return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val, sycl::range<3>(x, y, 1)); } enum class pointer_access_attribute { host_only = 0, device_only, host_device, end }; static pointer_access_attribute get_pointer_attribute(sycl::queue &q, const void *ptr) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().is_device_ptr(ptr) ? pointer_access_attribute::device_only : pointer_access_attribute::host_only; #else switch (sycl::get_pointer_type(ptr, q.get_context())) { case sycl::usm::alloc::unknown: return pointer_access_attribute::host_only; case sycl::usm::alloc::device: return pointer_access_attribute::device_only; case sycl::usm::alloc::shared: case sycl::usm::alloc::host: return pointer_access_attribute::host_device; } #endif } static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr, const void *from_ptr, memcpy_direction dir) { switch (dir) { case memcpy_direction::host_to_host: case memcpy_direction::host_to_device: case memcpy_direction::device_to_host: case memcpy_direction::device_to_device: return dir; case memcpy_direction::automatic: { // table[to_attribute][from_attribute] static const memcpy_direction direction_table[static_cast<unsigned>(pointer_access_attribute::end)] [static_cast<unsigned>(pointer_access_attribute::end)] = {{memcpy_direction::host_to_host, memcpy_direction::device_to_host, memcpy_direction::host_to_host}, {memcpy_direction::host_to_device, memcpy_direction::device_to_device, memcpy_direction::device_to_device}, {memcpy_direction::host_to_host, memcpy_direction::device_to_device, memcpy_direction::device_to_device}}; return direction_table[static_cast<unsigned>(get_pointer_attribute( q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))]; } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } } static sycl::event dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { if (!size) return sycl::event{}; #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); switch (real_direction) { case host_to_host: return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); }); case host_to_device: { auto alloc = mm.translate_ptr(to_ptr); size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(from_ptr, acc); }); } case device_to_host: { auto alloc = mm.translate_ptr(from_ptr); size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(acc, to_ptr); }); } case device_to_device: { auto to_alloc = mm.translate_ptr(to_ptr); auto from_alloc = mm.translate_ptr(from_ptr); size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, r, to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, r, from_o); cgh.copy(from_acc, to_acc); }); } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } #else return q.memcpy(to_ptr, from_ptr, size, dep_events); #endif // DPCT_USM_LEVEL_NONE } // Get actual copy range and make sure it will not exceed range. static inline size_t get_copy_range(sycl::range<3> size, size_t slice, size_t pitch) { return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0); } static inline size_t get_offset(sycl::id<3> id, size_t slice, size_t pitch) { return slice * id.get(2) + pitch * id.get(1) + id.get(0); } /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr /// and \p from_range to another specified by \p to_ptr and \p to_range. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, sycl::range<3> to_range, sycl::range<3> from_range, sycl::id<3> to_id, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { // RAII for host pointer class host_buffer { void *_buf; size_t _size; sycl::queue &_q; const std::vector<sycl::event> &_deps; // free operation depends public: host_buffer(size_t size, sycl::queue &q, const std::vector<sycl::event> &deps) : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {} void *get_ptr() const { return _buf; } size_t get_size() const { return _size; } ~host_buffer() { if (_buf) { _q.submit([&](sycl::handler &cgh) { cgh.depends_on(_deps); cgh.host_task([buf = _buf] { std::free(buf); }); }); } } }; std::vector<sycl::event> event_list; size_t to_slice = to_range.get(1) * to_range.get(0), from_slice = from_range.get(1) * from_range.get(0); unsigned char *to_surface = (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0)); const unsigned char *from_surface = (const unsigned char *)from_ptr + get_offset(from_id, from_slice, from_range.get(0)); if (to_slice == from_slice && to_slice == size.get(1) * size.get(0)) { return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2), direction, dep_events)}; } direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); size_t size_slice = size.get(1) * size.get(0); switch (direction) { case host_to_host: for (size_t z = 0; z < size.get(2); ++z) { unsigned char *to_ptr = to_surface; const unsigned char *from_ptr = from_surface; if (to_range.get(0) == from_range.get(0) && to_range.get(0) == size.get(0)) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice, direction, dep_events)); } else { for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0), direction, dep_events)); to_ptr += to_range.get(0); from_ptr += from_range.get(0); } } to_surface += to_slice; from_surface += from_slice; } break; case host_to_device: { host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q, event_list); std::vector<sycl::event> host_events; if (to_slice == size_slice) { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, dep_events); } else { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy( q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // If has padding data, not sure whether it is useless. So fill temp // buffer with it. std::vector<sycl::event>{ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(), device_to_host, dep_events)}); } // Copy from temp host buffer to device with only one submit. event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(), buf.get_size(), host_to_device, host_events)); break; } case device_to_host: { host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q, event_list); // Copy from host temp buffer to host target with reshaping. event_list = dpct_memcpy( q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // Copy from device to temp host buffer with only one submit. std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface, buf.get_size(), device_to_host, dep_events)}); break; } case device_to_device: #ifdef DPCT_USM_LEVEL_NONE { auto &mm = mem_mgr::instance(); auto to_alloc = mm.translate_ptr(to_surface); auto from_alloc = mm.translate_ptr(from_surface); size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr; event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, get_copy_range(size, to_slice, to_range.get(0)), to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, get_copy_range(size, from_slice, from_range.get(0)), from_o); cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>( size, [=](sycl::id<3> id) { to_acc[get_offset(id, to_slice, to_range.get(0))] = from_acc[get_offset(id, from_slice, from_range.get(0))]; }); })); } #else event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.parallel_for<class dpct_memcpy_3d_detail>( size, [=](sycl::id<3> id) { to_surface[get_offset(id, to_slice, to_range.get(0))] = from_surface[get_offset(id, from_slice, from_range.get(0))]; }); })); #endif break; default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } return event_list; } /// memcpy 2D/3D matrix specified by pitched_data. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id, pitched_data from, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction = automatic) { return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(), sycl::range<3>(to.get_pitch(), to.get_y(), 1), sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id, size, direction); } /// memcpy 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t to_pitch, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic) { return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1), sycl::range<3>(from_pitch, y, 1), sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), sycl::range<3>(x, y, 1), direction); } namespace deprecated { template <typename T, sycl::usm::alloc AllocKind> class usm_allocator { private: using Alloc = sycl::usm_allocator<T, AllocKind>; Alloc _impl; public: using value_type = typename std::allocator_traits<Alloc>::value_type; using pointer = typename std::allocator_traits<Alloc>::pointer; using const_pointer = typename std::allocator_traits<Alloc>::const_pointer; using void_pointer = typename std::allocator_traits<Alloc>::void_pointer; using const_void_pointer = typename std::allocator_traits<Alloc>::const_void_pointer; using reference = typename std::allocator_traits<Alloc>::value_type &; using const_reference = const typename std::allocator_traits<Alloc>::value_type &; using difference_type = typename std::allocator_traits<Alloc>::difference_type; using size_type = typename std::allocator_traits<Alloc>::size_type; using propagate_on_container_copy_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_copy_assignment; using propagate_on_container_move_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_move_assignment; using propagate_on_container_swap = typename std::allocator_traits<Alloc>::propagate_on_container_swap; using is_always_equal = typename std::allocator_traits<Alloc>::is_always_equal; template <typename U> struct rebind { typedef usm_allocator<U, AllocKind> other; }; usm_allocator() : _impl(dpct::get_default_queue()) {} ~usm_allocator() {} usm_allocator(const usm_allocator &other) : _impl(other._impl) {} usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {} pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type cnt, const_void_pointer hint = nullptr) { return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint); } void deallocate(pointer p, size_type cnt) { std::allocator_traits<Alloc>::deallocate(_impl, p, cnt); } size_type max_size() const { return std::allocator_traits<Alloc>::max_size(_impl); } bool operator==(const usm_allocator &other) const { return _impl == other._impl; } bool operator!=(const usm_allocator &other) const { return _impl != other._impl; } }; } // namespace deprecated inline void dpct_free(void *ptr, const sycl::queue &q) { if (ptr) { #ifdef DPCT_USM_LEVEL_NONE detail::mem_mgr::instance().mem_free(ptr); #else sycl::free(ptr, q.get_context()); #endif // DPCT_USM_LEVEL_NONE } } } // namespace detail #ifdef DPCT_USM_LEVEL_NONE /// Check if the pointer \p ptr represents device pointer or not. /// /// \param ptr The pointer to be checked. /// \returns true if \p ptr is a device pointer. template<class T> static inline bool is_device_ptr(T ptr) { if constexpr (std::is_pointer<T>::value) { return detail::mem_mgr::instance().is_device_ptr(ptr); } return false; } #endif /// Get the buffer and the offset of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// If NULL is passed as an argument, an exception will be thrown. /// \returns a pair containing both the buffer and the offset. static std::pair<buffer_t, size_t> get_buffer_and_offset(const void *ptr) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); size_t offset = (byte_t *)ptr - alloc.alloc_ptr; return std::make_pair(alloc.buffer, offset); } else { throw std::runtime_error( "NULL pointer argument in get_buffer_and_offset function is invalid"); } } /// Get the data pointed from \p ptr as a 1D buffer reinterpreted as type T. template <typename T> static sycl::buffer<T> get_buffer(const void *ptr) { if (!ptr) return sycl::buffer<T>(sycl::range<1>(0)); auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.reinterpret<T>( sycl::range<1>(alloc.size / sizeof(T))); } /// Get the buffer of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// \returns the buffer. static buffer_t get_buffer(const void *ptr) { return detail::mem_mgr::instance().translate_ptr(ptr).buffer; } /// A wrapper class contains an accessor and an offset. template <typename dataT, sycl::access_mode accessMode = sycl::access_mode::read_write> class access_wrapper { sycl::accessor<byte_t, 1, accessMode> accessor; size_t offset; public: /// Construct the accessor wrapper for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// \param cgh The command group handler. access_wrapper(const void *ptr, sycl::handler &cgh) : accessor(get_buffer(ptr).get_access<accessMode>(cgh)), offset(0) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); offset = (byte_t *)ptr - alloc.alloc_ptr; } /// Get the device pointer. /// /// \returns a device pointer with offset. dataT get_raw_pointer() const { return (dataT)(&accessor[0] + offset); } }; /// Get the accessor for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// If NULL is passed as an argument, an exception will be thrown. /// \param cgh The command group handler. /// \returns an accessor. template <sycl::access_mode accessMode = sycl::access_mode::read_write> static sycl::accessor<byte_t, 1, accessMode> get_access(const void *ptr, sycl::handler &cgh) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.get_access<accessMode>(cgh); } else { throw std::runtime_error( "NULL pointer argument in get_access function is invalid"); } } /// Allocate memory block on the device. /// \param num_bytes Number of bytes to allocate. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. template <typename T> static inline void *dpct_malloc(T num_bytes, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(static_cast<size_t>(num_bytes), q); } /// Get the host pointer from a buffer that is mapped to virtual pointer ptr. /// \param ptr Virtual Pointer mapped to device buffer /// \returns A host pointer template <typename T> static inline T *get_host_ptr(const void *ptr) { auto BufferOffset = get_buffer_and_offset(ptr); auto host_ptr = BufferOffset.first.get_host_access() .get_pointer(); return (T *)(host_ptr + BufferOffset.second); } /// Allocate memory block for 3D array on the device. /// \param size Size of the memory block, in bytes. /// \param q Queue to execute the allocate task. /// \returns A pitched_data object which stores the memory info. static inline pitched_data dpct_malloc(sycl::range<3> size, sycl::queue &q = get_default_queue()) { pitched_data pitch(nullptr, 0, size.get(0), size.get(1)); size_t pitch_size; pitch.set_data_ptr(detail::dpct_malloc(pitch_size, size.get(0), size.get(1), size.get(2), q)); pitch.set_pitch(pitch_size); return pitch; } /// Allocate memory block for 2D array on the device. /// \param [out] pitch Aligned size of x in bytes. /// \param x Range in dim x. /// \param y Range in dim y. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(pitch, x, y, 1, q); } /// free /// \param ptr Point to free. /// \param q Queue to execute the free task. /// \returns no return value. static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) { detail::dpct_free(ptr, q); } /// Free the device memory pointed by a batch of pointers in \p pointers which /// are related to \p q after \p events completed. /// /// \param pointers The pointers point to the device memory requested to be freed. /// \param events The events to be waited. /// \param q The sycl::queue the memory relates to. inline void async_dpct_free(const std::vector<void *> &pointers, const std::vector<sycl::event> &events, sycl::queue &q = get_default_queue()) { q.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { for (auto p : pointers) if (p) { detail::dpct_free(p, q); } }); }); } /// Synchronously copies \p size bytes from the address specified by \p from_ptr /// to the address specified by \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, /// \a device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction).wait(); } /// Asynchronously copies \p size bytes from the address specified by \p /// from_ptr to the address specified by \p to_ptr. The value of \p direction is /// used to set the copy direction, it can be \a host_to_host, \a /// host_to_device, \a device_to_host, \a device_to_device or \a automatic. The /// return of the function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction); } /// Synchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait(detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction)); } /// Asynchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// \p from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The return of the /// function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction); } /// Synchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The function will return after the copy is completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait( detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction)); } /// Asynchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The return of the function does NOT guarantee the copy is /// completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction); } /// Synchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The function will return after the memset operation is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \param q The queue in which the operation is done. /// \returns no return value. static void dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size).wait(); } /// Asynchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The return of the function does NOT guarantee the memset operation /// is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns no return value. static void async_dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The function will return after the /// memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, ptr, pitch, val, x, y)); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, ptr, pitch, val, x, y); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The function will return after the /// memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, pitch, val, size)); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, pitch, val, size); } /// dpct accessor used as device function parameter. template <class T, memory_region Memory, size_t Dimension> class accessor; template <class T, memory_region Memory> class accessor<T, Memory, 3> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<3>; accessor(pointer_t data, const sycl::range<3> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<3> &in_range) : accessor(acc.get_pointer(), in_range) {} accessor<T, Memory, 2> operator[](size_t index) const { sycl::range<2> sub(_range.get(1), _range.get(2)); return accessor<T, Memory, 2>(_data + index * sub.size(), sub); } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<3> _range; }; template <class T, memory_region Memory> class accessor<T, Memory, 2> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<2>; accessor(pointer_t data, const sycl::range<2> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<2> &in_range) : accessor(acc.get_pointer(), in_range) {} pointer_t operator[](size_t index) const { return _data + _range.get(1) * index; } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<2> _range; }; namespace detail { /// Device variable with address space of shared, global or constant. template <class T, memory_region Memory, size_t Dimension> class device_memory { public: using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<Dimension>; using value_t = typename detail::memory_traits<Memory, T>::value_t; using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>; device_memory() : device_memory(sycl::range<Dimension>(1)) {} /// Constructor of 1-D array with initializer list device_memory( const sycl::range<Dimension> &in_range, std::initializer_list<value_t> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range.size()); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T)); } /// Constructor of 2-D array with initializer list template <size_t D = Dimension> device_memory( const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range, std::initializer_list<std::initializer_list<value_t>> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range[0]); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); auto tmp_data = _host_ptr; for (auto sub_list : init_list) { assert(sub_list.size() <= in_range[1]); std::memcpy(tmp_data, sub_list.begin(), sub_list.size() * sizeof(T)); tmp_data += in_range[1]; } } /// Constructor with range device_memory(const sycl::range<Dimension> &range_in) : _size(range_in.size() * sizeof(T)), _range(range_in), _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) { static_assert( (Memory == global) || (Memory == constant) || (Memory == shared), "device memory region should be global, constant or shared"); // Make sure that singleton class mem_mgr and dev_mgr will destruct later // than this. detail::mem_mgr::instance(); dev_mgr::instance(); } /// Constructor with range template <class... Args> device_memory(Args... Arguments) : device_memory(sycl::range<Dimension>(Arguments...)) {} ~device_memory() { if (_device_ptr && !_reference) dpct::dpct_free(_device_ptr); if (_host_ptr) std::free(_host_ptr); } /// Allocate memory with default queue, and init memory if has initial value. void init() { init(dpct::get_default_queue()); } /// Allocate memory with specified queue, and init memory if has initial value. void init(sycl::queue &q) { if (_device_ptr) return; if (!_size) return; allocate_device(q); if (_host_ptr) detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size, host_to_device); } /// The variable is assigned to a device pointer. void assign(value_t *src, size_t size) { this->~device_memory(); new (this) device_memory(src, size); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr() { return get_ptr(get_default_queue()); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr(sycl::queue &q) { init(q); return _device_ptr; } /// Get the device memory object size in bytes. size_t get_size() { return _size; } template <size_t D = Dimension> typename std::enable_if<D == 1, T>::type &operator[](size_t index) { init(); #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>( _device_ptr) .template get_access<sycl::access_mode::read_write>()[index]; #else return _device_ptr[index]; #endif // DPCT_USM_LEVEL_NONE } #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { return get_buffer(_device_ptr) .template reinterpret<T, Dimension>(_range) .template get_access<detail::memory_traits<Memory, T>::mode, detail::memory_traits<Memory, T>::target>(cgh); } #else /// Get dpct::accessor with dimension info for the device memory object /// when usm is used and dimension is greater than 1. template <size_t D = Dimension> typename std::enable_if<D != 1, dpct_accessor_t>::type get_access(sycl::handler &cgh) { return dpct_accessor_t((T *)_device_ptr, _range); } #endif // DPCT_USM_LEVEL_NONE private: device_memory(value_t *memory_ptr, size_t size) : _size(size), _range(size / sizeof(T)), _reference(true), _device_ptr(memory_ptr) {} void allocate_device(sycl::queue &q) { #ifndef DPCT_USM_LEVEL_NONE if (Memory == shared) { _device_ptr = (value_t *)sycl::malloc_shared( _size, q.get_device(), q.get_context()); return; } #endif _device_ptr = (value_t *)detail::dpct_malloc(_size, q); } size_t _size; sycl::range<Dimension> _range; bool _reference; value_t *_host_ptr; value_t *_device_ptr; }; template <class T, memory_region Memory> class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> { public: using base = device_memory<T, Memory, 1>; using value_t = typename base::value_t; using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<0>; /// Constructor with initial value. device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {} /// Default constructor device_memory() : base(1) {} #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { auto buf = get_buffer(base::get_ptr()) .template reinterpret<T, 1>(sycl::range<1>(1)); return accessor_t(buf, cgh); } #endif // DPCT_USM_LEVEL_NONE }; } template <class T, size_t Dimension> using global_memory = detail::device_memory<T, global, Dimension>; template <class T, size_t Dimension> using constant_memory = detail::device_memory<T, constant, Dimension>; template <class T, size_t Dimension> using shared_memory = detail::device_memory<T, shared, Dimension>; // dpct::deprecated:: is for functionality that was introduced for compatibility // purpose, but relies on deprecated C++ features, which are either removed or // will be removed in the future standards. // Direct use of deprecated functionality in this namespace should be avoided. namespace deprecated { template <typename T> using usm_host_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::host>; template <typename T> using usm_device_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::shared>; } // namespace deprecated class pointer_attributes { public: void init(const void *ptr, sycl::queue &q = dpct::get_default_queue()) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error( "dpct::pointer_attributes: only works for USM pointer."); #else memory_type = sycl::get_pointer_type(ptr, q.get_context()); device_pointer = (memory_type != sycl::usm::alloc::unknown) ? ptr : nullptr; host_pointer = (memory_type != sycl::usm::alloc::unknown) && (memory_type != sycl::usm::alloc::device) ? ptr : nullptr; sycl::device device_obj = sycl::get_pointer_device(ptr, q.get_context()); device_id = dpct::dev_mgr::instance().get_device_id(device_obj); #endif } sycl::usm::alloc get_memory_type() { return memory_type; } const void *get_device_pointer() { return device_pointer; } const void *get_host_pointer() { return host_pointer; } bool is_memory_shared() { return memory_type == sycl::usm::alloc::shared; } unsigned int get_device_id() { return device_id; } private: sycl::usm::alloc memory_type = sycl::usm::alloc::unknown; const void *device_pointer = nullptr; const void *host_pointer = nullptr; unsigned int device_id = 0; }; } // namespace dpct #endif // __DPCT_MEMORY_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_utils.hpp
//==---- dpl_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DPL_UTILS_HPP__ #define __DPCT_DPL_UTILS_HPP__ #define ONEDPL_USE_DPCPP_BACKEND 1 #define __USE_DPCT 1 #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "dpl_extras/memory.h" #include "dpl_extras/algorithm.h" #include "dpl_extras/numeric.h" #include "dpl_extras/iterators.h" #include "dpl_extras/vector.h" #include "dpl_extras/dpcpp_extensions.h" #endif // __DPCT_DPL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/math.hpp
//==---- math.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MATH_HPP__ #define __DPCT_MATH_HPP__ #include <sycl/sycl.hpp> namespace dpct { namespace detail { template <typename VecT, class BinaryOperation, class = void> class vectorized_binary { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { VecT v4; for (size_t i = 0; i < v4.size(); ++i) { v4[i] = binary_op(a[i], b[i]); } return v4; } }; template <typename VecT, class BinaryOperation> class vectorized_binary< VecT, BinaryOperation, std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { return binary_op(a, b).template as<VecT>(); } }; template <typename T> bool isnan(const T a) { return sycl::isnan(a); } // TODO: Need add more specialization such as bfloat16 version. } // namespace detail /// Compute fast_length for variable-length array /// \param [in] a The array /// \param [in] len Length of the array /// \returns The computed fast_length inline float fast_length(const float *a, int len) { switch (len) { case 1: return a[0]; case 2: return sycl::fast_length(sycl::float2(a[0], a[1])); case 3: return sycl::fast_length(sycl::float3(a[0], a[1], a[2])); case 4: return sycl::fast_length(sycl::float4(a[0], a[1], a[2], a[3])); case 0: return 0; default: float f = 0; for (int i = 0; i < len; ++i) f += a[i] * a[i]; return sycl::sqrt(f); } } /// Calculate the square root of the input array. /// \param [in] a The array pointer /// \param [in] len Length of the array /// \returns The square root template <typename T> inline T length(const T *a, const int len) { switch (len) { case 1: return a[0]; case 2: return sycl::length(sycl::vec<T, 2>(a[0], a[1])); case 3: return sycl::length(sycl::vec<T, 3>(a[0], a[1], a[2])); case 4: return sycl::length(sycl::vec<T, 4>(a[0], a[1], a[2], a[3])); default: T ret = 0; for (int i = 0; i < len; ++i) ret += a[i] * a[i]; return sycl::sqrt(ret); } } /// Performs comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> compare(const T a, const T b, const BinaryOperation binary_op) { return binary_op(a, b); } template <typename T> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<std::not_equal_to<>, T, T>, bool>, bool> compare(const T a, const T b, const std::not_equal_to<> binary_op) { return !detail::isnan(a) && !detail::isnan(b) && binary_op(a, b); } /// Performs unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return detail::isnan(a) || detail::isnan(b) || binary_op(a, b); } /// Performs 2 element comparison and return true if both results are true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> compare_both(const T a, const T b, const BinaryOperation binary_op) { return compare(a[0], b[0], binary_op) && compare(a[1], b[1], binary_op); } /// Performs 2 element unordered comparison and return true if both results are /// true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> unordered_compare_both(const T a, const T b, const BinaryOperation binary_op) { return unordered_compare(a[0], b[0], binary_op) && unordered_compare(a[1], b[1], binary_op); } /// Performs 2 element comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> compare(const T a, const T b, const BinaryOperation binary_op) { return {compare(a[0], b[0], binary_op), compare(a[1], b[1], binary_op)}; } /// Performs 2 elements comparison, compare result of each element is 0 (false) /// or 0xffff (true), returns an unsigned int by composing compare result of two /// elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-compare(a[0], b[0], binary_op), -compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Performs 2 element unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return {unordered_compare(a[0], b[0], binary_op), unordered_compare(a[1], b[1], binary_op)}; } /// Performs 2 elements unordered comparison, compare result of each element is /// 0 (false) or 0xffff (true), returns an unsigned int by composing compare /// result of two elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned unordered_compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-unordered_compare(a[0], b[0], binary_op), -unordered_compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Determine whether 2 element value is NaN. /// \param [in] a The input value /// \returns the comparison result template <typename T> inline std::enable_if_t<T::size() == 2, T> isnan(const T a) { return {detail::isnan(a[0]), detail::isnan(a[1])}; } // min function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double min(const double a, const float b) { return sycl::fmin(a, static_cast<double>(b)); } inline double min(const float a, const double b) { return sycl::fmin(static_cast<double>(a), b); } inline float min(const float a, const float b) { return sycl::fmin(a, b); } inline double min(const double a, const double b) { return sycl::fmin(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) { return sycl::min(static_cast<std::uint32_t>(a), b); } inline std::int32_t min(const std::int32_t a, const std::int32_t b) { return sycl::min(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::int64_t min(const std::int64_t a, const std::int64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } // max function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double max(const double a, const float b) { return sycl::fmax(a, static_cast<double>(b)); } inline double max(const float a, const double b) { return sycl::fmax(static_cast<double>(a), b); } inline float max(const float a, const float b) { return sycl::fmax(a, b); } inline double max(const double a, const double b) { return sycl::fmax(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) { return sycl::max(static_cast<std::uint32_t>(a), b); } inline std::int32_t max(const std::int32_t a, const std::int32_t b) { return sycl::max(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::int64_t max(const std::int64_t a, const std::int64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } /// Performs relu saturation. /// \param [in] a The input value /// \returns the relu saturation result template <typename T> inline T relu(const T a) { if (!detail::isnan(a) && a < 0.f) return 0.f; return a; } template <class T> inline sycl::vec<T, 2> relu(const sycl::vec<T, 2> a) { return {relu(a[0]), relu(a[1])}; } /// Performs complex number multiply addition. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] c The third value /// \returns the operation result template <typename T> inline sycl::vec<T, 2> complex_mul_add(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const sycl::vec<T, 2> c) { return sycl::vec<T, 2>{a[0] * b[0] - a[1] * b[1] + c[0], a[0] * b[1] + a[1] * b[0] + c[1]}; } /// Performs 2 elements comparison and returns the bigger one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the bigger value template <typename T> inline T fmax_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmax(a, b); } template <typename T> inline sycl::vec<T, 2> fmax_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmax_nan(a[0], b[0]), fmax_nan(a[1], b[1])}; } /// Performs 2 elements comparison and returns the smaller one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the smaller value template <typename T> inline T fmin_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmin(a, b); } template <typename T> inline sycl::vec<T, 2> fmin_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmin_nan(a[0], b[0]), fmin_nan(a[1], b[1])}; } /// A sycl::abs wrapper functors. struct abs { template <typename T> auto operator()(const T x) const { return sycl::abs(x); } }; /// A sycl::abs_diff wrapper functors. struct abs_diff { template <typename T> auto operator()(const T x, const T y) const { return sycl::abs_diff(x, y); } }; /// A sycl::add_sat wrapper functors. struct add_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::add_sat(x, y); } }; /// A sycl::rhadd wrapper functors. struct rhadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::rhadd(x, y); } }; /// A sycl::hadd wrapper functors. struct hadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::hadd(x, y); } }; /// A sycl::max wrapper functors. struct maximum { template <typename T> auto operator()(const T x, const T y) const { return sycl::max(x, y); } }; /// A sycl::min wrapper functors. struct minimum { template <typename T> auto operator()(const T x, const T y) const { return sycl::min(x, y); } }; /// A sycl::sub_sat wrapper functors. struct sub_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::sub_sat(x, y); } }; /// Compute vectorized binary operation value for two values, with each value /// treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] BinaryOperation The binary operation class /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized binary operation value of the two values template <typename VecT, class BinaryOperation> inline unsigned vectorized_binary(unsigned a, unsigned b, const BinaryOperation binary_op) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op); v0 = v4.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized isgreater for two values, with each value treated as a /// vector type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized greater than of the two values template <typename S, typename T> inline T vectorized_isgreater(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = v2 > v3; v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized max for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized max of the two values template <typename S, typename T> inline T vectorized_max(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::max(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized min for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized min of the two values template <typename S, typename T> inline T vectorized_min(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::min(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized unary operation for a value, with the value treated as a /// vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] UnaryOperation The unary operation class /// \param [in] a The input value /// \returns The vectorized unary operation value of the input value template <typename VecT, class UnaryOperation> inline unsigned vectorized_unary(unsigned a, const UnaryOperation unary_op) { sycl::vec<unsigned, 1> v0{a}; auto v1 = v0.as<VecT>(); auto v2 = unary_op(v1); v0 = v2.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized absolute difference for two values without modulo /// overflow, with each value treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized absolute difference of the two values template <typename VecT> inline unsigned vectorized_sum_abs_diff(unsigned a, unsigned b) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = sycl::abs_diff(v2, v3); unsigned sum = 0; for (size_t i = 0; i < v4.size(); ++i) { sum += v4[i]; } return sum; } } // namespace dpct #endif // __DPCT_MATH_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/blas_utils.hpp
//==---- blas_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_BLAS_UTILS_HPP__ #define __DPCT_BLAS_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <utility> #include <vector> #include <thread> namespace dpct { /// Get the value of \p s. /// Copy the data to host synchronously, then return the data. /// \param [in] p The pointer points the data. /// \param [in] q The queue where the memory copy should be executed. template <typename T> inline auto get_value(const T *s, sycl::queue &q) { return detail::get_value(s, q); } namespace detail { inline void mem_free(sycl::queue *exec_queue, std::vector<void *> pointers_array, sycl::event e) { e.wait(); for (auto p : pointers_array) sycl::free(p, *exec_queue); } inline int stride_for(int num_elems, int mem_align_in_elems) { return ((num_elems - 1) / mem_align_in_elems + 1) * mem_align_in_elems; } #ifndef DPCT_USM_LEVEL_NONE template<typename T> class working_memory { T *_input_ptr; T *_temp_ptr; bool _is_sycl_malloced = false; bool _is_scalar_value = false; sycl::queue _q; sycl::event _e; public: working_memory(size_t size, sycl::queue q) : _q(q) { _is_scalar_value = false; _temp_ptr = (T *)sycl::malloc_device(size, q); } working_memory(T *result_ptr, sycl::queue q) : _input_ptr(result_ptr), _q(q) { _is_scalar_value = true; _is_sycl_malloced = sycl::get_pointer_type(_input_ptr, _q.get_context()) != sycl::usm::alloc::unknown; if (!_is_sycl_malloced) _temp_ptr = sycl::malloc_shared<T>(1, _q); } auto get_ptr() { if (_is_scalar_value && _is_sycl_malloced) return _input_ptr; return _temp_ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_is_scalar_value) { if (!_is_sycl_malloced) { _q.memcpy(_input_ptr, _temp_ptr, sizeof(T)).wait(); sycl::free(_temp_ptr, _q); } } else { std::vector<void *> ptrs{_temp_ptr}; dpct::async_dpct_free(ptrs, {_e}); } } }; #endif template <typename Tx, typename Tr> inline void nrm2_impl(sycl::queue &q, int n, const void *x, int incx, void *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Tx>(x); auto r_buffer = sycl::buffer<Tr, 1>(reinterpret_cast<Tr *>(result), sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); oneapi::mkl::blas::column_major::nrm2(q, n, x_buffer, incx, r_buffer); #else working_memory<Tr> res_mem(reinterpret_cast<Tr *>(result), q); oneapi::mkl::blas::column_major::nrm2(q, n, reinterpret_cast<const Tx *>(x), incx, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate, class Txy, class Tr> inline void dotuc_impl(sycl::queue &q, int n, const Txy *x, int incx, const Txy *y, int incy, Tr *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Txy>(x); auto y_buffer = dpct::get_buffer<Txy>(y); auto r_buffer = sycl::buffer<Tr, 1>((Tr *)result, sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x_buffer, incx, y_buffer, incy, r_buffer); else oneapi::mkl::blas::column_major::dotu(q, n, x_buffer, incx, y_buffer, incy, r_buffer); } else oneapi::mkl::blas::column_major::dot(q, n, x_buffer, incx, y_buffer, incy, r_buffer); #else working_memory<Tr> res_mem(result, q); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x, incx, y, incy, res_mem.get_ptr()); else oneapi::mkl::blas::column_major::dotu(q, n, x, incx, y, incy, res_mem.get_ptr()); } else oneapi::mkl::blas::column_major::dot(q, n, x, incx, y, incy, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate> inline void dotuc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, y_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const float *>(x), incx, reinterpret_cast<const float *>(y), incy, reinterpret_cast<float *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const double *>(x), incx, reinterpret_cast<const double *>(y), incy, reinterpret_cast<double *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<float> *>(x), incx, reinterpret_cast<const std::complex<float> *>(y), incy, reinterpret_cast<std::complex<float> *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<double> *>(x), incx, reinterpret_cast<const std::complex<double> *>(y), incy, reinterpret_cast<std::complex<double> *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const sycl::half *>(x), incx, reinterpret_cast<const sycl::half *>(y), incy, reinterpret_cast<sycl::half *>(result)); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } template <class Tx, class Te> inline void scal_impl(sycl::queue &q, int n, const void *alpha, void *x, int incx) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<Tx *>(x)); oneapi::mkl::blas::column_major::scal(q, n, alpha_val, data_x, incx); #endif } template <class Txy, class Te> inline void axpy_impl(sycl::queue &q, int n, const void *alpha, const void *x, int incx, void *y, int incy) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<const Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::axpy(q, n, alpha_val, data_x, incx, data_y, incy); #endif } template <class Txy, class Tc, class Ts> inline void rot_impl(sycl::queue &q, int n, void *x, int incx, void *y, int incy, const void *c, const void *s) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Tc c_value = dpct::get_value(reinterpret_cast<const Tc *>(c), q); Ts s_value = dpct::get_value(reinterpret_cast<const Ts *>(s), q); auto data_x = get_memory(reinterpret_cast<Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::rot(q, n, data_x, incx, data_y, incy, c_value, s_value); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, const void *b, int ldb, const void *beta, void *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void **a, int lda, const void **b, int ldb, const void *beta, void **c, int ldc, int batch_size) { struct matrix_info_t { oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; matrix_info->value_info[1] = beta_value; matrix_info->size_info[0] = m; matrix_info->size_info[1] = n; matrix_info->size_info[2] = k; matrix_info->ld_info[0] = lda; matrix_info->ld_info[1] = ldb; matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); }); }); } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, long long int stride_a, const void *b, int ldb, long long int stride_b, const void *beta, void *c, int ldc, long long int stride_c, int batch_size) { Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm_batch( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } template <bool is_hermitian, class T, class Tbeta> inline void rk_impl(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { // For symmetric matrix, this function performs: C = alpha*OP(A)*(OP(B))^T + beta*C // For Hermitian matrix, this function performs: C = alpha*OP(A)*(OP(B))^H + beta*C // The gemmt() function performs: C = alpha*OPA(A)*OPB(B) + beta*C // So the OPB need be updated before we call gemmt(). using Ty = typename dpct::DataType<T>::T2; using Ts = typename dpct::DataType<Tbeta>::T2; Ty alpha_value = dpct::get_value(reinterpret_cast<const Ty *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); oneapi::mkl::transpose trans_A = trans, trans_B = trans; int origin_b_rows = trans == oneapi::mkl::transpose::nontrans ? n : k; int origin_b_cols = trans == oneapi::mkl::transpose::nontrans ? k : n; if ((is_hermitian && trans == oneapi::mkl::transpose::trans) || (!is_hermitian && !std::is_floating_point_v<Ty> && trans == oneapi::mkl::transpose::conjtrans)) { // In this case, OPB need be a conjugate operation, // but only notrans, conjtrans and trans are available. // So we need do a conjtrans operation first, then do a trans operation. trans_B = oneapi::mkl::transpose::trans; auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); #ifdef DPCT_USM_LEVEL_NONE auto new_B_buffer = sycl::buffer<Ty, 1>(sycl::range<1>(origin_b_rows * origin_b_cols)); auto from_buffer = dpct::get_buffer<Ty>(b); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), from_buffer, ldb, origin_b_rows * ldb, new_B_buffer, origin_b_cols, origin_b_rows * origin_b_cols, 1); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, new_B_buffer, origin_b_cols, beta_value, data_c, ldc); #else working_memory<T> new_B(origin_b_rows * origin_b_cols * sizeof(T), q); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), reinterpret_cast<const Ty *>(b), ldb, origin_b_rows * ldb, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, origin_b_rows * origin_b_cols, 1); sycl::event e = oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, beta_value, data_c, ldc); new_B.set_event(e); #endif } else { if constexpr (is_hermitian) { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::conjtrans : oneapi::mkl::transpose::nontrans; } else { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans; } auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_b = get_memory(reinterpret_cast<const Ty *>(b)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } } template <class Ta, class Tb, class Ts> inline void trsm_batch_impl(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, int lda, void **b, int ldb, int batch_size) { struct matrix_info_t { matrix_info_t(oneapi::mkl::side side_info, oneapi::mkl::uplo uplo_info, oneapi::mkl::transpose transpose_info, oneapi::mkl::diag diag_info, Ts value_info, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::int64_t groupsize_info) : side_info(side_info), uplo_info(uplo_info), transpose_info(transpose_info), diag_info(diag_info), value_info(value_info), groupsize_info(groupsize_info) { size_info[0] = m; size_info[1] = n; ld_info[0] = lda; ld_info[1] = ldb; } oneapi::mkl::side side_info; oneapi::mkl::uplo uplo_info; oneapi::mkl::transpose transpose_info; oneapi::mkl::diag diag_info; Ts value_info; std::int64_t size_info[2]; std::int64_t ld_info[2]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); matrix_info_t *matrix_info = new matrix_info_t(left_right, upper_lower, trans, unit_diag, alpha_value, m, n, lda, ldb, batch_size); sycl::event e = oneapi::mkl::blas::column_major::trsm_batch( q, &(matrix_info->side_info), &(matrix_info->uplo_info), &(matrix_info->transpose_info), &(matrix_info->diag_info), matrix_info->size_info, matrix_info->size_info + 1, &(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<Tb **>(b), matrix_info->ld_info + 1, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete matrix_info; }); }); } template <typename T> inline void getrfnp_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *info, int batch_size) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); std::int64_t stride_a = n * lda; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrfnp_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, batch_size); Ty *a_strided_mem = (Ty *)dpct::dpct_malloc(stride_a * batch_size * sizeof(Ty), exec_queue); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct::dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct::dpct_memcpy(a_strided_mem + i * stride_a, host_a[i], n * lda * sizeof(T)); #ifdef DPCT_USM_LEVEL_NONE { sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_strided_mem); oneapi::mkl::lapack::getrfnp_batch(exec_queue, n, n, a_buffer, lda, stride_a, batch_size, scratchpad, scratchpad_size); } std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic)); #else Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); sycl::event e = oneapi::mkl::lapack::getrfnp_batch( exec_queue, n, n, a_strided_mem, lda, stride_a, batch_size, scratchpad, scratchpad_size); std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic, {e})); std::vector<void *> ptrs{scratchpad, a_strided_mem}; dpct::async_dpct_free(ptrs, events, exec_queue); #endif exec_queue.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { free(host_a); }); }); #endif } } // namespace detail inline oneapi::mkl::transpose get_transpose(int t) { if (t == 0) { return oneapi::mkl::transpose::nontrans; } else if (t == 1) { return oneapi::mkl::transpose::trans; } else { return oneapi::mkl::transpose::conjtrans; } } /// Computes the LU factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in, out] a Array of pointers to matrices. These matrices will be /// overwritten by lower triangulars with unit diagonal elements and upper /// triangulars. /// \param [in] lda The leading dimension of the matrices. /// \param [out] ipiv An array stores the pivot indices. If \p ipiv is nullptr, /// non-pivoting LU factorization is computed. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrf_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *ipiv, int *info, int batch_size) { if (ipiv == nullptr) { detail::getrfnp_batch_wrapper(exec_queue, n, a, lda, info, batch_size); return; } using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, stride_ipiv, batch_size); T *a_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_buffer_ptr); oneapi::mkl::lapack::getrf_batch(exec_queue, n, n, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); auto to_buffer = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = ipiv_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = to_buffer.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * n + id.get(1)] = static_cast<int>(from_acc[id.get(0) * stride_ipiv + id.get(1)]); }); }); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); std::vector<void *> ptrs{host_a}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; oneapi::mkl::lapack::getrf_batch(exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); sycl::event e = exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv[idx] = static_cast<int>(ipiv_int64[idx]); }); }); std::vector<void *> ptrs{scratchpad, ipiv_int64, ipiv_int64_ptr, a_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Solves a system of linear equations with a batch of LU-factored square /// coefficient matrices, with multiple right-hand sides. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] trans Indicates the form of the linear equations. /// \param [in] n The order of the matrices. /// \param [in] nrhs The number of right hand sides. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [in, out] b Array of pointers to matrices, whose columns are /// the right-hand sides for the systems of equations. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrs_batch_wrapper(sycl::queue &exec_queue, oneapi::mkl::transpose trans, int n, int nrhs, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_b = nrhs * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, trans, n, nrhs, lda, stride_a, stride_ipiv, ldb, stride_b, batch_size); T *a_buffer_ptr, *b_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); dpct_memcpy(b_buffer_ptr + i * stride_b, host_b[i], nrhs * ldb * sizeof(T)); } { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getrs_batch(exec_queue, trans, n, nrhs, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, b_buffer, ldb, stride_b, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, nrhs * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t nrhs_int64 = nrhs; std::int64_t lda_int64 = lda; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, &trans, &n_int64, &nrhs_int64, &lda_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; sycl::event e = oneapi::mkl::lapack::getrs_batch( exec_queue, &trans, &n_int64, &nrhs_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, (Ty **)b_shared, &ldb_int64, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the inverses of a batch of LU-factored matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [out] b Array of pointers to inverse matrices. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getri_batch_wrapper(sycl::queue &exec_queue, int n, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_b = n * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, n, ldb, stride_b, stride_ipiv, batch_size); T *b_buffer_ptr; b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_buffer_ptr + i * stride_b, host_a[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } { auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getri_batch(exec_queue, n, b_buffer, ldb, stride_b, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, n * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, &n_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) { ipiv_int64_ptr[i] = ipiv_int64 + n * i; // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_shared[i], a_shared[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } sycl::event e = oneapi::mkl::lapack::getri_batch( exec_queue, &n_int64, (Ty **)b_shared, &ldb_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the QR factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] m The number of rows in the matrices. /// \param [in] n The number of columns in the matrices. /// \param [in, out] a Array of pointers to matrices. These /// matrices will be overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [out] tau An array stores the scalars. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void geqrf_batch_wrapper(sycl::queue exec_queue, int m, int n, T *a[], int lda, T *tau[], int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_tau = std::max(1, std::min(m, n)); std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, m, n, lda, stride_a, stride_tau, batch_size); T *a_buffer_ptr, *tau_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); tau_buffer_ptr = (T *)dpct_malloc(stride_tau * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_tau = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_tau, tau, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto tau_buffer = get_buffer<Ty>(tau_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; oneapi::mkl::lapack::geqrf_batch(exec_queue, m, n, a_buffer, lda, stride_a, tau_buffer, stride_tau, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events_a; std::vector<sycl::event> events_tau; for (std::int64_t i = 0; i < batch_size; ++i) { events_a.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); events_tau.push_back(detail::dpct_memcpy( exec_queue, host_tau[i], tau_buffer_ptr + i * stride_tau, std::max(1, std::min(m, n)) * sizeof(T), automatic)); } std::vector<void *> ptr_a{host_a}; std::vector<void *> ptr_tau{host_tau}; std::thread mem_free_thread_a( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_a, events_a); std::thread mem_free_thread_tau( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_tau, events_tau); mem_free_thread_a.detach(); mem_free_thread_tau.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **tau_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(tau_shared, tau, batch_size * sizeof(T *)).wait(); sycl::event e = oneapi::mkl::lapack::geqrf_batch( exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, (Ty **)tau_shared, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, a_shared, tau_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the Euclidean norm of a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void nrm2(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::nrm2_impl<float, float>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::nrm2_impl<double, double>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::nrm2_impl<std::complex<float>, float>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::nrm2_impl<std::complex<double>, double>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::nrm2_impl<sycl::half, sycl::half>( q, n, x, incx, result); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes the dot product of two vectors. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dot(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<false>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the dot product of two vectors, conjugating the first vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dotc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<true>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the product of a vector by a scalar. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. inline void scal(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, void *x, library_data_t x_type, int incx) { std::uint64_t key = detail::get_type_combination_id(x_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float): { detail::scal_impl<float, float>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_double): { detail::scal_impl<double, double>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_float): { detail::scal_impl<std::complex<float>, std::complex<float>>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_double): { detail::scal_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_half): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::scal_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a vector-scalar product and adds the result to a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. inline void axpy(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, const void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy) { std::uint64_t key = detail::get_type_combination_id(x_type, alpha_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::axpy_impl<float, float>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::axpy_impl<double, double>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::axpy_impl<std::complex<float>, std::complex<float>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::axpy_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::axpy_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx, y, incy); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Performs rotation of points in the plane. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [in] c Scaling factor. /// \param [in] s Scaling factor. /// \param [in] cs_type Data type of the scaling factors. inline void rot(sycl::queue &q, int n, void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy, const void *c, const void *s, library_data_t cs_type) { std::uint64_t key = detail::get_type_combination_id(x_type, cs_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::rot_impl<float, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::rot_impl<double, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::rot_impl<std::complex<float>, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::rot_impl<std::complex<double>, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::rot_impl<std::complex<float>, float, std::complex<float>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::rot_impl<std::complex<double>, double, std::complex<double>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::rot_impl<sycl::half, sycl::half, sycl::half>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_bfloat16, library_data_t::real_bfloat16): { detail::rot_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16>(q, n, x, incx, y, incy, c, s); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, const void *b, library_data_t b_type, int ldb, const void *beta, void *c, library_data_t c_type, int ldc, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>( q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a[], library_data_t a_type, int lda, const void *b[], library_data_t b_type, int ldb, const void *beta, void *c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] stride_a Stride between the different A matrices. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] stride_b Stride between the different B matrices. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, long long int stride_a, const void *b, library_data_t b_type, int ldb, long long int stride_b, const void *beta, void *c, library_data_t c_type, int ldc, long long int stride_c, int batch_size, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, std::int32_t>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b, &beta_half, c, ldc, stride_c, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// This routines perform a special rank-k update of a symmetric matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T> inline void syrk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const T *beta, T *c, int ldc) { detail::rk_impl<false, T, T>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routines perform a special rank-k update of a Hermitian matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T, class Tbeta> inline void herk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { detail::rk_impl<true, T, Tbeta>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routine performs a group of trsm operations. Each trsm solves an /// equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A multiplies X on the left or on the right. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of the B matrices. /// \param [in] n Number of columns of the B matrices. /// \param [in] alpha Scaling factor for the solutions. /// \param [in] a Input matrices A. /// \param [in] a_type Data type of the matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in, out] b Input and output matrices B. /// \param [in] b_type Data type of the matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [in] batch_size Specifies the number of trsm operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void trsm_batch(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, library_data_t a_type, int lda, void **b, library_data_t b_type, int ldb, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::uint64_t key = detail::get_type_combination_id(a_type, b_type, scaling_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::trsm_batch_impl<float, float, float>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::trsm_batch_impl<double, double, double>( q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::trsm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::trsm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a triangular matrix-general matrix product. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A is on the left or right side of the /// multiplication. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of B. /// \param [in] n Number of columns of B. /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in] b Input matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [out] c Output matrices C. /// \param [in] ldc Leading dimension of the matrices C. template <class T> inline void trmm(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const T *alpha, const T *a, int lda, const T *b, int ldb, T *c, int ldc) { using Ty = typename DataType<T>::T2; auto alpha_val = dpct::get_value(alpha, q); if (b != c) { dpct::matrix_mem_copy(c, b, ldc, ldb, m, n, dpct::device_to_device, q); } auto data_a = detail::get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = detail::get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::trmm(q, left_right, upper_lower, trans, unit_diag, m, n, alpha_val, data_a, lda, data_c, ldc); } } // namespace dpct #endif // __DPCT_BLAS_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/atomic.hpp
//==---- atomic.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ATOMIC_HPP__ #define __DPCT_ATOMIC_HPP__ #include <sycl/sycl.hpp> namespace dpct { /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_add(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_add(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_sub(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_sub(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_sub<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_and(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_and(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_and<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_and<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_and<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_and<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_or(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_or(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_or<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_or<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_or<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_or<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_xor(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_xor(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_xor<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_min(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_min(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_min<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_min<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_min<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_min<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_max(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_max(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_max<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_max<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_max<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_max<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically set \p operand to the value stored in \p addr, if old value stored in /// \p addr is equal to zero or greater than \p operand, else decrease the value stored /// in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_dec(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old == 0 || old > operand) { if (atm.compare_exchange_strong(old, operand)) break; } else if (atm.compare_exchange_strong(old, old - 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old >= operand) { if (atm.compare_exchange_strong(old, 0)) break; } else if (atm.compare_exchange_strong(old, old + 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_exchange(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_exchange(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_exchange<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_exchange<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_exchange<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_exchange<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in, out] addr Multi_ptr. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( sycl::multi_ptr<T, addressSpace> addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(*addr); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( sycl::multi_ptr<T1, addressSpace> addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(*addr); T1 expected_value = expected; atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in] addr The pointer to the data. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( T *addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( T1 *addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { T1 expected_value = expected; auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomic extension to implement standard APIs in std::atomic namespace detail{ template <typename T> struct IsValidAtomicType { static constexpr bool value = (std::is_same<T, int>::value || std::is_same<T, unsigned int>::value || std::is_same<T, long>::value || std::is_same<T, unsigned long>::value || std::is_same<T, long long>::value || std::is_same<T, unsigned long long>::value || std::is_same<T, float>::value || std::is_same<T, double>::value || std::is_pointer<T>::value); }; } // namespace detail template <typename T, sycl::memory_scope DefaultScope = sycl::memory_scope::system, sycl::memory_order DefaultOrder = sycl::memory_order::seq_cst, sycl::access::address_space Space = sycl::access::address_space::generic_space> class atomic{ static_assert( detail::IsValidAtomicType<T>::value, "Invalid atomic type. Valid types are int, unsigned int, long, " "unsigned long, long long, unsigned long long, float, double " "and pointer types"); T __d; public: /// default memory synchronization order static constexpr sycl::memory_order default_read_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_read_order; static constexpr sycl::memory_order default_write_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_write_order; static constexpr sycl::memory_scope default_scope = DefaultScope; static constexpr sycl::memory_order default_read_modify_write_order = DefaultOrder; /// Default constructor. constexpr atomic() noexcept = default; /// Constructor with initialize value. constexpr atomic(T d) noexcept : __d(d){}; /// atomically replaces the value of the referenced object with a non-atomic argument /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. void store(T operand, sycl::memory_order memoryOrder = default_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); atm.store(operand, memoryOrder, memoryScope); } /// atomically obtains the value of the referenced object /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object T load(sycl::memory_order memoryOrder = default_read_order, sycl::memory_scope memoryScope = default_scope) const noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm( const_cast<T &>(__d)); return atm.load(memoryOrder, memoryScope); } /// atomically replaces the value of the referenced object and obtains the value held previously /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T exchange(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.exchange(operand, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, memoryOrder, memoryScope); } /// atomically adds the argument to the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic addition /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_add(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_add(operand, memoryOrder, memoryScope); } /// atomically subtracts the argument from the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic subtraction /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_sub(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_sub(operand, memoryOrder, memoryScope); } }; } // namespace dpct #endif // __DPCT_ATOMIC_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/rng_utils.hpp
//==---- rng_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_RNG_UTILS_HPP__ #define __DPCT_RNG_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. #include <oneapi/mkl/rng/device.hpp> #endif #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace rng { #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. namespace device { /// The random number generator on device. /// \tparam engine_t The device random number generator engine. It can only be /// oneapi::mkl::rng::device::mrg32k3a<1> or /// oneapi::mkl::rng::device::mrg32k3a<4> or /// oneapi::mkl::rng::device::philox4x32x10<1> or /// oneapi::mkl::rng::device::philox4x32x10<4>. template <typename engine_t> class rng_generator { static_assert( std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>, "engine_t can only be oneapi::mkl::rng::device::mrg32k3a<1> or " "oneapi::mkl::rng::device::mrg32k3a<4> or " "oneapi::mkl::rng::device::philox4x32x10<1> or " "oneapi::mkl::rng::device::philox4x32x10<4> or " "oneapi::mkl::rng::device::mcg59<1>."); static constexpr bool _is_engine_vec_size_one = std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>; static constexpr std::uint64_t default_seed = 0; oneapi::mkl::rng::device::bits<std::uint32_t> _distr_bits; oneapi::mkl::rng::device::uniform_bits<std::uint32_t> _distr_uniform_bits; oneapi::mkl::rng::device::gaussian<float> _distr_gaussian_float; oneapi::mkl::rng::device::gaussian<double> _distr_gaussian_double; oneapi::mkl::rng::device::lognormal<float> _distr_lognormal_float; oneapi::mkl::rng::device::lognormal<double> _distr_lognormal_double; oneapi::mkl::rng::device::poisson<std::uint32_t> _distr_poisson; oneapi::mkl::rng::device::uniform<float> _distr_uniform_float; oneapi::mkl::rng::device::uniform<double> _distr_uniform_double; engine_t _engine; public: /// Default constructor of rng_generator rng_generator() { _engine = engine_t(default_seed); } /// Constructor of rng_generator if engine type is not mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. /// The number is calculated as: num_to_skip[0] + num_to_skip[1] * 2^64 + /// num_to_skip[2] * 2^128 + ... + num_to_skip[n-1] * 2^(64*(n-1)) template <typename T = engine_t, typename std::enable_if<!std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::initializer_list<std::uint64_t> num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Constructor of rng_generator if engine type is mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. template <typename T = engine_t, typename std::enable_if<std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::uint64_t num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Generate random number(s) obeys distribution \tparam distr_t. /// \tparam T The distribution of the random number. It can only be /// oneapi::mkl::rng::device::bits<std::uint32_t>, /// oneapi::mkl::rng::device::uniform_bits<std::uint32_t>, /// oneapi::mkl::rng::device::gaussian<float>, /// oneapi::mkl::rng::device::gaussian<double>, /// oneapi::mkl::rng::device::lognormal<float>, /// oneapi::mkl::rng::device::lognormal<double>, /// oneapi::mkl::rng::device::poisson<std::uint32_t>, /// oneapi::mkl::rng::device::uniform<float> or /// oneapi::mkl::rng::device::uniform<double> /// \tparam vec_size The length of the return vector. It can only be 1, 2 /// or 4. /// \param distr_params The parameter(s) for lognormal or poisson /// distribution. /// \return The vector of the random number(s). template <typename distr_t, int vec_size, class... distr_params_t> auto generate(distr_params_t... distr_params) { static_assert(vec_size == 1 || vec_size == 2 || vec_size == 4, "vec_size is not supported."); static_assert( std::disjunction_v< std::is_same<distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::poisson<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<double>>>, "distribution is not supported."); if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_bits); } if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_uniform_bits); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<float>>) { return generate_vec<vec_size>(_distr_gaussian_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<double>>) { return generate_vec<vec_size>(_distr_gaussian_double); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<float>>) { return generate_vec<vec_size>(_distr_lognormal_float, distr_params..., 0.0f, 1.0f); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<double>>) { return generate_vec<vec_size>(_distr_lognormal_double, distr_params..., 0.0, 1.0); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::poisson< std::uint32_t>>) { return generate_vec<vec_size>(_distr_poisson, distr_params...); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<float>>) { return generate_vec<vec_size>(_distr_uniform_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<double>>) { return generate_vec<vec_size>(_distr_uniform_double); } } /// Get the random number generator engine. /// \return The reference of the internal random number generator engine. engine_t &get_engine() { return _engine; } private: template <int vec_size, typename distr_t, class... distr_params_t> auto generate_vec(distr_t &distr, distr_params_t... distr_params) { if constexpr (sizeof...(distr_params_t)) { typename distr_t::param_type pt(distr_params...); distr.param(pt); } if constexpr (vec_size == 4) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 4> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); res.z() = oneapi::mkl::rng::device::generate(distr, _engine); res.w() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { return oneapi::mkl::rng::device::generate(distr, _engine); } } else if constexpr (vec_size == 1) { if constexpr (_is_engine_vec_size_one) { return oneapi::mkl::rng::device::generate(distr, _engine); } else { return oneapi::mkl::rng::device::generate_single(distr, _engine); } } else if constexpr (vec_size == 2) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate_single(distr, _engine); res.y() = oneapi::mkl::rng::device::generate_single(distr, _engine); return res; } } } }; } // namespace device #endif namespace host { namespace detail { class rng_generator_base { public: /// Set the seed of host rng_generator. /// \param seed The engine seed. virtual void set_seed(const std::uint64_t seed) = 0; /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. virtual void set_dimensions(const std::uint32_t dimensions) = 0; /// Set the queue of host rng_generator. /// \param queue The engine queue. virtual void set_queue(sycl::queue *queue) = 0; /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned int *output, std::int64_t n) = 0; /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) = 0; /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(float *output, std::int64_t n, float m, float s) = 0; /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(double *output, std::int64_t n, double m, double s) = 0; /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) = 0; /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) = 0; /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. virtual inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) = 0; /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(float *output, std::int64_t n) = 0; /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(double *output, std::int64_t n) = 0; /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. virtual void skip_ahead(const std::uint64_t num_to_skip) = 0; protected: sycl::queue *_queue{&dpct::get_default_queue()}; std::uint64_t _seed{0}; std::uint32_t _dimensions{1}; }; /// The random number generator on host. template <typename engine_t = oneapi::mkl::rng::philox4x32x10> class rng_generator : public rng_generator_base { public: /// Constructor of rng_generator. rng_generator() : _engine(create_engine(_queue, _seed, _dimensions)) {} /// Set the seed of host rng_generator. /// \param seed The engine seed. void set_seed(const std::uint64_t seed) { if (seed == _seed) { return; } _seed = seed; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. void set_dimensions(const std::uint32_t dimensions) { if (dimensions == _dimensions) { return; } _dimensions = dimensions; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the queue of host rng_generator. /// \param queue The engine queue. void set_queue(sycl::queue *queue) { if (queue == _queue) { return; } _queue = queue; _engine = create_engine(_queue, _seed, _dimensions); } /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned int *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned int) == sizeof(std::uint32_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint32_t>>( (std::uint32_t *)output, n); #endif } /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned long long) == sizeof(std::uint64_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint64_t>>( (std::uint64_t *)output, n); #endif } /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(float *output, std::int64_t n, float m, float s) { generate<oneapi::mkl::rng::lognormal<float>>(output, n, m, s); } /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(double *output, std::int64_t n, double m, double s) { generate<oneapi::mkl::rng::lognormal<double>>(output, n, m, s); } /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) { generate<oneapi::mkl::rng::gaussian<float>>(output, n, mean, stddev); } /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) { generate<oneapi::mkl::rng::gaussian<double>>(output, n, mean, stddev); } /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) { generate<oneapi::mkl::rng::poisson<unsigned int>>(output, n, lambda); } /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(float *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<float>>(output, n); } /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(double *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<double>>(output, n); } /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. void skip_ahead(const std::uint64_t num_to_skip) { #ifndef __INTEL_MKL__ oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #else if constexpr (std::is_same_v<engine_t, oneapi::mkl::rng::mt2203>) throw std::runtime_error("no skip_ahead method of mt2203 engine."); else oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #endif } private: static inline engine_t create_engine(sycl::queue *queue, const std::uint64_t seed, const std::uint32_t dimensions) { #ifdef __INTEL_MKL__ return std::is_same_v<engine_t, oneapi::mkl::rng::sobol> ? engine_t(*queue, dimensions) : engine_t(*queue, seed); #else return engine_t(*queue, seed); #endif } template <typename distr_t, typename buffer_t, class... distr_params_t> void generate(buffer_t *output, const std::int64_t n, const distr_params_t... distr_params) { auto output_buf = dpct::detail::get_memory(output); oneapi::mkl::rng::generate(distr_t(distr_params...), _engine, n, output_buf); } engine_t _engine{}; }; } // namespace detail } // namespace host enum class random_engine_type { philox4x32x10, mrg32k3a, mt2203, mt19937, sobol, mcg59 }; typedef std::shared_ptr<rng::host::detail::rng_generator_base> host_rng_ptr; /// Create a host random number generator. /// \param type The random engine type. /// \return The pointer of random number generator. inline host_rng_ptr create_host_rng(const random_engine_type type) { switch (type) { case random_engine_type::philox4x32x10: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::philox4x32x10>>(); case random_engine_type::mrg32k3a: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mrg32k3a>>(); #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else case random_engine_type::mt2203: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt2203>>(); case random_engine_type::mt19937: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt19937>>(); case random_engine_type::sobol: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::sobol>>(); case random_engine_type::mcg59: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mcg59>>(); #endif } } } // namespace rng } // namespace dpct #endif // __DPCT_RNG_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/numeric.h
//==---- numeric.h --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_NUMERIC_H__ #define __DPCT_NUMERIC_H__ namespace dpct { template <typename Policy, typename InputIt1, typename InputIt2, typename T> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init); } template <typename Policy, typename InputIt1, typename InputIt2, typename T, typename BinaryOperation1, typename BinaryOperation2> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1, BinaryOperation2 op2) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init, op1, op2); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/iterators.h
//==---- iterators.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ITERATORS_H__ #define __DPCT_ITERATORS_H__ #include <oneapi/dpl/iterator> #include "functional.h" namespace dpct { namespace internal { // Wrapper class returned from a dereferenced transform_iterator which was // created using // make_transform_output_iterator(). Used to apply the supplied transform // function when writing into an object of this class. // // Example: // int a[] = {0, 1, 2, 3, 4}; // int* p = a; // auto f = [](auto v) {return v*v;}; // auto tr_out = dpct::make_transform_output_iterator(p+1, f); // auto wrap = *tr_out; // wrap is a transform_output_ref_wrapper // std::cout<<*(p+1)<<std::endl; // '1' // wrap = 2; // apply function, store 2*2=4 // std::cout<<*(p+1)<<std::endl; // '4' template <typename T, typename _UnaryFunc> class transform_output_ref_wrapper { private: T __my_reference_; _UnaryFunc __my_unary_func_; public: template <typename U> transform_output_ref_wrapper(U &&__reference, _UnaryFunc __unary_func) : __my_reference_(std::forward<U>(__reference)), __my_unary_func_(__unary_func) {} // When writing to an object of this type, apply the supplied unary function, // then write to the wrapped reference template <typename UnaryInputType> transform_output_ref_wrapper &operator=(const UnaryInputType &e) { __my_reference_ = __my_unary_func_(e); return *this; } }; // Unary functor to create a transform_output_reference_wrapper when a // transform_iterator is dereferenced, so that a // the supplied unary function may be applied on write, resulting in a // transform_output_iterator template <typename _UnaryFunc> struct _Unary_Out { _Unary_Out(_UnaryFunc __f_) : __f(__f_) {} _UnaryFunc __f; template <typename T> auto operator()(T &&val) const { return transform_output_ref_wrapper<T, _UnaryFunc>(std::forward<T>(val), __f); } }; } // end namespace internal using std::advance; using std::distance; template <typename T> oneapi::dpl::counting_iterator<T> make_counting_iterator(const T &input) { return oneapi::dpl::counting_iterator<T>(input); } template <typename _Tp> class constant_iterator { public: typedef std::false_type is_hetero; typedef std::true_type is_passed_directly; typedef std::ptrdiff_t difference_type; typedef _Tp value_type; typedef _Tp *pointer; // There is no storage behind the iterator, so we return a value instead of // reference. typedef const _Tp reference; typedef const _Tp const_reference; typedef std::random_access_iterator_tag iterator_category; explicit constant_iterator(_Tp __init) : __my_value_(__init), __my_counter_(0) {} private: // used to construct iterator instances with different counter values required // by arithmetic operators constant_iterator(const _Tp &__value, const difference_type &__offset) : __my_value_(__value), __my_counter_(__offset) {} public: // non-const variants of access operators are not provided so unintended // writes are caught at compile time. const_reference operator*() const { return __my_value_; } const_reference operator[](difference_type) const { return __my_value_; } difference_type operator-(const constant_iterator &__it) const { return __my_counter_ - __it.__my_counter_; } constant_iterator &operator+=(difference_type __forward) { __my_counter_ += __forward; return *this; } constant_iterator &operator-=(difference_type __backward) { return *this += -__backward; } constant_iterator &operator++() { return *this += 1; } constant_iterator &operator--() { return *this -= 1; } constant_iterator operator++(int) { constant_iterator __it(*this); ++(*this); return __it; } constant_iterator operator--(int) { constant_iterator __it(*this); --(*this); return __it; } constant_iterator operator-(difference_type __backward) const { return constant_iterator(__my_value_, __my_counter_ - __backward); } constant_iterator operator+(difference_type __forward) const { return constant_iterator(__my_value_, __my_counter_ + __forward); } friend constant_iterator operator+(difference_type __forward, const constant_iterator __it) { return __it + __forward; } bool operator==(const constant_iterator &__it) const { return __my_value_ == __it.__my_value_ && this->__my_counter_ == __it.__my_counter_; } bool operator!=(const constant_iterator &__it) const { return !(*this == __it); } bool operator<(const constant_iterator &__it) const { return *this - __it < 0; } bool operator>(const constant_iterator &__it) const { return __it < *this; } bool operator<=(const constant_iterator &__it) const { return !(*this > __it); } bool operator>=(const constant_iterator &__it) const { return !(*this < __it); } private: _Tp __my_value_; uint64_t __my_counter_; }; template <typename _Tp> constant_iterator<_Tp> make_constant_iterator(_Tp __value) { return constant_iterator<_Tp>(__value); } // key_value_pair class to represent a key and value, specifically a // dereferenced arg_index_input_iterator template <typename _KeyTp, typename _ValueTp> class key_value_pair { public: key_value_pair() = default; key_value_pair(const _KeyTp &_key, const _ValueTp &_value) : key(_key), value(_value) {} bool operator==(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key == _kvp.key) && (value == _kvp.value); } bool operator!=(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key != _kvp.key) || (value != _kvp.value); } _KeyTp key; _ValueTp value; }; namespace detail { template <typename KeyTp, typename _ValueTp> struct make_key_value_pair { template <typename ValRefTp> key_value_pair<KeyTp, _ValueTp> operator()(const oneapi::dpl::__internal::tuple<KeyTp, ValRefTp> &tup) const { return ::dpct::key_value_pair<KeyTp, _ValueTp>(::std::get<0>(tup), ::std::get<1>(tup)); } }; template <class T> struct __zip_iterator_impl; template <class... Ts> struct __zip_iterator_impl<std::tuple<Ts...>> { using type = oneapi::dpl::zip_iterator<Ts...>; }; } // end namespace detail // dpct::zip_iterator can only accept std::tuple type as template argument for // compatibility purpose. Please use oneapi::dpl::zip_iterator if you want to // pass iterator's types directly. template <typename... Ts> using zip_iterator = typename detail::__zip_iterator_impl<Ts...>::type; // arg_index_input_iterator is an iterator over a input iterator, with a index. // When dereferenced, it returns a key_value_pair, which can be interrogated for // the index key or the value from the input iterator template <typename InputIteratorT, typename OffsetT = ptrdiff_t, typename OutputValueT = typename ::std::iterator_traits<InputIteratorT>::value_type> class arg_index_input_iterator : public oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>> { using arg_index_input_iterator_wrap = oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>>; public: typedef OffsetT difference_type; // signal to __get_sycl_range that this iterator is as a direct pass iterator using is_zip = ::std::true_type; arg_index_input_iterator(const arg_index_input_iterator_wrap &__arg_wrap) : arg_index_input_iterator_wrap(__arg_wrap) {} arg_index_input_iterator(InputIteratorT __iter) : arg_index_input_iterator_wrap( oneapi::dpl::make_zip_iterator( oneapi::dpl::counting_iterator(OffsetT(0)), __iter), detail::make_key_value_pair<OffsetT, OutputValueT>()) {} arg_index_input_iterator &operator=(const arg_index_input_iterator &__input) { arg_index_input_iterator_wrap::operator=(__input); return *this; } arg_index_input_iterator &operator++() { arg_index_input_iterator_wrap::operator++(); return *this; } arg_index_input_iterator &operator--() { arg_index_input_iterator_wrap::operator--(); return *this; } arg_index_input_iterator operator++(int) { arg_index_input_iterator __it(*this); ++(*this); return __it; } arg_index_input_iterator operator--(int) { arg_index_input_iterator __it(*this); --(*this); return __it; } arg_index_input_iterator operator+(difference_type __forward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator+(__forward)); } arg_index_input_iterator operator-(difference_type __backward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator-(__backward)); } arg_index_input_iterator &operator+=(difference_type __forward) { arg_index_input_iterator_wrap::operator+=(__forward); return *this; } arg_index_input_iterator &operator-=(difference_type __backward) { arg_index_input_iterator_wrap::operator-=(__backward); return *this; } friend arg_index_input_iterator operator+(difference_type __forward, const arg_index_input_iterator &__it) { return __it + __forward; } difference_type operator-(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator-(__it); } bool operator==(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator==(__it); } bool operator!=(const arg_index_input_iterator &__it) const { return !(*this == __it); } bool operator<(const arg_index_input_iterator &__it) const { return *this - __it < 0; } bool operator>(const arg_index_input_iterator &__it) const { return __it < *this; } bool operator<=(const arg_index_input_iterator &__it) const { return !(*this > __it); } bool operator>=(const arg_index_input_iterator &__it) const { return !(*this < __it); } // returns an arg_index_input_iterator with the same iter position, but a // count reset to 0 arg_index_input_iterator create_normalized() { return arg_index_input_iterator( ::std::get<1>(arg_index_input_iterator_wrap::base().base())); } }; template <typename IterT> struct io_iterator_pair { inline io_iterator_pair() : selector(false) {} inline io_iterator_pair(const IterT &first, const IterT &second) : selector(false) { iter[0] = first; iter[1] = second; } inline IterT first() const { return selector ? iter[1] : iter[0]; } inline IterT second() const { return selector ? iter[0] : iter[1]; } inline void swap() { selector = !selector; } bool selector; IterT iter[2]; }; template <typename _Iter, typename _UnaryFunc> auto make_transform_output_iterator(_Iter __it, _UnaryFunc __unary_func) { return oneapi::dpl::transform_iterator( __it, internal::_Unary_Out<_UnaryFunc>(__unary_func)); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/algorithm.h
//==---- algorithm.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ALGORITHM_H__ #define __DPCT_ALGORITHM_H__ #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "functional.h" #include "iterators.h" #include "vector.h" namespace dpct { template <typename Policy, typename Iter1, typename Iter2, typename Pred, typename T> void replace_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::transform(std::forward<Policy>(policy), first, last, mask, first, internal::replace_if_fun<typename std::iterator_traits<Iter1>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred, typename T> Iter3 replace_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::transform(std::forward<Policy>(policy), first, last, mask, result, internal::replace_if_fun<typename std::iterator_traits<Iter3>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using internal::__buffer; using ValueType = typename std::iterator_traits<Iter1>::value_type; __buffer<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.get(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(std::forward<Policy>(policy), _tmp.get(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using ValueType = typename std::iterator_traits<Iter1>::value_type; std::vector<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( policy, make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.begin(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(policy, _tmp.begin(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 remove_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; auto ret_val = std::remove_copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class BinaryPred> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_first, values_first), ret_val); return std::make_pair(keys_first + n1, values_first + n1); } template <class Policy, class Iter1, class Iter2> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; return unique(std::forward<Policy>(policy), keys_first, keys_last, values_first, std::equal_to<T>()); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryPred> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::unique_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; auto comp = std::equal_to<T>(); return unique_copy(std::forward<Policy>(policy), keys_first, keys_last, values_first, keys_result, values_result, comp); } template <typename Policy, typename Iter, typename Pred> Iter partition_point(Policy &&policy, Iter first, Iter last, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); if (std::is_partitioned(std::forward<Policy>(policy), first, last, p)) return std::find_if_not(std::forward<Policy>(policy), first, last, p); else return first; } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::copy_if( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(pred)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class UnaryOperation, class Pred> Iter2 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, result), oneapi::dpl::make_zip_iterator(first, result) + n, internal::transform_if_fun<T, Pred, UnaryOperation>(pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class UnaryOperation, class Pred> Iter3 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; using Ref1 = typename std::iterator_traits<Iter1>::reference; using Ref2 = typename std::iterator_traits<Iter2>::reference; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask, result), oneapi::dpl::make_zip_iterator(first, mask, result) + n, internal::transform_if_unary_zip_mask_fun<T, Pred, UnaryOperation>( pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryOperation, class Pred> Iter4 transform_if(Policy &&policy, Iter1 first1, Iter1 last1, Iter2 first2, Iter3 mask, Iter4 result, BinaryOperation binary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); const auto n = std::distance(first1, last1); using ZipIterator = typename oneapi::dpl::zip_iterator<Iter1, Iter2, Iter3, Iter4>; using T = typename std::iterator_traits<ZipIterator>::value_type; std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first1, first2, mask, result), oneapi::dpl::make_zip_iterator(last1, first2 + n, mask + n, result + n), internal::transform_if_zip_mask_fun<T, Pred, BinaryOperation>(pred, binary_op)); return result + n; } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> void scatter(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); oneapi::dpl::copy(policy, first, last, oneapi::dpl::make_permutation_iterator(result, map)); } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> OutputIter gather(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 input_first, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = ::std::distance(map_first, map_last); return oneapi::dpl::copy(policy, perm_begin, perm_begin + n, result); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> void scatter_if(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, InputIter3 mask, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); transform_if(policy, first, last, mask, oneapi::dpl::make_permutation_iterator(result, map), [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> OutputIter gather_if(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 mask, InputIter3 input_first, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = std::distance(map_first, map_last); return transform_if(policy, perm_begin, perm_begin + n, mask, result, [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6, typename Comp> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init, T step) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, internal::sequence_fun<T>(init, step)); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); iota(std::forward<Policy>(policy), first, last, init, T(1)); } template <class Policy, class Iter> void iota(Policy &&policy, Iter first, Iter last) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; iota(std::forward<Policy>(policy), first, last, DiffSize(0), DiffSize(1)); } template <class Policy, class Iter1, class Iter2, class Comp> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto first = oneapi::dpl::make_zip_iterator(keys_first, values_first); auto last = first + std::distance(keys_first, keys_last); std::sort(std::forward<Policy>(policy), first, last, internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter1, class Iter2, class Comp> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::stable_sort( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); stable_sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter, class Operator> void for_each_index(Policy &&policy, Iter first, Iter last, Operator unary_op) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, unary_op); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Comp> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::partition_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(out_true, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(out_false, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::make_pair(std::get<0>(ret_val.first.base()), std::get<0>(ret_val.second.base())); } template <typename Policy, typename Iter1, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::partition_copy(std::forward<Policy>(policy), first, last, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition_copy(std::forward<Policy>(policy), first, last, mask, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; internal::__buffer<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.get()); auto ret_val = std::stable_partition(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.get()), oneapi::dpl::make_zip_iterator( last, _tmp.get() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; std::vector<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.begin()); auto ret_val = std::stable_partition( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.begin()), oneapi::dpl::make_zip_iterator(last, _tmp.begin() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_execution_policy<Policy, Iter1> partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition(std::forward<Policy>(policy), first, last, mask, p); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); namespace internal { // Transforms key to a specific bit range and sorts the transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transformed_key_t> inline void transform_and_sort(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto trans_key = translate_key<key_t_value_t, transformed_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange // desired. auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, [=](const auto a, const auto b) { return comp(trans_key(a), trans_key(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<transformed_key_t>()); else partial_sort_with_comp(::std::less<transformed_key_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline void sort_only(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; if constexpr (::std::is_floating_point<key_t_value_t>::value) { if (descending) { // Comparison operator that is not std::greater() ensures stability of // -0.0 and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_descending = [=](const auto a, const auto b) { return a > b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_descending); } else { // Comparison operator that is not std::less() ensures stability of -0.0 // and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_ascending = [=](const auto a, const auto b) { return a < b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_ascending); } } else { if (descending) { oneapi::dpl::partial_sort_copy( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, ::std::greater<key_t_value_t>()); } else { oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n); } } } // Transforms key from a pair to a specific bit range and sorts the pairs by the // transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transform_key_t, typename value_t, typename value_out_t> inline void transform_and_sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); auto trans_key = translate_key<key_t_value_t, transform_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange desired // and also to select the key from the zipped pair. auto load_val = [=](const auto a) { return trans_key(std::get<0>(a)); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline void sort_only_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to select the key from the zipped pair. auto load_val = [=](const auto a) { return std::get<0>(a); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } // overload for key_out_t != std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<!::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_pairs_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort_pairs<decltype(policy), key_t, key_out_t, T, value_t, value_out_t>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_pairs_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_pairs_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_pairs_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_pairs_f.template operator()<uint64_t>(0); } } // overload for key_out_t == std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { // create temporary keys_out to discard, memory footprint could be improved by // a specialized iterator with a single // unchanging dummy key_t element using key_t_value_t = typename std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> temp_keys_out{sycl::range<1>(n)}; internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(temp_keys_out), values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_keys(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_pairs(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_keys(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename OffsetIteratorT> inline void mark_segments(_ExecutionPolicy &&policy, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, int64_t n, int64_t nsegments, sycl::buffer<::std::size_t, 1> segments) { ::std::size_t work_group_size = policy.queue() .get_device() .template get_info<sycl::info::device::max_work_group_size>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); ::std::size_t sub_group_size = sg_sizes.empty() ? 0 : sg_sizes.back(); float avg_seg_size = (float)n / (float)nsegments; if (avg_seg_size > work_group_size) { // If average segment size is larger than workgroup, use workgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(work_group_size, ([=](sycl::id<1> id) { for (::std::size_t seg = 0; seg < nsegments; seg++) { ::std::size_t i = begin_offsets[seg]; ::std::size_t end = end_offsets[seg]; while (i + id < end) { segments_acc[i + id] = seg; i += work_group_size; } } })); }) .wait(); } else if (sub_group_size > 0 && avg_seg_size > sub_group_size / 2) { // If average segment size is larger than half a subgroup, use subgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for( sycl::nd_range<1>{work_group_size, work_group_size}, ([=](sycl::nd_item<1> item) { auto sub_group = item.get_sub_group(); ::std::size_t num_subgroups = sub_group.get_group_range().size(); ::std::size_t local_size = sub_group.get_local_range().size(); ::std::size_t sub_group_id = sub_group.get_group_id(); while (sub_group_id < nsegments) { ::std::size_t subgroup_local_id = sub_group.get_local_id(); ::std::size_t i = begin_offsets[sub_group_id]; ::std::size_t end = end_offsets[sub_group_id]; while (i + subgroup_local_id < end) { segments_acc[i + subgroup_local_id] = sub_group_id; i += local_size; } sub_group_id += num_subgroups; } })); }) .wait(); } else { // If average segment size is small as compared to subgroup, use single // work item to mark each segment policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(nsegments, ([=](sycl::id<1> seg) { for (::std::size_t i = begin_offsets[seg]; i < end_offsets[seg]; i++) { segments_acc[i] = seg; } })); }) .wait(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(segments), oneapi::dpl::begin(segments_sorted), n, descending); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), oneapi::dpl::begin(keys_temp), keys_out, n, false); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; using value_t_value_t = typename ::std::iterator_traits<value_t>::value_type; sycl::buffer<value_t_value_t, 1> values_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); auto zip_seg_vals = oneapi::dpl::make_zip_iterator(oneapi::dpl::begin(segments), values_in); auto zip_seg_vals_out = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(values_temp)); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), zip_seg_vals, zip_seg_vals_out, n, descending); auto zip_keys_vals = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(values_temp)); auto zip_keys_vals_out = oneapi::dpl::make_zip_iterator(keys_out, values_out); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), zip_keys_vals, zip_keys_vals_out, n, false); } } // end namespace internal template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename value_t> inline void sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort<decltype(policy), key_t, key_out_t, T>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_f.template operator()<uint64_t>(0); } } template <typename _ExecutionPolicy, typename key_t> inline void sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_keys(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) keys.swap(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> segmented_sort_keys( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_keys_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_keys_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_keys_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename OffsetIteratorT> inline void segmented_sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_keys(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> segmented_sort_pairs( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_pairs_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_pairs_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_pairs_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename value_t, typename OffsetIteratorT> inline void segmented_sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_pairs(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmax(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::max_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmin(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::min_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable, typename StrictWeakOrdering> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value, StrictWeakOrdering comp) { ::std::vector<::std::int64_t> res_lower(1); ::std::vector<::std::int64_t> res_upper(1); ::std::vector<ValueLessComparable> value_vec(1, value); ::oneapi::dpl::lower_bound(policy, start, end, value_vec.begin(), value_vec.end(), res_lower.begin(), comp); ::oneapi::dpl::upper_bound(::std::forward<_ExecutionPolicy>(policy), start, end, value_vec.begin(), value_vec.end(), res_upper.begin(), comp); auto result = ::std::make_pair(start + res_lower[0], start + res_upper[0]); return result; } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value) { return equal_range(::std::forward<_ExecutionPolicy>(policy), start, end, value, internal::__less()); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmin(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::max()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::min_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmax(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::lowest()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::max_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/memory.h
//==---- memory.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_H__ #define __DPCT_MEMORY_H__ #include <sycl/sycl.hpp> // Memory management section: // device_pointer, device_reference, swap, device_iterator, malloc_device, // device_new, free_device, device_delete namespace dpct { namespace detail { template <typename T> struct make_allocatable { using type = T; }; template <> struct make_allocatable<void> { using type = dpct::byte_t; }; #if defined(__LIBSYCL_MAJOR_VERSION) && defined(__LIBSYCL_MINOR_VERSION) && \ defined(__LIBSYCL_PATCH_VERSION) #define _DPCT_LIBSYCL_VERSION \ (__LIBSYCL_MAJOR_VERSION * 10000 + __LIBSYCL_MINOR_VERSION * 100 + \ __LIBSYCL_PATCH_VERSION) #else #define _DPCT_LIBSYCL_VERSION 0 #endif template <typename _DataT> using __buffer_allocator = #if _DPCT_LIBSYCL_VERSION >= 60000 sycl::buffer_allocator<typename make_allocatable<_DataT>::type>; #else sycl::buffer_allocator; #endif } // namespace detail #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_pointer; #else template <typename T> class device_pointer; #endif template <typename T> struct device_reference { using pointer = device_pointer<T>; using value_type = T; template <typename OtherT> device_reference(const device_reference<OtherT> &input) : value(input.value) {} device_reference(const pointer &input) : value((*input).value) {} device_reference(value_type &input) : value(input) {} template <typename OtherT> device_reference &operator=(const device_reference<OtherT> &input) { value = input; return *this; }; device_reference &operator=(const device_reference &input) { T val = input.value; value = val; return *this; }; device_reference &operator=(const value_type &x) { value = x; return *this; }; pointer operator&() const { return pointer(&value); }; operator value_type() const { return T(value); } device_reference &operator++() { ++value; return *this; }; device_reference &operator--() { --value; return *this; }; device_reference operator++(int) { device_reference ref(*this); ++(*this); return ref; }; device_reference operator--(int) { device_reference ref(*this); --(*this); return ref; }; device_reference &operator+=(const T &input) { value += input; return *this; }; device_reference &operator-=(const T &input) { value -= input; return *this; }; device_reference &operator*=(const T &input) { value *= input; return *this; }; device_reference &operator/=(const T &input) { value /= input; return *this; }; device_reference &operator%=(const T &input) { value %= input; return *this; }; device_reference &operator&=(const T &input) { value &= input; return *this; }; device_reference &operator|=(const T &input) { value |= input; return *this; }; device_reference &operator^=(const T &input) { value ^= input; return *this; }; device_reference &operator<<=(const T &input) { value <<= input; return *this; }; device_reference &operator>>=(const T &input) { value >>= input; return *this; }; void swap(device_reference &input) { T tmp = (*this); *this = (input); input = (tmp); } T &value; }; template <typename T> void swap(device_reference<T> &x, device_reference<T> &y) { x.swap(y); } template <typename T> void swap(T &x, T &y) { T tmp = x; x = y; y = tmp; } namespace internal { // struct for checking if iterator is heterogeneous or not template <typename Iter, typename Void = void> // for non-heterogeneous iterators struct is_hetero_iterator : std::false_type {}; template <typename Iter> // for heterogeneous iterators struct is_hetero_iterator< Iter, typename std::enable_if<Iter::is_hetero::value, void>::type> : std::true_type {}; } // namespace internal #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode, typename Allocator> class device_iterator; template <typename ValueType, typename Allocator, typename Derived> class device_pointer_base { protected: sycl::buffer<ValueType, 1, Allocator> buffer; std::size_t idx; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(sycl::buffer<ValueType, 1> in, std::size_t i = 0) : buffer(in), idx(i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer_base(OtherT *ptr) : buffer( dpct::detail::mem_mgr::instance() .translate_ptr(ptr) .buffer.template reinterpret<ValueType, 1>(sycl::range<1>( dpct::detail::mem_mgr::instance().translate_ptr(ptr).size / sizeof(ValueType)))), idx(ptr - (ValueType*)dpct::detail::mem_mgr::instance() .translate_ptr(ptr).alloc_ptr) {} #endif device_pointer_base(const std::size_t count) : buffer(sycl::range<1>(count / sizeof(ValueType))), idx() {} // buffer has no default ctor we pass zero-range to create an empty buffer device_pointer_base() : buffer(sycl::range<1>(0)) {} device_pointer_base(const device_pointer_base &in) : buffer(in.buffer), idx(in.idx) {} pointer get() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() { auto res = (buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } Derived operator+(difference_type forward) const { return Derived{buffer, idx + forward}; } Derived operator-(difference_type backward) const { return Derived{buffer, idx - backward}; } Derived operator++(int) { Derived p(buffer, idx); idx += 1; return p; } Derived operator--(int) { Derived p(buffer, idx); idx -= 1; return p; } difference_type operator-(const Derived &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - std::distance(oneapi::dpl::begin(buffer), it); } std::size_t get_idx() const { return idx; } // required sycl::buffer<ValueType, 1, Allocator> get_buffer() { return buffer; } // required }; template <typename T, sycl::access_mode Mode, typename Allocator> class device_pointer : public device_pointer_base<T, Allocator, device_pointer<T, Mode, Allocator>> { private: using base_type = device_pointer_base<T, Allocator, device_pointer>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<T, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; template <sycl::access_mode Mode, typename Allocator> class device_pointer<void, Mode, Allocator> : public device_pointer_base<dpct::byte_t, Allocator, device_pointer<void, Mode, Allocator>> { private: using base_type = device_pointer_base<dpct::byte_t, Allocator, device_pointer>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<value_type, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; #else template <typename T> class device_iterator; template <typename ValueType, typename Derived> class device_pointer_base { protected: ValueType *ptr; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(ValueType *p) : ptr(p) {} device_pointer_base(const std::size_t count) { sycl::queue default_queue = dpct::get_default_queue(); ptr = static_cast<ValueType *>(sycl::malloc_shared( count, default_queue.get_device(), default_queue.get_context())); } device_pointer_base() {} pointer get() const { return ptr; } operator ValueType *() { return ptr; } operator ValueType *() const { return ptr; } ValueType &operator[](difference_type idx) { return ptr[idx]; } ValueType &operator[](difference_type idx) const { return ptr[idx]; } Derived operator+(difference_type forward) const { return Derived{ptr + forward}; } Derived operator-(difference_type backward) const { return Derived{ptr - backward}; } Derived operator++(int) { Derived p(ptr); ++ptr; return p; } Derived operator--(int) { Derived p(ptr); --ptr; return p; } difference_type operator-(const Derived &it) const { return ptr - it.ptr; } }; template <typename T> class device_pointer : public device_pointer_base<T, device_pointer<T>> { private: using base_type = device_pointer_base<T, device_pointer<T>>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using const_reference = const T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(T *p) : base_type(p) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer &operator=(const device_iterator<T> &in) { this->ptr = static_cast<device_pointer<T>>(in).ptr; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; template <> class device_pointer<void> : public device_pointer_base<dpct::byte_t, device_pointer<void>> { private: using base_type = device_pointer_base<dpct::byte_t, device_pointer<void>>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using const_reference = const value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(void *p) : base_type(static_cast<value_type *>(p)) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} pointer get() const { return static_cast<pointer>(this->ptr); } operator void *() { return this->ptr; } operator void *() const { return this->ptr; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; #endif #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_iterator : public device_pointer<T, Mode, Allocator> { using Base = device_pointer<T, Mode, Allocator>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; // required static constexpr sycl::access_mode mode = Mode; // required device_iterator() : Base() {} device_iterator(sycl::buffer<T, 1, Allocator> vec, std::size_t index) : Base(vec, index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T, inMode, Allocator> &in) : Base(in.buffer, in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::buffer = in.buffer; Base::idx = in.idx; return *this; } reference operator*() const { return const_cast<device_iterator *>(this) ->buffer.template get_access<mode>()[Base::idx]; } reference operator[](difference_type i) const { return *(*this + i); } device_iterator &operator++() { ++Base::idx; return *this; } device_iterator &operator--() { --Base::idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = Base::idx + forward; return {Base::buffer, new_idx}; } device_iterator &operator+=(difference_type forward) { Base::idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::buffer, Base::idx - backward}; } device_iterator &operator-=(difference_type backward) { Base::idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return Base::idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return Base::idx - std::distance(oneapi::dpl::begin(Base::buffer), it); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return Base::idx; } // required sycl::buffer<T, 1, Allocator> get_buffer() { return Base::buffer; } // required }; #else template <typename T> class device_iterator : public device_pointer<T> { using Base = device_pointer<T>; protected: std::size_t idx; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = typename Base::pointer; using reference = typename Base::reference; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required static constexpr sycl::access_mode mode = sycl::access_mode::read_write; // required device_iterator() : Base(nullptr), idx(0) {} device_iterator(T *vec, std::size_t index) : Base(vec), idx(index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T> &in) : Base(in.ptr), idx(in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::operator=(in); idx = in.idx; return *this; } reference operator*() const { return *(Base::ptr + idx); } reference operator[](difference_type i) { return Base::ptr[idx + i]; } reference operator[](difference_type i) const { return Base::ptr[idx + i]; } device_iterator &operator++() { ++idx; return *this; } device_iterator &operator--() { --idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = idx + forward; return {Base::ptr, new_idx}; } device_iterator &operator+=(difference_type forward) { idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::ptr, idx - backward}; } device_iterator &operator-=(difference_type backward) { idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - it.get_idx(); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return idx; } // required device_iterator &get_buffer() { return *this; } // required std::size_t size() const { return idx; } }; #endif template <typename T> device_pointer<T> malloc_device(const std::size_t num_elements) { return device_pointer<T>(num_elements * sizeof(T)); } static inline device_pointer<void> malloc_device(const std::size_t num_bytes) { return device_pointer<void>(num_bytes); } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const T &value, const std::size_t count = 1) { std::vector<T> result(count, value); p.buffer = sycl::buffer<T, 1>(result.begin(), result.end()); return p + count; } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const std::size_t count = 1) { return device_new(p, T{}, count); } template <typename T> device_pointer<T> device_new(const std::size_t count = 1) { return device_pointer<T>(count); } template <typename T> void free_device(device_pointer<T> ptr) {} template <typename T> typename std::enable_if<!std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T> p, const std::size_t count = 1) { for (std::size_t i = 0; i < count; ++i) { p[i].~T(); } } template <typename T> typename std::enable_if<std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T>, const std::size_t count = 1) {} template <typename T> device_pointer<T> get_device_pointer(T *ptr) { return device_pointer<T>(ptr); } template <typename T> device_pointer<T> get_device_pointer(const device_pointer<T> &ptr) { return device_pointer<T>(ptr); } template <typename T> T *get_raw_pointer(const device_pointer<T> &ptr) { return ptr.get(); } template <typename Pointer> Pointer get_raw_pointer(const Pointer &ptr) { return ptr; } template <typename T> const T &get_raw_reference(const device_reference<T> &ref) { return ref.value; } template <typename T> T &get_raw_reference(device_reference<T> &ref) { return ref.value; } template <typename T> const T &get_raw_reference(const T &ref) { return ref; } template <typename T> T &get_raw_reference(T &ref) { return ref; } } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/vector.h
//==---- vector.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_VECTOR_H__ #define __DPCT_VECTOR_H__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <sycl/sycl.hpp> #include "memory.h" #include <algorithm> #include <iterator> #include <vector> #include "../device.hpp" namespace dpct { namespace internal { template <typename Iter, typename Void = void> // for non-iterators struct is_iterator : std::false_type {}; template <typename Iter> // For iterators struct is_iterator< Iter, typename std::enable_if< !std::is_void<typename Iter::iterator_category>::value, void>::type> : std::true_type {}; template <typename T> // For pointers struct is_iterator<T *> : std::true_type {}; } // end namespace internal #ifndef DPCT_USM_LEVEL_NONE template <typename T, typename Allocator = sycl::usm_allocator<T, sycl::usm::alloc::shared>> class device_vector { public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename ::std::iterator_traits<iterator>::difference_type; using size_type = ::std::size_t; private: Allocator _alloc; size_type _size; size_type _capacity; pointer _storage; size_type _min_capacity() const { return size_type(1); } void _set_capacity_and_alloc() { _capacity = ::std::max(_size * 2, _min_capacity()); _storage = _alloc.allocate(_capacity); } public: template <typename OtherA> operator ::std::vector<T, OtherA>() const { auto __tmp = ::std::vector<T, OtherA>(this->size()); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _alloc(get_default_queue()), _size(0), _capacity(_min_capacity()) { _set_capacity_and_alloc(); } ~device_vector() /*= default*/ { _alloc.deallocate(_storage, _capacity); }; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _alloc(get_default_queue()), _size(n) { _set_capacity_and_alloc(); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), T(value)); } } device_vector(const device_vector &other) : _alloc(get_default_queue()) { _size = other.size(); _capacity = other.capacity(); _storage = _alloc.allocate(_capacity); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } device_vector(device_vector &&other) : _alloc(get_default_queue()), _size(other.size()), _capacity(other.capacity()), _storage(other._storage) { other._size = 0; other._capacity = 0; other._storage = nullptr; } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && ::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if<::std::is_pointer<InputIterator>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { auto ptr_type = sycl::get_pointer_type(first, get_default_context()); if (ptr_type != sycl::usm::alloc::host && ptr_type != sycl::usm::alloc::unknown) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } else { sycl::buffer<T, 1> buf(first, last); auto buf_first = oneapi::dpl::begin(buf); auto buf_last = oneapi::dpl::end(buf); ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), buf_first, buf_last, begin()); } } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && !::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()), _size(::std::distance(first, last)) { _set_capacity_and_alloc(); ::std::vector<T> _tmp(first, last); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), _tmp.begin(), _tmp.end(), this->begin()); } } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _storage(v.real_begin()), _size(v.size()), _capacity(v.capacity()) {} template <typename OtherAllocator> device_vector(::std::vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _size(v.size()) { _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), this->begin()); } } template <typename OtherAllocator> device_vector &operator=(const ::std::vector<T, OtherAllocator> &v) { resize(v.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), begin()); } return *this; } device_vector &operator=(const device_vector &other) { // Copy assignment operator: resize(other.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: device_vector dummy(::std::move(other)); this->swap(dummy); return *this; } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(_storage, 0); } iterator end() { return device_iterator<T>(_storage, size()); } const_iterator begin() const noexcept { return device_iterator<T>(_storage, 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(_storage, size()); } const_iterator cend() const { return end(); } T *real_begin() { return _storage; } const T *real_begin() const { return _storage; } void swap(device_vector &v) { ::std::swap(_size, v._size); ::std::swap(_capacity, v._capacity); ::std::swap(_storage, v._storage); ::std::swap(_alloc, v._alloc); } reference operator[](size_type n) { return _storage[n]; } const_reference operator[](size_type n) const { return _storage[n]; } void reserve(size_type n) { if (n > capacity()) { // allocate buffer for new size auto tmp = _alloc.allocate(2 * n); // copy content (old buffer to new buffer) ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); // deallocate old memory _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = 2 * n; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin() + _size, begin() + new_size, x); } _size = new_size; } size_type max_size(void) const { return ::std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _capacity; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return _storage; } const_pointer data(void) const { return _storage; } void shrink_to_fit(void) { if (_size != capacity()) { size_type tmp_capacity = ::std::max(_size, _min_capacity()); auto tmp = _alloc.allocate(tmp_capacity); if (_size > 0) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); } _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = tmp_capacity; } } void assign(size_type n, const T &x) { resize(n); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), begin() + n, x); } } template <typename InputIterator> void assign(InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); resize(n); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } void clear(void) { _size = 0; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = ::std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } auto m = ::std::distance(last, end()); if (m <= 0) { return end(); } auto tmp = _alloc.allocate(m); // copy remainder to temporary buffer. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), last, end(), tmp); // override (erase) subsequence in storage. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, first); _alloc.deallocate(tmp, m); _size -= n; return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = ::std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), end() - n, end(), x); } else { auto i_n = ::std::distance(begin(), position); // allocate temporary storage auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); // copy remainder ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, position + n, x); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); if (position == end()) { resize(size() + n); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, end()); } else { auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, position); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } Allocator get_allocator() const { return _alloc; } }; #else template <typename T, typename Allocator = detail::__buffer_allocator<T>> class device_vector { static_assert( std::is_same<Allocator, detail::__buffer_allocator<T>>::value, "device_vector doesn't support custom allocator when USM is not used."); public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename std::iterator_traits<iterator>::difference_type; using size_type = std::size_t; private: using Buffer = sycl::buffer<T, 1>; using Range = sycl::range<1>; // Using mem_mgr to handle memory allocation void *_storage; size_type _size; size_type _min_capacity() const { return size_type(1); } void *alloc_store(size_type num_bytes) { return detail::mem_mgr::instance().mem_alloc(num_bytes); } public: template <typename OtherA> operator std::vector<T, OtherA>() const { auto __tmp = std::vector<T, OtherA>(this->size()); std::copy(oneapi::dpl::execution::dpcpp_default, this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _storage(alloc_store(_min_capacity() * sizeof(T))), _size(0) {} ~device_vector() = default; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _storage(alloc_store(std::max(n, _min_capacity()) * sizeof(T))), _size(n) { auto buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(buf), oneapi::dpl::begin(buf) + n, T(value)); } device_vector(const device_vector &other) : _storage(other._storage), _size(other.size()) {} device_vector(device_vector &&other) : _storage(std::move(other._storage)), _size(other.size()) {} template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value && std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if<std::is_pointer<InputIterator>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); Buffer tmp_buf(first, last); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); std::vector<T> tmp(first, last); Buffer tmp_buf(tmp); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.real_begin(), v.real_begin() + v.size(), dst); } template <typename OtherAllocator> device_vector(std::vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { std::copy(oneapi::dpl::execution::dpcpp_default, v.begin(), v.end(), oneapi::dpl::begin(get_buffer())); } device_vector &operator=(const device_vector &other) { // Copy assignment operator: _size = other.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(other.get_buffer()), oneapi::dpl::end(other.get_buffer()), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: _size = other.size(); this->_storage = std::move(other._storage); return *this; } template <typename OtherAllocator> device_vector &operator=(const std::vector<T, OtherAllocator> &v) { Buffer data(v.begin(), v.end()); _size = v.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(data), oneapi::dpl::end(data), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } Buffer get_buffer() const { return detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template reinterpret<T, 1>(sycl::range<1>(capacity())); } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(get_buffer(), 0); } iterator end() { return device_iterator<T>(get_buffer(), _size); } const_iterator begin() const noexcept { return device_iterator<T>(get_buffer(), 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(get_buffer(), _size); } const_iterator cend() const { return end(); } T *real_begin() { return (detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); } const T *real_begin() const { return const_cast<device_vector *>(this) ->detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>() .get_pointer(); } void swap(device_vector &v) { void *temp = v._storage; v._storage = this->_storage; this->_storage = temp; std::swap(_size, v._size); } reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } void reserve(size_type n) { if (n > capacity()) { // create new buffer (allocate for new size) void *a = alloc_store(n * sizeof(T)); // copy content (old buffer to new buffer) if (_storage != nullptr) { auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(n)); auto src_buf = get_buffer(); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf), oneapi::dpl::end(src_buf), oneapi::dpl::begin(tmp)); // deallocate old memory detail::mem_mgr::instance().mem_free(_storage); } _storage = a; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { auto src_buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf) + _size, oneapi::dpl::begin(src_buf) + new_size, x); } _size = new_size; } size_type max_size(void) const { return std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _storage != nullptr ? detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.size() / sizeof(T) : 0; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return reinterpret_cast<pointer>(_storage); } const_pointer data(void) const { return reinterpret_cast<const_pointer>(_storage); } void shrink_to_fit(void) { if (_size != capacity()) { void *a = alloc_store(_size * sizeof(T)); auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(get_buffer()), oneapi::dpl::begin(get_buffer()) + _size, oneapi::dpl::begin(tmp)); detail::mem_mgr::instance().mem_free(_storage); _storage = a; } } void assign(size_type n, const T &x) { resize(n); std::fill(oneapi::dpl::execution::dpcpp_default, begin(), begin() + n, x); } template <typename InputIterator> void assign(InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); resize(n); if (internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value) std::copy(oneapi::dpl::execution::dpcpp_default, first, last, begin()); else { Buffer tmp(first, last); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), begin()); } } void clear(void) { _size = 0; detail::mem_mgr::instance().mem_free(_storage); _storage = nullptr; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } Buffer tmp{Range(std::distance(last, end()))}; // copy remainder to temporary buffer. std::copy(oneapi::dpl::execution::dpcpp_default, last, end(), oneapi::dpl::begin(tmp)); // override (erase) subsequence in storage. std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), first); resize(_size - n); return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); std::fill(oneapi::dpl::execution::dpcpp_default, end() - n, end(), x); } else { auto i_n = std::distance(begin(), position); // allocate temporary storage Buffer tmp{Range(std::distance(position, end()))}; // copy remainder std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::fill(oneapi::dpl::execution::dpcpp_default, position, position + n, x); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); if (position == end()) { resize(size() + n); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, end()); } else { Buffer tmp{Range(std::distance(position, end()))}; std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, position); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } }; #endif } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/dpcpp_extensions.h
//==---- dpcpp_extensions.h ------------------*- C++ -*---------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------===// #ifndef __DPCT_DPCPP_EXTENSIONS_H__ #define __DPCT_DPCPP_EXTENSIONS_H__ #include <sycl/sycl.hpp> #include <stdexcept> #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS #include <sycl/ext/oneapi/experimental/user_defined_reductions.hpp> #endif #include "../dpct.hpp" namespace dpct { namespace group { namespace detail { template <typename... _Args> constexpr auto __reduce_over_group(_Args... __args) { return sycl::reduce_over_group(__args...); } template <typename... _Args> constexpr auto __group_broadcast(_Args... __args) { return sycl::group_broadcast(__args...); } template <typename... _Args> constexpr auto __exclusive_scan_over_group(_Args... __args) { return sycl::exclusive_scan_over_group(__args...); } template <typename... _Args> constexpr auto __inclusive_scan_over_group(_Args... __args) { return sycl::inclusive_scan_over_group(__args...); } } // end namespace detail /// Perform an exclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void exclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], T init, BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); T input = inputs[0]; if (item.get_local_linear_id() == 0) { outputs[0] = init; } else { outputs[0] = exclusive_result; } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { T output = binary_op(input, outputs[i - 1]); input = inputs[i]; outputs[i] = output; } } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns exclusive scan of the first i /// work-items where item is the i-th work item. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, T init, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__exclusive_scan_over_group(item.get_group(), input, init, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns exclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = detail::__exclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); T group_prefix = prefix_callback_op(group_aggregate); if (item.get_local_linear_id() == 0) { output = group_prefix; } else { output = binary_op(group_prefix, output); } return output; } namespace detail { typedef uint16_t digit_counter_type; typedef uint32_t packed_counter_type; template <int N, int CURRENT_VAL = N, int COUNT = 0> struct log2 { enum { VALUE = log2<N, (CURRENT_VAL >> 1), COUNT + 1>::VALUE }; }; template <int N, int COUNT> struct log2<N, 0, COUNT> { enum { VALUE = (1 << (COUNT - 1) < N) ? COUNT : COUNT - 1 }; }; __dpct_inline__ uint32_t bfe(uint32_t source, uint32_t bit_start, uint32_t num_bits) { const uint32_t MASK = (1 << num_bits) - 1; return (source >> bit_start) & MASK; } template <int RADIX_BITS, bool DESCENDING = false> class radix_rank { public: static size_t get_local_memory_size(size_t group_threads) { return group_threads * PADDED_COUNTER_LANES * sizeof(packed_counter_type); } radix_rank(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item, int VALUES_PER_THREAD> __dpct_inline__ void rank_keys(const Item &item, uint32_t (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD], int current_bit, int num_bits) { digit_counter_type thread_prefixes[VALUES_PER_THREAD]; digit_counter_type *digit_counters[VALUES_PER_THREAD]; digit_counter_type *buffer = reinterpret_cast<digit_counter_type *>(_local_memory); reset_local_memory(item); item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { uint32_t digit = bfe(keys[i], current_bit, num_bits); uint32_t sub_counter = digit >> LOG_COUNTER_LANES; uint32_t counter_lane = digit & (COUNTER_LANES - 1); if (DESCENDING) { sub_counter = PACKING_RATIO - 1 - sub_counter; counter_lane = COUNTER_LANES - 1 - counter_lane; } digit_counters[i] = &buffer[counter_lane * item.get_local_range().size() * PACKING_RATIO + item.get_local_linear_id() * PACKING_RATIO + sub_counter]; thread_prefixes[i] = *digit_counters[i]; *digit_counters[i] = thread_prefixes[i] + 1; } item.barrier(sycl::access::fence_space::local_space); scan_counters(item); item.barrier(sycl::access::fence_space::local_space); for (int i = 0; i < VALUES_PER_THREAD; ++i) { ranks[i] = thread_prefixes[i] + *digit_counters[i]; } } private: template <typename Item> __dpct_inline__ void reset_local_memory(const Item &item) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[i * item.get_local_range().size() + item.get_local_linear_id()] = 0; } } template <typename Item> __dpct_inline__ packed_counter_type upsweep(const Item &item) { packed_counter_type sum = 0; packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; i++) { cached_segment[i] = ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i]; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { sum += cached_segment[i]; } return sum; } template <typename Item> __dpct_inline__ void exclusive_downsweep(const Item &item, packed_counter_type raking_partial) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); packed_counter_type sum = raking_partial; #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { packed_counter_type value = cached_segment[i]; cached_segment[i] = sum; sum += value; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i] = cached_segment[i]; } } struct prefix_callback { __dpct_inline__ packed_counter_type operator()(packed_counter_type block_aggregate) { packed_counter_type block_prefix = 0; #pragma unroll for (int packed = 1; packed < PACKING_RATIO; packed++) { block_prefix += block_aggregate << (sizeof(digit_counter_type) * 8 * packed); } return block_prefix; } }; template <typename Item> __dpct_inline__ void scan_counters(const Item &item) { packed_counter_type raking_partial = upsweep(item); prefix_callback callback; packed_counter_type exclusive_partial = exclusive_scan( item, raking_partial, sycl::ext::oneapi::plus<packed_counter_type>(), callback); exclusive_downsweep(item, exclusive_partial); } private: static constexpr int PACKING_RATIO = sizeof(packed_counter_type) / sizeof(digit_counter_type); static constexpr int LOG_PACKING_RATIO = log2<PACKING_RATIO>::VALUE; static constexpr int LOG_COUNTER_LANES = RADIX_BITS - LOG_PACKING_RATIO; static constexpr int COUNTER_LANES = 1 << LOG_COUNTER_LANES; static constexpr int PADDED_COUNTER_LANES = COUNTER_LANES + 1; packed_counter_type cached_segment[PADDED_COUNTER_LANES]; uint8_t *_local_memory; }; template <typename T, typename U> struct base_traits { static __dpct_inline__ U twiddle_in(U key) { throw std::runtime_error("Not implemented"); } static __dpct_inline__ U twiddle_out(U key) { throw std::runtime_error("Not implemented"); } }; template <typename U> struct base_traits<uint32_t, U> { static __dpct_inline__ U twiddle_in(U key) { return key; } static __dpct_inline__ U twiddle_out(U key) { return key; } }; template <typename U> struct base_traits<int, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { return key ^ HIGH_BIT; } static __dpct_inline__ U twiddle_out(U key) { return key ^ HIGH_BIT; } }; template <typename U> struct base_traits<float, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { U mask = (key & HIGH_BIT) ? U(-1) : HIGH_BIT; return key ^ mask; } static __dpct_inline__ U twiddle_out(U key) { U mask = (key & HIGH_BIT) ? HIGH_BIT : U(-1); return key ^ mask; } }; template <typename T> struct traits : base_traits<T, T> {}; template <> struct traits<uint32_t> : base_traits<uint32_t, uint32_t> {}; template <> struct traits<int> : base_traits<int, uint32_t> {}; template <> struct traits<float> : base_traits<float, uint32_t> {}; } // namespace detail namespace detail { template <int N> struct power_of_two { enum { VALUE = ((N & (N - 1)) == 0) }; }; __dpct_inline__ uint32_t shr_add(uint32_t x, uint32_t shift, uint32_t addend) { return (x >> shift) + addend; } } // namespace detail /// Implements scatter to blocked exchange pattern used in radix sort algorithm. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread template <typename T, int VALUES_PER_THREAD> class exchange { public: static size_t get_local_memory_size(size_t group_threads) { size_t padding_values = (INSERT_PADDING) ? ((group_threads * VALUES_PER_THREAD) >> LOG_LOCAL_MEMORY_BANKS) : 0; return (group_threads * VALUES_PER_THREAD + padding_values) * sizeof(T); } exchange(uint8_t *local_memory) : _local_memory(local_memory) {} /// Rearrange elements from rank order to blocked order template <typename Item> __dpct_inline__ void scatter_to_blocked(Item item, T (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD]) { T *buffer = reinterpret_cast<T *>(_local_memory); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = ranks[i]; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); buffer[offset] = keys[i]; } item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = (item.get_local_id(0) * VALUES_PER_THREAD) + i; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); keys[i] = buffer[offset]; } } private: static constexpr int LOG_LOCAL_MEMORY_BANKS = 5; static constexpr bool INSERT_PADDING = (VALUES_PER_THREAD > 4) && (detail::power_of_two<VALUES_PER_THREAD>::VALUE); uint8_t *_local_memory; }; /// Implements radix sort to sort integer data elements assigned to all threads /// in the group. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread /// \tparam DECENDING boolean value indicating if data elements are sorted in /// decending order. template <typename T, int VALUES_PER_THREAD, bool DESCENDING = false> class radix_sort { public: static size_t get_local_memory_size(size_t group_threads) { size_t ranks_size = detail::radix_rank<RADIX_BITS>::get_local_memory_size(group_threads); size_t exchange_size = exchange<T, VALUES_PER_THREAD>::get_local_memory_size(group_threads); return sycl::max(ranks_size, exchange_size); } radix_sort(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item> __dpct_inline__ void sort(const Item &item, T (&keys)[VALUES_PER_THREAD], int begin_bit = 0, int end_bit = 8 * sizeof(T)) { uint32_t(&unsigned_keys)[VALUES_PER_THREAD] = reinterpret_cast<uint32_t(&)[VALUES_PER_THREAD]>(keys); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_in(unsigned_keys[i]); } while (true) { int pass_bits = sycl::min(RADIX_BITS, end_bit - begin_bit); int ranks[VALUES_PER_THREAD]; detail::radix_rank<RADIX_BITS, DESCENDING>(_local_memory) .template rank_keys(item, unsigned_keys, ranks, begin_bit, pass_bits); begin_bit += RADIX_BITS; item.barrier(sycl::access::fence_space::local_space); exchange<T, VALUES_PER_THREAD>(_local_memory) .scatter_to_blocked(item, keys, ranks); item.barrier(sycl::access::fence_space::local_space); if (begin_bit >= end_bit) break; } #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_out(unsigned_keys[i]); } } private: static constexpr int RADIX_BITS = 4; uint8_t *_local_memory; }; /// Perform a reduction of the data elements assigned to all threads in the /// group. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the reduce operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ T reduce(Item item, T (&inputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; i++) { result = binary_op(result, inputs[i]); } return detail::__reduce_over_group(item.get_group(), result, binary_op); } /// Perform a reduction on a limited number of the work items in a subgroup /// /// \param item A work-item in a group. /// \param value value per work item which is to be reduced /// \param items_to_reduce num work items at the start of the subgroup to reduce /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation> __dpct_inline__ typename ::std::enable_if_t<sycl::has_known_identity_v<BinaryOperation, T>, T> reduce_over_partial_group(const Item &item, const T &value, const ::std::uint16_t &items_to_reduce, BinaryOperation binary_op) { T value_temp = (item.get_local_linear_id() < items_to_reduce) ? value : sycl::known_identity_v<BinaryOperation, T>; return detail::__reduce_over_group(item.get_sub_group(), value_temp, binary_op); } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns inclusive scan of the input elements assigned to /// work-items in the group. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void inclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); if (item.get_local_linear_id() == 0) { outputs[0] = inputs[0]; } else { outputs[0] = binary_op(inputs[0], exclusive_result); } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { outputs[i] = binary_op(inputs[i], outputs[i - 1]); } } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Pointer to the input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns inclusive scan of the input /// elements assigned to work-items in the group. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__inclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = output; } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an inclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns inclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = inclusive_scan(item, input, binary_op, group_aggregate); T group_prefix = prefix_callback_op(group_aggregate); return binary_op(group_prefix, output); } } // namespace group namespace device { namespace detail { template <typename... _Args> constexpr auto __joint_reduce(_Args... __args) { return sycl::joint_reduce(__args...); } } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); queue.submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } sycl::multi_ptr<T, sycl::access::address_space::global_space> input_ptr = inputs; T group_aggregate = detail::__joint_reduce( item.get_group(), input_ptr + segment_begin, input_ptr + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS namespace experimental { namespace detail { template <typename _Tp, typename... _Ts> struct __is_any { constexpr static bool value = std::disjunction_v< std::is_same<std::remove_cv_t<_Tp>, std::remove_cv_t<_Ts>>...>; }; template <typename _Tp, typename _Bp> struct __in_native_op_list { constexpr static bool value = __is_any<_Bp, sycl::plus<_Tp>, sycl::bit_or<_Tp>, sycl::bit_xor<_Tp>, sycl::bit_and<_Tp>, sycl::maximum<_Tp>, sycl::minimum<_Tp>, sycl::multiplies<_Tp>>::value; }; template <typename _Tp, typename _Bp> struct __is_native_op { constexpr static bool value = __in_native_op_list<_Tp, _Bp>::value || __in_native_op_list<void, _Bp>::value; }; } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. Compared with dpct::device::segmented_reduce, this experimental /// feature support user define reductions. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); if constexpr (!detail::__is_native_op<T, BinaryOperation>::value) { queue.submit([&](sycl::handler &cgh) { size_t temp_memory_size = GROUP_SIZE * sizeof(T); auto scratch = sycl::local_accessor<std::byte, 1>(temp_memory_size, cgh); cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } // Create a handle that associates the group with an allocation it // can use auto handle = sycl::ext::oneapi::experimental::group_with_scratchpad( item.get_group(), sycl::span(&scratch[0], temp_memory_size)); T group_aggregate = sycl::ext::oneapi::experimental::joint_reduce( handle, inputs + segment_begin, inputs + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } else { dpct::device::segmented_reduce<GROUP_SIZE>(queue, inputs, outputs, segment_count, begin_offsets, end_offsets, binary_op, init); } } } // namespace experimental #endif // SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS } // namespace device } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/02_sycl_migrated/include/dpct/dpl_extras/functional.h
//==---- functional.h -----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FUNCTIONAL_H__ #define __DPCT_FUNCTIONAL_H__ #include <functional> #include <oneapi/dpl/functional> #include <oneapi/dpl/iterator> #if ONEDPL_USE_DPCPP_BACKEND #include <oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_utils.h> #endif #include <tuple> #include <utility> namespace dpct { struct null_type {}; namespace internal { template <class _ExecPolicy, class _T> using enable_if_execution_policy = typename std::enable_if<oneapi::dpl::execution::is_execution_policy< typename std::decay<_ExecPolicy>::type>::value, _T>::type; template <typename _T> struct is_hetero_execution_policy : ::std::false_type {}; template <typename... PolicyParams> struct is_hetero_execution_policy< oneapi::dpl::execution::device_policy<PolicyParams...>> : ::std::true_type { }; template <typename _T> struct is_fpga_execution_policy : ::std::false_type {}; #if _ONEDPL_FPGA_DEVICE template <unsigned int unroll_factor, typename... PolicyParams> struct is_hetero_execution_policy< execution::fpga_policy<unroll_factor, PolicyParams...>> : ::std::true_type { }; #endif template <class _ExecPolicy, class _T> using enable_if_hetero_execution_policy = typename std::enable_if< is_hetero_execution_policy<typename std::decay<_ExecPolicy>::type>::value, _T>::type; #if _ONEDPL_CPP14_INTEGER_SEQUENCE_PRESENT template <std::size_t... _Sp> using index_sequence = std::index_sequence<_Sp...>; template <std::size_t _Np> using make_index_sequence = std::make_index_sequence<_Np>; #else template <std::size_t... _Sp> class index_sequence {}; template <std::size_t _Np, std::size_t... _Sp> struct make_index_sequence_impl : make_index_sequence_impl<_Np - 1, _Np - 1, _Sp...> {}; template <std::size_t... _Sp> struct make_index_sequence_impl<0, _Sp...> { using type = index_sequence<_Sp...>; }; template <std::size_t _Np> using make_index_sequence = typename make_index_sequence_impl<_Np>::type; #endif // Minimal buffer implementations for temporary storage in mapping rules // Some of our algorithms need to start with raw memory buffer, // not an initialized array, because initialization/destruction // would make the span be at least O(N). #if ONEDPL_USE_DPCPP_BACKEND template <typename _Tp> class __buffer { sycl::buffer<_Tp, 1> __buf; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t __n) : __buf(sycl::range<1>(__n)) {} // Return pointer to buffer, or NULL if buffer could not be obtained. auto get() -> decltype(oneapi::dpl::begin(__buf)) const { return oneapi::dpl::begin(__buf); } }; #else template <typename _Tp> class __buffer { std::unique_ptr<_Tp> _M_ptr; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(const std::size_t __n) : _M_ptr(new _Tp[__n]) {} // Return pointer to buffer, or NULL if buffer could not be obtained. _Tp *get() const { return _M_ptr.get(); } }; #endif // Implements C++14 std::less<void> specialization to allow parameter type // deduction. class __less { public: template <typename _Xp, typename _Yp> bool operator()(_Xp &&__x, _Yp &&__y) const { return std::forward<_Xp>(__x) < std::forward<_Yp>(__y); } }; template <typename Policy, typename NewName> struct rebind_policy { using type = Policy; }; template <typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::device_policy<KernelName>, NewName> { using type = oneapi::dpl::execution::device_policy<NewName>; }; #if _ONEDPL_FPGA_DEVICE template <unsigned int factor, typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::fpga_policy<factor, KernelName>, NewName> { using type = oneapi::dpl::execution::fpga_policy<factor, NewName>; }; #endif template <typename T1, typename T2, typename R1 = typename std::iterator_traits<T1>::reference, typename R2 = typename std::iterator_traits<T2>::reference> struct perm_fun { typedef R2 result_of; perm_fun(T1 input) : source(input) {} R2 operator()(R1 x) const { return *(source + x); } private: T1 source; }; // Functor compares first element (key) from tied sequence. template <typename Compare = class internal::__less> struct compare_key_fun { typedef bool result_of; compare_key_fun(Compare _comp = internal::__less()) : comp(_comp) {} template <typename _T1, typename _T2> result_of operator()(_T1 &&a, _T2 &&b) const { using std::get; return comp(get<0>(a), get<0>(b)); } private: mutable Compare comp; }; // Functor evaluates second element of tied sequence with predicate. // Used by: copy_if, remove_copy_if, stable_partition_copy // Lambda: template <typename Predicate> struct predicate_key_fun { typedef bool result_of; predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return pred(get<1>(a)); } private: mutable Predicate pred; }; // Used by: remove_if template <typename Predicate> struct negate_predicate_key_fun { typedef bool result_of; negate_predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return !pred(get<1>(a)); } private: mutable Predicate pred; }; template <typename T> struct sequence_fun { using result_type = T; sequence_fun(T _init, T _step) : init(_init), step(_step) {} template <typename _T> result_type operator()(_T &&i) const { return static_cast<T>(init + step * i); } private: const T init; const T step; }; //[binary_pred](Ref a, Ref b){ return(binary_pred(get<0>(a),get<0>(b))); template <typename Predicate> struct unique_fun { typedef bool result_of; unique_fun(Predicate _pred) : pred(_pred) {} template <typename _T> result_of operator()(_T &&a, _T &&b) const { using std::get; return pred(get<0>(a), get<0>(b)); } private: mutable Predicate pred; }; // Lambda: [pred, &new_value](Ref1 a, Ref2 s) {return pred(s) ? new_value : a; // }); template <typename T, typename Predicate> struct replace_if_fun { public: typedef T result_of; replace_if_fun(Predicate _pred, T _new_value) : pred(_pred), new_value(_new_value) {} template <typename _T1, typename _T2> T operator()(_T1 &&a, _T2 &&s) const { return pred(s) ? new_value : a; } private: mutable Predicate pred; const T new_value; }; //[pred,op](Ref a){return pred(a) ? op(a) : a; } template <typename T, typename Predicate, typename Operator> struct transform_if_fun { transform_if_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<0>(t))) get<1>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; //[pred, op](Ref1 a, Ref2 s) { return pred(s) ? op(a) : a; }); template <typename T, typename Predicate, typename Operator> struct transform_if_unary_zip_mask_fun { transform_if_unary_zip_mask_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<1>(t))) get<2>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; template <typename T, typename Predicate, typename BinaryOperation> class transform_if_zip_mask_fun { public: transform_if_zip_mask_fun(Predicate _pred = oneapi::dpl::identity(), BinaryOperation _op = oneapi::dpl::identity()) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T &&t) const { using std::get; if (pred(get<2>(t))) get<3>(t) = op(get<0>(t), get<1>(t)); } private: mutable Predicate pred; mutable BinaryOperation op; }; // This following code is similar to a section of code in // oneDPL/include/oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_radix_sort.h // It has a similar approach, and could be consolidated. // Outside of some differences in approach, there are two significant // differences in function. // // 1) This code allows the output type of the bit range translation to be fit // into to the minimal type required to provide that many bits. The code in // oneDPL to calculate the bucket for the radix is similar but its output is // always std::uint32_t. The assumption that the bit range desired will fit in // 32 bits is not true for this code. // // 2) This code ensures that for floating point type, -0.0f and 0.0f map to the // same value. This allows the output of this translation to be used to provide // a sort which ensures the stability of these values for floating point types. template <int N> struct uint_byte_map {}; template <> struct uint_byte_map<1> { using type = uint8_t; }; template <> struct uint_byte_map<2> { using type = uint16_t; }; template <> struct uint_byte_map<4> { using type = uint32_t; }; template <> struct uint_byte_map<8> { using type = uint64_t; }; template <typename T> struct uint_map { using type = typename uint_byte_map<sizeof(T)>::type; }; template <typename T, typename OutKeyT> class translate_key { using uint_type_t = typename uint_map<T>::type; public: translate_key(int begin_bit, int end_bit) { shift = begin_bit; mask = ~OutKeyT(0); // all ones mask = mask >> (sizeof(OutKeyT) * 8 - (end_bit - begin_bit)); // setup appropriate mask flip_sign = uint_type_t(1) << (sizeof(uint_type_t) * 8 - 1); // sign bit flip_key = ~uint_type_t(0); // 0xF...F } inline OutKeyT operator()(const T &key) const { uint_type_t intermediate; if constexpr (std::is_floating_point<T>::value) { // normal case (both -0.0f and 0.0f equal -0.0f) if (key != T(-0.0f)) { uint_type_t is_negative = reinterpret_cast<const uint_type_t &>(key) >> (sizeof(uint_type_t) * 8 - 1); intermediate = reinterpret_cast<const uint_type_t &>(key) ^ ((is_negative * flip_key) | flip_sign); } else // special case for -0.0f to keep stability with 0.0f { T negzero = T(-0.0f); intermediate = reinterpret_cast<const uint_type_t &>(negzero); } } else if constexpr (std::is_signed<T>::value) { intermediate = reinterpret_cast<const uint_type_t &>(key) ^ flip_sign; } else { intermediate = key; } return static_cast<OutKeyT>(intermediate >> shift) & mask; // shift, cast, and mask } private: uint8_t shift; OutKeyT mask; uint_type_t flip_sign; uint_type_t flip_key; }; } // end namespace internal } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/helper_timer.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Helper Timing Functions #ifndef COMMON_HELPER_TIMER_H_ #define COMMON_HELPER_TIMER_H_ #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // includes, system #include <vector> // includes, project #include <exception.h> // Definition of the StopWatch Interface, this is used if we don't want to use // the CUT functions But rather in a self contained class interface class StopWatchInterface { public: StopWatchInterface() {} virtual ~StopWatchInterface() {} public: //! Start time measurement virtual void start() = 0; //! Stop time measurement virtual void stop() = 0; //! Reset time counters to zero virtual void reset() = 0; //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned virtual float getTime() = 0; //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time virtual float getAverageTime() = 0; }; ////////////////////////////////////////////////////////////////// // Begin Stopwatch timer class definitions for all OS platforms // ////////////////////////////////////////////////////////////////// #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // includes, system #define WINDOWS_LEAN_AND_MEAN #include <windows.h> #undef min #undef max //! Windows specific implementation of StopWatch class StopWatchWin : public StopWatchInterface { public: //! Constructor, default StopWatchWin() : start_time(), end_time(), diff_time(0.0f), total_time(0.0f), running(false), clock_sessions(0), freq(0), freq_set(false) { if (!freq_set) { // helper variable LARGE_INTEGER temp; // get the tick frequency from the OS QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER *>(&temp)); // convert to type in which it is needed freq = (static_cast<double>(temp.QuadPart)) / 1000.0; // rememeber query freq_set = true; } } // Destructor ~StopWatchWin() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // member variables //! Start of measurement LARGE_INTEGER start_time; //! End of measurement LARGE_INTEGER end_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; //! tick frequency double freq; //! flag if the frequency has been set bool freq_set; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::start() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::stop() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&end_time)); diff_time = static_cast<float>(((static_cast<double>(end_time.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); total_time += diff_time; clock_sessions++; running = false; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { LARGE_INTEGER temp; QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&temp)); retval += static_cast<float>(((static_cast<double>(temp.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } #else // Declarations for Stopwatch on Linux and Mac OSX // includes, system #include <sys/time.h> #include <ctime> //! Windows specific implementation of StopWatch class StopWatchLinux : public StopWatchInterface { public: //! Constructor, default StopWatchLinux() : start_time(), diff_time(0.0), total_time(0.0), running(false), clock_sessions(0) {} // Destructor virtual ~StopWatchLinux() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // helper functions //! Get difference between start time and current time inline float getDiffTime(); private: // member variables //! Start of measurement struct timeval start_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::start() { gettimeofday(&start_time, 0); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::stop() { diff_time = getDiffTime(); total_time += diff_time; running = false; clock_sessions++; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { gettimeofday(&start_time, 0); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { retval += getDiffTime(); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getDiffTime() { struct timeval t_time; gettimeofday(&t_time, 0); // time difference in milli-seconds return static_cast<float>(1000.0 * (t_time.tv_sec - start_time.tv_sec) + (0.001 * (t_time.tv_usec - start_time.tv_usec))); } #endif // WIN32 //////////////////////////////////////////////////////////////////////////////// //! Timer functionality exported //////////////////////////////////////////////////////////////////////////////// //! Create a new timer //! @return true if a time has been created, otherwise false //! @param name of the new timer, 0 if the creation failed //////////////////////////////////////////////////////////////////////////////// inline bool sdkCreateTimer(StopWatchInterface **timer_interface) { // printf("sdkCreateTimer called object %08x\n", (void *)*timer_interface); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchWin()); #else *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchLinux()); #endif return (*timer_interface != NULL) ? true : false; } //////////////////////////////////////////////////////////////////////////////// //! Delete a timer //! @return true if a time has been deleted, otherwise false //! @param name of the timer to delete //////////////////////////////////////////////////////////////////////////////// inline bool sdkDeleteTimer(StopWatchInterface **timer_interface) { // printf("sdkDeleteTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { delete *timer_interface; *timer_interface = NULL; } return true; } //////////////////////////////////////////////////////////////////////////////// //! Start the time with name \a name //! @param name name of the timer to start //////////////////////////////////////////////////////////////////////////////// inline bool sdkStartTimer(StopWatchInterface **timer_interface) { // printf("sdkStartTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->start(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Stop the time with name \a name. Does not reset. //! @param name name of the timer to stop //////////////////////////////////////////////////////////////////////////////// inline bool sdkStopTimer(StopWatchInterface **timer_interface) { // printf("sdkStopTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->stop(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Resets the timer's counter. //! @param name name of the timer to reset. //////////////////////////////////////////////////////////////////////////////// inline bool sdkResetTimer(StopWatchInterface **timer_interface) { // printf("sdkResetTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->reset(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Return the average time for timer execution as the total time //! for the timer dividied by the number of completed (stopped) runs the timer //! has made. //! Excludes the current running time if the timer is currently running. //! @param name name of the timer to return the time of //////////////////////////////////////////////////////////////////////////////// inline float sdkGetAverageTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetAverageTimerValue called object %08x\n", (void // *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getAverageTime(); } else { return 0.0f; } } //////////////////////////////////////////////////////////////////////////////// //! Total execution time for the timer over all runs since the last reset //! or timer creation. //! @param name name of the timer to obtain the value of. //////////////////////////////////////////////////////////////////////////////// inline float sdkGetTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetTimerValue called object %08x\n", (void *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getTime(); } else { return 0.0f; } } #endif // COMMON_HELPER_TIMER_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/helper_string.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, timers, etc) #ifndef COMMON_HELPER_STRING_H_ #define COMMON_HELPER_STRING_H_ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <string> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE #endif #ifndef STRCASECMP #define STRCASECMP _stricmp #endif #ifndef STRNCASECMP #define STRNCASECMP _strnicmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy_s(sFilePath, nLength, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #ifndef SPRINTF #define SPRINTF sprintf_s #endif #else // Linux Includes #include <string.h> #include <strings.h> #ifndef STRCASECMP #define STRCASECMP strcasecmp #endif #ifndef STRNCASECMP #define STRNCASECMP strncasecmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy(sFilePath, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #ifndef SPRINTF #define SPRINTF sprintf #endif #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // CUDA Utility Helper Functions inline int stringRemoveDelimiter(char delimiter, const char *string) { int string_start = 0; while (string[string_start] == delimiter) { string_start++; } if (string_start >= static_cast<int>(strlen(string) - 1)) { return 0; } return string_start; } inline int getFileExtension(char *filename, char **extension) { int string_length = static_cast<int>(strlen(filename)); while (filename[string_length--] != '.') { if (string_length == 0) break; } if (string_length > 0) string_length += 2; if (string_length == 0) *extension = NULL; else *extension = &filename[string_length]; return string_length; } inline bool checkCmdLineFlag(const int argc, const char **argv, const char *string_ref) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; const char *equal_pos = strchr(string_argv, '='); int argv_length = static_cast<int>( equal_pos == 0 ? strlen(string_argv) : equal_pos - string_argv); int length = static_cast<int>(strlen(string_ref)); if (length == argv_length && !STRNCASECMP(string_argv, string_ref, length)) { bFound = true; continue; } } } return bFound; } // This function wraps the CUDA Driver API into a template function template <class T> inline bool getCmdLineArgumentValue(const int argc, const char **argv, const char *string_ref, T *value) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; *value = (T)atoi(&string_argv[length + auto_inc]); } bFound = true; i = argc; } } } return bFound; } inline int getCmdLineArgumentInt(const int argc, const char **argv, const char *string_ref) { bool bFound = false; int value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = atoi(&string_argv[length + auto_inc]); } else { value = 0; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline float getCmdLineArgumentFloat(const int argc, const char **argv, const char *string_ref) { bool bFound = false; float value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = static_cast<float>(atof(&string_argv[length + auto_inc])); } else { value = 0.f; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline bool getCmdLineArgumentString(const int argc, const char **argv, const char *string_ref, char **string_retval) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); char *string_argv = const_cast<char *>(&argv[i][string_start]); int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { *string_retval = &string_argv[length + 1]; bFound = true; continue; } } } if (!bFound) { *string_retval = NULL; } return bFound; } ////////////////////////////////////////////////////////////////////////////// //! Find the path for a file assuming that //! files are found in the searchPath. //! //! @return the path if succeeded, otherwise 0 //! @param filename name of the file //! @param executable_path optional absolute path of the executable ////////////////////////////////////////////////////////////////////////////// inline char *sdkFindFilePath(const char *filename, const char *executable_path) { // <executable_name> defines a variable that is replaced with the name of the // executable // Typical relative search paths to locate needed companion files (e.g. sample // input data, or JIT source files) The origin for the relative search may be // the .exe file, a .bat file launching an .exe, a browser .exe launching the // .exe or .bat, etc const char *searchPath[] = { "./", // same dir "./data/", // same dir "../../../../Samples/<executable_name>/", // up 4 in tree "../../../Samples/<executable_name>/", // up 3 in tree "../../Samples/<executable_name>/", // up 2 in tree "../../../../Samples/<executable_name>/data/", // up 4 in tree "../../../Samples/<executable_name>/data/", // up 3 in tree "../../Samples/<executable_name>/data/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/data/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/data/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/data/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/data/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/data/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/data/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/data/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/data/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/data/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/data/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/data/", // up 2 in tree "../../../../Common/data/", // up 4 in tree "../../../Common/data/", // up 3 in tree "../../Common/data/" // up 2 in tree }; // Extract the executable name std::string executable_name; if (executable_path != 0) { executable_name = std::string(executable_path); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Windows path delimiter size_t delimiter_pos = executable_name.find_last_of('\\'); executable_name.erase(0, delimiter_pos + 1); if (executable_name.rfind(".exe") != std::string::npos) { // we strip .exe, only if the .exe is found executable_name.resize(executable_name.size() - 4); } #else // Linux & OSX path delimiter size_t delimiter_pos = executable_name.find_last_of('/'); executable_name.erase(0, delimiter_pos + 1); #endif } // Loop over all search paths and return the first hit for (unsigned int i = 0; i < sizeof(searchPath) / sizeof(char *); ++i) { std::string path(searchPath[i]); size_t executable_name_pos = path.find("<executable_name>"); // If there is executable_name variable in the searchPath // replace it with the value if (executable_name_pos != std::string::npos) { if (executable_path != 0) { path.replace(executable_name_pos, strlen("<executable_name>"), executable_name); } else { // Skip this path entry if no executable argument is given continue; } } #ifdef _DEBUG printf("sdkFindFilePath <%s> in %s\n", filename, path.c_str()); #endif // Test if the file exists path.append(filename); FILE *fp; FOPEN(fp, path.c_str(), "rb"); if (fp != NULL) { fclose(fp); // File found // returning an allocated array here for backwards compatibility reasons char *file_path = reinterpret_cast<char *>(malloc(path.length() + 1)); STRCPY(file_path, path.length() + 1, path.c_str()); return file_path; } if (fp) { fclose(fp); } } // File not found printf("\nerror: sdkFindFilePath: file <%s> not found!\n", filename); return 0; } #endif // COMMON_HELPER_STRING_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/helper_image.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (image,bitmap) #ifndef COMMON_HELPER_IMAGE_H_ #define COMMON_HELPER_IMAGE_H_ #include <assert.h> #include <exception.h> #include <math.h> #include <stdint.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> #ifndef MIN #define MIN(a, b) ((a < b) ? a : b) #endif #ifndef MAX #define MAX(a, b) ((a > b) ? a : b) #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #include <helper_string.h> // namespace unnamed (internal) namespace helper_image_internal { //! size of PGM file header const unsigned int PGMHeaderSize = 0x40; // types //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterFromUByte; //! Data converter from unsigned char / unsigned byte template <> struct ConverterFromUByte<unsigned char> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<unsigned char>(val); } }; //! Data converter from unsigned char / unsigned byte to float template <> struct ConverterFromUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<float>(val) / 255.0f; } }; //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterToUByte; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<unsigned char> { //! Conversion operator (essentially a passthru //! @return converted value //! @param val value to convert unsigned char operator()(const unsigned char &val) { return val; } }; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert unsigned char operator()(const float &val) { return static_cast<unsigned char>(val * 255.0f); } }; } // namespace helper_image_internal #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #else #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #endif inline bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels) { FILE *fp = NULL; if (FOPEN_FAIL(FOPEN(fp, file, "rb"))) { std::cerr << "__LoadPPM() : Failed to open file: " << file << std::endl; return false; } // check header char header[helper_image_internal::PGMHeaderSize]; if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (strncmp(header, "P5", 2) == 0) { *channels = 1; } else if (strncmp(header, "P6", 2) == 0) { *channels = 3; } else { std::cerr << "__LoadPPM() : File is not a PPM or PGM image" << std::endl; *channels = 0; return false; } // parse header, read maxval, width and height unsigned int width = 0; unsigned int height = 0; unsigned int maxval = 0; unsigned int i = 0; while (i < 3) { if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (header[0] == '#') { continue; } if (i == 0) { i += SSCANF(header, "%u %u %u", &width, &height, &maxval); } else if (i == 1) { i += SSCANF(header, "%u %u", &height, &maxval); } else if (i == 2) { i += SSCANF(header, "%u", &maxval); } } // check if given handle for the data is initialized if (NULL != *data) { if (*w != width || *h != height) { std::cerr << "__LoadPPM() : Invalid image dimensions." << std::endl; } } else { *data = (unsigned char *)malloc(sizeof(unsigned char) * width * height * *channels); *w = width; *h = height; } // read and close file if (fread(*data, sizeof(unsigned char), width * height * *channels, fp) == 0) { std::cerr << "__LoadPPM() read data returned error." << std::endl; } fclose(fp); return true; } template <class T> inline bool sdkLoadPGM(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = NULL; unsigned int channels; if (true != __loadPPM(file, &idata, w, h, &channels)) { return false; } unsigned int size = *w * *h * channels; // initialize mem if necessary // the correct size is checked / set in loadPGMc() if (NULL == *data) { *data = reinterpret_cast<T *>(malloc(sizeof(T) * size)); } // copy and cast data std::transform(idata, idata + size, *data, helper_image_internal::ConverterFromUByte<T>()); free(idata); return true; } template <class T> inline bool sdkLoadPPM4(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = reinterpret_cast<T *>(malloc(sizeof(T) * size * 4)); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels) { assert(NULL != data); assert(w > 0); assert(h > 0); std::fstream fh(file, std::fstream::out | std::fstream::binary); if (fh.bad()) { std::cerr << "__savePPM() : Opening file failed." << std::endl; return false; } if (channels == 1) { fh << "P5\n"; } else if (channels == 3) { fh << "P6\n"; } else { std::cerr << "__savePPM() : Invalid number of channels." << std::endl; return false; } fh << w << "\n" << h << "\n" << 0xff << std::endl; for (unsigned int i = 0; (i < (w * h * channels)) && fh.good(); ++i) { fh << data[i]; } fh.flush(); if (fh.bad()) { std::cerr << "__savePPM() : Writing data failed." << std::endl; return false; } fh.close(); return true; } template <class T> inline bool sdkSavePGM(const char *file, T *data, unsigned int w, unsigned int h) { unsigned int size = w * h; unsigned char *idata = (unsigned char *)malloc(sizeof(unsigned char) * size); std::transform(data, data + size, idata, helper_image_internal::ConverterToUByte<T>()); // write file bool result = __savePPM(file, idata, w, h, 1); // cleanup free(idata); return result; } inline bool sdkSavePPM4ub(const char *file, unsigned char *data, unsigned int w, unsigned int h) { // strip 4th component int size = w * h; unsigned char *ndata = (unsigned char *)malloc(sizeof(unsigned char) * size * 3); unsigned char *ptr = ndata; for (int i = 0; i < size; i++) { *ptr++ = *data++; *ptr++ = *data++; *ptr++ = *data++; data++; } bool result = __savePPM(file, ndata, w, h, 3); free(ndata); return result; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFile(const char *filename, T **data, unsigned int *len, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // intermediate storage for the data read std::vector<T> data_read; // open file for reading FILE *fh = NULL; // check if filestream is valid if (FOPEN_FAIL(FOPEN(fh, filename, "r"))) { printf("Unable to open input file: %s\n", filename); return false; } // read all data elements T token; while (!feof(fh)) { fscanf(fh, "%f", &token); data_read.push_back(token); } // the last element is read twice data_read.pop_back(); fclose(fh); // check if the given handle is already initialized if (NULL != *data) { if (*len != data_read.size()) { std::cerr << "sdkReadFile() : Initialized memory given but " << "size mismatch with signal read " << "(data read / data init = " << (unsigned int)data_read.size() << " / " << *len << ")" << std::endl; return false; } } else { // allocate storage for the data read *data = reinterpret_cast<T *>(malloc(sizeof(T) * data_read.size())); // store signal size *len = static_cast<unsigned int>(data_read.size()); } // copy data memcpy(*data, &data_read.front(), sizeof(T) * data_read.size()); return true; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFileBlocks(const char *filename, T **data, unsigned int *len, unsigned int block_num, unsigned int block_size, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // open file for reading FILE *fh = fopen(filename, "rb"); if (fh == NULL && verbose) { std::cerr << "sdkReadFile() : Opening file failed." << std::endl; return false; } // check if the given handle is already initialized // allocate storage for the data read data[block_num] = reinterpret_cast<T *>(malloc(block_size)); // read all data elements fseek(fh, block_num * block_size, SEEK_SET); *len = fread(data[block_num], sizeof(T), block_size / sizeof(T), fh); fclose(fh); return true; } ////////////////////////////////////////////////////////////////////////////// //! Write a data file \filename //! @return true if writing the file succeeded, otherwise false //! @param filename name of the source file //! @param data data to write //! @param len number of data elements in data, -1 on error //! @param epsilon epsilon for comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool sdkWriteFile(const char *filename, const T *data, unsigned int len, const S epsilon, bool verbose, bool append = false) { assert(NULL != filename); assert(NULL != data); // open file for writing // if (append) { std::fstream fh(filename, std::fstream::out | std::fstream::ate); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write/append." << std::endl; } /* } else { std::fstream fh(filename, std::fstream::out); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write." << std::endl; } } */ // check if filestream is valid if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Opening file failed." << std::endl; } return false; } // first write epsilon fh << "# " << epsilon << "\n"; // write data for (unsigned int i = 0; (i < len) && (fh.good()); ++i) { fh << data[i] << ' '; } // Check if writing succeeded if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Writing file failed." << std::endl; } return false; } // file ends with nl fh << std::endl; return true; } ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference timer_interface to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareData(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); bool result = true; unsigned int error_count = 0; for (unsigned int i = 0; i < len; ++i) { float diff = static_cast<float>(reference[i]) - static_cast<float>(data[i]); bool comp = (diff <= epsilon) && (diff >= -epsilon); result &= comp; error_count += !comp; #if 0 if (!comp) { std::cerr << "ERROR, i = " << i << ",\t " << reference[i] << " / " << data[i] << " (reference / data)\n"; } #endif } if (threshold == 0.0f) { return (result) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return (len * threshold > error_count) ? true : false; } } #ifndef __MIN_EPSILON_ERROR #define __MIN_EPSILON_ERROR 1e-3f #endif ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference handle to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison //! @param epsilon threshold % of (# of bytes) for pass/fail ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareDataAsFloatThreshold(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); // If we set epsilon to be 0, let's set a minimum threshold float max_error = MAX((float)epsilon, __MIN_EPSILON_ERROR); int error_count = 0; bool result = true; for (unsigned int i = 0; i < len; ++i) { float diff = fabs(static_cast<float>(reference[i]) - static_cast<float>(data[i])); bool comp = (diff < max_error); result &= comp; if (!comp) { error_count++; } } if (threshold == 0.0f) { if (error_count) { printf("total # of errors = %d\n", error_count); } return (error_count == 0) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return ((len * threshold > error_count) ? true : false); } } inline void sdkDumpBin(void *data, unsigned int bytes, const char *filename) { printf("sdkDumpBin: <%s>\n", filename); FILE *fp; FOPEN(fp, filename, "wb"); fwrite(data, bytes, 1, fp); fflush(fp); fclose(fp); } inline bool sdkCompareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { unsigned int *src_buffer, *ref_buffer; FILE *src_fp = NULL, *ref_fp = NULL; uint64_t error_count = 0; size_t fsize = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file); error_count++; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <unsigned int> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf( "compareBin2Bin <unsigned int>" " unable to open ref_file: %s\n", ref_file_path); error_count++; } if (src_fp && ref_fp) { src_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); ref_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); fsize = fread(src_buffer, nelements, sizeof(unsigned int), src_fp); fsize = fread(ref_buffer, nelements, sizeof(unsigned int), ref_fp); printf( "> compareBin2Bin <unsigned int> nelements=%d," " epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize)); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize)); if (!compareData<unsigned int, float>(ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { float *src_buffer = NULL, *ref_buffer = NULL; FILE *src_fp = NULL, *ref_fp = NULL; size_t fsize = 0; uint64_t error_count = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <float> unable to open src_file: %s\n", src_file); error_count = 1; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", exec_path); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path); error_count = 1; } if (src_fp && ref_fp) { src_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); ref_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); printf( "> compareBin2Bin <float> nelements=%d, epsilon=%4.2f," " threshold=%4.2f\n", nelements, epsilon, threshold); fsize = fread(src_buffer, sizeof(float), nelements, src_fp); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize * sizeof(float))); fsize = fread(ref_buffer, sizeof(float), nelements, ref_fp); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize * sizeof(float))); if (!compareDataAsFloatThreshold<float, float>( ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareL2fe(const float *reference, const float *data, const unsigned int len, const float epsilon) { assert(epsilon >= 0); float error = 0; float ref = 0; for (unsigned int i = 0; i < len; ++i) { float diff = reference[i] - data[i]; error += diff * diff; ref += reference[i] * reference[i]; } float normRef = sqrtf(ref); if (fabs(ref) < 1e-7) { #ifdef _DEBUG std::cerr << "ERROR, reference l2-norm is 0\n"; #endif return false; } float normError = sqrtf(error); error = normError / normRef; bool result = error < epsilon; #ifdef _DEBUG if (!result) { std::cerr << "ERROR, l2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; } #endif return result; } inline bool sdkLoadPPMub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned int channels; return __loadPPM(file, data, w, h, &channels); } inline bool sdkLoadPPM4ub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = (unsigned char *)malloc(sizeof(unsigned char) * size * 4); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool sdkComparePPM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data, *ref_data; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PPMvsPPM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPM4ub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PPMvsPPM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPM4ub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PPMvsPPM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PPMvsPPM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) { std::cerr << "PPMvsPPM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; } if (compareData(ref_data, src_data, src_width * src_height * 4, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } inline bool sdkComparePGM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data = 0, *ref_data = 0; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PGMvsPGM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPMub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PGMvsPGM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPMub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PGMvsPGM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PGMvsPGM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) std::cerr << "PGMvsPGM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; if (compareData(ref_data, src_data, src_width * src_height, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } #endif // COMMON_HELPER_IMAGE_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/exception.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CUda UTility Library */ #ifndef COMMON_EXCEPTION_H_ #define COMMON_EXCEPTION_H_ // includes, system #include <stdlib.h> #include <exception> #include <iostream> #include <stdexcept> #include <string> //! Exception wrapper. //! @param Std_Exception Exception out of namespace std for easy typing. template <class Std_Exception> class Exception : public Std_Exception { public: //! @brief Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const char *detailed = "-"); //! Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const std::string &detailed); //! Destructor virtual ~Exception() throw(); private: //! Constructor, default (private) Exception(); //! Constructor, standard //! @param str string returned by what() explicit Exception(const std::string &str); }; //////////////////////////////////////////////////////////////////////////////// //! Exception handler function for arbitrary exceptions //! @param ex exception to handle //////////////////////////////////////////////////////////////////////////////// template <class Exception_Typ> inline void handleException(const Exception_Typ &ex) { std::cerr << ex.what() << std::endl; exit(EXIT_FAILURE); } //! Convenience macros //! Exception caused by dynamic program behavior, e.g. file does not exist #define RUNTIME_EXCEPTION(msg) \ Exception<std::runtime_error>::throw_it(__FILE__, __LINE__, msg) //! Logic exception in program, e.g. an assert failed #define LOGIC_EXCEPTION(msg) \ Exception<std::logic_error>::throw_it(__FILE__, __LINE__, msg) //! Out of range exception #define RANGE_EXCEPTION(msg) \ Exception<std::range_error>::throw_it(__FILE__, __LINE__, msg) //////////////////////////////////////////////////////////////////////////////// //! Implementation // includes, system #include <sstream> //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const char *detailed) { std::stringstream s; // Quiet heavy-weight but exceptions are not for // performance / release versions s << "Exception in file '" << file << "' in line " << line << "\n" << "Detailed description: " << detailed << "\n"; throw Exception(s.str()); } //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const std::string &msg) { throw_it(file, line, msg.c_str()); } //////////////////////////////////////////////////////////////////////////////// //! Constructor, default (private). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception() : Std_Exception("Unknown Exception.\n") {} //////////////////////////////////////////////////////////////////////////////// //! Constructor, standard (private). //! String returned by what(). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception(const std::string &s) : Std_Exception(s) {} //////////////////////////////////////////////////////////////////////////////// //! Destructor //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::~Exception() throw() {} // functions, exported #endif // COMMON_EXCEPTION_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/helper_cuda.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // These are CUDA Helper functions for initialization and error checking #ifndef COMMON_HELPER_CUDA_H_ #define COMMON_HELPER_CUDA_H_ #pragma once #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <helper_string.h> #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // Note, it is required that your SDK sample to include the proper header // files, please refer the CUDA examples for examples of the needed CUDA // headers, which may change depending on which CUDA functions are used. // CUDA Runtime error messages #ifdef __DPCT_HPP__ static const char *_cudaGetErrorEnum(dpct::err0 error) { /* DPCT1009:16: SYCL uses exceptions to report errors and does not use the error codes. The original code was commented out and a warning string was inserted. You need to rewrite this code. */ return "cudaGetErrorName is not supported" /*cudaGetErrorName(error)*/; } #endif #ifdef CUDA_DRIVER_API // CUDA Driver API errors static const char *_cudaGetErrorEnum(CUresult error) { static char unknown[] = "<unknown>"; const char *ret = NULL; cuGetErrorName(error, &ret); return ret ? ret : unknown; } #endif #ifdef CUBLAS_API_H_ // cuBLAS API errors static const char *_cudaGetErrorEnum(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "<unknown>"; } #endif #ifdef _CUFFT_H_ // cuFFT API errors static const char *_cudaGetErrorEnum(cufftResult error) { switch (error) { case CUFFT_SUCCESS: return "CUFFT_SUCCESS"; case CUFFT_INVALID_PLAN: return "CUFFT_INVALID_PLAN"; case CUFFT_ALLOC_FAILED: return "CUFFT_ALLOC_FAILED"; case CUFFT_INVALID_TYPE: return "CUFFT_INVALID_TYPE"; case CUFFT_INVALID_VALUE: return "CUFFT_INVALID_VALUE"; case CUFFT_INTERNAL_ERROR: return "CUFFT_INTERNAL_ERROR"; case CUFFT_EXEC_FAILED: return "CUFFT_EXEC_FAILED"; case CUFFT_SETUP_FAILED: return "CUFFT_SETUP_FAILED"; case CUFFT_INVALID_SIZE: return "CUFFT_INVALID_SIZE"; case CUFFT_UNALIGNED_DATA: return "CUFFT_UNALIGNED_DATA"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "CUFFT_INCOMPLETE_PARAMETER_LIST"; case CUFFT_INVALID_DEVICE: return "CUFFT_INVALID_DEVICE"; case CUFFT_PARSE_ERROR: return "CUFFT_PARSE_ERROR"; case CUFFT_NO_WORKSPACE: return "CUFFT_NO_WORKSPACE"; case CUFFT_NOT_IMPLEMENTED: return "CUFFT_NOT_IMPLEMENTED"; case CUFFT_LICENSE_ERROR: return "CUFFT_LICENSE_ERROR"; case CUFFT_NOT_SUPPORTED: return "CUFFT_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSPARSEAPI // cuSPARSE API errors static const char *_cudaGetErrorEnum(cusparseStatus_t error) { switch (error) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSOLVER_COMMON_H_ // cuSOLVER API errors static const char *_cudaGetErrorEnum(cusolverStatus_t error) { switch (error) { case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCESS"; case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; case CUSOLVER_STATUS_MAPPING_ERROR: return "CUSOLVER_STATUS_MAPPING_ERROR"; case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSOLVER_STATUS_NOT_SUPPORTED: return "CUSOLVER_STATUS_NOT_SUPPORTED "; case CUSOLVER_STATUS_ZERO_PIVOT: return "CUSOLVER_STATUS_ZERO_PIVOT"; case CUSOLVER_STATUS_INVALID_LICENSE: return "CUSOLVER_STATUS_INVALID_LICENSE"; } return "<unknown>"; } #endif #ifdef CURAND_H_ // cuRAND API errors static const char *_cudaGetErrorEnum(int error) { switch (error) { case 0: return "CURAND_STATUS_SUCCESS"; case 100: return "CURAND_STATUS_VERSION_MISMATCH"; case 101: return "CURAND_STATUS_NOT_INITIALIZED"; case 102: return "CURAND_STATUS_ALLOCATION_FAILED"; case 103: return "CURAND_STATUS_TYPE_ERROR"; case 104: return "CURAND_STATUS_OUT_OF_RANGE"; case 105: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case 106: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case 201: return "CURAND_STATUS_LAUNCH_FAILURE"; case 202: return "CURAND_STATUS_PREEXISTING_FAILURE"; case 203: return "CURAND_STATUS_INITIALIZATION_FAILED"; case 204: return "CURAND_STATUS_ARCH_MISMATCH"; case 999: return "CURAND_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NVJPEGAPI // nvJPEG API errors static const char *_cudaGetErrorEnum(nvjpegStatus_t error) { switch (error) { case NVJPEG_STATUS_SUCCESS: return "NVJPEG_STATUS_SUCCESS"; case NVJPEG_STATUS_NOT_INITIALIZED: return "NVJPEG_STATUS_NOT_INITIALIZED"; case NVJPEG_STATUS_INVALID_PARAMETER: return "NVJPEG_STATUS_INVALID_PARAMETER"; case NVJPEG_STATUS_BAD_JPEG: return "NVJPEG_STATUS_BAD_JPEG"; case NVJPEG_STATUS_JPEG_NOT_SUPPORTED: return "NVJPEG_STATUS_JPEG_NOT_SUPPORTED"; case NVJPEG_STATUS_ALLOCATOR_FAILURE: return "NVJPEG_STATUS_ALLOCATOR_FAILURE"; case NVJPEG_STATUS_EXECUTION_FAILED: return "NVJPEG_STATUS_EXECUTION_FAILED"; case NVJPEG_STATUS_ARCH_MISMATCH: return "NVJPEG_STATUS_ARCH_MISMATCH"; case NVJPEG_STATUS_INTERNAL_ERROR: return "NVJPEG_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NV_NPPIDEFS_H // NPP API errors static const char *_cudaGetErrorEnum(NppStatus error) { switch (error) { case NPP_NOT_SUPPORTED_MODE_ERROR: return "NPP_NOT_SUPPORTED_MODE_ERROR"; case NPP_ROUND_MODE_NOT_SUPPORTED_ERROR: return "NPP_ROUND_MODE_NOT_SUPPORTED_ERROR"; case NPP_RESIZE_NO_OPERATION_ERROR: return "NPP_RESIZE_NO_OPERATION_ERROR"; case NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY: return "NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_BAD_ARG_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFF_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECT_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUAD_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEM_ALLOC_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTO_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_INPUT: return "NPP_INVALID_INPUT"; case NPP_POINTER_ERROR: return "NPP_POINTER_ERROR"; case NPP_WARNING: return "NPP_WARNING"; case NPP_ODD_ROI_WARNING: return "NPP_ODD_ROI_WARNING"; #else // These are for CUDA 5.5 or higher case NPP_BAD_ARGUMENT_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFFICIENT_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECTANGLE_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUADRANGLE_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEMORY_ALLOCATION_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_HOST_POINTER_ERROR: return "NPP_INVALID_HOST_POINTER_ERROR"; case NPP_INVALID_DEVICE_POINTER_ERROR: return "NPP_INVALID_DEVICE_POINTER_ERROR"; #endif case NPP_LUT_NUMBER_OF_LEVELS_ERROR: return "NPP_LUT_NUMBER_OF_LEVELS_ERROR"; case NPP_TEXTURE_BIND_ERROR: return "NPP_TEXTURE_BIND_ERROR"; case NPP_WRONG_INTERSECTION_ROI_ERROR: return "NPP_WRONG_INTERSECTION_ROI_ERROR"; case NPP_NOT_EVEN_STEP_ERROR: return "NPP_NOT_EVEN_STEP_ERROR"; case NPP_INTERPOLATION_ERROR: return "NPP_INTERPOLATION_ERROR"; case NPP_RESIZE_FACTOR_ERROR: return "NPP_RESIZE_FACTOR_ERROR"; case NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR: return "NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_MEMFREE_ERR: return "NPP_MEMFREE_ERR"; case NPP_MEMSET_ERR: return "NPP_MEMSET_ERR"; case NPP_MEMCPY_ERR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERR: return "NPP_MIRROR_FLIP_ERR"; #else case NPP_MEMFREE_ERROR: return "NPP_MEMFREE_ERROR"; case NPP_MEMSET_ERROR: return "NPP_MEMSET_ERROR"; case NPP_MEMCPY_ERROR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERROR: return "NPP_MIRROR_FLIP_ERROR"; #endif case NPP_ALIGNMENT_ERROR: return "NPP_ALIGNMENT_ERROR"; case NPP_STEP_ERROR: return "NPP_STEP_ERROR"; case NPP_SIZE_ERROR: return "NPP_SIZE_ERROR"; case NPP_NULL_POINTER_ERROR: return "NPP_NULL_POINTER_ERROR"; case NPP_CUDA_KERNEL_EXECUTION_ERROR: return "NPP_CUDA_KERNEL_EXECUTION_ERROR"; case NPP_NOT_IMPLEMENTED_ERROR: return "NPP_NOT_IMPLEMENTED_ERROR"; case NPP_ERROR: return "NPP_ERROR"; case NPP_SUCCESS: return "NPP_SUCCESS"; case NPP_WRONG_INTERSECTION_QUAD_WARNING: return "NPP_WRONG_INTERSECTION_QUAD_WARNING"; case NPP_MISALIGNED_DST_ROI_WARNING: return "NPP_MISALIGNED_DST_ROI_WARNING"; case NPP_AFFINE_QUAD_INCORRECT_WARNING: return "NPP_AFFINE_QUAD_INCORRECT_WARNING"; case NPP_DOUBLE_SIZE_WARNING: return "NPP_DOUBLE_SIZE_WARNING"; case NPP_WRONG_INTERSECTION_ROI_WARNING: return "NPP_WRONG_INTERSECTION_ROI_WARNING"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x6000 /* These are 6.0 or higher */ case NPP_LUT_PALETTE_BITSIZE_ERROR: return "NPP_LUT_PALETTE_BITSIZE_ERROR"; case NPP_ZC_MODE_NOT_SUPPORTED_ERROR: return "NPP_ZC_MODE_NOT_SUPPORTED_ERROR"; case NPP_QUALITY_INDEX_ERROR: return "NPP_QUALITY_INDEX_ERROR"; case NPP_CHANNEL_ORDER_ERROR: return "NPP_CHANNEL_ORDER_ERROR"; case NPP_ZERO_MASK_VALUE_ERROR: return "NPP_ZERO_MASK_VALUE_ERROR"; case NPP_NUMBER_OF_CHANNELS_ERROR: return "NPP_NUMBER_OF_CHANNELS_ERROR"; case NPP_COI_ERROR: return "NPP_COI_ERROR"; case NPP_DIVISOR_ERROR: return "NPP_DIVISOR_ERROR"; case NPP_CHANNEL_ERROR: return "NPP_CHANNEL_ERROR"; case NPP_STRIDE_ERROR: return "NPP_STRIDE_ERROR"; case NPP_ANCHOR_ERROR: return "NPP_ANCHOR_ERROR"; case NPP_MASK_SIZE_ERROR: return "NPP_MASK_SIZE_ERROR"; case NPP_MOMENT_00_ZERO_ERROR: return "NPP_MOMENT_00_ZERO_ERROR"; case NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR: return "NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR"; case NPP_THRESHOLD_ERROR: return "NPP_THRESHOLD_ERROR"; case NPP_CONTEXT_MATCH_ERROR: return "NPP_CONTEXT_MATCH_ERROR"; case NPP_FFT_FLAG_ERROR: return "NPP_FFT_FLAG_ERROR"; case NPP_FFT_ORDER_ERROR: return "NPP_FFT_ORDER_ERROR"; case NPP_SCALE_RANGE_ERROR: return "NPP_SCALE_RANGE_ERROR"; case NPP_DATA_TYPE_ERROR: return "NPP_DATA_TYPE_ERROR"; case NPP_OUT_OFF_RANGE_ERROR: return "NPP_OUT_OFF_RANGE_ERROR"; case NPP_DIVIDE_BY_ZERO_ERROR: return "NPP_DIVIDE_BY_ZERO_ERROR"; case NPP_RANGE_ERROR: return "NPP_RANGE_ERROR"; case NPP_NO_MEMORY_ERROR: return "NPP_NO_MEMORY_ERROR"; case NPP_ERROR_RESERVED: return "NPP_ERROR_RESERVED"; case NPP_NO_OPERATION_WARNING: return "NPP_NO_OPERATION_WARNING"; case NPP_DIVIDE_BY_ZERO_WARNING: return "NPP_DIVIDE_BY_ZERO_WARNING"; #endif #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x7000 /* These are 7.0 or higher */ case NPP_OVERFLOW_ERROR: return "NPP_OVERFLOW_ERROR"; case NPP_CORRUPTED_DATA_ERROR: return "NPP_CORRUPTED_DATA_ERROR"; #endif } return "<unknown>"; } #endif template <typename T> void check(T result, char const *const func, const char *const file, int const line) { } #ifdef __DPCT_HPP__ // This will output the proper CUDA error strings in the event // that a CUDA host call returns an error #define checkCudaErrors(val) check((val), #val, __FILE__, __LINE__) // This will output the proper error string when calling cudaGetLastError #define getLastCudaError(msg) __getLastCudaError(msg, __FILE__, __LINE__) inline void __getLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:17: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } // This will only print the proper error string when calling cudaGetLastError // but not exit program incase error detected. #define printLastCudaError(msg) __printLastCudaError(msg, __FILE__, __LINE__) inline void __printLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:19: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } #endif #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // Float To Int conversion inline int ftoi(float value) { return (value >= 0 ? static_cast<int>(value + 0.5) : static_cast<int>(value - 0.5)); } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the # of cores per SM typedef struct dpct_type_113531 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { {0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128}, {0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128}, {0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128}, {0x87, 128}, {0x89, 128}, {0x90, 128}, {-1, -1}}; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoCores for SM %d.%d is undefined." " Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index - 1].Cores); return nGpuArchCoresPerSM[index - 1].Cores; } inline const char* _ConvertSMVer2ArchName(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the GPU Arch name) typedef struct dpct_type_281558 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version const char* name; } sSMtoArchName; sSMtoArchName nGpuArchNameSM[] = { {0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"}, {0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"}, {0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"}, {0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"}, {0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"}, {0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"}, {-1, "Graphics Device"}}; int index = 0; while (nGpuArchNameSM[index].SM != -1) { if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) { return nGpuArchNameSM[index].name; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoArchName for SM %d.%d is undefined." " Default to use %s\n", major, minor, nGpuArchNameSM[index - 1].name); return nGpuArchNameSM[index - 1].name; } // end of GPU Architecture definitions #ifdef __DPCT_HPP__ // General GPU Device CUDA Initialization inline int gpuDeviceInit(int devID) { int device_count; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuDeviceInit() CUDA error: " "no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } if (devID < 0) { devID = 0; } if (devID > device_count - 1) { fprintf(stderr, "\n"); fprintf(stderr, ">> %d CUDA capable GPU device(s) detected. <<\n", device_count); fprintf(stderr, ">> gpuDeviceInit (-device=%d) is not a valid" " GPU device. <<\n", devID); fprintf(stderr, "\n"); return -devID; } int computeMode = -1, major = 0, minor = 0; /* DPCT1035:21: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); /* DPCT1035:22: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode == 0) { fprintf(stderr, "Error: device is running in <Compute Mode " "Prohibited>, no threads can use cudaSetDevice().\n"); return -1; } if (major < 1) { fprintf(stderr, "gpuDeviceInit(): GPU device does not support CUDA.\n"); exit(EXIT_FAILURE); } /* DPCT1093:23: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); printf("gpuDeviceInit() CUDA Device [%d]: \"%s\n", devID, _ConvertSMVer2ArchName(major, minor)); return devID; } // This function returns the best GPU (with maximum GFLOPS) inline int gpuGetMaxGflopsDeviceId() try { int current_device = 0, sm_per_multiproc = 0; int max_perf_device = 0; int device_count = 0; int devices_prohibited = 0; uint64_t max_compute_perf = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the best CUDA capable GPU device current_device = 0; while (current_device < device_count) { int computeMode = -1, major = 0, minor = 0; /* DPCT1035:24: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list /* DPCT1035:25: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode != 0) { if (major == 9999 && minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(major, minor); } int multiProcessorCount = 0, clockRate = 0; checkCudaErrors( DPCT_CHECK_ERROR(multiProcessorCount = dpct::dev_mgr::instance() .get_device(current_device) .get_max_compute_units())); dpct::err0 result = DPCT_CHECK_ERROR(clockRate = dpct::dev_mgr::instance() .get_device(current_device) .get_max_clock_frequency()); uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate; if (compute_perf > max_compute_perf) { max_compute_perf = compute_perf; max_perf_device = current_device; } } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } return max_perf_device; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } // Initialization code to find the best CUDA Device inline int findCudaDevice(int argc, const char **argv) { int devID = 0; // If the command-line has a device number specified, use it if (checkCmdLineFlag(argc, argv, "device")) { devID = getCmdLineArgumentInt(argc, argv, "device="); if (devID < 0) { printf("Invalid command line parameter\n "); exit(EXIT_FAILURE); } else { devID = gpuDeviceInit(devID); if (devID < 0) { printf("exiting...\n"); exit(EXIT_FAILURE); } } } else { // Otherwise pick the device with highest Gflops/s devID = gpuGetMaxGflopsDeviceId(); /* DPCT1093:26: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, _ConvertSMVer2ArchName(major, minor), major, minor); } return devID; } inline int findIntegratedGPU() { int current_device = 0; int device_count = 0; int devices_prohibited = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the integrated GPU which is compute capable while (current_device < device_count) { int computeMode = -1, integrated = -1; /* DPCT1035:27: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors( DPCT_CHECK_ERROR(integrated = dpct::dev_mgr::instance() .get_device(current_device) .get_integrated())); // If GPU is integrated and is not running on Compute Mode prohibited, // then cuda can map to GLES resource /* DPCT1035:28: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (integrated && (computeMode != 0)) { /* DPCT1093:29: The "current_device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(current_device))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, _ConvertSMVer2ArchName(major, minor), major, minor); return current_device; } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No GLES-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } // General check for CUDA GPU SM Capabilities inline bool checkCudaCapabilities(int major_version, int minor_version) { int dev; int major = 0, minor = 0; checkCudaErrors(dev = dpct::dev_mgr::instance().current_device_id()); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(dev).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(dev).get_minor_version())); if ((major > major_version) || (major == major_version && minor >= minor_version)) { printf(" Device %d: <%16s >, Compute SM %d.%d detected\n", dev, _ConvertSMVer2ArchName(major, minor), major, minor); return true; } else { printf( " No GPU device was found that can support " "CUDA compute capability %d.%d.\n", major_version, minor_version); return false; } } #endif // end of CUDA Helper Functions #endif // COMMON_HELPER_CUDA_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Common/helper_functions.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, // timers, image helpers, etc) #ifndef COMMON_HELPER_FUNCTIONS_H_ #define COMMON_HELPER_FUNCTIONS_H_ #ifdef WIN32 #pragma warning(disable : 4996) #endif // includes, project #include <assert.h> #include <exception.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> // includes, timer, string parsing, image helpers #include <helper_image.h> // helper functions for image compare, dump, data comparisons #include <helper_string.h> // helper functions for string parsing #include <helper_timer.h> // helper functions for timers #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #endif // COMMON_HELPER_FUNCTIONS_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/addKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// /// CUDA kernel /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// void AddKernel(const float *op1, const float *op2, int count, float *sum, const sycl::nd_item<3> &item_ct1) { const int pos = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); if (pos >= count) return; sum[pos] = op1[pos] + op2[pos]; } /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// static void Add(const float *op1, const float *op2, int count, float *sum, sycl::queue q) { sycl::range<3> threads(1, 1, 256); sycl::range<3> blocks(1, 1, iDivUp(count, threads[2])); q.parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { AddKernel(op1, op2, count, sum, item_ct1); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/flowSYCL.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_CUDA_H #define FLOW_CUDA_H void ComputeFlowCUDA( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nSolverIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_GOLD_H #define FLOW_GOLD_H void ComputeFlowGold( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/flowSYCL.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" // include kernels #include "downscaleKernel.dp.hpp" #include "upscaleKernel.dp.hpp" #include "warpingKernel.dp.hpp" #include "derivativesKernel.dp.hpp" #include "solverKernel.dp.hpp" #include "addKernel.dp.hpp" /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocations, control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowCUDA(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on Device...\n"); sycl::queue q{aspect_selector(sycl::aspect::ext_intel_legacy_image), sycl::property::queue::in_order()}; std::cout << "\nRunning on " << q.get_device().get_info<sycl::info::device::name>() << "\n"; // pI0 and pI1 will hold device pointers const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; // device memory pointers float *d_tmp; float *d_du0; float *d_dv0; float *d_du1; float *d_dv1; float *d_Ix; float *d_Iy; float *d_Iz; float *d_u; float *d_v; float *d_nu; float *d_nv; const int dataSize = stride * height * sizeof(float); checkCudaErrors(DPCT_CHECK_ERROR(d_tmp = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_du0 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv0 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_du1 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv1 = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Ix = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iy = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iz = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( d_u = (float *)sycl::malloc_device(dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( d_v = (float *)sycl::malloc_device(dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_nu = (float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR(d_nv = (float *)sycl::malloc_device( dataSize, q))); // prepare pyramid int currentLevel = nLevels - 1; // allocate GPU memory for input images checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel) = (const float *)sycl::malloc_device( dataSize, q))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel) = (const float *)sycl::malloc_device( dataSize, q))); float *pI0_h = (float *)sycl::malloc_host(stride * height * sizeof(sycl::float4), q); float *I0_h = (float *)sycl::malloc_host(dataSize, q); float *pI1_h = (float *)sycl::malloc_host(stride * height * sizeof(sycl::float4), q); float *I1_h = (float *)sycl::malloc_host(dataSize, q); float *src_d0 = (float *)sycl::malloc_device(stride * height * sizeof(sycl::float4), q); float *src_d1 = (float *)sycl::malloc_device(stride * height * sizeof(sycl::float4), q); q.memcpy((void *)I0_h, I0, dataSize); q.memcpy((void *)I1_h, I1, dataSize); q.memcpy((void *)pI0[currentLevel], I0, dataSize); q.memcpy((void *)pI1[currentLevel], I1, dataSize); q.wait(); pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), q))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), q))); Downscale(pI0[currentLevel], pI0_h, I0_h, src_d0, pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1], q); Downscale(pI1[currentLevel], pI0_h, I0_h, src_d0, pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1], q); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } checkCudaErrors( DPCT_CHECK_ERROR(q.memset(d_u, 0, stride * height * sizeof(float)))); checkCudaErrors( DPCT_CHECK_ERROR(q.memset(d_v, 0, stride * height * sizeof(float)))); checkCudaErrors( DPCT_CHECK_ERROR(q.wait())); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_du0, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_dv0, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_du1, 0, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memset(d_dv1, 0, dataSize))); // on current level we compute optical flow // between frame 0 and warped frame 1 WarpImage(pI1[currentLevel], pI0_h, I0_h, src_d0, pW[currentLevel], pH[currentLevel], pS[currentLevel], d_u, d_v, d_tmp, q); ComputeDerivatives(pI0[currentLevel], d_tmp, pI0_h, pI1_h, I0_h, I1_h, src_d0, src_d1, pW[currentLevel], pH[currentLevel], pS[currentLevel], d_Ix, d_Iy, d_Iz, q); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(d_du0, d_dv0, d_Ix, d_Iy, d_Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, d_du1, d_dv1, q); Swap(d_du0, d_du1); Swap(d_dv0, d_dv1); } // update u, v Add(d_u, d_du0, pH[currentLevel] * pS[currentLevel], d_u, q); Add(d_v, d_dv0, pH[currentLevel] * pS[currentLevel], d_v, q); } if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(d_u, pI0_h, I0_h, src_d0, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, d_nu, q); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(d_v, pI0_h, I0_h, src_d0, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, d_nv, q); Swap(d_u, d_nu); Swap(d_v, d_nv); } } checkCudaErrors(DPCT_CHECK_ERROR( q.memcpy(u, d_u, dataSize))); checkCudaErrors(DPCT_CHECK_ERROR( q.memcpy(v, d_v, dataSize))); checkCudaErrors( DPCT_CHECK_ERROR(q.wait())); // cleanup for (int i = 0; i < nLevels; ++i) { checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI0[i], q))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI1[i], q))); } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_tmp, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du0, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv0, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du1, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv1, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Ix, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iy, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iz, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nu, q))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nv, q))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_u, q))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_v, q))); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/common.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /////////////////////////////////////////////////////////////////////////////// // Header for common includes and utility functions /////////////////////////////////////////////////////////////////////////////// #ifndef COMMON_H #define COMMON_H /////////////////////////////////////////////////////////////////////////////// // Common includes /////////////////////////////////////////////////////////////////////////////// #include <stdlib.h> #include <stdio.h> #include <time.h> #include <memory.h> #include <math.h> #include <helper_cuda.h> /////////////////////////////////////////////////////////////////////////////// // Common constants /////////////////////////////////////////////////////////////////////////////// const int StrideAlignment = 8; /////////////////////////////////////////////////////////////////////////////// // Common functions /////////////////////////////////////////////////////////////////////////////// // Align up n to the nearest multiple of m inline int iAlignUp(int n, int m = StrideAlignment) { int mod = n % m; if (mod) return n + m - mod; else return n; } // round up n/m inline int iDivUp(int n, int m) { return (n + m - 1) / m; } // swap two values template <typename T> inline void Swap(T &a, T &b) { T t = a; a = b; b = t; } #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/downscaleKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void DownscaleKernel(int width, int height, int stride, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> tex_acc, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); if (ix >= width || iy >= height) { return; } int srcx = ix * 2; int srcy = iy * 2; auto inputCoords1 = sycl::float2(srcx + 0, srcy + 0); auto inputCoords2 = sycl::float2(srcx + 0, srcy + 1); auto inputCoords3 = sycl::float2(srcx + 1, srcy + 0); auto inputCoords4 = sycl::float2(srcx + 1, srcy + 1); out[ix + iy * stride] = 0.25f * (tex_acc.read(inputCoords1, texDesc)[0] + tex_acc.read(inputCoords2, texDesc)[0] + tex_acc.read(inputCoords3, texDesc)[0] + tex_acc.read(inputCoords4, texDesc)[0]); } /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, float *pI0_h, float *I0_h, float *src_p, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out, sycl::queue q) { sycl::range<3> threads(1, 8, 32); sycl::range<3> blocks(1, iDivUp(newHeight, threads[1]), iDivUp(newWidth, threads[2])); int dataSize = height * stride * sizeof(float); q.memcpy(I0_h, src, dataSize).wait(); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { int index = i * stride + j; pI0_h[index * 4 + 0] = I0_h[index]; pI0_h[index * 4 + 1] = pI0_h[index * 4 + 2] = pI0_h[index * 4 + 3] = 0.f; } } q.memcpy(src_p, pI0_h, height * width * sizeof(sycl::float4)).wait(); auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::nearest); auto texFine = sycl::image<2>(src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(width, height), sycl::range<1>(stride * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto tex_acc = texFine.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { DownscaleKernel(newWidth, newHeight, newStride, out, tex_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/main.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ const static char *const sSDKsample = "HSOpticalFlow"; // CPU-GPU discrepancy threshold for self-test const float THRESHOLD = 0.05f; #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" #include "flowGold.h" #include "flowSYCL.h" #include <helper_functions.h> #include <cmath> #include <chrono> using Time = std::chrono::steady_clock; using ms = std::chrono::milliseconds; using float_ms = std::chrono::duration<float, ms::period>; /////////////////////////////////////////////////////////////////////////////// /// \brief save optical flow in format described on vision.middlebury.edu/flow /// \param[in] name output file name /// \param[in] w optical flow field width /// \param[in] h optical flow field height /// \param[in] s optical flow field row stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void WriteFloFile(const char *name, int w, int h, int s, const float *u, const float *v) { FILE *stream; stream = fopen(name, "wb"); if (stream == 0) { printf("Could not save flow to \"%s\"\n", name); return; } float data = 202021.25f; fwrite(&data, sizeof(float), 1, stream); fwrite(&w, sizeof(w), 1, stream); fwrite(&h, sizeof(h), 1, stream); for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; fwrite(u + pos, sizeof(float), 1, stream); fwrite(v + pos, sizeof(float), 1, stream); } } fclose(stream); } /////////////////////////////////////////////////////////////////////////////// /// \brief /// load 4-channel unsigned byte image /// and convert it to single channel FP32 image /// \param[out] img_data pointer to raw image data /// \param[out] img_w image width /// \param[out] img_h image height /// \param[out] img_s image row stride /// \param[in] name image file name /// \param[in] exePath executable file path /// \return true if image is successfully loaded or false otherwise /////////////////////////////////////////////////////////////////////////////// bool LoadImageAsFP32(float *&img_data, int &img_w, int &img_h, int &img_s, const char *name, const char *exePath) { printf("Loading \"%s\" ...\n", name); char *name_ = sdkFindFilePath(name, exePath); if (!name_) { printf("File not found\n"); return false; } unsigned char *data = 0; unsigned int w = 0, h = 0; bool result = sdkLoadPPM4ub(name_, &data, &w, &h); if (result == false) { printf("Invalid file format\n"); return false; } img_w = w; img_h = h; img_s = iAlignUp(img_w); img_data = new float[img_s * h]; // source is 4 channel image const int widthStep = 4 * img_w; for (int i = 0; i < img_h; ++i) { for (int j = 0; j < img_w; ++j) { img_data[j + i * img_s] = ((float)data[j * 4 + i * widthStep]) / 255.0f; } } return true; } /////////////////////////////////////////////////////////////////////////////// /// \brief compare given flow field with gold (L1 norm) /// \param[in] width optical flow field width /// \param[in] height optical flow field height /// \param[in] stride optical flow field row stride /// \param[in] h_uGold horizontal displacement, gold /// \param[in] h_vGold vertical displacement, gold /// \param[in] h_u horizontal displacement /// \param[in] h_v vertical displacement /// \return true if discrepancy is lower than a given threshold /////////////////////////////////////////////////////////////////////////////// bool CompareWithGold(int width, int height, int stride, const float *h_uGold, const float *h_vGold, const float *h_u, const float *h_v) { float error = 0.0f; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int pos = j + i * stride; error += fabsf(h_u[pos] - h_uGold[pos]) + fabsf(h_v[pos] - h_vGold[pos]); } } error /= (float)(width * height); printf("L1 error : %.6f\n", error); return (error < 1.0f); } /////////////////////////////////////////////////////////////////////////////// /// application entry point /////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // welcome message printf("%s Starting...\n\n", sSDKsample); // find images const char *const sourceFrameName = "frame10.ppm"; const char *const targetFrameName = "frame11.ppm"; // image dimensions int width; int height; // row access stride int stride; // flow is computed from source image to target image float *h_source; // source image, host memory float *h_target; // target image, host memory // load image from file if (!LoadImageAsFP32(h_source, width, height, stride, sourceFrameName, argv[0])) { exit(EXIT_FAILURE); } if (!LoadImageAsFP32(h_target, width, height, stride, targetFrameName, argv[0])) { exit(EXIT_FAILURE); } // allocate host memory for CPU results float *h_uGold = new float[stride * height]; float *h_vGold = new float[stride * height]; // allocate host memory for GPU results float *h_u = new float[stride * height]; float *h_v = new float[stride * height]; // smoothness // if image brightness is not within [0,1] // this paramter should be scaled appropriately const float alpha = 0.2f; // number of pyramid levels const int nLevels = 5; // number of solver iterations on each level const int nSolverIters = 500; // number of warping iterations const int nWarpIters = 3; // start Host Timer auto startGoldTime = Time::now(); ComputeFlowGold(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_uGold, h_vGold); // stop Host timer auto stopGoldTime = Time::now(); // start Device Timer auto startSYCLTime = Time::now(); ComputeFlowCUDA(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_u, h_v); // stop Device Timer auto stopSYCLTime = Time::now(); auto Gold_duration = std::chrono::duration_cast<float_ms>(stopGoldTime - startGoldTime) .count(); printf("Processing time on CPU: %f (ms)\n", Gold_duration); auto SYCL_duration = std::chrono::duration_cast<float_ms>(stopSYCLTime - startSYCLTime) .count(); printf("Processing time on Device: %f (ms)\n", SYCL_duration); // compare results (L1 norm) bool status = CompareWithGold(width, height, stride, h_uGold, h_vGold, h_u, h_v); WriteFloFile("FlowGPU.flo", width, height, stride, h_u, h_v); WriteFloFile("FlowCPU.flo", width, height, stride, h_uGold, h_vGold); // free resources delete[] h_uGold; delete[] h_vGold; delete[] h_u; delete[] h_v; delete[] h_source; delete[] h_target; // report self-test status exit(status ? EXIT_SUCCESS : EXIT_FAILURE); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common.h" #include "flowGold.h" #include <cmath> /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read from arbitrary position within image using bilinear interpolation /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2D(const float *t, int w, int h, int s, float x, float y) { // integer parts in floating point format float intPartX, intPartY; x -= 0.5f; y -= 0.5f; // get fractional parts of coordinates float dx = fabsf(modff(x, &intPartX)); float dy = fabsf(modff(y, &intPartY)); // assume pixels are squares // one of the corners int ix0 = (int)intPartX; int iy0 = (int)intPartY; // mirror out-of-range position if (ix0 < 0) ix0 = 0; if (iy0 < 0) iy0 = 0; if (ix0 >= w) ix0 = w - 1; if (iy0 >= h) iy0 = h - 1; // corner which is opposite to (ix0, iy0) int ix1 = ix0 + 1; int iy1 = iy0 + 1; if (ix1 >= w) ix1 = w - 1; if (iy1 >= h) iy1 = h - 1; float res = t[ix0 + iy0 * s] * (1.0f - dx) * (1.0f - dy); res += t[ix1 + iy0 * s] * dx * (1.0f - dy); res += t[ix0 + iy1 * s] * (1.0f - dx) * dy; res += t[ix1 + iy1 * s] * dx * dy; return res; } /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read specific texel value /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2Di(const float *src, int w, int h, int s, int x, int y) { if (x < 0) x = 0; if (y < 0) y = 0; if (x >= w) x = w - 1; if (y >= h) y = h - 1; return src[x + y * s]; } /////////////////////////////////////////////////////////////////////////////// /// \brief resize image /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] newWidth image new width /// \param[in] newHeight image new height /// \param[in] newStride image new stride /// \param[out] out downscaled image data /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { const int srcX = j * 2; const int srcY = i * 2; // average 4 neighbouring pixels float sum; sum = Tex2Di(src, width, height, stride, srcX + 0, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 0, srcY + 1); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 1); // normalize sum *= 0.25f; out[j + i * newStride] = sum; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field /// \param[in] src field component to upscale /// \param[in] width field current width /// \param[in] height field current height /// \param[in] stride field current stride /// \param[in] newWidth field new width /// \param[in] newHeight field new height /// \param[in] newStride field new stride /// \param[in] scale value scale factor (multiplier) /// \param[out] out upscaled field component /////////////////////////////////////////////////////////////////////////////// static void Upscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float scale, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { // position within smaller image float x = ((float)j - 0.5f) * 0.5f; float y = ((float)i - 0.5f) * 0.5f; out[j + i * newStride] = Tex2D(src, width, height, stride, x, y) * scale; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, int w, int h, int s, const float *u, const float *v, float *out) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; // warped coords float x = (float)j + u[pos]; float y = (float)i + v[pos]; out[pos] = Tex2D(src, w, h, s, x, y); } } } /////////////////////////////////////////////////////////////////////////////// /// \brief computes image derivatives for a pair of images /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w images width /// \param[in] h images height /// \param[in] s images stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, int w, int h, int s, float *Ix, float *Iy, float *Iz) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; float t0, t1; // derivative filter is (1, -8, 0, 8, -1)/12 // x derivative t0 = Tex2Di(I0, w, h, s, j - 2, i); t0 -= Tex2Di(I0, w, h, s, j - 1, i) * 8.0f; t0 += Tex2Di(I0, w, h, s, j + 1, i) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j + 2, i); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j - 2, i); t1 -= Tex2Di(I1, w, h, s, j - 1, i) * 8.0f; t1 += Tex2Di(I1, w, h, s, j + 1, i) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j + 2, i); t1 /= 12.0f; // spatial derivatives are averaged Ix[pos] = (t0 + t1) * 0.5f; // t derivative Iz[pos] = I1[pos] - I0[pos]; // y derivative t0 = Tex2Di(I0, w, h, s, j, i - 2); t0 -= Tex2Di(I0, w, h, s, j, i - 1) * 8.0f; t0 += Tex2Di(I0, w, h, s, j, i + 1) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j, i + 2); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j, i - 2); t1 -= Tex2Di(I1, w, h, s, j, i - 1) * 8.0f; t1 += Tex2Di(I1, w, h, s, j, i + 1) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j, i + 2); t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method /// /// It is one iteration of Jacobi method for a corresponding linear system /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; int left, right, up, down; // handle borders if (j != 0) left = pos - 1; else left = pos; if (j != w - 1) right = pos + 1; else right = pos; if (i != 0) down = pos - s; else down = pos; if (i != h - 1) up = pos + s; else up = pos; float sumU = (du0[left] + du0[right] + du0[up] + du0[down]) * 0.25f; float sumV = (dv0[left] + dv0[right] + dv0[up] + dv0[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocation and control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowGold(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on CPU...\n"); float *u0 = u; float *v0 = v; const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; const int pixelCountAligned = height * stride; float *tmp = new float[pixelCountAligned]; float *du0 = new float[pixelCountAligned]; float *dv0 = new float[pixelCountAligned]; float *du1 = new float[pixelCountAligned]; float *dv1 = new float[pixelCountAligned]; float *Ix = new float[pixelCountAligned]; float *Iy = new float[pixelCountAligned]; float *Iz = new float[pixelCountAligned]; float *nu = new float[pixelCountAligned]; float *nv = new float[pixelCountAligned]; // prepare pyramid int currentLevel = nLevels - 1; pI0[currentLevel] = I0; pI1[currentLevel] = I1; pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); pI0[currentLevel - 1] = new float[ns * nh]; pI1[currentLevel - 1] = new float[ns * nh]; Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1]); Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1]); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } // initial approximation memset(u, 0, stride * height * sizeof(float)); memset(v, 0, stride * height * sizeof(float)); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { memset(du0, 0, pixelCountAligned * sizeof(float)); memset(dv0, 0, pixelCountAligned * sizeof(float)); memset(du1, 0, pixelCountAligned * sizeof(float)); memset(dv1, 0, pixelCountAligned * sizeof(float)); WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], u, v, tmp); // on current level we compute optical flow // between frame 0 and warped frame 1 ComputeDerivatives(pI0[currentLevel], tmp, pW[currentLevel], pH[currentLevel], pS[currentLevel], Ix, Iy, Iz); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(du0, dv0, Ix, Iy, Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, du1, dv1); Swap(du0, du1); Swap(dv0, dv1); } // update u, v for (int i = 0; i < pH[currentLevel] * pS[currentLevel]; ++i) { u[i] += du0[i]; v[i] += dv0[i]; } } // end for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(u, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, nu); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(v, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, nv); Swap(u, nu); Swap(v, nv); } } // end for (; currentLevel < nLevels; ++currentLevel) if (u != u0) { // solution is not in the specified array // copy memcpy(u0, u, pixelCountAligned * sizeof(float)); memcpy(v0, v, pixelCountAligned * sizeof(float)); Swap(u, nu); Swap(v, nv); } // cleanup // last level is not being freed here // because it refers to input images for (int i = 0; i < nLevels - 1; ++i) { delete[] pI0[i]; delete[] pI1[i]; } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; delete[] tmp; delete[] du0; delete[] dv0; delete[] du1; delete[] dv1; delete[] Ix; delete[] Iy; delete[] Iz; delete[] nu; delete[] nv; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/warpingKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with a given displacement field, CUDA kernel. /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void WarpingKernel(int width, int height, int stride, const float *u, const float *v, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texToWarp, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float x = ((float)ix + u[pos]); float y = ((float)iy + v[pos]); auto inputCoord = sycl::float2(x, y); out[pos] = texToWarp.read(inputCoord, texDesc)[0]; } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field, CUDA kernel wrapper. /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, float *pI0_h, float *I0_h, float *src_p, int w, int h, int s, const float *u, const float *v, float *out, sycl::queue q) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); int dataSize = s * h * sizeof(float); q.memcpy(I0_h, src, dataSize).wait(); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; pI0_h[index * 4 + 0] = I0_h[index]; pI0_h[index * 4 + 1] = pI0_h[index * 4 + 2] = pI0_h[index * 4 + 3] = 0.f; } } q.memcpy(src_p, pI0_h, s * h * sizeof(sycl::float4)).wait(); auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::linear); auto texToWarp = sycl::image<2>(src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texToWarp_acc = texToWarp.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { WarpingKernel(w, h, s, u, v, out, texToWarp_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/derivativesKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// void ComputeDerivativesKernel(int width, int height, int stride, float *Ix, float *Iy, float *Iz, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texSource, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texTarget, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float t0, t1; auto x_inputCoords1 = sycl::float2(ix - 2.0f, iy); auto x_inputCoords2 = sycl::float2(ix - 1.0f, iy); auto x_inputCoords3 = sycl::float2(ix + 1.0f, iy); auto x_inputCoords4 = sycl::float2(ix + 2.0f, iy); t0 = texSource.read(x_inputCoords1, texDesc)[0]; t0 -= texSource.read(x_inputCoords2, texDesc)[0] * 8.0f; t0 += texSource.read(x_inputCoords3, texDesc)[0] * 8.0f; t0 -= texSource.read(x_inputCoords4, texDesc)[0]; t0 /= 12.0f; t1 = texTarget.read(x_inputCoords1, texDesc)[0]; t1 -= texTarget.read(x_inputCoords2, texDesc)[0] * 8.0f; t1 += texTarget.read(x_inputCoords3, texDesc)[0] * 8.0f; t1 -= texTarget.read(x_inputCoords4, texDesc)[0]; t1 /= 12.0f; Ix[pos] = (t0 + t1) * 0.5f; // t derivative auto inputCoord = sycl::float2(ix, iy); Iz[pos] = texTarget.read(inputCoord, texDesc)[0] - texSource.read(inputCoord, texDesc)[0]; // y derivative auto y_inputCoords1 = sycl::float2(ix, iy - 2.0f); auto y_inputCoords2 = sycl::float2(ix, iy - 1.0f); auto y_inputCoords3 = sycl::float2(ix, iy + 1.0f); auto y_inputCoords4 = sycl::float2(ix, iy + 2.0f); t0 = texSource.read(y_inputCoords1, texDesc)[0]; t0 -= texSource.read(y_inputCoords2, texDesc)[0] * 8.0f; t0 += texSource.read(y_inputCoords3, texDesc)[0] * 8.0f; t0 -= texSource.read(y_inputCoords4, texDesc)[0]; t0 /= 12.0f; t1 = texTarget.read(y_inputCoords1, texDesc)[0]; t1 -= texTarget.read(y_inputCoords2, texDesc)[0] * 8.0f; t1 += texTarget.read(y_inputCoords3, texDesc)[0] * 8.0f; t1 -= texTarget.read(y_inputCoords4, texDesc)[0]; t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w image width /// \param[in] h image height /// \param[in] s image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, float *pI0_h, float *pI1_h, float *I0_h, float *I1_h, float *src_d0, float *src_d1, int w, int h, int s, float *Ix, float *Iy, float *Iz, sycl::queue q) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); int dataSize = s * h * sizeof(float); q.memcpy(I0_h, I0, dataSize); q.memcpy(I1_h, I1, dataSize); q.wait(); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; pI0_h[index * 4 + 0] = I0_h[index]; pI0_h[index * 4 + 1] = pI0_h[index * 4 + 2] = pI0_h[index * 4 + 3] = 0.f; } } for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { int index = i * s + j; pI1_h[index * 4 + 0] = I1_h[index]; pI1_h[index * 4 + 1] = pI1_h[index * 4 + 2] = pI1_h[index * 4 + 3] = 0.f; } } q.memcpy(src_d0, pI0_h, s * h * sizeof(sycl::float4)); q.memcpy(src_d1, pI1_h, s * h * sizeof(sycl::float4)); q.wait(); auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::nearest); auto texSource = sycl::image<2>(src_d0, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); auto texTarget = sycl::image<2>(src_d1, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(w, h), sycl::range<1>(s * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texSource_acc = texSource.template get_access<sycl::float4, sycl::access::mode::read>(cgh); auto texTarget_acc = texTarget.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { ComputeDerivativesKernel( w, h, s, Ix, Iy, Iz, texSource_acc, texTarget_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/solverKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// Template parameters are describe CTA size /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// template <int bx, int by> void JacobiIteration(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1, const sycl::nd_item<3> &item_ct1, volatile float *du, volatile float *dv) { // Handle to thread block group auto cta = item_ct1.get_group(); const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); // position within global memory array const int pos = sycl::min(ix, w - 1) + sycl::min(iy, h - 1) * s; // position within shared memory array const int shMemPos = item_ct1.get_local_id(2) + 1 + (item_ct1.get_local_id(1) + 1) * (bx + 2); // Load data to shared memory. // load tile being processed du[shMemPos] = du0[pos]; dv[shMemPos] = dv0[pos]; // load necessary neighbouring elements // We clamp out-of-range coordinates. // It is equivalent to mirroring // because we access data only one step away from borders. if (item_ct1.get_local_id(1) == 0) { // beginning of the tile const int bsx = item_ct1.get_group(2) * item_ct1.get_local_range(2); const int bsy = item_ct1.get_group(1) * item_ct1.get_local_range(1); // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; /* DPCT1064:30: Migrated min call is used in a macro/template definition and may not be valid for all macro/template uses. Adjust the code. */ x = dpct::min((unsigned int)(bsx + item_ct1.get_local_id(2)), w - 1); // row just below the tile y = sycl::max(bsy - 1, 0); gmPos = y * s + x; smPos = item_ct1.get_local_id(2) + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // row above the tile y = sycl::min(bsy + by, h - 1); smPos += (by + 1) * (bx + 2); gmPos = y * s + x; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } else if (item_ct1.get_local_id(1) == 1) { // beginning of the tile const int bsx = item_ct1.get_group(2) * item_ct1.get_local_range(2); const int bsy = item_ct1.get_group(1) * item_ct1.get_local_range(1); // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; /* DPCT1064:31: Migrated min call is used in a macro/template definition and may not be valid for all macro/template uses. Adjust the code. */ y = dpct::min((unsigned int)(bsy + item_ct1.get_local_id(2)), h - 1); // column to the left x = sycl::max(bsx - 1, 0); smPos = bx + 2 + item_ct1.get_local_id(2) * (bx + 2); gmPos = x + y * s; // check if we are within tile if (item_ct1.get_local_id(2) < by) { du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // column to the right x = sycl::min(bsx + bx, w - 1); gmPos = y * s + x; smPos += bx + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } } /* DPCT1065:13: Consider replacing sycl::nd_item::barrier() with sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better performance if there is no access to global memory. */ item_ct1.barrier(); if (ix >= w || iy >= h) return; // now all necessary data are loaded to shared memory int left, right, up, down; left = shMemPos - 1; right = shMemPos + 1; up = shMemPos + bx + 2; down = shMemPos - bx - 2; float sumU = (du[left] + du[right] + du[up] + du[down]) * 0.25f; float sumV = (dv[left] + dv[right] + dv[up] + dv[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel wrapper. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1, sycl::queue q) { // CTA size sycl::range<3> threads(1, 6, 32); // grid size sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); /* DPCT1049:14: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ q.submit([&](sycl::handler &cgh) { sycl::local_accessor<float, 1> du_acc_ct1( sycl::range<1>((32 + 2) * (6 + 2)), cgh); sycl::local_accessor<float, 1> dv_acc_ct1( sycl::range<1>((32 + 2) * (6 + 2)), cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { JacobiIteration<32, 6>(du0, dv0, Ix, Iy, Iz, w, h, s, alpha, du1, dv1, item_ct1, du_acc_ct1.get_pointer(), dv_acc_ct1.get_pointer()); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/Samples/5_Domain_Specific/HSOpticalFlow/upscaleKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field, CUDA kernel /// \param[in] width field width /// \param[in] height field height /// \param[in] stride field stride /// \param[in] scale scale factor (multiplier) /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void UpscaleKernel(int width, int height, int stride, float scale, float *out, sycl::accessor<sycl::float4, 2, sycl::access::mode::read, sycl::access::target::image> texCoarse_acc, sycl::sampler texDesc, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); if (ix >= width || iy >= height) return; float x = ((float)ix - 0.5f) * 0.5f; float y = ((float)iy - 0.5f) * 0.5f; auto inputCoord = sycl::float2(x, y); // exploit hardware interpolation // and scale interpolated vector to match next pyramid level resolution out[ix + iy * stride] = texCoarse_acc.read(inputCoord, texDesc)[0] * scale; } /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field, kernel wrapper /// \param[in] src field component to upscale /// \param[in] width field current width /// \param[in] height field current height /// \param[in] stride field current stride /// \param[in] newWidth field new width /// \param[in] newHeight field new height /// \param[in] newStride field new stride /// \param[in] scale value scale factor (multiplier) /// \param[out] out upscaled field component /////////////////////////////////////////////////////////////////////////////// static void Upscale(const float *src, float *pI0_h, float *I0_h, float *src_p, int width, int height, int stride, int newWidth, int newHeight, int newStride, float scale, float *out, sycl::queue q) { sycl::range<3> threads(1, 8, 32); sycl::range<3> blocks(1, iDivUp(newHeight, threads[1]), iDivUp(newWidth, threads[2])); int dataSize = stride * height * sizeof(float); q.memcpy(I0_h, src, dataSize).wait(); for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { int index = i * stride + j; pI0_h[index * 4 + 0] = I0_h[index]; pI0_h[index * 4 + 1] = pI0_h[index * 4 + 2] = pI0_h[index * 4 + 3] = 0.f; } } q.memcpy(src_p, pI0_h, height * stride * sizeof(sycl::float4)).wait(); auto texDescr = sycl::sampler( sycl::coordinate_normalization_mode::unnormalized, sycl::addressing_mode::clamp_to_edge, sycl::filtering_mode::linear); auto texCoarse = sycl::image<2>( src_p, sycl::image_channel_order::rgba, sycl::image_channel_type::fp32, sycl::range<2>(width, height), sycl::range<1>(stride * sizeof(sycl::float4))); q.submit([&](sycl::handler &cgh) { auto texCoarse_acc = texCoarse.template get_access<sycl::float4, sycl::access::mode::read>(cgh); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { UpscaleKernel(newWidth, newHeight, newStride, scale, out, texCoarse_acc, texDescr, item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/ccl_utils.hpp
//==---- ccl_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_CCL_UTILS_HPP__ #define __DPCT_CCL_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/ccl.hpp> #include <unordered_map> #include <memory> #include "device.hpp" namespace dpct { namespace ccl { namespace detail { /// Get stored kvs with specified kvs address. inline std::shared_ptr<oneapi::ccl::kvs> & get_kvs(const oneapi::ccl::kvs::address_type &addr) { struct hash { std::size_t operator()(const oneapi::ccl::kvs::address_type &in) const { return std::hash<std::string_view>()(std::string_view(in.data(), in.size())); } }; static std::unordered_map<oneapi::ccl::kvs::address_type, std::shared_ptr<oneapi::ccl::kvs>, hash> kvs_map; return kvs_map[addr]; } /// Help class to init ccl environment. class ccl_init_helper { public: ccl_init_helper() { oneapi::ccl::init(); } }; } // namespace detail /// Get concatenated library version as an integer. static inline int get_version() { oneapi::ccl::init(); auto ver = oneapi::ccl::get_library_version(); return ver.major * 10000 + ver.minor * 100 + ver.update; } /// Create main kvs and return its address. static inline oneapi::ccl::kvs::address_type create_kvs_address() { oneapi::ccl::init(); auto ptr = oneapi::ccl::create_main_kvs(); auto addr = ptr->get_address(); detail::get_kvs(addr) = ptr; return addr; } /// Get stored kvs with /p addr if exist. Otherwise, create kvs with /p addr. static inline std::shared_ptr<oneapi::ccl::kvs> create_kvs(const oneapi::ccl::kvs::address_type &addr) { oneapi::ccl::init(); auto &ptr = detail::get_kvs(addr); if (!ptr) ptr = oneapi::ccl::create_kvs(addr); return ptr; } /// dpct communicator extension class communicator_wrapper : public dpct::ccl::detail::ccl_init_helper { public: communicator_wrapper( int size, int rank, oneapi::ccl::kvs::address_type id, const oneapi::ccl::comm_attr &attr = oneapi::ccl::default_comm_attr) : _device_comm(oneapi::ccl::create_device( static_cast<sycl::device &>(dpct::get_current_device()))), _context_comm(oneapi::ccl::create_context(dpct::get_default_context())), _comm(oneapi::ccl::create_communicator( size, rank, _device_comm, _context_comm, dpct::ccl::create_kvs(id), attr)) { _queue_init = false; _ccl_stream_ptr = nullptr; } ~communicator_wrapper() { delete _ccl_stream_ptr; }; /// Return the rank in a oneapi::ccl::communicator /// \returns The rank corresponding to communicator object int rank() const { return _comm.rank(); } /// Retrieves the number of rank in oneapi::ccl::communicator /// \returns The number of the ranks int size() const { return _comm.size(); } /// Return underlying native device, which was used in oneapi::ccl::communicator sycl::device get_device() const { return _comm.get_device().get_native(); } /// \brief allreduce is a collective communication operation that performs the global reduction operation /// on values from all ranks of communicator and distributes the result back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void allreduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::allreduce(sendbuff, recvbuff, count, dtype, rtype, _comm, stream); }, queue_ptr); } /// \brief reduce is a collective communication operation that performs the /// global reduction operation on values from all ranks of the communicator /// and returns the result to the root rank. /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, /// must have the same dimension as @c send_buf /// \param count the number of elements of type @c dtype in @c send_buf and @c recv_buf /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param root the rank that gets the result of reduction /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce(const void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, int root, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce(sendbuff, recvbuff, count, dtype, rtype, root, _comm, stream); }, queue_ptr); } /// \brief broadcast is a collective communication operation that broadcasts data /// from one rank of communicator (denoted as root) to all other ranks. /// Only support in-place operation /// \param send_buf the buffer with @c count elements of @c dtype that stores /// local data to be reduced /// \param recv_buf [out] the buffer to store reduced result /// \param count the number of elements of type @c dtype in @c buf /// \param dtype thedatatype of elements in @c buf /// \param root the rank that broadcasts @c buf /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void broadcast(void *sendbuff, void *recvbuff, size_t count, oneapi::ccl::datatype dtype, int root, sycl::queue *queue_ptr) { if (sendbuff != recvbuff) { throw std::runtime_error( "oneCCL broadcast only support in-place operation. " "send_buf and recv_buf must be same."); return; } call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::broadcast(recvbuff, count, dtype, root, _comm, stream); }, queue_ptr); } /// \brief reduce_scatter is a collective communication operation that performs the global reduction operation /// on values from all ranks of the communicator and scatters the result in blocks back to all ranks. /// \param send_buf the buffer with @c count elements of @c dtype that stores local data to be reduced /// \param recv_buf [out] the buffer to store reduced result, must have the same dimension as @c send_buf /// \param recv_count the number of elements of type @c dtype in receive block /// \param dtype the datatype of elements in @c send_buf and @c recv_buf /// \param rtype the type of the reduction operation to be applied /// \param queue_ptr a sycl::queue ptr associated with the operation /// \return @ref void void reduce_scatter(const void *sendbuff, void *recvbuff, size_t recv_count, oneapi::ccl::datatype dtype, oneapi::ccl::reduction rtype, sycl::queue *queue_ptr) { call_func_wrapper( [=](const oneapi::ccl::stream &stream) { return oneapi::ccl::reduce_scatter(sendbuff, recvbuff, recv_count, dtype, rtype, _comm, stream); }, queue_ptr); } private: oneapi::ccl::device _device_comm; oneapi::ccl::context _context_comm; oneapi::ccl::communicator _comm; sycl::queue _queue; bool _queue_init; oneapi::ccl::stream *_ccl_stream_ptr; template <class Fn> void call_func_wrapper(Fn func, sycl::queue *qptr) { if (_queue_init && *qptr != _queue) { call_func_async(func, qptr); } else { if(!_queue_init) { _queue = *qptr; _queue_init = true; _ccl_stream_ptr = new oneapi::ccl::stream(oneapi::ccl::create_stream(_queue)); } std::invoke(func, *_ccl_stream_ptr); } } class call_func_async { sycl::queue *_q_ptr; struct call_async_impl { oneapi::ccl::stream _ccl_stream_impl; oneapi::ccl::event _ccl_event_impl; template <class Fn> explicit call_async_impl(Fn func, sycl::queue *qptr) : _ccl_stream_impl(oneapi::ccl::create_stream(*qptr)), _ccl_event_impl(std::invoke(func, _ccl_stream_impl)) {} }; call_async_impl *_imp; public: template <class Fn> explicit call_func_async(Fn func, sycl::queue *qptr) : _q_ptr(qptr), _imp(new call_async_impl(func, qptr)) {} ~call_func_async() { _q_ptr->submit([&](sycl::handler &cgh) { cgh.host_task([=] { _imp->_ccl_event_impl.wait(); delete _imp; }); }); } }; }; typedef dpct::ccl::communicator_wrapper *comm_ptr; } // namespace ccl } // namespace dpct #endif // __DPCT_CCL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/util.hpp
//==---- util.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_UTIL_HPP__ #define __DPCT_UTIL_HPP__ #include <sycl/sycl.hpp> #include <complex> #include <type_traits> #include <cassert> #include <cstdint> // TODO: Remove these function definitions once they exist in the DPC++ compiler #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffle(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleDown(__spv::Scope::Flag, T, unsigned) noexcept; template <typename T> __SYCL_CONVERGENT__ extern SYCL_EXTERNAL __SYCL_EXPORT __attribute__((noduplicate)) T __spirv_GroupNonUniformShuffleUp(__spv::Scope::Flag, T, unsigned) noexcept; #endif namespace dpct { namespace detail { template <typename tag, typename T> class generic_error_type { public: generic_error_type() = default; generic_error_type(T value) : value{value} {} operator T() const { return value; } private: T value; }; } // namespace detail using err0 = detail::generic_error_type<struct err0_tag, int>; using err1 = detail::generic_error_type<struct err1_tag, int>; template <int... Ints> struct integer_sequence {}; template <int Size, int... Ints> struct make_index_sequence : public make_index_sequence<Size - 1, Size - 1, Ints...> {}; template <int... Ints> struct make_index_sequence<0, Ints...> : public integer_sequence<Ints...> {}; template <typename T> struct DataType { using T2 = T; }; template <typename T> struct DataType<sycl::vec<T, 2>> { using T2 = std::complex<T>; }; inline void matrix_mem_copy(void *to_ptr, const void *from_ptr, int to_ld, int from_ld, int rows, int cols, int elem_size, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { if (to_ptr == from_ptr && to_ld == from_ld) { return; } if (to_ld == from_ld) { size_t copy_size = elem_size * ((cols - 1) * (size_t)to_ld + rows); if (async) detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction); else detail::dpct_memcpy(queue, (void *)to_ptr, (void *)from_ptr, copy_size, direction).wait(); } else { if (async) detail::dpct_memcpy(queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction); else sycl::event::wait(detail::dpct_memcpy( queue, to_ptr, from_ptr, elem_size * to_ld, elem_size * from_ld, elem_size * rows, cols, direction)); } } /// Copy matrix data. The default leading dimension is column. /// \param [out] to_ptr A pointer points to the destination location. /// \param [in] from_ptr A pointer points to the source location. /// \param [in] to_ld The leading dimension the destination matrix. /// \param [in] from_ld The leading dimension the source matrix. /// \param [in] rows The number of rows of the source matrix. /// \param [in] cols The number of columns of the source matrix. /// \param [in] direction The direction of the data copy. /// \param [in] queue The queue where the routine should be executed. /// \param [in] async If this argument is true, the return of the function /// does NOT guarantee the copy is completed. template <typename T> inline void matrix_mem_copy(T *to_ptr, const T *from_ptr, int to_ld, int from_ld, int rows, int cols, memcpy_direction direction = automatic, sycl::queue &queue = dpct::get_default_queue(), bool async = false) { using Ty = typename DataType<T>::T2; matrix_mem_copy((void *)to_ptr, (void *)from_ptr, to_ld, from_ld, rows, cols, sizeof(Ty), direction, queue, async); } /// Cast the high or low 32 bits of a double to an integer. /// \param [in] d The double value. /// \param [in] use_high32 Cast the high 32 bits of the double if true; /// otherwise cast the low 32 bits. inline int cast_double_to_int(double d, bool use_high32 = true) { sycl::vec<double, 1> v0{d}; auto v1 = v0.as<sycl::int2>(); if (use_high32) return v1[1]; return v1[0]; } /// Combine two integers, the first as the high 32 bits and the second /// as the low 32 bits, into a double. /// \param [in] high32 The integer as the high 32 bits /// \param [in] low32 The integer as the low 32 bits inline double cast_ints_to_double(int high32, int low32) { sycl::int2 v0{low32, high32}; auto v1 = v0.as<sycl::vec<double, 1>>(); return v1; } /// Reverse the bit order of an unsigned integer /// \param [in] a Input unsigned integer value /// \returns Value of a with the bit order reversed template <typename T> inline T reverse_bits(T a) { static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value, "unsigned integer required"); if (!a) return 0; T mask = 0; size_t count = 4 * sizeof(T); mask = ~mask >> count; while (count) { a = ((a & mask) << count) | ((a & ~mask) >> count); count = count >> 1; mask = mask ^ (mask << count); } return a; } /// \param [in] a The first value contains 4 bytes /// \param [in] b The second value contains 4 bytes /// \param [in] s The selector value, only lower 16bit used /// \returns the permutation result of 4 bytes selected in the way /// specified by \p s from \p a and \p b inline unsigned int byte_level_permute(unsigned int a, unsigned int b, unsigned int s) { unsigned int ret; ret = ((((std::uint64_t)b << 32 | a) >> (s & 0x7) * 8) & 0xff) | (((((std::uint64_t)b << 32 | a) >> ((s >> 4) & 0x7) * 8) & 0xff) << 8) | (((((std::uint64_t)b << 32 | a) >> ((s >> 8) & 0x7) * 8) & 0xff) << 16) | (((((std::uint64_t)b << 32 | a) >> ((s >> 12) & 0x7) * 8) & 0xff) << 24); return ret; } /// Find position of first least significant set bit in an integer. /// ffs(0) returns 0. /// /// \param [in] a Input integer value /// \returns The position template <typename T> inline int ffs(T a) { static_assert(std::is_integral<T>::value, "integer required"); return (sycl::ctz(a) + 1) % (sizeof(T) * 8 + 1); } /// select_from_sub_group allows work-items to obtain a copy of a value held by /// any other work-item in the sub_group. The input sub_group will be divided /// into several logical sub_groups with id range [0, \p logical_sub_group_size /// - 1]. Each work-item in logical sub_group gets value from another work-item /// whose id is \p remote_local_id. If \p remote_local_id is outside the /// logical sub_group id range, \p remote_local_id will modulo with \p /// logical_sub_group_size. The \p logical_sub_group_size must be a power of 2 /// and not exceed input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; return sycl::select_from_group( g, x, start_index + remote_local_id % logical_sub_group_size); } /// shift_sub_group_left move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the left. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is caller's id adds \p delta. If calculated id is outside the logical /// sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; T result = sycl::shift_group_left(g, x, delta); if ((id + delta) >= end_index) { result = x; } return result; } /// shift_sub_group_right move values held by the work-items in a sub_group /// directly to another work-item in the sub_group, by shifting values a fixed /// number of work-items to the right. The input sub_group will be divided into /// several logical_sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical_sub_group gets value from another work-item whose /// id is caller's id subtracts \p delta. If calculated id is outside the /// logical sub_group id range, the work-item will get value from itself. The \p /// logical_sub_group_size must be a power of 2 and not exceed input sub_group /// size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; T result = sycl::shift_group_right(g, x, delta); if ((id - start_index) < delta) { result = x; } return result; } /// permute_sub_group_by_xor permutes values by exchanging values held by pairs /// of work-items identified by computing the bitwise exclusive OR of the /// work-item id and some fixed mask. The input sub_group will be divided into /// several logical sub_groups with id range [0, \p logical_sub_group_size - 1]. /// Each work-item in logical sub_group gets value from another work-item whose /// id is bitwise exclusive OR of the caller's id and \p mask. If calculated id /// is outside the logical sub_group id range, the work-item will get value from /// itself. The \p logical_sub_group_size must be a power of 2 and not exceed /// input sub_group size. /// \tparam T Input value type /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; return sycl::select_from_group(g, x, target_offset < logical_sub_group_size ? start_index + target_offset : id); } namespace experimental { /// Masked version of select_from_sub_group, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] remote_local_id Input source work item id /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T select_from_sub_group(unsigned int member_mask, sycl::sub_group g, T x, int remote_local_id, int logical_sub_group_size = 32) { unsigned int start_index = g.get_local_linear_id() / logical_sub_group_size * logical_sub_group_size; unsigned logical_remote_id = start_index + remote_local_id % logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)remote_local_id; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_left, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_left(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int end_index = (id / logical_sub_group_size + 1) * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleDown(__spv::Scope::Subgroup, x, delta); if ((id + delta) >= end_index) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_left " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } /// Masked version of shift_sub_group_right, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] delta Input delta /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T shift_sub_group_right(unsigned int member_mask, sycl::sub_group g, T x, unsigned int delta, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) T result = __spirv_GroupNonUniformShuffleUp(__spv::Scope::Subgroup, x, delta); if ((id - start_index) < delta) { result = x; } return result; #else throw sycl::exception(sycl::errc::runtime, "Masked version of shift_sub_group_right " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)delta; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY && __INTEL_LLVM_COMPILER } /// Masked version of permute_sub_group_by_xor, which execute masked sub-group /// operation. The parameter member_mask indicating the work-items participating /// the call. Whether the n-th bit is set to 1 representing whether the /// work-item with id n is participating the call. All work-items named in /// member_mask must be executed with the same member_mask, or the result is /// undefined. /// \tparam T Input value type /// \param [in] member_mask Input mask /// \param [in] g Input sub_group /// \param [in] x Input value /// \param [in] mask Input mask /// \param [in] logical_sub_group_size Input logical sub_group size /// \returns The result template <typename T> T permute_sub_group_by_xor(unsigned int member_mask, sycl::sub_group g, T x, unsigned int mask, int logical_sub_group_size = 32) { unsigned int id = g.get_local_linear_id(); unsigned int start_index = id / logical_sub_group_size * logical_sub_group_size; unsigned int target_offset = (id % logical_sub_group_size) ^ mask; unsigned logical_remote_id = (target_offset < logical_sub_group_size) ? start_index + target_offset : id; #if defined(__SYCL_DEVICE_ONLY__) && defined(__INTEL_LLVM_COMPILER) #if defined(__SPIR__) return __spirv_GroupNonUniformShuffle(__spv::Scope::Subgroup, x, logical_remote_id); #else throw sycl::exception(sycl::errc::runtime, "Masked version of permute_sub_group_by_xor " "only supports SPIR-V backends."); #endif // __SPIR__ #else (void)g; (void)x; (void)mask; (void)logical_sub_group_size; (void)member_mask; throw sycl::exception(sycl::errc::runtime, "Masked version of select_from_sub_group not " "supported on host device and none intel compiler."); #endif // __SYCL_DEVICE_ONLY__ && __INTEL_LLVM_COMPILER } } // namespace experimental /// Computes the multiplication of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cmul(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 * t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the division of two complex numbers. /// \tparam T Complex element type /// \param [in] x The first input complex number /// \param [in] y The second input complex number /// \returns The result template <typename T> sycl::vec<T, 2> cdiv(sycl::vec<T, 2> x, sycl::vec<T, 2> y) { std::complex<T> t1(x[0], x[1]), t2(y[0], y[1]); t1 = t1 / t2; return sycl::vec<T, 2>(t1.real(), t1.imag()); } /// Computes the magnitude of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> T cabs(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); return std::abs(t); } /// Computes the complex conjugate of a complex number. /// \tparam T Complex element type /// \param [in] x The input complex number /// \returns The result template <typename T> sycl::vec<T, 2> conj(sycl::vec<T, 2> x) { std::complex<T> t(x[0], x[1]); t = std::conj(t); return sycl::vec<T, 2>(t.real(), t.imag()); } inline int get_sycl_language_version() { #ifdef SYCL_LANGUAGE_VERSION return SYCL_LANGUAGE_VERSION; #else return 202000; #endif } namespace experimental { /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <int dimensions = 3> inline void nd_range_barrier(const sycl::nd_item<dimensions> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { static_assert(dimensions == 3, "dimensions must be 3."); unsigned int num_groups = item.get_group_range(2) * item.get_group_range(1) * item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(2) + item.get_group(1) + item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// Synchronize work items from all work groups within a SYCL kernel. /// \param [in] item: Represents a work group. /// \param [in] counter: An atomic object defined on a device memory which can /// be accessed by work items in all work groups. The initial value of the /// counter should be zero. /// Note: Please make sure that all the work items of all work groups within /// a SYCL kernel can be scheduled actively at the same time on a device. template <> inline void nd_range_barrier(const sycl::nd_item<1> &item, sycl::atomic_ref< unsigned int, sycl::memory_order::seq_cst, sycl::memory_scope::device, sycl::access::address_space::global_space> &counter) { unsigned int num_groups = item.get_group_range(0); item.barrier(); if (item.get_local_linear_id() == 0) { unsigned int inc = 1; unsigned int old_arrive = 0; bool is_group0 = (item.get_group(0) == 0); if (is_group0) { inc = 0x80000000 - (num_groups - 1); } old_arrive = counter.fetch_add(inc); // Synchronize all the work groups while (((old_arrive ^ counter.load()) & 0x80000000) == 0) ; } item.barrier(); } /// The logical-group is a logical collection of some work-items within a /// work-group. /// Note: Please make sure that the logical-group size is a power of 2 in the /// range [1, current_sub_group_size]. class logical_group { sycl::nd_item<3> _item; sycl::group<3> _g; uint32_t _logical_group_size; uint32_t _group_linear_range_in_parent; public: /// Dividing \p parent_group into several logical-groups. /// \param [in] item Current work-item. /// \param [in] parent_group The group to be divided. /// \param [in] size The logical-group size. logical_group(sycl::nd_item<3> item, sycl::group<3> parent_group, uint32_t size) : _item(item), _g(parent_group), _logical_group_size(size) { _group_linear_range_in_parent = (_g.get_local_linear_range() - 1) / _logical_group_size + 1; } /// Returns the index of the work-item within the logical-group. uint32_t get_local_linear_id() const { return _item.get_local_linear_id() % _logical_group_size; } /// Returns the index of the logical-group in the parent group. uint32_t get_group_linear_id() const { return _item.get_local_linear_id() / _logical_group_size; } /// Returns the number of work-items in the logical-group. uint32_t get_local_linear_range() const { if (_g.get_local_linear_range() % _logical_group_size == 0) { return _logical_group_size; } uint32_t last_item_group_id = _g.get_local_linear_range() / _logical_group_size; uint32_t first_of_last_group = last_item_group_id * _logical_group_size; if (_item.get_local_linear_id() >= first_of_last_group) { return _g.get_local_linear_range() - first_of_last_group; } else { return _logical_group_size; } } /// Returns the number of logical-group in the parent group. uint32_t get_group_linear_range() const { return _group_linear_range_in_parent; } }; // The original source of the function calculate_max_active_wg_per_xecore was // under the license below: // // Copyright Intel Corporation // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // /// This function is used for occupancy calculation, it computes the max active /// work-group number per Xe-Core. Ref to /// https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator /// \param [out] num_wg Active work-group number. /// \param [in] wg_size Work-group size. /// \param [in] slm_size Share local memory size. /// \param [in] sg_size Sub-group size. /// \param [in] used_barrier Whether barrier is used. /// \param [in] used_large_grf Whether large General Register File is used. /// \return If no error, returns 0. /// If \p wg_size exceeds the max work-group size, the max work-group size will /// be used instead of \p wg_size and returns -1. inline int calculate_max_active_wg_per_xecore(int *num_wg, int wg_size, int slm_size = 0, int sg_size = 32, bool used_barrier = false, bool used_large_grf = false) { int ret = 0; const int slm_size_per_xe_core = 64 * 1024; const int max_barrier_registers = 32; dpct::device_ext &dev = dpct::get_current_device(); size_t max_wg_size = dev.get_info<sycl::info::device::max_work_group_size>(); if (wg_size > max_wg_size) { wg_size = max_wg_size; ret = -1; } int num_threads_ss = 56; int max_num_wg = 56; if (dev.has(sycl::aspect::ext_intel_gpu_eu_count_per_subslice) && dev.has(sycl::aspect::ext_intel_gpu_hw_threads_per_eu)) { auto eu_count = dev.get_info<sycl::info::device::ext_intel_gpu_eu_count_per_subslice>(); auto threads_count = dev.get_info<sycl::ext::intel::info::device::gpu_hw_threads_per_eu>(); num_threads_ss = eu_count * threads_count; max_num_wg = eu_count * threads_count; } if (used_barrier) { max_num_wg = max_barrier_registers; } // Calculate num_wg_slm int num_wg_slm = 0; if (slm_size == 0) { num_wg_slm = max_num_wg; } else { num_wg_slm = std::floor((float)slm_size_per_xe_core / slm_size); } // Calculate num_wg_threads if (used_large_grf) num_threads_ss = num_threads_ss / 2; int num_threads = std::ceil((float)wg_size / sg_size); int num_wg_threads = std::floor((float)num_threads_ss / num_threads); // Calculate num_wg *num_wg = std::min(num_wg_slm, num_wg_threads); *num_wg = std::min(*num_wg, max_num_wg); return ret; } } // namespace experimental /// If x <= 2, then return a pointer to the deafult queue; /// otherwise, return x reinterpreted as a dpct::queue_ptr. inline queue_ptr int_as_queue_ptr(uintptr_t x) { return x <= 2 ? &get_default_queue() : reinterpret_cast<queue_ptr>(x); } template <int n_nondefault_params, int n_default_params, typename T> class args_selector; /// args_selector is a helper class for extracting arguments from an /// array of pointers to arguments or buffer of arguments to pass to a /// kernel function. /// /// \param R(Ts...) The type of the kernel /// \param n_nondefault_params The number of nondefault parameters of the kernel /// (excluding parameters that like sycl::nd_item, etc.) /// \param n_default_params The number of default parameters of the kernel /// /// Example usage: /// With the following kernel: /// void foo(sycl::float2 *x, int n, sycl::nd_item<3> item_ct1, float f=.1) {} /// and with the declaration: /// args_selector<2, 1, decltype(foo)> selector(kernelParams, extra); /// we have: /// selector.get<0>() returns a reference to sycl::float*, /// selector.get<1>() returns a reference to int, /// selector.get<2>() returns a reference to float template <int n_nondefault_params, int n_default_params, typename R, typename... Ts> class args_selector<n_nondefault_params, n_default_params, R(Ts...)> { private: void **kernel_params; char *args_buffer; template <int i> static constexpr int account_for_default_params() { constexpr int n_total_params = sizeof...(Ts); if constexpr (i >= n_nondefault_params) { return n_total_params - n_default_params + (i - n_nondefault_params); } else { return i; } } public: /// Get the type of the ith argument of R(Ts...) /// \param [in] i Index of parameter to get /// \returns Type of ith parameter template <int i> using arg_type = std::tuple_element_t<account_for_default_params<i>(), std::tuple<Ts...>>; private: template <int i> static constexpr int get_offset() { if constexpr (i == 0) { // we can assume args_buffer is properly aligned to the // first argument return 0; } else { constexpr int prev_off = get_offset<i-1>(); constexpr int prev_past_end = prev_off + sizeof(arg_type<i-1>); using T = arg_type<i>; // is the past-the-end of the i-1st element properly aligned // with the ith element's alignment? if constexpr (prev_past_end % alignof(T) == 0) { return prev_past_end; } // otherwise bump prev_past_end to match alignment else { return prev_past_end + (alignof(T) - (prev_past_end % alignof(T))); } } } static char *get_args_buffer(void **extra) { if (!extra) return nullptr; for (; (std::size_t) *extra != 0; ++extra) { if ((std::size_t) *extra == 1) { return static_cast<char*>(*(extra+1)); } } return nullptr; } public: /// If kernel_params is nonnull, then args_selector will /// extract arguments from kernel_params. Otherwise, it /// will extract them from extra. /// \param [in] kernel_params Array of pointers to arguments /// a or null pointer. /// \param [in] extra Array containing pointer to argument buffer. args_selector(void **kernel_params, void **extra) : kernel_params(kernel_params), args_buffer(get_args_buffer(extra)) {} /// Get a reference to the ith argument extracted from kernel_params /// or extra. /// \param [in] i Index of argument to get /// \returns Reference to the ith argument template <int i> arg_type<i> &get() { if (kernel_params) { return *static_cast<arg_type<i>*>(kernel_params[i]); } else { return *reinterpret_cast<arg_type<i>*>(args_buffer + get_offset<i>()); } } }; #ifdef _WIN32 #define DPCT_EXPORT __declspec(dllexport) #else #define DPCT_EXPORT #endif } // namespace dpct #endif // __DPCT_UTIL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/image.hpp
//==---- image.hpp --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_IMAGE_HPP__ #define __DPCT_IMAGE_HPP__ #include <sycl/sycl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { enum class image_channel_data_type { signed_int, unsigned_int, fp, }; class image_channel; class image_wrapper_base; namespace detail { /// Image object type traits, with accessor type and sampled data type defined. /// The data type of an image accessor must be one of sycl::int4, sycl::uint4, /// sycl::float4 and sycl::half4. The data type of accessors with 8bits/16bits /// channel width will be 32 bits. sycl::half is an exception. template <class T> struct image_trait { using acc_data_t = sycl::vec<T, 4>; template <int dimensions> using accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image>; template <int dimensions> using array_accessor_t = sycl::accessor<acc_data_t, dimensions, sycl::access_mode::read, sycl::access::target::image_array>; using data_t = T; using elem_t = T; static constexpr image_channel_data_type data_type = std::is_integral<T>::value ? (std::is_signed<T>::value ? image_channel_data_type::signed_int : image_channel_data_type::unsigned_int) : image_channel_data_type::fp; static constexpr int channel_num = 1; }; template <> struct image_trait<std::uint8_t> : public image_trait<std::uint32_t> { using data_t = std::uint8_t; using elem_t = data_t; }; template <> struct image_trait<std::uint16_t> : public image_trait<std::uint32_t> { using data_t = std::uint16_t; using elem_t = data_t; }; template <> struct image_trait<std::int8_t> : public image_trait<std::int32_t> { using data_t = std::int8_t; using elem_t = data_t; }; template <> struct image_trait<std::int16_t> : public image_trait<std::int32_t> { using data_t = std::int16_t; using elem_t = data_t; }; template <> struct image_trait<char> : public image_trait<typename std::conditional< std::is_signed<char>::value, signed char, unsigned char>::type> {}; template <class T> struct image_trait<sycl::vec<T, 1>> : public image_trait<T> {}; template <class T> struct image_trait<sycl::vec<T, 2>> : public image_trait<T> { using data_t = sycl::vec<T, 2>; static constexpr int channel_num = 2; }; template <class T> struct image_trait<sycl::vec<T, 3>> : public image_trait<sycl::vec<T, 4>> { static constexpr int channel_num = 3; }; template <class T> struct image_trait<sycl::vec<T, 4>> : public image_trait<T> { using data_t = sycl::vec<T, 4>; static constexpr int channel_num = 4; }; /// Functor to fetch data from read result of an image accessor. template <class T> struct fetch_data { using return_t = typename image_trait<T>::data_t; using acc_data_t = typename image_trait<T>::acc_data_t; return_t operator()(acc_data_t &&original_data) { return (return_t)original_data.r(); } }; template <class T> struct fetch_data<sycl::vec<T, 1>> : public fetch_data<T> {}; template <class T> struct fetch_data<sycl::vec<T, 2>> { using return_t = typename image_trait<sycl::vec<T, 2>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 2>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g()); } }; template <class T> struct fetch_data<sycl::vec<T, 3>> : public fetch_data<sycl::vec<T, 4>> {}; template <class T> struct fetch_data<sycl::vec<T, 4>> { using return_t = typename image_trait<sycl::vec<T, 4>>::data_t; using acc_data_t = typename image_trait<sycl::vec<T, 4>>::acc_data_t; return_t operator()(acc_data_t &&origin_data) { return return_t(origin_data.r(), origin_data.g(), origin_data.b(), origin_data.a()); } }; /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims); /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims); /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims); } // namespace detail /// Image channel info, include channel number, order, data width and type class image_channel { image_channel_data_type _type = image_channel_data_type::signed_int; /// Number of channels. unsigned _channel_num = 0; /// Total size of all channels in bytes. unsigned _total_size = 0; /// Size of each channel in bytes. unsigned _channel_size = 0; public: /// Create image channel info according to template argument \p T. template <class T> static image_channel create() { image_channel channel; channel.set_channel_size(detail::image_trait<T>::channel_num, sizeof(typename detail::image_trait<T>::elem_t) * 8); channel.set_channel_data_type(detail::image_trait<T>::data_type); return channel; } image_channel() = default; image_channel_data_type get_channel_data_type() { return _type; } void set_channel_data_type(image_channel_data_type type) { _type = type; } unsigned get_total_size() { return _total_size; } unsigned get_channel_num() { return _channel_num; } void set_channel_num(unsigned channel_num) { _channel_num = channel_num; _total_size = _channel_size * _channel_num; } /// image_channel constructor. /// \param r Channel r width in bits. /// \param g Channel g width in bits. Should be same with \p r, or zero. /// \param b Channel b width in bits. Should be same with \p g, or zero. /// \param a Channel a width in bits. Should be same with \p b, or zero. /// \param data_type Image channel data type: signed_nt, unsigned_int or fp. image_channel(int r, int g, int b, int a, image_channel_data_type data_type) { _type = data_type; if (a) { assert(r == a && "SYCL doesn't support different channel size"); assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(4, a); } else if (b) { assert(r == b && "SYCL doesn't support different channel size"); assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(3, b); } else if (g) { assert(r == g && "SYCL doesn't support different channel size"); set_channel_size(2, g); } else { set_channel_size(1, r); } } sycl::image_channel_type get_channel_type() const { if (_channel_size == 4) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int32; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int32; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp32; } else if (_channel_size == 2) { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int16; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int16; else if (_type == image_channel_data_type::fp) return sycl::image_channel_type::fp16; } else { if (_type == image_channel_data_type::signed_int) return sycl::image_channel_type::signed_int8; else if (_type == image_channel_data_type::unsigned_int) return sycl::image_channel_type::unsigned_int8; } assert(false && "unexpected channel data kind and channel size"); return sycl::image_channel_type::signed_int32; } void set_channel_type(sycl::image_channel_type type) { switch (type) { case sycl::image_channel_type::unsigned_int8: _type = image_channel_data_type::unsigned_int; _channel_size = 1; break; case sycl::image_channel_type::unsigned_int16: _type = image_channel_data_type::unsigned_int; _channel_size = 2; break; case sycl::image_channel_type::unsigned_int32: _type = image_channel_data_type::unsigned_int; _channel_size = 4; break; case sycl::image_channel_type::signed_int8: _type = image_channel_data_type::signed_int; _channel_size = 1; break; case sycl::image_channel_type::signed_int16: _type = image_channel_data_type::signed_int; _channel_size = 2; break; case sycl::image_channel_type::signed_int32: _type = image_channel_data_type::signed_int; _channel_size = 4; break; case sycl::image_channel_type::fp16: _type = image_channel_data_type::fp; _channel_size = 2; break; case sycl::image_channel_type::fp32: _type = image_channel_data_type::fp; _channel_size = 4; break; default: break; } _total_size = _channel_size * _channel_num; } sycl::image_channel_order get_channel_order() const { switch (_channel_num) { case 1: return sycl::image_channel_order::r; case 2: return sycl::image_channel_order::rg; case 3: return sycl::image_channel_order::rgb; case 4: return sycl::image_channel_order::rgba; default: return sycl::image_channel_order::r; } } /// Get the size for each channel in bits. unsigned get_channel_size() const { return _channel_size * 8; } /// Set channel size. /// \param in_channel_num Channels number to set. /// \param channel_size Size for each channel in bits. void set_channel_size(unsigned in_channel_num, unsigned channel_size) { if (in_channel_num < _channel_num) return; _channel_num = in_channel_num; _channel_size = channel_size / 8; _total_size = _channel_size * _channel_num; } }; /// 2D or 3D matrix data for image. class image_matrix { image_channel _channel; int _range[3] = {1, 1, 1}; int _dims = 0; void *_host_data = nullptr; /// Set range of each dimension. template <int dimensions> void set_range(sycl::range<dimensions> range) { for (int i = 0; i < dimensions; ++i) _range[i] = range[i]; _dims = dimensions; } template <int... DimIdx> sycl::range<sizeof...(DimIdx)> get_range(integer_sequence<DimIdx...>) { return sycl::range<sizeof...(DimIdx)>(_range[DimIdx]...); } public: /// Constructor with channel info and dimension size info. template <int dimensions> image_matrix(image_channel channel, sycl::range<dimensions> range) : _channel(channel) { set_range(range); _host_data = std::malloc(range.size() * _channel.get_total_size()); } image_matrix(sycl::image_channel_type channel_type, unsigned channel_num, size_t x, size_t y) { _channel.set_channel_type(channel_type); _channel.set_channel_num(channel_num); _dims = 1; _range[0] = x; if (y) { _dims = 2; _range[1] = y; } _host_data = std::malloc(_range[0] * _range[1] * _channel.get_total_size()); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image() { return create_image<dimensions>(_channel); } /// Construct a new image class with the matrix data. template <int dimensions> sycl::image<dimensions> *create_image(image_channel channel) { return new sycl::image<dimensions>( _host_data, channel.get_channel_order(), channel.get_channel_type(), get_range(make_index_sequence<dimensions>()), sycl::property::image::use_host_ptr()); } /// Get channel info. inline image_channel get_channel() { return _channel; } /// Get range of the image. sycl::range<3> get_range() { return sycl::range<3>(_range[0], _range[1], _range[2]); } /// Get matrix dims. inline int get_dims() { return _dims; } /// Convert to pitched data. pitched_data to_pitched_data() { return pitched_data(_host_data, _range[0], _range[0], _range[1]); } ~image_matrix() { if (_host_data) std::free(_host_data); _host_data = nullptr; } }; using image_matrix_p = image_matrix *; enum class image_data_type { matrix, linear, pitch, unsupport }; /// Image data info. class image_data { public: image_data() { _type = image_data_type::unsupport; } image_data(image_matrix_p matrix_data) { set_data(matrix_data); } image_data(void *data_ptr, size_t x_size, image_channel channel) { set_data(data_ptr, x_size, channel); } image_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { set_data(data_ptr, x_size, y_size, pitch_size, channel); } void set_data(image_matrix_p matrix_data) { _type = image_data_type::matrix; _data = matrix_data; _channel = matrix_data->get_channel(); } void set_data(void *data_ptr, size_t x_size, image_channel channel) { _type = image_data_type::linear; _data = data_ptr; _x = x_size; _channel = channel; } void set_data(void *data_ptr, size_t x_size, size_t y_size, size_t pitch_size, image_channel channel) { _type = image_data_type::pitch; _data = data_ptr; _x = x_size; _y = y_size; _pitch = pitch_size; _channel = channel; } image_data_type get_data_type() const { return _type; } void set_data_type(image_data_type type) { _type = type; } void *get_data_ptr() const { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_x() const { return _x; } void set_x(size_t x) { _x = x; } size_t get_y() const { return _y; } void set_y(size_t y) { _y = y; } size_t get_pitch() const { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } image_channel get_channel() const { return _channel; } void set_channel(image_channel channel) { _channel = channel; } image_channel_data_type get_channel_data_type() { return _channel.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _channel.set_channel_data_type(type); } unsigned get_channel_size() { return _channel.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _channel.set_channel_size(channel_num, channel_size); } unsigned get_channel_num() { return _channel.get_channel_num(); } void set_channel_num(unsigned num) { return _channel.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _channel.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _channel.set_channel_type(type); } private: image_data_type _type; void *_data = nullptr; size_t _x, _y, _pitch; image_channel _channel; }; /// Image sampling info, include addressing mode, filtering mode and /// normalization info. class sampling_info { sycl::addressing_mode _addressing_mode = sycl::addressing_mode::clamp_to_edge; sycl::filtering_mode _filtering_mode = sycl::filtering_mode::nearest; sycl::coordinate_normalization_mode _coordinate_normalization_mode = sycl::coordinate_normalization_mode::unnormalized; public: sycl::addressing_mode get_addressing_mode() { return _addressing_mode; } void set(sycl::addressing_mode addressing_mode) { _addressing_mode = addressing_mode; } sycl::filtering_mode get_filtering_mode() { return _filtering_mode; } void set(sycl::filtering_mode filtering_mode) { _filtering_mode = filtering_mode; } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _coordinate_normalization_mode; } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _coordinate_normalization_mode = coordinate_normalization_mode; } bool is_coordinate_normalized() { return _coordinate_normalization_mode == sycl::coordinate_normalization_mode::normalized; } void set_coordinate_normalization_mode(int is_normalized) { _coordinate_normalization_mode = is_normalized ? sycl::coordinate_normalization_mode::normalized : sycl::coordinate_normalization_mode::unnormalized; } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } sycl::sampler get_sampler() { return sycl::sampler(_coordinate_normalization_mode, _addressing_mode, _filtering_mode); } }; /// Image base class. class image_wrapper_base { sampling_info _sampling_info; image_data _data; public: virtual ~image_wrapper_base() = 0; void attach(image_data data) { set_data(data); } /// Attach matrix data to this class. void attach(image_matrix *matrix) { detach(); image_wrapper_base::set_data(image_data(matrix)); } /// Attach matrix data to this class. void attach(image_matrix *matrix, image_channel channel) { attach(matrix); image_wrapper_base::set_channel(channel); } /// Attach linear data to this class. void attach(const void *ptr, size_t count) { attach(ptr, count, get_channel()); } /// Attach linear data to this class. void attach(const void *ptr, size_t count, image_channel channel) { detach(); image_wrapper_base::set_data(image_data(const_cast<void *>(ptr), count, channel)); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch) { attach(data, x, y, pitch, get_channel()); } /// Attach 2D data to this class. void attach(const void *data, size_t x, size_t y, size_t pitch, image_channel channel) { detach(); image_wrapper_base::set_data( image_data(const_cast<void *>(data), x, y, pitch, channel)); } /// Detach data. virtual void detach() {} sampling_info get_sampling_info() { return _sampling_info; } void set_sampling_info(sampling_info info) { _sampling_info = info; } const image_data &get_data() { return _data; } void set_data(image_data data) { _data = data; } image_channel get_channel() { return _data.get_channel(); } void set_channel(image_channel channel) { _data.set_channel(channel); } image_channel_data_type get_channel_data_type() { return _data.get_channel_data_type(); } void set_channel_data_type(image_channel_data_type type) { _data.set_channel_data_type(type); } unsigned get_channel_size() { return _data.get_channel_size(); } void set_channel_size(unsigned channel_num, unsigned channel_size) { return _data.set_channel_size(channel_num, channel_size); } sycl::addressing_mode get_addressing_mode() { return _sampling_info.get_addressing_mode(); } void set(sycl::addressing_mode addressing_mode) { _sampling_info.set(addressing_mode); } sycl::filtering_mode get_filtering_mode() { return _sampling_info.get_filtering_mode(); } void set(sycl::filtering_mode filtering_mode) { _sampling_info.set(filtering_mode); } sycl::coordinate_normalization_mode get_coordinate_normalization_mode() { return _sampling_info.get_coordinate_normalization_mode(); } void set(sycl::coordinate_normalization_mode coordinate_normalization_mode) { _sampling_info.set(coordinate_normalization_mode); } bool is_coordinate_normalized() { return _sampling_info.is_coordinate_normalized(); } void set_coordinate_normalization_mode(int is_normalized) { _sampling_info.set_coordinate_normalization_mode(is_normalized); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, sycl::coordinate_normalization_mode coordinate_normalization_mode) { set(addressing_mode); set(filtering_mode); set(coordinate_normalization_mode); } void set(sycl::addressing_mode addressing_mode, sycl::filtering_mode filtering_mode, int is_normalized) { set(addressing_mode); set(filtering_mode); set_coordinate_normalization_mode(is_normalized); } unsigned get_channel_num() { return _data.get_channel_num(); } void set_channel_num(unsigned num) { return _data.set_channel_num(num); } sycl::image_channel_type get_channel_type() { return _data.get_channel_type(); } void set_channel_type(sycl::image_channel_type type) { return _data.set_channel_type(type); } sycl::sampler get_sampler() { return _sampling_info.get_sampler(); } }; inline image_wrapper_base::~image_wrapper_base() {} using image_wrapper_base_p = image_wrapper_base *; template <class T, int dimensions, bool IsImageArray> class image_accessor_ext; /// Image class, wrapper of sycl::image. template <class T, int dimensions, bool IsImageArray = false> class image_wrapper : public image_wrapper_base { sycl::image<dimensions> *_image = nullptr; #ifndef DPCT_USM_LEVEL_NONE std::vector<char> _host_buffer; #endif void create_image(sycl::queue q) { auto &data = get_data(); if (data.get_data_type() == image_data_type::matrix) { _image = static_cast<image_matrix_p>(data.get_data_ptr()) ->create_image<dimensions>(data.get_channel()); return; } auto ptr = data.get_data_ptr(); auto channel = data.get_channel(); if (detail::get_pointer_attribute(q, ptr) == detail::pointer_access_attribute::device_only) { #ifdef DPCT_USM_LEVEL_NONE ptr = get_buffer(ptr) .template get_access<sycl::access_mode::read_write>() .get_pointer(); #else auto sz = data.get_x(); if (data.get_data_type() == image_data_type::pitch) sz *= channel.get_total_size() * data.get_y(); _host_buffer.resize(sz); q.memcpy(_host_buffer.data(), ptr, sz).wait(); ptr = _host_buffer.data(); #endif } if constexpr (dimensions == 1) { assert(data.get_data_type() == image_data_type::linear); _image = new sycl::image<1>( ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<1>(data.get_x() / channel.get_total_size())); } else if constexpr (dimensions == 2) { assert(data.get_data_type() == image_data_type::pitch); _image = new sycl::image<2>(ptr, channel.get_channel_order(), channel.get_channel_type(), sycl::range<2>(data.get_x(), data.get_y()), sycl::range<1>(data.get_pitch())); } else { throw std::runtime_error("3D image only support matrix data"); } return; } public: using acc_data_t = typename detail::image_trait<T>::acc_data_t; using accessor_t = typename image_accessor_ext<T, IsImageArray ? (dimensions - 1) : dimensions, IsImageArray>::accessor_t; image_wrapper() { set_channel(image_channel::create<T>()); } ~image_wrapper() { detach(); } /// Get image accessor. accessor_t get_access(sycl::handler &cgh, sycl::queue &q = get_default_queue()) { if (!_image) create_image(q); return accessor_t(*_image, cgh); } /// Detach data. void detach() override { if (_image) delete _image; _image = nullptr; } }; /// Wrap sampler and image accessor together. template <class T, int dimensions, bool IsImageArray = false> class image_accessor_ext { public: using accessor_t = typename detail::image_trait<T>::template accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 3> typename std::enable_if<Available, data_t>::type read(float x, float y, float z) { return detail::fetch_data<T>()( _img_acc.read(sycl::float4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, class Coord2, bool Available = dimensions == 3 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value &&std::is_integral<Coord2>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y, Coord2 z) { return detail::fetch_data<T>()( _img_acc.read(sycl::int4(x, y, z, 0), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(float x, float y) { return detail::fetch_data<T>()( _img_acc.read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <class Coord0, class Coord1, bool Available = dimensions == 2 && std::is_integral<Coord0>::value &&std::is_integral<Coord1>::value> typename std::enable_if<Available, data_t>::type read(Coord0 x, Coord1 y) { return detail::fetch_data<T>()( _img_acc.read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(float x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } /// Read data from accessor. template <class CoordT, bool Available = dimensions == 1 && std::is_integral<CoordT>::value> typename std::enable_if<Available, data_t>::type read(CoordT x) { return detail::fetch_data<T>()(_img_acc.read(x, _sampler)); } }; template <class T, int dimensions> class image_accessor_ext<T, dimensions, true> { public: using accessor_t = typename detail::image_trait<T>::template array_accessor_t<dimensions>; using data_t = typename detail::image_trait<T>::data_t; sycl::sampler _sampler; accessor_t _img_acc; public: image_accessor_ext(sycl::sampler sampler, accessor_t acc) : _sampler(sampler), _img_acc(acc) {} /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, float x, float y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::float2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 2> typename std::enable_if<Available, data_t>::type read(int index, int x, int y) { return detail::fetch_data<T>()( _img_acc[index].read(sycl::int2(x, y), _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, float x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } /// Read data from accessor. template <bool Available = dimensions == 1> typename std::enable_if<Available, data_t>::type read(int index, int x) { return detail::fetch_data<T>()( _img_acc[index].read(x, _sampler)); } }; /// Create image wrapper according to image data and sampling info. /// \return Pointer to image wrapper base class. /// \param data Image data used to create image wrapper. /// \param info Image sampling info used to create image wrapper. /// \returns Pointer to base class of created image wrapper object. static inline image_wrapper_base *create_image_wrapper(image_data data, sampling_info info) { image_channel channel; int dims = 1; if (data.get_data_type() == image_data_type::matrix) { auto matrix = (image_matrix_p)data.get_data_ptr(); channel = matrix->get_channel(); dims = matrix->get_dims(); } else { if (data.get_data_type() == image_data_type::pitch) { dims = 2; } channel = data.get_channel(); } if (auto ret = detail::create_image_wrapper(channel, dims)) { ret->set_sampling_info(info); ret->set_data(data); return ret; } return nullptr; } namespace detail { /// Create image according with given type \p T and \p dims. template <class T> static image_wrapper_base *create_image_wrapper(int dims) { switch (dims) { case 1: return new image_wrapper<T, 1>(); case 2: return new image_wrapper<T, 2>(); case 3: return new image_wrapper<T, 3>(); default: return nullptr; } } /// Create image with given data type \p T, channel order and dims template <class T> static image_wrapper_base *create_image_wrapper(unsigned channel_num, int dims) { switch (channel_num) { case 1: return create_image_wrapper<T>(dims); case 2: return create_image_wrapper<sycl::vec<T, 2>>(dims); case 3: return create_image_wrapper<sycl::vec<T, 3>>(dims); case 4: return create_image_wrapper<sycl::vec<T, 4>>(dims); default: return nullptr; } } /// Create image with channel info and specified dimensions. static image_wrapper_base *create_image_wrapper(image_channel channel, int dims) { switch (channel.get_channel_type()) { case sycl::image_channel_type::fp16: return create_image_wrapper<sycl::half>(channel.get_channel_num(), dims); case sycl::image_channel_type::fp32: return create_image_wrapper<float>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int8: return create_image_wrapper<std::int8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int16: return create_image_wrapper<std::int16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::signed_int32: return create_image_wrapper<std::int32_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int8: return create_image_wrapper<std::uint8_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int16: return create_image_wrapper<std::uint16_t>(channel.get_channel_num(), dims); case sycl::image_channel_type::unsigned_int32: return create_image_wrapper<std::uint32_t>(channel.get_channel_num(), dims); default: return nullptr; } } } // namespace detail } // namespace dpct #endif // !__DPCT_IMAGE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/kernel.hpp
//==---- kernel.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_KERNEL_HPP__ #define __DPCT_KERNEL_HPP__ #include <sycl/sycl.hpp> #ifdef _WIN32 #include <unordered_set> #include <windows.h> #else #include <dlfcn.h> #endif #if defined(__has_include) && __has_include(<filesystem>) #include <filesystem> #elif defined(__has_include) && __has_include(<experimental/filesystem>) #include <experimental/filesystem> #else #error "SYCLomatic runtime requires C++ filesystem support" #endif #include <random> #include <image.hpp> #include <fstream> namespace dpct { typedef void (*kernel_functor)(sycl::queue &, const sycl::nd_range<3> &, unsigned int, void **, void **); struct kernel_function_info { int max_work_group_size = 0; }; static inline void get_kernel_function_info(kernel_function_info *kernel_info, const void *function) { kernel_info->max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); } static inline kernel_function_info get_kernel_function_info(const void *function) { kernel_function_info kernel_info; kernel_info.max_work_group_size = dpct::dev_mgr::instance() .current_device() .get_info<sycl::info::device::max_work_group_size>(); return kernel_info; } namespace detail { #if defined(__has_include) && __has_include(<filesystem>) namespace fs = std::filesystem; #else namespace fs = std::experimental::filesystem; #endif /// Write data to temporary file and return absolute path to temporary file. /// Temporary file is created in a temporary directory both of which have random /// names with only the user having access permissions. Only one temporary file /// will be created in the temporary directory. static inline fs::path write_data_to_file(char const *const data, size_t size) { std::error_code ec; if (sizeof(size_t) >= sizeof(std::streamsize) && size > (std::numeric_limits<std::streamsize>::max)()) throw std::runtime_error("data file too large"); // random number generator std::random_device dev; std::mt19937 prng(dev()); std::uniform_int_distribution<uint64_t> rand(0); // find temporary directory auto tmp_dir = fs::temp_directory_path(ec); if (ec) throw std::runtime_error("could not find temporary directory"); // create private directory std::stringstream directory; fs::path directory_path; constexpr int max_attempts = 5; int i; for (i = 0; i < max_attempts; i++) { directory << std::hex << rand(prng); directory_path = tmp_dir / directory.str(); if (fs::create_directory(directory_path)) { break; } } if (i == max_attempts) throw std::runtime_error("could not create directory"); // only allow owner permissions to private directory fs::permissions(directory_path, fs::perms::owner_all, ec); if (ec) throw std::runtime_error("could not set directory permissions"); // random filename in private directory std::stringstream filename; filename << std::hex << rand(prng); #ifdef _WIN32 auto filepath = directory_path / (filename.str() + ".dll"); #else auto filepath = directory_path / filename.str(); #endif // write data to temporary file auto outfile = std::ofstream(filepath, std::ios::out | std::ios::binary); if (outfile) { // only allow program to write file fs::permissions(filepath, fs::perms::owner_write, ec); if (ec) throw std::runtime_error("could not set permissions"); outfile.write(data, size); if (!outfile.good()) throw std::runtime_error("could not write data"); outfile.close(); // only allow program to read/execute file fs::permissions(filepath, fs::perms::owner_read | fs::perms::owner_exec, ec); if (ec) throw std::runtime_error("could not set permissions"); } else throw std::runtime_error("could not write data"); // check temporary file contents auto infile = std::ifstream(filepath, std::ios::in | std::ios::binary); if (infile) { bool mismatch = false; size_t cnt = 0; while (1) { char c; infile.get(c); if (infile.eof()) break; if (c != data[cnt++]) mismatch = true; } if (cnt != size || mismatch) throw std::runtime_error("file contents not written correctly"); } else throw std::runtime_error("could not validate file"); if (!filepath.is_absolute()) throw std::runtime_error("temporary filepath is not absolute"); return filepath; } static inline uint16_t extract16(unsigned char const *const ptr) { uint16_t ret = 0; ret |= static_cast<uint16_t>(ptr[0]) << 0; ret |= static_cast<uint16_t>(ptr[1]) << 8; return (ret); } static inline uint32_t extract32(unsigned char const *const ptr) { uint32_t ret = 0; ret |= static_cast<uint32_t>(ptr[0]) << 0; ret |= static_cast<uint32_t>(ptr[1]) << 8; ret |= static_cast<uint32_t>(ptr[2]) << 16; ret |= static_cast<uint32_t>(ptr[3]) << 24; return (ret); } static inline uint64_t extract64(unsigned char const *const ptr) { uint64_t ret = 0; ret |= static_cast<uint64_t>(ptr[0]) << 0; ret |= static_cast<uint64_t>(ptr[1]) << 8; ret |= static_cast<uint64_t>(ptr[2]) << 16; ret |= static_cast<uint64_t>(ptr[3]) << 24; ret |= static_cast<uint64_t>(ptr[4]) << 32; ret |= static_cast<uint64_t>(ptr[5]) << 40; ret |= static_cast<uint64_t>(ptr[6]) << 48; ret |= static_cast<uint64_t>(ptr[7]) << 56; return (ret); } static inline uint64_t get_lib_size(char const *const blob) { #ifdef _WIN32 /////////////////////////////////////////////////////////////////////// // Analyze DOS stub unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); if (ublob[0] != 0x4d || ublob[1] != 0x5a) { throw std::runtime_error("Blob is not a Windows DLL."); } uint32_t pe_header_offset = extract32(ublob + 0x3c); /////////////////////////////////////////////////////////////////////// // Ananlyze PE-header unsigned char const *const pe_header = ublob + pe_header_offset; // signature uint32_t pe_signature = extract32(pe_header + 0); if (pe_signature != 0x00004550) { throw std::runtime_error("PE-header signature is not 0x00004550"); } // machine uint16_t machine = extract16(pe_header + 4); if (machine != 0x8664) { throw std::runtime_error("Only DLLs for x64 supported"); } // number of sections uint16_t number_of_sections = extract16(pe_header + 6); // sizeof optional header uint16_t sizeof_optional_header = extract16(pe_header + 20); // magic uint16_t magic = extract16(pe_header + 24); if (magic != 0x10b && magic != 0x20b) { throw std::runtime_error("MAGIC is not 0x010b or 0x020b"); } /////////////////////////////////////////////////////////////////////// // Analyze tail of optional header constexpr int coff_header_size = 24; unsigned char const *const tail_of_optional_header = pe_header + coff_header_size + sizeof_optional_header; if (extract64(tail_of_optional_header - 8) != 0) { throw std::runtime_error("Optional header not zero-padded"); } /////////////////////////////////////////////////////////////////////// // Analyze last section header constexpr int section_header_size = 40; unsigned char const *const last_section_header = tail_of_optional_header + section_header_size * (number_of_sections - 1); uint32_t sizeof_raw_data = extract32(last_section_header + 16); uint32_t pointer_to_raw_data = extract32(last_section_header + 20); return sizeof_raw_data + pointer_to_raw_data; #else if (blob[0] != 0x7F || blob[1] != 'E' || blob[2] != 'L' || blob[3] != 'F') throw std::runtime_error("Blob is not in ELF format"); if (blob[4] != 0x02) throw std::runtime_error("Only 64-bit headers are supported"); if (blob[5] != 0x01) throw std::runtime_error("Only little-endian headers are supported"); unsigned char const *const ublob = reinterpret_cast<unsigned char const *const>(blob); uint64_t e_shoff = extract64(ublob + 0x28); uint16_t e_shentsize = extract16(ublob + 0x3A); uint16_t e_shnum = extract16(ublob + 0x3C); return e_shoff + (e_shentsize * e_shnum); #endif } #ifdef _WIN32 class path_lib_record { public: void operator=(const path_lib_record &) = delete; ~path_lib_record() { for (auto entry : lib_to_path) { FreeLibrary(static_cast<HMODULE>(entry.first)); fs::permissions(entry.second, fs::perms::owner_all); fs::remove_all(entry.second.remove_filename()); } } static void record_lib_path(fs::path path, void *library) { lib_to_path[library] = path; } static void remove_lib(void *library) { auto path = lib_to_path[library]; std::error_code ec; FreeLibrary(static_cast<HMODULE>(library)); fs::permissions(path, fs::perms::owner_all); if (fs::remove_all(path.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); lib_to_path.erase(library); } private: static inline std::unordered_map<void *, fs::path> lib_to_path; }; #endif } // namespace detail class kernel_library { public: kernel_library() : ptr{nullptr} {} kernel_library(void *ptr) : ptr{ptr} {} operator void *() const { return ptr; } private: void *ptr; #ifdef _WIN32 static inline detail::path_lib_record single_instance_to_trigger_destructor; #endif }; namespace detail { static inline kernel_library load_dl_from_data(char const *const data, size_t size) { fs::path filename = write_data_to_file(data, size); #ifdef _WIN32 void *so = LoadLibraryW(filename.wstring().c_str()); #else void *so = dlopen(filename.c_str(), RTLD_LAZY); #endif if (so == nullptr) throw std::runtime_error("Failed to load kernel library"); #ifdef _WIN32 detail::path_lib_record::record_lib_path(filename, so); #else std::error_code ec; // Windows DLL cannot be deleted while in use if (fs::remove_all(filename.remove_filename(), ec) != 2 || ec) // one directory and one temporary file should have been deleted throw std::runtime_error("Directory delete failed"); #endif return so; } } // namespace detail /// Load kernel library and return a handle to use the library. /// \param [in] name The name of the library. static inline kernel_library load_kernel_library(const std::string &name) { std::ifstream ifs; ifs.open(name, std::ios::in | std::ios::binary); std::stringstream buffer; buffer << ifs.rdbuf(); const std::string buffer_string = buffer.str(); return detail::load_dl_from_data(buffer_string.c_str(), buffer_string.size()); } /// Load kernel library whose image is alreay in memory and return a handle to /// use the library. /// \param [in] image A pointer to the image in memory. static inline kernel_library load_kernel_library_mem(char const *const image) { const size_t size = detail::get_lib_size(image); return detail::load_dl_from_data(image, size); } /// Unload kernel library. /// \param [in,out] library Handle to the library to be closed. static inline void unload_kernel_library(const kernel_library &library) { #ifdef _WIN32 detail::path_lib_record::remove_lib(library); #else dlclose(library); #endif } class kernel_function { public: kernel_function() : ptr{nullptr} {} kernel_function(dpct::kernel_functor ptr) : ptr{ptr} {} operator void *() const { return ((void *)ptr); } void operator()(sycl::queue &q, const sycl::nd_range<3> &range, unsigned int a, void **args, void **extra) { ptr(q, range, a, args, extra); } private: dpct::kernel_functor ptr; }; /// Find kernel function in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the kernel function. static inline dpct::kernel_function get_kernel_function(kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( GetProcAddress(static_cast<HMODULE>(static_cast<void *>(library)), (name + std::string("_wrapper")).c_str())); #else dpct::kernel_functor fn = reinterpret_cast<dpct::kernel_functor>( dlsym(library, (name + std::string("_wrapper")).c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get function"); return fn; } /// Invoke a kernel function. /// \param [in] function kernel function. /// \param [in] queue SYCL queue used to execute kernel /// \param [in] groupRange SYCL group range /// \param [in] localRange SYCL local range /// \param [in] localMemSize The size of local memory required by the kernel /// function. /// \param [in] kernelParams Array of pointers to kernel arguments. /// \param [in] extra Extra arguments. static inline void invoke_kernel_function(dpct::kernel_function &function, sycl::queue &queue, sycl::range<3> groupRange, sycl::range<3> localRange, unsigned int localMemSize, void **kernelParams, void **extra) { function(queue, sycl::nd_range<3>(groupRange * localRange, localRange), localMemSize, kernelParams, extra); } /// Find image wrapper in a kernel library and return its address. /// \param [in] library Handle to the kernel library. /// \param [in] name Name of the target image wrapper. static inline dpct::image_wrapper_base_p get_image_wrapper(dpct::kernel_library &library, const std::string &name) { #ifdef _WIN32 dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>(GetProcAddress( static_cast<HMODULE>(static_cast<void *>(library)), name.c_str())); #else dpct::image_wrapper_base_p fn = reinterpret_cast<dpct::image_wrapper_base_p>( dlsym(library, name.c_str())); #endif if (fn == nullptr) throw std::runtime_error("Failed to get image"); return fn; } } // namespace dpct #endif // __DPCT_KERNEL_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpct.hpp
//==---- dpct.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_HPP__ #define __DPCT_HPP__ #include <sycl/sycl.hpp> #include <iostream> #include <limits.h> #include <math.h> template <class... Args> class dpct_kernel_name; template <int Arg> class dpct_kernel_scalar; #include "atomic.hpp" #include "device.hpp" #include "image.hpp" #include "kernel.hpp" #include "math.hpp" #include "memory.hpp" #include "util.hpp" #if defined(_MSC_VER) #define __dpct_align__(n) __declspec(align(n)) #define __dpct_inline__ __forceinline #else #define __dpct_align__(n) __attribute__((aligned(n))) #define __dpct_inline__ __inline__ __attribute__((always_inline)) #endif #if defined(_MSC_VER) #define __dpct_noinline__ __declspec(noinline) #else #define __dpct_noinline__ __attribute__((noinline)) #endif #define DPCT_COMPATIBILITY_TEMP (600) namespace dpct{ enum error_code { success = 0, default_error = 999 }; } #define DPCT_CHECK_ERROR(expr) \ [&]() { \ try { \ expr; \ return dpct::success; \ } catch (std::exception const &e) { \ std::cerr << e.what() << std::endl; \ return dpct::default_error; \ } \ }() #define DPCT_PI_F (3.14159274101257f) #define DPCT_PI (3.141592653589793115998) #endif // __DPCT_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dnnl_utils.hpp
//==---- dnnl_utils.hpp ---------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DNNL_UTILS_HPP__ #define __DPCT_DNNL_UTILS_HPP__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <oneapi/dpl/numeric> #include <oneapi/mkl.hpp> #include <oneapi/mkl/rng/device.hpp> #include <sycl/sycl.hpp> #include <oneapi/dnnl/dnnl.hpp> #include <oneapi/dnnl/dnnl_sycl.hpp> #include <unordered_map> #include <algorithm> #include <list> #include "memory.hpp" #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace dnnl { /// Get concatenated library version as an integer. static inline size_t get_version() { const ::dnnl::version_t *ver = ::dnnl::version(); return ver->major * 1000 + ver->minor * 100 + ver->patch; } class engine_ext; typedef oneapi::mkl::rng::philox4x32x10 rng_engine_t; /// An enum class representing memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class memory_format_tag { nchw, nhwc, nchw_blocked }; /// An enum class representing RNN data memory layout. Used by /// memory_desc_ext to create a memory with pre-defined layout. enum class rnn_memory_format_tag { tnc, ntc }; /// A class holding the description of an N-dimensions memory. class memory_desc_ext { ::dnnl::memory::desc _desc; public: /// Convert dpct::library_data_t to dnnl::memory::data_type. static ::dnnl::memory::data_type to_dnnl_data_type(dpct::library_data_t dt); /// Convert dnnl::memory::data_type to dpct::library_data_t. static dpct::library_data_t to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size); /// Convert dpct::dnnl::memory_format_tag to dnnl::memory::format_tag. static ::dnnl::memory::format_tag to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag); memory_desc_ext() = default; memory_desc_ext(::dnnl::memory::desc &desc) : _desc(desc) {} memory_desc_ext(::dnnl::memory::desc &&desc) : _desc(std::move(desc)) {} /// Setting a 4D memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. void set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w); /// Setting a 3D RNN data memory with given parameters. /// \param [in] tag RNN data format tag. /// \param [in] dt Data type. /// \param [in] t Number of sequence length. /// \param [in] n Number of batch. /// \param [in] c Height of input channel. void set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c); /// Setting a 4D memory with given parameters. /// \param [in] dt Data type. /// \param [in] n Number of images. /// \param [in] c Number of channels. /// \param [in] h Height of images. /// \param [in] w Width of images. /// \param [in] n_stride Stride between two continuous images. /// \param [in] c_stride Stride between two continuous channels. /// \param [in] h_stride Stride between two continuous rows. /// \param [in] w_stride Stride between two continuous columns. void set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride); /// Setting a ND memory with given parameters. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. \param [in] strides Array of dimension ndims that /// contain the stride of each memory dimension. void set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]); /// Setting a ND memory with given parameters. /// \param [in] tag Format tag. /// \param [in] dt Data type. /// \param [in] ndims Dimension of the memory. /// \param [in] dims Array of dimension ndims that contain the size of each /// memory dimension. void set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]); /// Getting a ::dnnl::memory::desc from a memory_desc_ext. /// \returns The ::dnnl::memory::desc. const ::dnnl::memory::desc &get_desc() const { return _desc; } /// Setting holding desc with given dnnl memory descriptor. void set_desc(::dnnl::memory::desc desc) { _desc = desc; } /// Getting a size of a memory_desc_ext in bytes. /// \returns The size. size_t get_size() const { return _desc.get_size(); } /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. /// \param [out] n_stride Stride between two continuous images. /// \param [out] c_stride Stride between two continuous channels. /// \param [out] h_stride Stride between two continuous rows. /// \param [out] w_stride Stride between two continuous columns. void get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const; /// Getting parameters from a 4D memory. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] n Number of images. /// \param [out] c Number of channels. /// \param [out] h Height of images. /// \param [out] w Width of images. void get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const; /// Getting parameters from a 3D RNN data memory. /// \param [out] dt Data type. /// \param [out] tag RNN data format tag. /// \param [out] t Number of sequence length. /// \param [out] n Number of batch. /// \param [out] c Height of input channel. void get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. /// \param [out] strides Array of dimension requested_ndims that contain the /// stride of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const; /// Getting parameters from a ND memory. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given memory descriptor. /// \param [out] dt Data type. /// \param [out] tag Format tag. /// \param [out] ndims Dimension of the memory. /// \param [out] dims Array of dimension requested_ndims that contain the /// size of each memory dimension. void get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const; /// Getting dims from a ND memory. /// \return The dims. std::vector<int64_t> get_dims() const { return _desc.get_dims(); } /// Getting strides from a ND memory. /// \return The strides. std::vector<int64_t> get_strides() const { return _desc.get_strides(); } /// Getting element num from a ND memory. /// \return The element number. size_t get_element_num() const { auto dims = _desc.get_dims(); if (dims.empty()) { return 0; } size_t result = 1; for (auto &dim : dims) { result *= dim; } return result; } operator bool() const { return bool(_desc); } memory_desc_ext &operator=(std::nullptr_t) { _desc.reset(nullptr); return *this; } }; /// A class holding description for an activation operation. class activation_desc { ::dnnl::algorithm _alg; float _alpha; float _beta; public: /// Setting an activation descriptor with given parameters. /// \param [in] alg Activation algorithm. /// \param [in] alpha Value of alpha parameter. void set(::dnnl::algorithm alg, float alpha) { _alg = alg; if(alg == ::dnnl::algorithm::eltwise_clip) { _alpha = 0; _beta = alpha; } else { _alpha = alpha; } } /// Getting parameters form an activation descriptor. /// \param [out] alg Activation algorithm. /// \param [out] alpha Value of alpha parameter. void get(::dnnl::algorithm *alg, float *alpha) const { *alg = _alg; if(_alg == ::dnnl::algorithm::eltwise_clip) { *alpha = _beta; } else { *alpha = _alpha; } } /// Setting the alpha parameter of an activation descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of an activation descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the algorithm parameter of an activation descriptor. /// \param [in] alg Activation algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Getting the alpha parameter from an activation descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from an activation descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the algorithm parameter from an activation descriptor. /// \param [out] alg Activation algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } }; /// A class holding description for a local response normalization operation. class lrn_desc { unsigned int _local_size; float _alpha; float _beta; float _k; public: /// Setting a local response normalization descriptor with given parameters. /// \param [in] local_size Value of local_size parameter. /// \param [in] alpha Value of alpha parameter. /// \param [in] beta Value of beta parameter. /// \param [in] k Value of k parameter. void set(unsigned int local_size, float alpha, float beta, float k) { _local_size = local_size; _alpha = alpha; _beta = beta; _k = k; } /// Getting parameters form a local response normalization descriptor. /// \param [out] local_size Value of local_size parameter. /// \param [out] alpha Value of alpha parameter. /// \param [out] beta Value of beta parameter. /// \param [out] k Value of k parameter. void get(unsigned int *local_size, float *alpha, float *beta, float *k) const { *local_size = _local_size; *alpha = _alpha; *beta = _beta; *k = _k; } /// Setting the local size parameter of a local response normalization /// descriptor. /// \param [in] local_size Value of local_size parameter. void set_local_size(unsigned int local_size) { _local_size = local_size; } /// Setting the alpha parameter of a local response normalization descriptor. /// \param [in] alpha Value of alpha parameter. void set_alpha(float alpha) { _alpha = alpha; } /// Setting the beta parameter of a local response normalization descriptor. /// \param [in] beta Value of beta parameter. void set_beta(float beta) { _beta = beta; } /// Setting the k parameter of a local response normalization descriptor. /// \param [in] k Value of k parameter. void set_k(float k) { _k = k; } /// Getting the local size parameter from a local response normalization /// descriptor. /// \param [out] local_size Value of local_size parameter. unsigned int get_local_size() const { return _local_size; } /// Getting the alpha parameter from a local response normalization /// descriptor. /// \param [out] alpha Value of alpha parameter. float get_alpha() const { return _alpha; } /// Getting the beta parameter from a local response normalization descriptor. /// \param [out] beta Value of beta parameter. float get_beta() const { return _beta; } /// Getting the k parameter from a local response normalization descriptor. /// \param [out] k Value of k parameter. float get_k() const { return _k; } }; /// An enum class representing softmax algorithm. enum class softmax_algorithm { normal, log }; /// An enum class representing softmax mode. enum class softmax_mode { instance, channel }; /// A class holding description for a pooling operation. class pooling_desc { ::dnnl::algorithm _alg; std::vector<int64_t> _stride; std::vector<int64_t> _kernel; std::vector<int64_t> _padding; public: /// Setting a 2D pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] kernel_h Value of height of kernel. /// \param [in] kernel_w Value of width of kernel. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. void set(::dnnl::algorithm alg, int kernel_h, int kernel_w, int padding_h, int padding_w, int stride_h, int stride_w) { _alg = alg; _stride = {stride_h, stride_w}; _kernel = {kernel_h, kernel_w}; _padding = {padding_h, padding_w}; } /// Setting a ND pooling descriptor with given parameters. /// \param [in] alg Pooling algorithm. /// \param [in] ndims Dimension of the pooling operation. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [in] padding Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set(::dnnl::algorithm alg, int ndims, int kernel[], int padding[], int stride[]) { _alg = alg; _stride = std::vector<int64_t>(stride, stride + ndims); _kernel = std::vector<int64_t>(kernel, kernel + ndims); _padding = std::vector<int64_t>(padding, padding + ndims); } /// Getting parameters from a 2D pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] kernel_h Value of height of kernel. /// \param [out] kernel_w Value of width of kernel. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. void get(::dnnl::algorithm *alg, int *kernel_h, int *kernel_w, int *padding_h, int *padding_w, int *stride_h, int *stride_w) const { *alg = _alg; *kernel_h = _kernel[0]; *kernel_w = _kernel[1]; *padding_h = _padding[0]; *padding_w = _padding[1]; *stride_h = _stride[0]; *stride_w = _stride[1]; } /// Getting parameters from a ND pooling descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given pooling descriptor. /// \param [out] alg Pooling algorithm. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] kernel Array of dimension ndims containing the kernel size of /// each dimension. /// \param [out] padding Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] stride Array of dimension ndims containing the stride size of /// each dimension. void get(int requested_ndims, ::dnnl::algorithm *alg, int *ndims, int kernel[], int padding[], int stride[]) const { *alg = _alg; *ndims = _stride.size(); for (int i = 0; i < requested_ndims; i++) { kernel[i] = _kernel[i]; padding[i] = _padding[i]; stride[i] = _stride[i]; } } /// Setting the algorithm parameter of a pooling descriptor. /// \param [in] alg Pooling algorithm. void set_algorithm(::dnnl::algorithm alg) { _alg = alg; } /// Setting the stride parameter of a pooling descriptor. /// \param [in] stride Array of dimension ndims containing the stride size of /// each dimension. void set_stride(const std::vector<int64_t> &stride) { _stride = stride; } /// Setting the kernel parameter of a pooling descriptor. /// \param [in] kernel Array of dimension ndims containing the kernel size of /// each dimension. void set_kernel(const std::vector<int64_t> &kernel) { _kernel = kernel; } /// Setting the padding parameter of a pooling descriptor. /// \param [in] padding Array of dimension ndims containing the padding size /// of each dimension. void set_padding(const std::vector<int64_t> &padding) { _padding = padding; } /// Getting the algorithm parameter from a pooling descriptor. /// \param [out] alg Pooling algorithm. ::dnnl::algorithm get_algorithm() const { return _alg; } /// Getting the stride parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _stride; } /// Getting the kernel parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the kernel size of each /// dimension. const std::vector<int64_t> &get_kernel() const { return _kernel; } /// Getting the padding parameter from a pooling descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _padding; } /// Getting the output dimensions of a memory after 2D pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); *out_n = dims[0]; *out_c = dims[1]; *out_h = 1 + (dims[2] + 2 * _padding[0] - _kernel[0]) / _stride[0]; *out_w = 1 + (dims[3] + 2 * _padding[1] - _kernel[1]) / _stride[1]; } /// Getting the output dimensions of a memory after ND pooling has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _padding[i - 2] - _kernel[i - 2]) / _stride[i - 2]; } } }; /// An enum class representing reduction operations. enum class reduction_op { max, min, sum, mul, mean, amax, mul_no_zeros, norm1, norm2 }; /// An enum class representing batch normalization mode. enum class batch_normalization_mode { per_activation, spatial }; /// An enum class representing batch normalization operations. enum class batch_normalization_ops { none, activation, add_activation }; /// An enum class representing binary operations. enum class binary_op { add, sub, mul, div, min, max, sqrt, neg }; /// An struct representing convolution algorithm infomation. struct convolution_algorithm_info { ::dnnl::algorithm algo = ::dnnl::algorithm::convolution_auto; int status = 0; }; /// A class holding description for a convolution operation. class convolution_desc { std::vector<int64_t> _strides; std::vector<int64_t> _dilates; std::vector<int64_t> _paddings; int _group_count = 1; ::dnnl::fpmath_mode _math_mode = ::dnnl::fpmath_mode::strict; public: /// Setting a group count to be used in the convolution. /// \param [in] group_count Value of group count. void set_group_count(int group_count) { _group_count = group_count; } /// Getting a group count specified in the given convolution descriptor. /// \returns Value of group count. int get_group_count() { return _group_count; } /// Setting floating point math mode to be used in the convolution. /// \param [in] math_mode Value of math_mode. void set_math_mode(::dnnl::fpmath_mode math_mode) { _math_mode = math_mode; } /// Getting floating point math mode specified in the given convolution descriptor. /// \returns Value of math mode. ::dnnl::fpmath_mode get_math_mode() { return _math_mode; } /// Setting a 2D convolution descriptor with given parameters. /// \param [in] padding_h Value of height of padding. /// \param [in] padding_w Value of width of padding. /// \param [in] stride_h Value of height of stride. /// \param [in] stride_w Value of width of stride. /// \param [in] dilate_h Value of height of dilate. /// \param [in] dilate_w Value of width of dilate. void set(int padding_h, int padding_w, int stride_h, int stride_w, int dilate_h, int dilate_w) { _strides = {stride_h, stride_w}; _dilates = {dilate_h - 1, dilate_w - 1}; _paddings = {padding_h, padding_w}; } /// Setting a ND convolution descriptor with given parameters. /// \param [in] ndims Dimension of the convolution operation. /// \param [in] paddings Array of dimension ndims containing the padding size of /// each dimension. /// \param [in] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [in] dilates Array of dimension ndims containing the kernel size of /// each dimension. void set(int ndims, int paddings[], int strides[], int dilates[]) { _strides = std::vector<int64_t>(strides, strides + ndims); _paddings = std::vector<int64_t>(paddings, paddings + ndims); _dilates = std::vector<int64_t>(dilates, dilates + ndims); for (auto &dilate : _dilates) { dilate--; } } /// Getting parameters from a 2D convolution descriptor. /// \param [out] padding_h Value of height of padding. /// \param [out] padding_w Value of width of padding. /// \param [out] stride_h Value of height of stride. /// \param [out] stride_w Value of width of stride. /// \param [out] dilate_h Value of height of dilate. /// \param [out] dilate_w Value of width of dilate. void get(int *padding_h, int *padding_w, int *stride_h, int *stride_w, int *dilate_h, int *dilate_w) const { *dilate_h = _dilates[0]; *dilate_w = _dilates[1]; *padding_h = _paddings[0]; *padding_w = _paddings[1]; *stride_h = _strides[0]; *stride_w = _strides[1]; } /// Getting parameters from a ND convolution descriptor. /// \param [in] requested_ndims Requested number of dimensions to get from a /// given convolution descriptor. /// \param [out] ndims Dimension of the pooling operation. /// \param [out] paddings Array of dimension ndims containing the padding size /// of each dimension. /// \param [out] strides Array of dimension ndims containing the stride size of /// each dimension. /// \param [out] dilates Array of dimension ndims containing the dilate size of /// each dimension. void get(int requested_ndims, int *ndims, int paddings[], int strides[], int dilates[]) const { *ndims = _strides.size(); for (int i = 0; i < requested_ndims; i++) { dilates[i] = _dilates[i]; paddings[i] = _paddings[i]; strides[i] = _strides[i]; } } /// Getting the stride parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the stride size of each /// dimension. const std::vector<int64_t> &get_stride() const { return _strides; } /// Getting the kernel parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the dilate size of each /// dimension. const std::vector<int64_t> &get_dilate() const { return _dilates; } /// Getting the padding parameter from a convolution descriptor. /// \returns Array of dimension ndims containing the padding size of each /// dimension. const std::vector<int64_t> &get_padding() const { return _paddings; } /// Getting the output dimensions of a memory after 2D convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] out_n Number of images. /// \param [out] out_c Number of channels. /// \param [out] out_h Height of images. /// \param [out] out_w Width of images. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int *out_n, int *out_c, int *out_h, int *out_w) const { auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); *out_n = dims[0]; *out_c = weight_dims[0]; *out_h = 1 + (dims[2] + 2 * _paddings[0] - (1 + (_dilates[0] * (weight_dims[2] - 1)))) / _strides[0]; *out_w = 1 + (dims[3] + 2 * _paddings[1] - (1 + (_dilates[1] * (weight_dims[3] - 1)))) / _strides[1]; } /// Getting the output dimensions of a memory after ND convolution has been /// applied. /// \param [in] desc Input memory descriptor. /// \param [in] weight_desc Input weight memory descriptor. /// \param [out] ndims Dimension of the memory. /// \param [out] out_dims Array of dimension requested_ndims that contain /// the size of each memory dimension. void get_forward_output_dim(const memory_desc_ext &desc, const memory_desc_ext &weight_desc, int ndims, int out_dims[]) const { assert(ndims >= 4 && "ndims is at least 4."); auto dims = desc.get_dims(); auto weight_dims = weight_desc.get_dims(); out_dims[0] = dims[0]; out_dims[1] = weight_dims[1]; for (int i = 2; i < ndims; i++) { out_dims[i] = 1 + (dims[i] + 2 * _paddings[i - 2] - (1 + (_dilates[i - 2] * (weight_dims[i] - 1)))) / _strides[i - 2]; } } convolution_desc &operator=(std::nullptr_t) { return *this = convolution_desc(); } operator bool() const { return !(_strides.size() == 0 && _dilates.size() == 0 && _paddings.size() == 0); } }; /// An enum class representing rnn mode. enum class rnn_mode { vanilla_relu, vanilla_tanh, lstm, gru }; /// An enum class representing rnn bias mode. enum class rnn_bias_mode { none, single }; /// An enum class representing rnn direction. enum class rnn_direction {unidirectional, bidirectional}; /// A class holding description for a RNN operation. class rnn_desc { rnn_mode _mode; rnn_bias_mode _bias_mode; rnn_direction _direction; dpct::library_data_t _dt; int _input_size; int _hidden_size; int _projection_size; int _layer_size; public: void set(rnn_mode mode, rnn_bias_mode bias_mode, rnn_direction direction, dpct::library_data_t dt, int input_size, int hidden_size, int projection_size, int layer_size) { _mode = mode; _bias_mode = bias_mode; _direction = direction; _input_size = input_size; _hidden_size = hidden_size; _projection_size = projection_size; _layer_size = layer_size; _dt = dt; } void get(rnn_mode *mode, rnn_bias_mode *bias_mode, rnn_direction *direction, dpct::library_data_t *dt, int *input_size, int *hidden_size, int *projection_size, int *layer_size) const { *mode = _mode; *bias_mode = _bias_mode; *direction = _direction; *input_size = _input_size; *hidden_size = _hidden_size; *projection_size = _projection_size; *layer_size = _layer_size; *dt = _dt; } }; /// A class holding description for a Dropout operation. class dropout_desc { struct dropout_desc_imp { float _p = 0.5f; unsigned long long _seed = 1; void *_state = nullptr; std::vector<std::uint8_t> _host_state; rng_engine_t _rng_engine; dropout_desc_imp() : _rng_engine(dpct::get_default_queue(), 1) {} }; std::shared_ptr<dropout_desc_imp> _imp; void generate(sycl::queue *q, std::int64_t required_state_size, std::int64_t num, void *buffer) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::event e_gen = oneapi::mkl::rng::generate( oneapi::mkl::rng::bernoulli<std::int32_t>(1.f - _imp->_p), _imp->_rng_engine, num, (std::int32_t *)buffer); sycl::event e_save = q->submit([&](sycl::handler &cgh) { cgh.depends_on(e_gen); cgh.host_task([=] { oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); }); }); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size, e_save); #endif } public: operator bool() const { return bool(_imp); } dropout_desc &operator=(std::nullptr_t) { _imp.reset(); return *this; } /// Initializing a dropout descriptor. void init(){ _imp = std::make_shared<dropout_desc_imp>(); } /// Setting a dropout descriptor with given parameters. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); /// Getting parameters from a dropout descriptor. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void get(float *p, void **states, unsigned long long *seed) const noexcept { *seed = _imp->_seed; *states = _imp->_state; *p = _imp->_p; } /// Getting the probability of value set to zero. /// \returns Probability. float get_probability() const noexcept { return _imp->_p; } /// Restoreing a dropout descriptor from stored state. /// \param [in] engine Engine of the dropout operation. /// \param [in] p Probability of value set to zero. /// \param [in] state Memory that store random generator state. /// \param [in] state_size Required size to store random generator state. /// \param [in] seed Seed to initialize conditions of the generator state. void restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed); friend class engine_ext; }; namespace detail { typedef std::string primitive_cache_key_type; typedef std::list<primitive_cache_key_type> usage_list_type; typedef struct { ::dnnl::primitive *primitive; usage_list_type::iterator usage_it; std::function<void(::dnnl::primitive *)> destructor; sycl::event e; } primitive_cache_value_type; typedef std::unordered_map<primitive_cache_key_type, primitive_cache_value_type> cache_map_type; // The primitive cache uses LRU replacement policy, and the default cache // capacity is 1024. class primitive_cache { int _capacity = 1024; usage_list_type usage; cache_map_type cache_map; void touch(cache_map_type::iterator it, sycl::event e = {}, bool update_event = false) { if (it->second.usage_it != usage.begin()) { const primitive_cache_key_type &key = it->first; usage.erase(it->second.usage_it); usage.push_front(key); it->second.usage_it = usage.begin(); } if (update_event) { it->second.e = e; } } void async_destruct_primitive(const primitive_cache_value_type &value) { dpct::get_current_device().default_queue().submit([&](sycl::handler &cgh) { cgh.depends_on(value.e); cgh.host_task([=] { value.destructor(value.primitive); }); }); } public: ::dnnl::primitive *get(const primitive_cache_key_type &key) { auto it = cache_map.find(key); if (it == cache_map.end()) { return nullptr; } touch(it); return it->second.primitive; } void put(const primitive_cache_key_type &key, ::dnnl::primitive *value, std::function<void(::dnnl::primitive *)> destructor, sycl::event e) { auto it = cache_map.find(key); if (it != cache_map.end()) { touch(it, e, true); } else { if (cache_map.size() == _capacity) { auto last_primitive = cache_map.find(usage.back()); async_destruct_primitive(last_primitive->second); cache_map.erase(usage.back()); usage.pop_back(); } usage.push_front(key); cache_map[key] = {value, usage.begin(), destructor, e}; } } ~primitive_cache() { for (auto &v : cache_map) { async_destruct_primitive(v.second); } } }; } // namespace detail /// A class holding the oneDNN engine. class engine_ext { struct output_argument_info { float _alpha; float _beta; int _name; memory_desc_ext _desc; void *_data; output_argument_info(float alpha, float beta, int name, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(name), _desc(desc), _data(data) {} output_argument_info(float alpha, float beta, memory_desc_ext desc, void *data) : _alpha(alpha), _beta(beta), _name(0), _desc(desc), _data(data) {} }; ::dnnl::engine _eng; ::dnnl::stream _s; sycl::queue *_q = nullptr; std::map<void *, ::dnnl::memory> workspace_map; std::int64_t _random_engine_state_size = -1; detail::primitive_cache _primitive_cache; ::dnnl::memory &get_workspace(void *key) { return workspace_map[key]; } void insert_workspace(void *key, ::dnnl::memory workspace) { workspace_map[key] = workspace; } const ::dnnl::stream &get_stream() const { return _s; } const ::dnnl::engine &get_engine() const { return _eng; } void *allocate(const memory_desc_ext &desc, int count = 1) const; ::dnnl::memory::desc compress_spatial_dimensions_to_channel(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode); sycl::event batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var); sycl::event batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var); ::dnnl::memory::desc transfer_memory_desc_to_channel_major_format(const ::dnnl::memory::desc &desc); ::dnnl::memory::desc bn_reorder_memory_to_channel_major_format(bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches); ::dnnl::memory::desc transfer_memory_desc_to_format_tag_any(const ::dnnl::memory::desc &desc){ return ::dnnl::memory::desc(desc.get_dims(), desc.get_data_type(), ::dnnl::memory::format_tag::any); } void allocate_and_reorder_memory_to_optimal(::dnnl::memory::desc &from_desc, void *&from, ::dnnl::memory::desc &to_desc, void *&to, std::vector<void *> &caches) { if (from_desc != to_desc) { to = allocate(to_desc); caches.push_back(to); async_reorder(1.f, from_desc, from, 0.f, to_desc, to); } } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive(args_type &&...args); template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> create_primitive_with_pd(const typename primitive_type::primitive_desc &pd); template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc create_primitive_desc(args_type &&...args); template <typename primitive_desc_type> std::string generate_cache_key(const primitive_desc_type &pd); void serialize_dims(std::stringstream &ss, const std::vector<int64_t> &dims) { ss.write((char *)dims.data(), dims.size() * sizeof(int64_t)); }; void serialize_mem_desc(std::stringstream &ss, const ::dnnl::memory::desc &desc) { if (desc.is_zero()) { return; } auto format_kind = desc.get_format_kind(); ss << desc.get_ndims() << (std::uint8_t)desc.get_data_type() << (std::uint8_t)format_kind; serialize_dims(ss, desc.get_dims()); serialize_dims(ss, desc.get_strides()); if (format_kind == ::dnnl::memory::format_kind::blocked) { ss << desc.get_inner_nblks(); serialize_dims(ss, desc.get_inner_blks()); serialize_dims(ss, desc.get_inner_idxs()); } }; sycl::event execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size = nullptr, size_t *workspace_size = nullptr, size_t *scratchpad_size = nullptr); sycl::event rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query); sycl::event execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num); void async_free(sycl::queue *q, sycl::event e, std::unordered_map<int, ::dnnl::memory> *args, std::vector<void *> device_ptrs = {}) { q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { if (args) { delete args; } for (auto ptr : device_ptrs) { if (ptr) { sycl::free(ptr, *_q); } } }); }); }; bool scale_parameter_preprocess(const std::vector<output_argument_info> &args); template <typename primitive_type> sycl::event execute_primitive(const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &extra_args = {}, const std::vector<void *> &device_ptrs = {}); template <typename T> sycl::event fill_with_type(sycl::queue *q, void *src, const void *value, size_t size_with_byte) { return q->fill<T>(static_cast<T *>(src), *static_cast<const T *>(value), size_with_byte / sizeof(T)); } template <typename T> struct no_zero_op { T operator()(T e) { if (!e) { return 1; } return e; } }; template <typename T> void transform_no_zero_with_type(sycl::queue *q, void *src, void *dst, size_t num) { std::transform(oneapi::dpl::execution::make_device_policy(*q), static_cast<T *>(src), static_cast<T *>(src) + num, static_cast<T *>(dst), no_zero_op<T>()); } void transform_no_zero(const memory_desc_ext &desc, void *src, void *dst); ::dnnl::memory::desc get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc); void get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num); public: engine_ext() {} operator bool() const { return bool(_eng) && bool(_s) && bool(_q); } engine_ext &operator=(std::nullptr_t) { _eng.reset(nullptr); _s.reset(nullptr); _q = nullptr; return *this; } /// Creating oneDNN engine. void create_engine() { _eng = ::dnnl::sycl_interop::make_engine( dpct::get_current_device(), dpct::get_current_device().get_context()); _s = ::dnnl::sycl_interop::make_stream( _eng, dpct::get_current_device().default_queue()); _q = &dpct::get_current_device().default_queue(); } /// Setting the user's SYCL queue for an oneDNN engine. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { if (!q) { throw std::runtime_error("set_queue: pointer must not be nullptr."); } if (!_eng) { throw std::runtime_error("set_queue: current engine is invalid."); } if (q->get_context() != ::dnnl::sycl_interop::get_context(_eng)) { throw std::runtime_error( "set_queue: queue is mismatch with current engine context."); } _q = q; _s = ::dnnl::sycl_interop::make_stream(_eng, *q); } /// Retrieving the user's SYCL queue set in the oneDNN engine. /// \returns Pointer to the SYCL queue. sycl::queue *get_queue() const { return _q; } /// Setting all elements of a memory to a given value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. void fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. void scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. void pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. void pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. void softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. void softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. void lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. void lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Setting all elements of a memory to a given value asynchronously. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] valuePtr Pointer to a single value. /// \returns An event representing the fill operations. sycl::event async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr); /// Coping the scaled data from a memory to another memory with a different /// description asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reorder operations. sycl::event async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Scaling all the elements of a memory by a given factor asynchronously. /// \param [in] alpha Value to scaling factors. /// \param [in] src_desc Source memory descriptor. /// \param [out] src Pointer to source data. /// \returns An event representing the scale operations. sycl::event async_scale(float alpha, const memory_desc_ext &src_desc, void *src); /// Adding the scaled values of a memory to another memory asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the sum operations. sycl::event async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified binary operation. /// \param [in] alpha_0 Value to scaling factors used to scale the src_0 /// value. /// \param [in] src_desc_0 Source 0 memory descriptor. /// \param [in] src_0 Pointer to source 0 data. /// \param [in] alpha_1 Value to scaling factors used to scale the src_1 /// value. /// \param [in] src_desc_1 Source 1 memory descriptor. /// \param [in] src_1 Pointer to source 1 data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the binary operations. sycl::event async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst); /// Perform specified binary operation asynchronously. /// \param [in] op Specified reduction operation. /// \param [in] alpha Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the reduction operations. sycl::event async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified activation function value asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the activation forward operations. sycl::event async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified activation function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the activation backward operations. sycl::event async_activation_backward(activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified pooling function value asynchronously. /// \param [in] desc Pooling descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward propagation. /// \returns An event representing the pooling forward operations. sycl::event async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified pooling function asynchronously. /// \param [in] desc Activation descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential /// source data. /// \param [in] workspace Pointer to workspace used for backward /// propagation. /// \returns An event representing the pooling backward operations. sycl::event async_pooling_backward(pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Computing a specified softmax function value asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the softmax forward operations. sycl::event async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing the gradient of a specified softmax function asynchronously. /// \param [in] alg Softmax algorithm. /// \param [in] mode Softmax mode. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the softmax backward operations. sycl::event async_softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing a specified local response normalization function value /// asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the lrn forward operations. sycl::event async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace = nullptr); /// Computing the gradient of a specified local response normalization /// function asynchronously. /// \param [in] desc Local response normalization descriptor. /// \param [in] alpha Value to scaling factors used to scale the computed value. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the differential destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the lrn backward operations. sycl::event async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace = nullptr); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] desc Derived memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Derives a memory descriptor for the batch normalization scale, bias, mean, /// variance from the source memory descriptor and batch normalization mode. /// \param [out] scale_bias_desc Derived scale and bias memory descriptor. /// \param [out] mean_var_desc Derived mean and var memory descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] mode Batch normalization mode. static void derive_batch_normalization_memory_desc(memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode); /// Get the size of workspace that needed by batch normalization. The data stored /// in workspace must be preserved between forward and backward. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] src_desc Source memory descriptor. /// \returns Size of workspace. size_t get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var); /// Computing a specified batch normalization inference stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [in] mean Pointer to mean data. /// \param [in] var Pointer to variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_mean_var_desc Scale, bias, mean, variance memory /// descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified batch normalization training stage function value /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] factor Factor value used in running mean and variance /// computation. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] scale_bias_desc Scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] mean_var_desc Mean, variance memory descriptor. /// \param [out] running_mean Pointer to running mean data. /// \param [out] running_var Pointer to running variance data. /// \param [out] saved_mean Pointer to optional cache to save mean data. /// \param [out] saved_var Pointer to optional cache to save variance data. /// \param [in] workspace_size Size of workspace. /// \param [out] workspace Pointer to workspace generated from forward /// propagation. /// \returns An event representing the batch normalization forward operations. sycl::event async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [in] diff_scale Pointer to differential scale data. /// \param [in] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_mean_var_desc Differential scale, bias, mean, /// variance memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing the gradient of a specified batch normalization function /// asynchronously. /// \param [in] mode Batch normalization mode. /// \param [in] ops Batch normalization operation mode. This mode can set to /// perform only batch normalization, or batch normalization followed by /// activation, or batch normalization followed by element-wise addition and /// activation. /// \param [in] adesc Activation operation descriptor. /// \param [in] epsilon Epsilon value used in computation. /// \param [in] alpha_data Value to scaling factors used to scale the computed /// data value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta_data Value to scaling factors used to scale the prior value /// in the data memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] diff_summand_desc Differential summand memory descriptor. /// \param [out] diff_summand Pointer to differential summand data. /// \param [in] alpha_param Value to scaling factors used to scale the computed /// parameter value. /// \param [in] diff_scale_bias_desc Differential scale, bias memory descriptor. /// \param [in] scale Pointer to scale data. /// \param [in] bias Pointer to bias data. /// \param [in] beta_param Value to scaling factors used to scale the prior value /// in the parameter memory. /// \param [out] diff_scale Pointer to differential scale data. /// \param [out] diff_bias Pointer to differential bias data. /// \param [in] mean_var_desc Differential mean, variance memory descriptor. /// \param [in] saved_mean Pointer to optional cache saved mean data in forward. /// \param [in] saved_var Pointer to optional cache saved variance data in forward. /// \param [in] workspace_size Size of workspace. /// \param [in] workspace Pointer to workspace used for backward propagation. /// \returns An event representing the batch normalization backward operations. sycl::event async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst); /// Computing a specified convolution function value asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] adesc Activation operation descriptor. /// \param [in] alpha_0 Value to scaling factors used to scale the data /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] alpha_1 Value to scaling factors used to scale the summand /// value. /// \param [in] summand_desc Summand memory descriptor. /// \param [in] summand Pointer to summand data. /// \param [in] bias_desc Bias memory descriptor. /// \param [in] bias Pointer to bias data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \returns An event representing the convolution forward operations. sycl::event async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst); /// Computing the data gradient of a specified convolution function asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] weight_desc Weight memory descriptor. /// \param [in] weight Pointer to weight data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \returns An event representing the convolution backward data operations. sycl::event async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src); /// Computing the weight gradient of a specified convolution function /// asynchronously. /// \param [in] desc Convolution descriptor. /// \param [in] alg Convolution algorithm. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_weight_desc Differential weight memory descriptor. /// \param [out] diff_weight Pointer to differential weight data. /// \returns An event representing the convolution backward weight operations. sycl::event async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight); /// Computing the bias gradient of a specified convolution function /// asynchronously. /// \param [in] alpha Value to scaling factors used to scale the computed /// value. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] beta Value to scaling factors used to scale the prior value /// in the destination memory. /// \param [in] diff_bias_desc Differential bias memory descriptor. /// \param [out] diff_bias Pointer to differential bias data. /// \returns An event representing the convolution backward bias operations. sycl::event async_convolution_backward_bias(float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias); /// Getting the required weight space size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [out] weight_space_size Size of required weight space. void rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size); /// Getting the required scratchpad size and workspace size for specified rnn operation. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [out] scratchpad_size Size of required scratchpad. /// \param [out] workspace_size Size of required workspace. void rnn_get_scratchpad_workspace_size(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size); /// Computing a specified rnn function value asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] kind Propagation kind. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] dst_iter Pointer to output recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] dst_c_iter Pointer to output recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn forward operations. sycl::event async_rnn_forward(const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Computing the data and weight gradient of a specified rnn function /// asynchronously. /// \param [in] desc RNN descriptor. /// \param [in] dst_desc Destination memory descriptor. /// \param [in] dst Pointer to destination data. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [out] diff_src Pointer to differential source data. /// \param [in] iter_desc Recurrent hidden state data memory descriptor. /// \param [in] src_iter Pointer to input recurrent hidden state data. /// \param [in] diff_dst_iter Pointer to differential output recurrent hidden state data. /// \param [out] diff_src_iter Pointer to differential input recurrent hidden state data. /// \param [in] iter_c_desc Recurrent cell state data memory descriptor. /// \param [in] src_c_iter Pointer to input recurrent cell state data. /// \param [in] diff_dst_c_iter Pointer to differential output recurrent cell state data. /// \param [out] diff_src_c_iter Pointer to differential input recurrent cell state data. /// \param [in] weight_size Size of weight memory. /// \param [in] weight Pointer to weight data. /// \param [out] diff_weight Pointer to differential weight data. /// \param [in] scratchpad_size Size of scratchpad memory. /// \param [in] scratchpad Pointer to scratchpad data. /// \param [in] workspace_size Size of workspace memory. /// \param [in] workspace Pointer to workspace data. /// \returns An event representing the status of rnn backward operations. sycl::event async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace); /// Getting the required state size for specified dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of state. size_t get_dropout_state_size(); /// Getting the required workspace size for dropout operation. /// \param [in] src_desc Source memory descriptor. /// \returns Required size of workspace. static size_t get_dropout_workspace_size(const memory_desc_ext &src_desc); /// Computing a specified dropout function value asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] src_desc Source memory descriptor. /// \param [in] src Pointer to source data. /// \param [in] dst_desc Destination memory descriptor. /// \param [out] dst Pointer to destination data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout forward operations. sycl::event async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size); /// Computing the gradient of a specified dropout function asynchronously. /// \param [in] desc Dropout descriptor. /// \param [in] diff_dst_desc Differential destination memory descriptor. /// \param [in] diff_dst Pointer to differential destination data. /// \param [in] diff_src_desc Differential source memory descriptor. /// \param [out] diff_src Pointer to differential source data. /// \param [in] workspace Pointer to workspace data. /// \param [in] workspace_size Size of workspace memory. /// \returns An event representing the dropout backward operations. sycl::event async_dropout_backward(dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size); }; inline void dropout_desc::restore(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("restore: state_size less than required state size."); } sycl::queue *q = engine.get_queue(); _imp->_p = p; _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); q->memcpy(_imp->_host_state.data(), _imp->_state, required_state_size).wait(); _imp->_rng_engine = oneapi::mkl::rng::load_state<rng_engine_t>( *q, _imp->_host_state.data()); } #endif } inline void dropout_desc::set(engine_ext &engine, float p, void *state, size_t state_size, unsigned long long seed) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else _imp->_p = p; if (state) { std::int64_t required_state_size = engine.get_dropout_state_size(); if (state_size < required_state_size) { throw std::runtime_error("set: no sufficient memory to save states."); } sycl::queue *q = engine.get_queue(); _imp->_seed = seed; _imp->_state = state; _imp->_host_state = std::vector<std::uint8_t>(required_state_size); _imp->_rng_engine = rng_engine_t(*q, seed); oneapi::mkl::rng::save_state(_imp->_rng_engine, _imp->_host_state.data()); q->memcpy(_imp->_state, _imp->_host_state.data(), required_state_size).wait(); } #endif } inline ::dnnl::memory::data_type memory_desc_ext::to_dnnl_data_type(dpct::library_data_t dt) { using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dpct::library_data_t::real_half: return dnnl_dt::f16; case dpct::library_data_t::real_bfloat16: return dnnl_dt::bf16; case dpct::library_data_t::real_float: return dnnl_dt::f32; case dpct::library_data_t::real_int32: return dnnl_dt::s32; case dpct::library_data_t::real_int8: return dnnl_dt::s8; case dpct::library_data_t::real_uint8: return dnnl_dt::u8; case dpct::library_data_t::real_int8_4: return dnnl_dt::s8; case dpct::library_data_t::real_int8_32: return dnnl_dt::s8; case dpct::library_data_t::real_uint8_4: return dnnl_dt::u8; default: throw std::runtime_error("to_dnnl_data_type: unsupported data type."); } } inline dpct::library_data_t memory_desc_ext::to_dpct_library_data_t(::dnnl::memory::data_type dt, unsigned block_size) { using dpct_dt = dpct::library_data_t; using dnnl_dt = ::dnnl::memory::data_type; switch (dt) { case dnnl_dt::f16: return dpct_dt::real_half; case dnnl_dt::bf16: return dpct_dt::real_bfloat16; case dnnl_dt::f32: return dpct_dt::real_float; case dnnl_dt::s32: return dpct_dt::real_int32; case dnnl_dt::s8: if (block_size == 4) { return dpct_dt::real_int8_4; } else if (block_size == 32) { return dpct_dt::real_int8_32; } else { return dpct_dt::real_int8; } case dnnl_dt::u8: if (block_size == 4) { return dpct_dt::real_uint8_4; } else { return dpct_dt::real_uint8; } default: throw std::runtime_error("to_dpct_library_data_t: unsupported data type " "dnnl::memory::data_type::undef."); } } inline ::dnnl::memory::format_tag memory_desc_ext::to_dnnl_format_tag(dpct::library_data_t dt, memory_format_tag tag) { using dpct_dt = dpct::library_data_t; using dpct_tag = memory_format_tag; using dnnl_tag = ::dnnl::memory::format_tag; switch (tag) { case dpct_tag::nchw: return dnnl_tag::nchw; case dpct_tag::nhwc: return dnnl_tag::nhwc; default: if (dt == dpct_dt::real_int8_32) { return dnnl_tag::nChw32c; } else { return dnnl_tag::nChw4c; } } } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int n, int c, int h, int w) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(dpct::library_data_t dt, int n, int c, int h, int w, int n_stride, int c_stride, int h_stride, int w_stride) { _desc = ::dnnl::memory::desc({n, c, h, w}, to_dnnl_data_type(dt), {n_stride, c_stride, h_stride, w_stride}); } inline void memory_desc_ext::set(dpct::library_data_t dt, int ndims, const int dims[], const int strides[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), {strides, strides + ndims}); } inline void memory_desc_ext::set(memory_format_tag tag, dpct::library_data_t dt, int ndims, const int dims[]) { _desc = ::dnnl::memory::desc({dims, dims + ndims}, to_dnnl_data_type(dt), to_dnnl_format_tag(dt, tag)); } inline void memory_desc_ext::set(rnn_memory_format_tag tag, dpct::library_data_t dt, int t, int n, int c) { if (tag == rnn_memory_format_tag::tnc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::tnc); } else if(tag == rnn_memory_format_tag::ntc) { _desc = ::dnnl::memory::desc({t, n, c}, to_dnnl_data_type(dt), ::dnnl::memory::format_tag::ntc); } else { throw std::runtime_error("set: unsupported memory format tag."); } } inline void memory_desc_ext::get(dpct::library_data_t *dt, int *n, int *c, int *h, int *w, int *n_stride, int *c_stride, int *h_stride, int *w_stride) const { unsigned block_size = 1; auto dims = _desc.get_dims(); auto inner_blks = _desc.get_inner_blks(); auto strides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; *n_stride = strides[0] / block_size; *c_stride = strides[1] / block_size; *h_stride = strides[2] / block_size; *w_stride = strides[3] / block_size; } inline void memory_desc_ext::get(dpct::library_data_t *dt, memory_format_tag *tag, int *n, int *c, int *h, int *w) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); auto inner_blks = _desc.get_inner_blks(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (strides[1] == 1 && dims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *n = dims[0]; *c = dims[1]; *h = dims[2]; *w = dims[3]; } inline void memory_desc_ext::get(dpct::library_data_t *dt, rnn_memory_format_tag *tag, int *t, int *n, int *c) const { auto dims = _desc.get_dims(); auto strides = _desc.get_strides(); if (strides[0] >= strides[1]) { *tag = rnn_memory_format_tag::tnc; } else { *tag = rnn_memory_format_tag::ntc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), 1); *t = dims[0]; *n = dims[1]; *c = dims[2]; } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, int *ndims, int dims[], int strides[]) const { unsigned block_size = 1; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; strides[index] = astrides[index] / block_size; } } inline void memory_desc_ext::get(int requested_ndims, dpct::library_data_t *dt, memory_format_tag *tag, int *ndims, int dims[]) const { unsigned block_size = 1; *tag = memory_format_tag::nchw; auto inner_blks = _desc.get_inner_blks(); auto adims = _desc.get_dims(); auto astrides = _desc.get_strides(); if (!inner_blks.empty()) { block_size = inner_blks[0]; *tag = memory_format_tag::nchw_blocked; } if (astrides[1] == 1 && adims[1] != 1) { *tag = memory_format_tag::nhwc; } *dt = to_dpct_library_data_t(_desc.get_data_type(), block_size); *ndims = _desc.get_ndims(); for (int index = 0; index < requested_ndims; index++) { dims[index] = adims[index]; } } inline void engine_ext::get_rnn_configuration(const ::dnnl::memory::desc &desc, rnn_direction direction, rnn_mode mode, dpct::library_data_t dt, int hidden_size, ::dnnl::memory::data_type *dnnl_dt, ::dnnl::memory::format_tag *tag, int *projection_size, int *output_size, int *seq_length, int *batch_size, int *direction_num, int *gate_num) { if (!desc.is_zero()) { auto dims = desc.get_dims(); auto strides = desc.get_strides(); if (strides[0] >= strides[1]) { *tag = ::dnnl::memory::format_tag::tnc; *seq_length = dims[0]; *batch_size = dims[1]; } else { *tag = ::dnnl::memory::format_tag::ntc; *seq_length = dims[1]; *batch_size = dims[0]; } } if (direction == rnn_direction::bidirectional) { *direction_num = 2; } else { *direction_num = 1; } if (mode == rnn_mode::lstm) { *gate_num = 4; } else if (mode == rnn_mode::gru) { *gate_num = 3; } else { *gate_num = 1; } if (*projection_size != hidden_size) { *output_size = *projection_size; } else { *projection_size = 0; *output_size = hidden_size; } *dnnl_dt = memory_desc_ext::to_dnnl_data_type(dt); } inline void *engine_ext::allocate(const memory_desc_ext &data_desc, int count) const { size_t mem_size = data_desc.get_size(); void *mem = sycl::malloc_device(mem_size * count, *_q); return mem; } inline void engine_ext::transform_no_zero(const memory_desc_ext &desc, void *src, void *dst) { ::dnnl::memory::data_type dt = desc.get_desc().get_data_type(); size_t element_num = desc.get_element_num(); switch (dt) { case ::dnnl::memory::data_type::f32: transform_no_zero_with_type<float>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::f16: transform_no_zero_with_type<sycl::half>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s32: transform_no_zero_with_type<int32_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::s8: transform_no_zero_with_type<int8_t>(_q, src, dst, element_num); break; case ::dnnl::memory::data_type::u8: transform_no_zero_with_type<uint8_t>(_q, src, dst, element_num); break; default: throw std::runtime_error("transform_no_zero: unsupported data type."); } } inline ::dnnl::memory::desc engine_ext::get_group_weight_desc(int group_count, const memory_desc_ext &weight_desc) { if (group_count == 1) { return weight_desc.get_desc(); } auto help_weight_desc = weight_desc.get_desc(); int ndims = help_weight_desc.get_ndims(); if (!help_weight_desc.get_inner_blks().empty()) { throw std::runtime_error("get_group_weight_desc: group convolution with " "blocked weight memory unimplemented."); } std::vector<int64_t> new_size; auto old_size = weight_desc.get_dims(); new_size.push_back(group_count); new_size.push_back(old_size[0] / group_count); for (int index = 1; index < old_size.size(); index++) { new_size.push_back(old_size[index]); } std::vector<int64_t> strides = help_weight_desc.get_strides(); ::dnnl::memory::format_tag tag; bool is_nhwc = (strides[1] == 1 && old_size[1] != 1); if (ndims == 4) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::gohwi; } else { tag = ::dnnl::memory::format_tag::goihw; } } else if (ndims == 5) { if (is_nhwc) { tag = ::dnnl::memory::format_tag::godhwi; } else { tag = ::dnnl::memory::format_tag::goidhw; } } help_weight_desc = ::dnnl::memory::desc(new_size, weight_desc.get_desc().get_data_type(), tag); return help_weight_desc; } inline ::dnnl::memory::desc engine_ext::compress_spatial_dimensions_to_channel( const ::dnnl::memory::desc &desc) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); auto inner_blks = desc.get_inner_blks(); assert(ndims >= 4 && "ndims is at least 4."); std::vector<int64_t> compressed_dims(ndims); compressed_dims[0] = dims[0]; compressed_dims[1] = dims[1]; for (int index = 2; index < ndims; index++) { compressed_dims[1] = compressed_dims[1] * dims[index]; compressed_dims[index] = 1; } if (!inner_blks.empty() && inner_blks[0] == 4) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw4c); } else if (!inner_blks.empty() && inner_blks[0] == 32) { return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), ::dnnl::memory::format_tag::nChw32c); } std::vector<int64_t> strides(ndims, 1); strides[0] = compressed_dims[1]; return ::dnnl::memory::desc(compressed_dims, desc.get_data_type(), strides); } inline ::dnnl::memory::desc engine_ext::get_bn_scale_bias_mean_var_desc(const ::dnnl::memory::desc &desc, batch_normalization_mode mode) { int ndims = desc.get_ndims(); auto dims = desc.get_dims(); assert(ndims >= 4 && "ndims is at least 4."); int channel_num = 1; if (mode == batch_normalization_mode::spatial) { channel_num = dims[1]; } else { for (int index = 1; index < ndims; index++) { channel_num = channel_num * dims[index]; } } return ::dnnl::memory::desc({channel_num}, desc.get_data_type(), ::dnnl::memory::format_tag::a); } inline ::dnnl::memory::desc engine_ext::transfer_memory_desc_to_channel_major_format( const ::dnnl::memory::desc &desc) { if (!desc.get_inner_blks().empty()) { return desc; } int ndims = desc.get_ndims(); auto dims = desc.get_dims(); if (ndims == 4) { return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::nchw); } return ::dnnl::memory::desc(dims, desc.get_data_type(), ::dnnl::memory::format_tag::ncdhw); } /// If the alpha = 0 and beta = 1, then the destination (dst = alpha * out + /// beta * prior_dst) have no change. In this case this function returns true /// means the operation can exit directly. inline bool engine_ext::scale_parameter_preprocess( const std::vector<output_argument_info> &args) { bool direct_exit = true; for (auto &arg : args) { if (arg._alpha == 0.f) { if (arg._beta != 1.f) { async_scale(arg._beta, arg._desc, arg._data); } } else { direct_exit = false; } } return direct_exit; } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &scale_bias_desc, memory_desc_ext &mean_var_desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { derive_batch_normalization_memory_desc(scale_bias_desc, src_desc, mode); derive_batch_normalization_memory_desc(mean_var_desc, src_desc, mode); } inline void engine_ext::derive_batch_normalization_memory_desc( memory_desc_ext &desc, const memory_desc_ext &src_desc, batch_normalization_mode mode) { int src_ndims = src_desc.get_desc().get_ndims(); auto inner_blks = src_desc.get_desc().get_inner_blks(); if (src_desc.get_desc().get_ndims() != 4 || src_desc.get_desc().get_ndims() != 5) { throw std::runtime_error("derive_batch_normalization_memory_desc: only 4d " "and 5d memory descriptor supported."); } std::vector<int64_t> dims = src_desc.get_dims(); dims[0] = 1; if (mode == batch_normalization_mode::spatial) { dims[2] = 1; dims[3] = 1; if (src_ndims == 5) { dims[4] = 1; } } auto data_type = src_desc.get_desc().get_data_type(); if (data_type == ::dnnl::memory::data_type::f16) { data_type = ::dnnl::memory::data_type::f32; } if (!inner_blks.empty() && inner_blks[0] == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw4c)); } else if (!inner_blks.empty() && inner_blks[0] == 32) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nChw32c)); } else { if (src_ndims == 4) { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::nchw)); } else { desc.set_desc(::dnnl::memory::desc(dims, data_type, ::dnnl::memory::format_tag::ncdhw)); } } } template <typename primitive_type> sycl::event engine_ext::execute_primitive( const std::pair<detail::primitive_cache_key_type, primitive_type *> &primitive, std::unordered_map<int, ::dnnl::memory> *args, const std::vector<output_argument_info> &output_args, const std::vector<void *> &device_ptrs) { std::vector<void *> caches; int output_arg_num = output_args.size(); for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { auto cache = allocate(output_args[i]._desc); caches.push_back(cache); args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, cache)}); } else { args->insert( {output_args[i]._name, ::dnnl::memory(output_args[i]._desc.get_desc(), _eng, output_args[i]._data)}); } } auto e = ::dnnl::sycl_interop::execute( *(static_cast<primitive_type *>(primitive.second)), _s, *args); _primitive_cache.put( primitive.first, primitive.second, [](::dnnl::primitive *p) { delete static_cast<primitive_type *>(p); }, e); int cache_index = 0; for (int i = 0; i < output_arg_num; i++) { if (output_args[i]._beta != 0.f) { e = async_sum(output_args[i]._alpha, output_args[i]._desc, caches[cache_index++], output_args[i]._beta, output_args[i]._desc, output_args[i]._data); } else { if (output_args[i]._alpha != 1.f) { e = async_scale(output_args[i]._alpha, output_args[i]._desc, output_args[i]._data); } } } caches.insert(caches.end(), device_ptrs.begin(), device_ptrs.end()); async_free(_q, e, args, caches); return e; } inline ::dnnl::memory::desc engine_ext::bn_reorder_memory_to_channel_major_format( bool is_input, ::dnnl::memory::desc &desc, void *src, void **cache, std::vector<void *> &caches) { ::dnnl::memory::desc result; result = transfer_memory_desc_to_channel_major_format(desc); if ((result != desc) || !src) { *cache = allocate(desc); if (is_input && src) { async_reorder(1.f, desc, src, 0.f, result, *cache); } caches.push_back(*cache); } return result; } inline sycl::event engine_ext::batch_normalization_backward_internal( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var) { if (scale_parameter_preprocess( {{alpha_data, beta_data, diff_src_desc, diff_src}, {alpha_param, beta_param, diff_scale_bias_desc, diff_scale}, {alpha_param, beta_param, diff_scale_bias_desc, diff_bias}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_diff_dst = nullptr, *reordered_diff_src = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_diff_scale = nullptr, *reordered_diff_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_diff_scale_bias_desc = diff_scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_diff_src_desc = help_diff_src_desc; ::dnnl::memory::desc actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; help_diff_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_scale_bias_desc, scale, &reordered_scale, caches); actual_diff_scale_bias_desc = help_diff_scale_bias_desc; if (bias) { bn_reorder_memory_to_channel_major_format(true, help_diff_scale_bias_desc, bias, &reordered_bias, caches); } bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_scale, &reordered_diff_scale, caches); bn_reorder_memory_to_channel_major_format(false, help_diff_scale_bias_desc, diff_bias, &reordered_diff_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( true, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); bn_reorder_memory_to_channel_major_format(true, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } else { if ((help_src_desc != help_diff_dst_desc) || (help_src_desc != help_diff_src_desc) || (help_diff_dst_desc != help_diff_src_desc)) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_diff_dst_desc = bn_reorder_memory_to_channel_major_format( true, help_diff_dst_desc, diff_dst, &reordered_diff_dst, caches); help_diff_src_desc = bn_reorder_memory_to_channel_major_format( false, help_diff_src_desc, diff_src, &reordered_diff_src, caches); actual_diff_src_desc = help_diff_src_desc; } } help_diff_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_diff_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); auto forward_primitive = create_primitive_desc<::dnnl::batch_normalization_forward>( ::dnnl::prop_kind::forward_training, help_src_desc, help_diff_dst_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift); auto primitive = create_primitive<::dnnl::batch_normalization_backward>( ::dnnl::prop_kind::backward, help_diff_src_desc, help_diff_dst_desc, help_src_desc, epsilon, ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift, forward_primitive); void *dst_cache = nullptr; if (!saved_mean && !saved_var) { dst_cache = allocate(diff_dst_desc); if (!reordered_saved_mean) { reordered_saved_mean = allocate(mean_var_desc); caches.push_back(reordered_saved_mean); } if (!reordered_saved_var) { reordered_saved_var = allocate(mean_var_desc); caches.push_back(reordered_saved_var); } if (!bias) { _q->fill(reordered_bias, 0, diff_scale_bias_desc.get_size()); } batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, diff_dst_desc, dst_cache, diff_scale_bias_desc, scale, bias ? bias : reordered_bias, mean_var_desc, reordered_saved_mean, reordered_saved_var, nullptr, nullptr); caches.push_back(dst_cache); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_diff_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_src_desc, _eng, reordered_diff_dst ? reordered_diff_dst : diff_dst)}}}; sycl::event e = execute_primitive( primitive, execution_args, {{alpha_data, beta_data, DNNL_ARG_DIFF_SRC, help_diff_src_desc, reordered_diff_src ? reordered_diff_src : diff_src}, {alpha_param, beta_param, DNNL_ARG_DIFF_SCALE, help_diff_scale_bias_desc, reordered_diff_scale ? reordered_diff_scale : diff_scale}, {alpha_param, beta_param, DNNL_ARG_DIFF_SHIFT, help_diff_scale_bias_desc, reordered_diff_bias ? reordered_diff_bias : diff_bias}}); if (actual_diff_src_desc != diff_src_desc.get_desc() && reordered_diff_src) { e = async_reorder(1.f, actual_diff_src_desc, reordered_diff_src, 0.f, diff_src_desc, diff_src); } if (actual_diff_scale_bias_desc != diff_scale_bias_desc.get_desc() && reordered_diff_scale && reordered_diff_bias) { async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_scale, 0.f, diff_scale_bias_desc, diff_scale); e = async_reorder(1.f, actual_diff_scale_bias_desc, reordered_diff_bias, 0.f, diff_scale_bias_desc, diff_bias); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::batch_normalization_forward_internal( bool is_infer, batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, void *running_mean, void *running_var) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } std::vector<void *> caches; void *reordered_src = nullptr, *reordered_dst = nullptr, *reordered_scale = nullptr, *reordered_bias = nullptr, *reordered_saved_mean = nullptr, *reordered_saved_var = nullptr; ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_scale_bias_desc = scale_bias_desc.get_desc(); ::dnnl::memory::desc help_mean_var_desc = mean_var_desc.get_desc(); ::dnnl::memory::desc actual_dst_desc = help_dst_desc; ::dnnl::memory::desc actual_mean_var_desc = help_mean_var_desc; if (mode == batch_normalization_mode::per_activation) { help_src_desc = bn_reorder_memory_to_channel_major_format(true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; help_scale_bias_desc = bn_reorder_memory_to_channel_major_format( true, help_scale_bias_desc, scale, &reordered_scale, caches); bn_reorder_memory_to_channel_major_format(true, help_scale_bias_desc, bias, &reordered_bias, caches); help_mean_var_desc = bn_reorder_memory_to_channel_major_format( is_infer, help_mean_var_desc, saved_mean, &reordered_saved_mean, caches); actual_mean_var_desc = help_mean_var_desc; bn_reorder_memory_to_channel_major_format(is_infer, help_mean_var_desc, saved_var, &reordered_saved_var, caches); help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } else { if (help_src_desc != help_dst_desc) { help_src_desc = bn_reorder_memory_to_channel_major_format( true, help_src_desc, src, &reordered_src, caches); help_dst_desc = bn_reorder_memory_to_channel_major_format( false, help_dst_desc, dst, &reordered_dst, caches); actual_dst_desc = help_dst_desc; } } help_scale_bias_desc = get_bn_scale_bias_mean_var_desc(help_scale_bias_desc, mode); help_mean_var_desc = get_bn_scale_bias_mean_var_desc(help_mean_var_desc, mode); ::dnnl::prop_kind kind; ::dnnl::normalization_flags flag = ::dnnl::normalization_flags::use_scale | ::dnnl::normalization_flags::use_shift; if (is_infer) { kind = ::dnnl::prop_kind::forward_inference; flag = ::dnnl::normalization_flags::use_global_stats | flag; } else { kind = ::dnnl::prop_kind::forward_training; } auto primitive = create_primitive<::dnnl::batch_normalization_forward>( kind, help_src_desc, help_dst_desc, epsilon, flag); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, reordered_src ? reordered_src : src)}}, {DNNL_ARG_SCALE, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_scale ? reordered_scale : scale)}}, {DNNL_ARG_SHIFT, {::dnnl::memory(help_scale_bias_desc, _eng, reordered_bias ? reordered_bias : bias)}}, {DNNL_ARG_MEAN, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_mean ? reordered_saved_mean : saved_mean)}}, {DNNL_ARG_VARIANCE, {::dnnl::memory(help_mean_var_desc, _eng, reordered_saved_var ? reordered_saved_var : saved_var)}}}; sycl::event e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, help_dst_desc, reordered_dst ? reordered_dst : dst}}); if (!is_infer && running_var) { auto src_ndim = src_desc.get_desc().get_ndims(); auto src_dims = src_desc.get_dims(); int element_num = src_dims[0]; if (mode == batch_normalization_mode::spatial) { for (int index = 2; index < src_ndim; index++) { element_num *= src_dims[index]; } } float unbias_factor = element_num / (element_num - 1.f); async_scale(1.f - factor, mean_var_desc, running_var); e = async_sum(factor * unbias_factor, mean_var_desc, reordered_saved_var ? reordered_saved_var : saved_var, 1.f, mean_var_desc, running_var); } if (!is_infer && running_mean) { e = async_sum(factor, mean_var_desc, reordered_saved_mean ? reordered_saved_mean : saved_mean, (1.f - factor), mean_var_desc, running_mean); } if (reordered_dst && (actual_dst_desc != dst_desc.get_desc())) { e = async_reorder(1.f, actual_dst_desc, reordered_dst, 0.f, dst_desc, dst); } if (!is_infer && reordered_saved_mean && reordered_saved_var && saved_mean && saved_var && (actual_mean_var_desc != mean_var_desc.get_desc())) { e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_mean, 0.f, mean_var_desc, saved_mean); e = async_reorder(1.f, actual_mean_var_desc, reordered_saved_var, 0.f, mean_var_desc, saved_var); } _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::rnn_forward_internal( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t workspace_size, void *workspace, size_t scratchpad_size, void *scratchpad, bool is_get_execution_args, size_t *weight_size_query, size_t *workspace_size_query, size_t *scratchpad_size_query) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; std::vector<void *> data = {src, dst, src_iter, dst_iter, src_iter_c, dst_iter_c, weight, workspace, scratchpad}; std::vector<int> offset(6, 0); void *input_layer_cache = nullptr, *hidden_layer_cache = nullptr; sycl::event e; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { // Here to combine the oneDNN bidirectional_sum and // bidirectional_concat config, so call execute_rnn_forward_primitive // twice. if (layer_size > 1) { if (!is_get_execution_args) { input_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); _q->memcpy(input_layer_cache, src, src_desc.get_size()); } data[0] = input_layer_cache; data[1] = hidden_layer_cache; e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1, weight_size_query, workspace_size_query, scratchpad_size_query); data[0] = ((layer_size - 1) % 2 == 0) ? input_layer_cache : hidden_layer_cache; data[1] = dst; } e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } else { e = execute_rnn_forward_primitive( mode, kind, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1, weight_size_query, workspace_size_query, scratchpad_size_query); } if (is_get_execution_args) { return e; } if (input_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(input_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline sycl::event engine_ext::execute_rnn_forward_primitive( rnn_mode mode, ::dnnl::prop_kind kind, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num, size_t *weight_size, size_t *workspace_size, size_t *scratchpad_size) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; std::unordered_map<int, ::dnnl::memory> *execution_args; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); } if (weight_size) { *weight_size += (weight_layer_desc.get_size() + weight_iter_desc.get_size() + projection_desc.get_size() + bias_desc.get_size()) * iter_num; return e; } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto pd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( kind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::gru) { auto pd = create_primitive_desc<::dnnl::gru_forward>( kind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::gru_forward>(pd); key = r.first; p = r.second; } } else if (mode == rnn_mode::lstm) { auto pd = create_primitive_desc<::dnnl::lstm_forward>( kind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); if (workspace_size && scratchpad_size) { *workspace_size += workspace_desc.get_size() * iter_num; *scratchpad_size = scratchpad_desc.get_size() > *scratchpad_size ? scratchpad_desc.get_size() : *scratchpad_size; } else { auto r = create_primitive_with_pd<::dnnl::lstm_forward>(pd); key = r.first; p = r.second; } } for (int i = 0; i < iter_num; i++) { void *in_cache = data[0], *out_cache = data[1], *dst_iter_c_cache = nullptr, *dst_iter_cache = ((uint8_t *)(data[3]) + offset[1]); if (mode == rnn_mode::lstm) { dst_iter_c_cache = (uint8_t *)(data[4]) + offset[2]; } if (!workspace_size) { execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[0])}}, {DNNL_ARG_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[1])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[8])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data + offset)}}); offset += d.get_size(); }; insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[0]); insert_args(DNNL_ARG_DST_ITER, iter_desc, data[3], offset[1]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[5], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_LAYER, weight_layer_desc, data[6], offset[4]); insert_args(DNNL_ARG_WEIGHTS_ITER, weight_iter_desc, data[6], offset[4]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, projection_desc, data[6], offset[4]); } if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[6]) + offset[4], 0, bias_desc.get_size()); } insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[4]); if (kind == ::dnnl::prop_kind::forward_training) { insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[5]); } if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { execute_primitive<::dnnl::vanilla_rnn_forward>( {key, static_cast<::dnnl::vanilla_rnn_forward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { execute_primitive<::dnnl::gru_forward>( {key, static_cast<::dnnl::gru_forward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { execute_primitive<::dnnl::lstm_forward>( {key, static_cast<::dnnl::lstm_forward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[0], data[1]); } } if (kind == ::dnnl::prop_kind::forward_training) { if (workspace_size) { *workspace_size += (src_desc.get_size() + dst_desc.get_size() + iter_desc.get_size()); if (mode == rnn_mode::lstm) { *workspace_size += iter_c_desc.get_size(); } } else { _q->memcpy((uint8_t *)(data[7]) + offset[5], in_cache, src_desc.get_size()); offset[5] += src_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], out_cache, dst_desc.get_size()); offset[5] += dst_desc.get_size(); _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_cache, iter_desc.get_size()); offset[5] += iter_desc.get_size(); if (mode == rnn_mode::lstm) { _q->memcpy((uint8_t *)(data[7]) + offset[5], dst_iter_c_cache, iter_c_desc.get_size()); offset[5] += iter_c_desc.get_size(); } } } } return e; } inline sycl::event engine_ext::execute_rnn_backward_primitive( rnn_mode mode, ::dnnl::rnn_direction direction, rnn_bias_mode bias_mode, ::dnnl::memory::data_type dt, ::dnnl::memory::format_tag tag, int seq_length, int batch_size, int src_c, int dst_c, int layer_size, int direction_num, int hidden_size, int gate_num, int projection_size, std::vector<void *> &data, std::vector<int> &offset, int iter_num) { sycl::event e; ::dnnl::primitive *p = nullptr; detail::primitive_cache_key_type key; ::dnnl::prop_kind fkind = ::dnnl::prop_kind::forward_training; ::dnnl::prop_kind bkind = ::dnnl::prop_kind::backward; ::dnnl::memory::desc bias_desc( {layer_size, direction_num, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgo); ::dnnl::memory::desc weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldigo); ::dnnl::memory::desc diff_weight_layer_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc diff_weight_iter_desc( {layer_size, direction_num, projection_size ? projection_size : hidden_size, gate_num, hidden_size}, dt, ::dnnl::memory::format_tag::ldgoi); ::dnnl::memory::desc projection_desc, diff_projection_desc; if (projection_size) { projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldio); diff_projection_desc = ::dnnl::memory::desc( {layer_size, direction_num, hidden_size, projection_size}, dt, ::dnnl::memory::format_tag::ldoi); } ::dnnl::memory::desc src_desc({seq_length, batch_size, src_c}, dt, tag); ::dnnl::memory::desc dst_desc({seq_length, batch_size, dst_c}, dt, tag); ::dnnl::memory::desc iter_desc( {layer_size, direction_num, batch_size, projection_size ? projection_size : hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc iter_c_desc( {layer_size, direction_num, batch_size, hidden_size}, dt, ::dnnl::memory::format_tag::ldnc); ::dnnl::memory::desc workspace_desc; ::dnnl::memory::desc scratchpad_desc; ::dnnl::primitive_attr attr; attr.set_scratchpad_mode(::dnnl::scratchpad_mode::user); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { auto fpd = create_primitive_desc<::dnnl::vanilla_rnn_forward>( fkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::vanilla_rnn_backward>( bkind, mode == rnn_mode::vanilla_relu ? ::dnnl::algorithm::eltwise_relu : ::dnnl::algorithm::eltwise_tanh, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::vanilla_rnn_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::gru) { auto fpd = create_primitive_desc<::dnnl::gru_forward>( fkind, direction, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, attr); auto pd = create_primitive_desc<::dnnl::gru_backward>( bkind, direction, src_desc, iter_desc, diff_weight_layer_desc, diff_weight_iter_desc, bias_desc, dst_desc, iter_desc, src_desc, iter_desc, weight_layer_desc, weight_iter_desc, bias_desc, dst_desc, iter_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::gru_backward>(pd); key = r.first; p = r.second; } else if (mode == rnn_mode::lstm) { auto fpd = create_primitive_desc<::dnnl::lstm_forward>( fkind, direction, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, attr); auto pd = create_primitive_desc<::dnnl::lstm_backward>( bkind, direction, src_desc, iter_desc, iter_c_desc, diff_weight_layer_desc, diff_weight_iter_desc, ::dnnl::memory::desc(), diff_projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, src_desc, iter_desc, iter_c_desc, weight_layer_desc, weight_iter_desc, ::dnnl::memory::desc(), projection_desc, bias_desc, dst_desc, iter_desc, iter_c_desc, fpd, attr); workspace_desc = pd.workspace_desc(); scratchpad_desc = pd.scratchpad_desc(); auto r = create_primitive_with_pd<::dnnl::lstm_backward>(pd); key = r.first; p = r.second; } for (int i = 0; i < iter_num; i++) { auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_SRC_LAYER, {::dnnl::memory(src_desc, _eng, data[8])}}, {DNNL_ARG_DIFF_DST_LAYER, {::dnnl::memory(dst_desc, _eng, data[9])}}, {DNNL_ARG_SCRATCHPAD, {::dnnl::memory(scratchpad_desc, _eng, data[15])}}}; auto insert_args = [&](int arg_name, ::dnnl::memory::desc &d, void *data, int &offset) { offset += d.get_size(); execution_args->insert( {arg_name, {::dnnl::memory(d, _eng, (uint8_t *)data - offset)}}); }; if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DST_ITER_C, iter_c_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER_C, iter_c_desc, data[4], offset[2]); } insert_args(DNNL_ARG_DST_ITER, iter_desc, data[7], offset[0]); insert_args(DNNL_ARG_DST_LAYER, dst_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_LAYER, src_desc, data[7], offset[0]); insert_args(DNNL_ARG_WORKSPACE, workspace_desc, data[7], offset[0]); insert_args(DNNL_ARG_SRC_ITER, iter_desc, data[2], offset[1]); insert_args(DNNL_ARG_BIAS, bias_desc, data[6], offset[3]); if (projection_size) { insert_args(DNNL_ARG_WEIGHTS_PROJECTION, diff_projection_desc, data[6], offset[3]); } insert_args(DNNL_ARG_WEIGHTS_ITER, diff_weight_iter_desc, data[6], offset[3]); insert_args(DNNL_ARG_WEIGHTS_LAYER, diff_weight_layer_desc, data[6], offset[3]); insert_args(DNNL_ARG_DIFF_SRC_ITER, iter_desc, data[10], offset[4]); insert_args(DNNL_ARG_DIFF_DST_ITER, iter_desc, data[11], offset[5]); if (mode == rnn_mode::lstm) { insert_args(DNNL_ARG_DIFF_SRC_ITER_C, iter_c_desc, data[12], offset[6]); insert_args(DNNL_ARG_DIFF_DST_ITER_C, iter_c_desc, data[13], offset[7]); } insert_args(DNNL_ARG_DIFF_BIAS, bias_desc, data[14], offset[8]); if (bias_mode == rnn_bias_mode::none) { _q->memset((uint8_t *)(data[14]) - offset[8], 0, bias_desc.get_size()); } if (projection_size) { insert_args(DNNL_ARG_DIFF_WEIGHTS_PROJECTION, projection_desc, data[14], offset[8]); } insert_args(DNNL_ARG_DIFF_WEIGHTS_ITER, weight_iter_desc, data[14], offset[8]); insert_args(DNNL_ARG_DIFF_WEIGHTS_LAYER, weight_layer_desc, data[14], offset[8]); if (mode == rnn_mode::vanilla_relu || mode == rnn_mode::vanilla_tanh) { e = execute_primitive<::dnnl::vanilla_rnn_backward>( {key, static_cast<::dnnl::vanilla_rnn_backward *>(p)}, execution_args); } else if (mode == rnn_mode::gru) { e = execute_primitive<::dnnl::gru_backward>( {key, static_cast<::dnnl::gru_backward *>(p)}, execution_args); } else if (mode == rnn_mode::lstm) { e = execute_primitive<::dnnl::lstm_backward>( {key, static_cast<::dnnl::lstm_backward *>(p)}, execution_args); } if (i != iter_num - 1) { std::swap(data[8], data[9]); } } return e; } #define GENERATE_RNN_PRIMITIVE_KEY(name) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_cell_kind() << (std::uint8_t)pd.get_direction() \ << (std::uint8_t)pd.get_algorithm(); \ serialize_mem_desc(ss, pd.src_layer_desc()); \ serialize_mem_desc(ss, pd.src_iter_desc()); \ serialize_mem_desc(ss, pd.dst_layer_desc()); \ serialize_mem_desc(ss, pd.dst_iter_desc()); \ serialize_mem_desc(ss, pd.diff_src_layer_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_desc()); \ serialize_mem_desc(ss, pd.diff_dst_layer_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_desc()); \ serialize_mem_desc(ss, pd.src_iter_c_desc()); \ serialize_mem_desc(ss, pd.dst_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_src_iter_c_desc()); \ serialize_mem_desc(ss, pd.diff_dst_iter_c_desc()); \ return ss.str(); \ } #define GENERATE_CONVOLUTION_PRIMITIVE_KEY(name, query_type) \ template <> \ inline std::string \ engine_ext::generate_cache_key<::dnnl::name::primitive_desc>( \ const ::dnnl::name::primitive_desc &pd) { \ std::stringstream ss; \ ss << (std::uint8_t)pd.get_kind() << (std::uint8_t)pd.get_prop_kind() \ << (std::uint8_t)pd.get_algorithm() \ << (std::uint8_t)pd.get_primitive_attr().get_fpmath_mode() \ << (std::uint8_t)pd.get_group_size(); \ serialize_dims(ss, pd.get_strides()); \ serialize_dims(ss, pd.get_dilations()); \ serialize_dims(ss, pd.get_padding_l()); \ serialize_mem_desc(ss, pd.src_desc()); \ serialize_mem_desc(ss, pd.diff_src_desc()); \ serialize_mem_desc(ss, pd.dst_desc()); \ serialize_mem_desc(ss, pd.diff_dst_desc()); \ serialize_mem_desc(ss, pd.query_type()); \ serialize_mem_desc(ss, pd.weights_desc()); \ serialize_mem_desc(ss, pd.diff_weights_desc()); \ return ss.str(); \ } GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_forward) GENERATE_RNN_PRIMITIVE_KEY(vanilla_rnn_backward) GENERATE_RNN_PRIMITIVE_KEY(lstm_forward) GENERATE_RNN_PRIMITIVE_KEY(lstm_backward) GENERATE_RNN_PRIMITIVE_KEY(gru_forward) GENERATE_RNN_PRIMITIVE_KEY(gru_backward) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_forward, bias_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_data, scratchpad_desc) GENERATE_CONVOLUTION_PRIMITIVE_KEY(convolution_backward_weights, diff_bias_desc) template <typename primitive_desc_type> std::string engine_ext::generate_cache_key(const primitive_desc_type &pd) { std::stringstream ss; auto kind = pd.get_kind(); ss << (std::uint8_t)kind << (std::uint8_t)pd.get_prop_kind() << (std::uint8_t)pd.get_algorithm(); serialize_mem_desc(ss, pd.src_desc()); serialize_mem_desc(ss, pd.diff_src_desc()); serialize_mem_desc(ss, pd.dst_desc()); serialize_mem_desc(ss, pd.diff_dst_desc()); switch (kind) { case ::dnnl::primitive::kind::batch_normalization: ss << pd.get_epsilon() << (std::uint8_t)pd.get_flags(); case ::dnnl::primitive::kind::reduction: ss << pd.get_p(); break; case ::dnnl::primitive::kind::eltwise: ss << pd.get_alpha() << pd.get_beta(); case ::dnnl::primitive::kind::lrn: ss << pd.get_k(); break; case ::dnnl::primitive::kind::pooling: serialize_dims(ss, pd.get_strides()); serialize_dims(ss, pd.get_dilations()); serialize_dims(ss, pd.get_padding_l()); serialize_dims(ss, pd.get_kernel()); break; case ::dnnl::primitive::kind::softmax: ss << pd.get_axis(); break; default: break; } return ss.str(); } template <typename primitive_type, typename... args_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive(args_type &&...args) { auto pd = create_primitive_desc<primitive_type>(std::forward<args_type>(args)...); return create_primitive_with_pd<primitive_type>(pd); } template <typename primitive_type> std::pair<detail::primitive_cache_key_type, primitive_type *> engine_ext::create_primitive_with_pd( const typename primitive_type::primitive_desc &pd) { detail::primitive_cache_key_type key = generate_cache_key(pd); primitive_type *p = (primitive_type *)_primitive_cache.get(key); if (!p) { p = new primitive_type(pd); } return {key, p}; } template <typename primitive_type, typename... args_type> typename primitive_type::primitive_desc engine_ext::create_primitive_desc(args_type &&...args) { return typename primitive_type::primitive_desc( _eng, std::forward<args_type>(args)...); } inline void engine_ext::fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { async_fill(src_desc, src, valuePtr).wait(); } inline void engine_ext::reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_reorder(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::scale(float alpha, const memory_desc_ext &src_desc, void *src) { async_scale(alpha, src_desc, src).wait(); } inline void engine_ext::sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_sum(alpha, src_desc, src, beta, dst_desc, dst).wait(); } inline void engine_ext::activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_activation_forward(desc, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_activation_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_pooling_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace).wait(); } inline void engine_ext::pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_pooling_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline void engine_ext::softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { async_softmax_forward(alg, mode, alpha, src_desc, src, beta, dst_desc, dst) .wait(); } inline void engine_ext::softmax_backward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { async_softmax_backward(alg, mode, alpha, dst_desc, dst, diff_dst_desc, diff_dst, beta, diff_src_desc, diff_src) .wait(); } inline void engine_ext::lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { async_lrn_forward(desc, alpha, src_desc, src, beta, dst_desc, dst, workspace) .wait(); } inline void engine_ext::lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { async_lrn_backward(desc, alpha, dst_desc, dst, diff_dst_desc, diff_dst, src_desc, src, beta, diff_src_desc, diff_src, workspace) .wait(); } inline sycl::event engine_ext::async_fill(const memory_desc_ext &src_desc, void *src, const void *valuePtr) { ::dnnl::memory::data_type dt = src_desc.get_desc().get_data_type(); unsigned mem_size = src_desc.get_size(); switch (dt) { case ::dnnl::memory::data_type::f32: return fill_with_type<float>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::f16: return fill_with_type<sycl::half>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s32: return fill_with_type<int32_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::s8: return fill_with_type<int8_t>(_q, src, valuePtr, mem_size); case ::dnnl::memory::data_type::u8: return fill_with_type<uint8_t>(_q, src, valuePtr, mem_size); default: throw std::runtime_error("async_fill: unsupported data type."); } } inline sycl::event engine_ext::async_reorder(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto pd = ::dnnl::reorder::primitive_desc(_eng, src_desc.get_desc(), _eng, dst_desc.get_desc()); auto primitive = create_primitive_with_pd<::dnnl::reorder>(pd); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_scale(float alpha, const memory_desc_ext &src_desc, void *src) { if (alpha == 1.f) { return sycl::event(); } void *src_cache = allocate(src_desc); _q->memcpy(src_cache, src, src_desc.get_size()); auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, ::dnnl::algorithm::eltwise_linear, src_desc.get_desc(), src_desc.get_desc(), alpha, 0.f); auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src_cache)}}; return execute_primitive(primitive, args, {}, {src_cache}); } inline sycl::event engine_ext::async_sum(float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } void *dst_cache = allocate(dst_desc); _q->memcpy(dst_cache, dst, dst_desc.get_size()); auto pd = create_primitive_desc<::dnnl::sum>( std::vector<float>{alpha, beta}, std::vector<::dnnl::memory::desc>{src_desc.get_desc(), dst_desc.get_desc()}); std::stringstream ss; ss << (std::uint8_t)pd.get_kind() << alpha << beta; serialize_mem_desc(ss, pd.src_desc(0)); serialize_mem_desc(ss, pd.src_desc(1)); detail::primitive_cache_key_type key = ss.str(); ::dnnl::sum *p = (::dnnl::sum *)_primitive_cache.get(key); if (!p) { p = new ::dnnl::sum(pd); } auto args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}, {DNNL_ARG_MULTIPLE_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_MULTIPLE_SRC + 1, ::dnnl::memory(dst_desc.get_desc(), _eng, dst_cache)}}; return execute_primitive<::dnnl::sum>({key, p}, args, {}, {dst_cache}); } inline sycl::event engine_ext::async_binary(binary_op op, float alpha_0, const memory_desc_ext &src_desc_0, void *src_0, float alpha_1, const memory_desc_ext &src_desc_1, void *src_1, float beta, const memory_desc_ext &dst_desc, void *dst) { ::dnnl::algorithm onednn_algorithm; switch (op) { case binary_op::max: onednn_algorithm = ::dnnl::algorithm::binary_max; break; case binary_op::min: onednn_algorithm = ::dnnl::algorithm::binary_min; break; case binary_op::add: onednn_algorithm = ::dnnl::algorithm::binary_add; break; case binary_op::sub: onednn_algorithm = ::dnnl::algorithm::binary_sub; break; case binary_op::mul: onednn_algorithm = ::dnnl::algorithm::binary_mul; break; case binary_op::div: onednn_algorithm = ::dnnl::algorithm::binary_div; break; case binary_op::sqrt: onednn_algorithm = ::dnnl::algorithm::eltwise_sqrt; break; case binary_op::neg: onednn_algorithm = ::dnnl::algorithm::eltwise_linear; break; } if (onednn_algorithm == ::dnnl::algorithm::eltwise_sqrt || onednn_algorithm == ::dnnl::algorithm::eltwise_linear) { void *src_cache = nullptr, *dst_cache = nullptr; src_cache = allocate(src_desc_0); dst_cache = allocate(dst_desc); _q->memcpy(src_cache, src_0, src_desc_0.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_cache); async_scale(beta, dst_desc, dst_cache); // Let the output = 1 - input to simulate the behavior of neg. auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward_inference, onednn_algorithm, src_desc_0.get_desc(), dst_desc.get_desc(), -1.f, 1.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc_0.get_desc(), _eng, src_cache)}}}; execute_primitive( primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); auto e = async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(src_cache, *_q); sycl::free(dst_cache, *_q); }); }); return e; } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{}; void *src_0_cache = nullptr, *src_1_cache = nullptr, *dst_cache = nullptr; src_0_cache = allocate(src_desc_0); src_1_cache = allocate(src_desc_1); dst_cache = allocate(dst_desc); _q->memcpy(src_0_cache, src_0, src_desc_0.get_size()); _q->memcpy(src_1_cache, src_1, src_desc_1.get_size()); _q->memcpy(dst_cache, dst, dst_desc.get_size()); async_scale(alpha_0, src_desc_0, src_0_cache); async_scale(alpha_1, src_desc_1, src_1_cache); async_scale(beta, dst_desc, dst_cache); execution_args->insert({DNNL_ARG_SRC_0, ::dnnl::memory(src_desc_0.get_desc(), _eng, src_0_cache)}); execution_args->insert({DNNL_ARG_SRC_1, ::dnnl::memory(src_desc_1.get_desc(), _eng, src_1_cache)}); auto primitive = create_primitive<::dnnl::binary>( onednn_algorithm, src_desc_0.get_desc(), src_desc_1.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); async_sum(1.f, dst_desc, dst_cache, 1.f, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(dst_cache, *_q); sycl::free(src_0_cache, *_q); sycl::free(src_1_cache, *_q); }); }); return e; } inline sycl::event engine_ext::async_reduction(reduction_op op, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (alpha == 0.f && beta == 1.f) { return sycl::event(); } float p = 2.f; ::dnnl::algorithm onednn_algorithm; void *cache = nullptr; switch (op) { case reduction_op::amax: cache = allocate(src_desc); activation_desc adesc; adesc.set_algorithm(::dnnl::algorithm::eltwise_abs); async_activation_forward(adesc, 1.f, src_desc, src, 0.f, src_desc, cache); onednn_algorithm = ::dnnl::algorithm::reduction_max; src = cache; break; case reduction_op::max: onednn_algorithm = ::dnnl::algorithm::reduction_max; break; case reduction_op::min: onednn_algorithm = ::dnnl::algorithm::reduction_min; break; case reduction_op::sum: onednn_algorithm = ::dnnl::algorithm::reduction_sum; break; case reduction_op::mean: onednn_algorithm = ::dnnl::algorithm::reduction_mean; break; case reduction_op::mul: onednn_algorithm = ::dnnl::algorithm::reduction_mul; break; case reduction_op::mul_no_zeros: cache = allocate(src_desc); transform_no_zero(src_desc, src, cache); onednn_algorithm = ::dnnl::algorithm::reduction_mul; src = cache; break; case reduction_op::norm1: p = 1.f; onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_power_p_sum; break; case reduction_op::norm2: onednn_algorithm = ::dnnl::algorithm::reduction_norm_lp_sum; break; } auto primitive = create_primitive<::dnnl::reduction>( onednn_algorithm, src_desc.get_desc(), dst_desc.get_desc(), p, 0.f); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, ::dnnl::memory(src_desc.get_desc(), _eng, src)}}; if (cache) { return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_forward(activation_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_activation_backward( activation_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc data_desc = dst_desc.get_desc(); auto alg = desc.get_algorithm(); if ((alg == ::dnnl::algorithm::eltwise_clip) || (alg == ::dnnl::algorithm::eltwise_linear) || (alg == ::dnnl::algorithm::eltwise_swish)) { data_desc = src_desc.get_desc(); } auto primitive = create_primitive<::dnnl::eltwise_backward>( alg, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), data_desc, desc.get_alpha(), desc.get_beta(), create_primitive_desc<::dnnl::eltwise_forward>( ::dnnl::prop_kind::forward, alg, src_desc.get_desc(), dst_desc.get_desc(), desc.get_alpha(), desc.get_beta())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_pooling_forward(pooling_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive_desc = create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::pooling_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_pooling_backward( pooling_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } int pooling_dim = desc.get_stride().size(); std::vector<int64_t> dilation(pooling_dim, 0); auto primitive = create_primitive<::dnnl::pooling_backward>( desc.get_algorithm(), diff_src_desc.get_desc(), diff_dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding(), create_primitive_desc<::dnnl::pooling_forward>( ::dnnl::prop_kind::forward_training, desc.get_algorithm(), src_desc.get_desc(), dst_desc.get_desc(), desc.get_stride(), desc.get_kernel(), dilation, desc.get_padding(), desc.get_padding())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_softmax_forward(softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } ::dnnl::memory::desc help_src_desc = src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_src_desc = compress_spatial_dimensions_to_channel(help_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(help_src_desc, _eng, src)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_src_desc, help_dst_desc, 1); return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, memory_desc_ext(help_dst_desc), dst}}); } inline sycl::event engine_ext::async_softmax_backward( softmax_algorithm alg, softmax_mode mode, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } ::dnnl::memory::desc help_diff_src_desc = diff_src_desc.get_desc(); ::dnnl::memory::desc help_dst_desc = dst_desc.get_desc(); ::dnnl::memory::desc help_diff_dst_desc = diff_dst_desc.get_desc(); if (mode == softmax_mode::instance) { help_diff_src_desc = compress_spatial_dimensions_to_channel(help_diff_src_desc); help_dst_desc = compress_spatial_dimensions_to_channel(help_dst_desc); help_diff_dst_desc = compress_spatial_dimensions_to_channel(help_diff_dst_desc); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(help_dst_desc, _eng, dst)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(help_diff_dst_desc, _eng, diff_dst)}}}; ::dnnl::algorithm softmax_alg = ::dnnl::algorithm::softmax_accurate; if (alg == softmax_algorithm::log) { softmax_alg = ::dnnl::algorithm::softmax_log; } auto primitive = create_primitive<::dnnl::softmax_backward>( softmax_alg, help_diff_src_desc, help_diff_dst_desc, help_dst_desc, 1, create_primitive_desc<::dnnl::softmax_forward>( ::dnnl::prop_kind::forward, softmax_alg, help_diff_src_desc, help_dst_desc, 1)); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, memory_desc_ext(help_diff_src_desc), diff_src}}); } inline sycl::event engine_ext::async_lrn_forward(lrn_desc &desc, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto primitive_desc = create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k()); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}}; ::dnnl::memory ws_mem(primitive_desc.workspace_desc(), _eng); execution_args->insert({DNNL_ARG_WORKSPACE, ws_mem}); if (workspace) { *workspace = ws_mem; } else { insert_workspace(src, ws_mem); } auto primitive = create_primitive_with_pd<::dnnl::lrn_forward>(primitive_desc); return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, dst_desc, dst}}); } inline sycl::event engine_ext::async_lrn_backward(lrn_desc &desc, float alpha, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &diff_src_desc, void *diff_src, ::dnnl::memory *workspace) { if (scale_parameter_preprocess({{alpha, beta, diff_src_desc, diff_src}})) { return sycl::event(); } auto primitive = create_primitive<::dnnl::lrn_backward>( ::dnnl::algorithm::lrn_across_channels, diff_src_desc.get_desc(), diff_dst_desc.get_desc(), src_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k(), create_primitive_desc<::dnnl::lrn_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::lrn_across_channels, src_desc.get_desc(), dst_desc.get_desc(), desc.get_local_size(), desc.get_alpha(), desc.get_beta(), desc.get_k())); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DST, {::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}, {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; if (workspace) { execution_args->insert({DNNL_ARG_WORKSPACE, *workspace}); } else { execution_args->insert({DNNL_ARG_WORKSPACE, get_workspace(src)}); } return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline size_t engine_ext::get_batch_normalization_workspace_size( batch_normalization_ops ops, const memory_desc_ext &src_desc) { if(ops == batch_normalization_ops::none) { return 0; } return src_desc.get_size(); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *mean, void *var) { return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_inference( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *mean, void *var) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; std::vector<void *> caches; if (has_post_op) { void *dst_cache = allocate(dst_desc); caches.push_back(dst_cache); batch_normalization_forward_internal( true, mode, epsilon, 0.f, 1.f, src_desc, src, 0.f, dst_desc, dst_cache, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, dst_cache); } async_activation_forward(adesc, 1.f, dst_desc, dst_cache, 0.f, dst_desc, dst_cache); e = async_sum(alpha, dst_desc, dst_cache, beta, dst_desc, dst); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } return batch_normalization_forward_internal( true, mode, epsilon, 0.f, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, mean, var, nullptr, nullptr); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var) { return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_desc, void *scale, void *bias, const memory_desc_ext &mean_var_desc, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { bool has_post_op = (ops != batch_normalization_ops::none); sycl::event e; if (has_post_op) { if(workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_forward_training_ex: " "no sufficient workspace."); } batch_normalization_forward_internal( false, mode, epsilon, factor, 1.f, src_desc, src, 0.f, dst_desc, workspace, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); if (ops == batch_normalization_ops::add_activation) { async_sum(1.f, summand_desc, summand, 1.f, dst_desc, workspace); } return async_activation_forward(adesc, alpha, dst_desc, workspace, beta, dst_desc, dst); } return batch_normalization_forward_internal( false, mode, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, scale_bias_desc, scale, bias, mean_var_desc, saved_mean, saved_var, running_mean, running_var); } inline sycl::event engine_ext::async_batch_normalization_forward_training( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float factor, float alpha, const memory_desc_ext &src_desc, void *src, float beta, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &scale_bias_mean_var_desc, void *scale, void *bias, void *running_mean, void *running_var, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_forward_training( mode, ops, adesc, epsilon, factor, alpha, src_desc, src, beta, dst_desc, dst, summand_desc, summand, scale_bias_mean_var_desc, scale, bias, scale_bias_mean_var_desc, running_mean, running_var, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var) { return batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_mean_var_desc, scale, nullptr, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var); } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, const memory_desc_ext &mean_var_desc, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { std::vector<void *> caches; ::dnnl::memory::desc real_diff_dst_desc = diff_dst_desc.get_desc(); void *real_diff_dst = diff_dst; if (ops != batch_normalization_ops::none && workspace_size < dst_desc.get_desc().get_size()) { throw std::runtime_error("async_batch_normalization_backward_ex: " "no sufficient workspace."); } if (ops == batch_normalization_ops::add_activation) { void *diff_summand_cache = allocate(diff_summand_desc); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_summand_desc, diff_summand_cache); caches.push_back(diff_summand_cache); async_sum(alpha_data, diff_summand_desc, diff_summand_cache, beta_data, diff_summand_desc, diff_summand); real_diff_dst_desc = diff_summand_desc.get_desc(); real_diff_dst = diff_summand_cache; } else if (ops == batch_normalization_ops::activation) { void *diff_dst_cache = allocate(diff_dst_desc); caches.push_back(diff_dst_cache); async_activation_backward(adesc, 1.f, dst_desc, dst, diff_dst_desc, diff_dst, dst_desc, workspace, 0.f, diff_dst_desc, diff_dst_cache); real_diff_dst = diff_dst_cache; } sycl::event e = batch_normalization_backward_internal( mode, epsilon, alpha_data, src_desc, src, real_diff_dst_desc, real_diff_dst, beta_data, diff_src_desc, diff_src, alpha_param, diff_scale_bias_desc, scale, bias, beta_param, diff_scale, diff_bias, mean_var_desc, saved_mean, saved_var); _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { for (auto ptr : caches) { sycl::free(ptr, *_q); } }); }); return e; } inline sycl::event engine_ext::async_batch_normalization_backward( batch_normalization_mode mode, batch_normalization_ops ops, activation_desc &adesc, float epsilon, float alpha_data, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta_data, const memory_desc_ext &diff_src_desc, void *diff_src, const memory_desc_ext &diff_summand_desc, void *diff_summand, float alpha_param, const memory_desc_ext &diff_scale_bias_mean_var_desc, void *scale, void *bias, float beta_param, void *diff_scale, void *diff_bias, void *saved_mean, void *saved_var, size_t workspace_size, void *workspace) { return async_batch_normalization_backward( mode, ops, adesc, epsilon, alpha_data, src_desc, src, dst_desc, dst, diff_dst_desc, diff_dst, beta_data, diff_src_desc, diff_src, diff_summand_desc, diff_summand, alpha_param, diff_scale_bias_mean_var_desc, scale, bias, beta_param, diff_scale, diff_bias, diff_scale_bias_mean_var_desc, saved_mean, saved_var, workspace_size, workspace); } inline sycl::event engine_ext::async_convolution_forward(convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float beta, const memory_desc_ext &dst_desc, void *dst) { if (scale_parameter_preprocess({{alpha, beta, dst_desc, dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto origin_src_md = src_desc.get_desc(); auto origin_dst_md = dst_desc.get_desc(); auto origin_weight_md = help_weight_desc; auto src_md = transfer_memory_desc_to_format_tag_any(origin_src_md); auto dst_md = transfer_memory_desc_to_format_tag_any(origin_dst_md); auto weight_md = transfer_memory_desc_to_format_tag_any(origin_weight_md); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_md, weight_md, dst_md, desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); ::dnnl::convolution_forward::primitive_desc pd = ::dnnl::convolution_forward::primitive_desc( const_cast<dnnl_primitive_desc_t>( primitive.second->get_primitive_desc())); auto optimal_src_md = pd.src_desc(); auto optimal_dst_md = pd.dst_desc(); auto optimal_weight_md = pd.weights_desc(); void *optimal_src = src, *optimal_dst = dst, *optimal_weight = weight; std::vector<void *> input_caches, output_caches; allocate_and_reorder_memory_to_optimal(origin_src_md, src, optimal_src_md, optimal_src, input_caches); allocate_and_reorder_memory_to_optimal(origin_dst_md, dst, optimal_dst_md, optimal_dst, output_caches); allocate_and_reorder_memory_to_optimal(origin_weight_md, weight, optimal_weight_md, optimal_weight, input_caches); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(optimal_src_md, _eng, optimal_src)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(optimal_weight_md, _eng, optimal_weight)}}}; auto e = execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DST, optimal_dst_md, optimal_dst}}, input_caches); if(origin_dst_md != optimal_dst_md){ e = async_reorder(1.f, optimal_dst_md, optimal_dst, 0.f, origin_dst_md, dst); } async_free(_q, e, nullptr, output_caches); return e; } inline sycl::event engine_ext::async_convolution_forward( convolution_desc &desc, ::dnnl::algorithm alg, activation_desc &adesc, float alpha_0, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &weight_desc, void *weight, float alpha_1, const memory_desc_ext &summand_desc, void *summand, const memory_desc_ext &bias_desc, void *bias, const memory_desc_ext &dst_desc, void *dst) { int channel_num = bias_desc.get_element_num(); auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::memory::desc help_bias_desc = {{channel_num}, bias_desc.get_desc().get_data_type(), ::dnnl::memory::format_tag::a}; ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto primitive = create_primitive<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, alg, src_desc.get_desc(), help_weight_desc, help_bias_desc, dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_BIAS, {::dnnl::memory(help_bias_desc, _eng, bias)}}}; void *cache = nullptr; if (alpha_0 != 1.f) { cache = allocate(help_weight_desc); _q->memcpy(cache, weight, weight_desc.get_size()); async_scale(alpha_0, help_weight_desc, cache); execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, cache)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}, {cache}); } else { execution_args->insert( {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}); execute_primitive(primitive, execution_args, {{1.f, 0.f, DNNL_ARG_DST, dst_desc, dst}}); } async_sum(alpha_1, summand_desc, summand, 1.f, dst_desc, dst); return async_activation_forward(adesc, 1.f, dst_desc, dst, 0.f, dst_desc, dst); } inline sycl::event engine_ext::async_convolution_backward_data( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &weight_desc, void *weight, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_src_desc, void *diff_src) { if (scale_parameter_preprocess({{alpha, beta, diff_dst_desc, diff_dst}})) { return sycl::event(); } auto help_weight_desc = get_group_weight_desc(desc.get_group_count(), weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_data>( ::dnnl::algorithm::convolution_auto, diff_src_desc.get_desc(), help_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}, {DNNL_ARG_WEIGHTS, {::dnnl::memory(help_weight_desc, _eng, weight)}}}; return execute_primitive( primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_SRC, diff_src_desc, diff_src}}); } inline sycl::event engine_ext::async_convolution_backward_weight( convolution_desc &desc, ::dnnl::algorithm alg, float alpha, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_weight_desc, void *diff_weight) { if (scale_parameter_preprocess( {{alpha, beta, diff_weight_desc, diff_weight}})) { return sycl::event(); } auto help_diff_weight_desc = get_group_weight_desc(desc.get_group_count(), diff_weight_desc); ::dnnl::primitive_attr attr; attr.set_fpmath_mode(desc.get_math_mode()); auto forward_primitive = create_primitive_desc<::dnnl::convolution_forward>( ::dnnl::prop_kind::forward_training, ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), attr); auto primitive = create_primitive<::dnnl::convolution_backward_weights>( ::dnnl::algorithm::convolution_auto, src_desc.get_desc(), help_diff_weight_desc, diff_dst_desc.get_desc(), desc.get_stride(), desc.get_dilate(), desc.get_padding(), desc.get_padding(), forward_primitive, attr); auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC, {::dnnl::memory(src_desc.get_desc(), _eng, src)}}, {DNNL_ARG_DIFF_DST, {::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}}}; return execute_primitive(primitive, execution_args, {{alpha, beta, DNNL_ARG_DIFF_WEIGHTS, help_diff_weight_desc, diff_weight}}); } inline sycl::event engine_ext::async_convolution_backward_bias( float alpha, const memory_desc_ext &diff_dst_desc, void *diff_dst, float beta, const memory_desc_ext &diff_bias_desc, void *diff_bias) { return async_reduction(reduction_op::sum, alpha, diff_dst_desc, diff_dst, beta, diff_bias_desc, diff_bias); } inline void engine_ext::rnn_get_weight_space_size(const rnn_desc &desc, size_t *weight_space_size) { *weight_space_size = 0; rnn_forward_internal(desc, ::dnnl::prop_kind::forward_inference, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, weight_space_size, nullptr, nullptr); return; } inline void engine_ext::rnn_get_scratchpad_workspace_size( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, size_t *scratchpad_size, size_t *workspace_size) { *workspace_size = 0; *scratchpad_size = 0; rnn_forward_internal(desc, kind, src_desc, nullptr, memory_desc_ext(), nullptr, memory_desc_ext(), nullptr, nullptr, memory_desc_ext(), nullptr, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, true, nullptr, workspace_size, scratchpad_size); return; } inline sycl::event engine_ext::async_rnn_forward( const rnn_desc &desc, ::dnnl::prop_kind kind, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, const memory_desc_ext &iter_desc, void *src_iter, void *dst_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *dst_iter_c, size_t weight_size, void *weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { return rnn_forward_internal( desc, kind, src_desc, src, dst_desc, dst, iter_desc, src_iter, dst_iter, iter_c_desc, src_iter_c, dst_iter_c, weight_size, weight, workspace_size, workspace, scratchpad_size, scratchpad, false, nullptr, nullptr, nullptr); } inline sycl::event engine_ext::async_rnn_backward( const rnn_desc &desc, const memory_desc_ext &dst_desc, void *dst, void *diff_dst, const memory_desc_ext &src_desc, void *src, void *diff_src, const memory_desc_ext &iter_desc, void *src_iter, void *diff_dst_iter, void *diff_src_iter, const memory_desc_ext &iter_c_desc, void *src_iter_c, void *diff_dst_iter_c, void *diff_src_iter_c, size_t weight_size, void *weight, void *diff_weight, size_t scratchpad_size, void *scratchpad, size_t workspace_size, void *workspace) { ::dnnl::memory::data_type src_dt; ::dnnl::memory::format_tag src_format_tag; rnn_mode mode; rnn_memory_format_tag format_tag; rnn_bias_mode bias_mode; rnn_direction direction; dpct::library_data_t dt; int direction_num = 1, input_size = 0, hidden_size = 0, projection_size = 0, layer_size = 0, gate_num = 1, output_size = 0, data_type_size = 0, seq_length = 1, batch_size = 1; void *last_layer_cache = nullptr; void *hidden_layer_cache = nullptr; sycl::event e; std::vector<int> offset(9, 0); std::vector<void *> data = { src, dst, (uint8_t *)src_iter + iter_desc.get_size(), nullptr, (uint8_t *)src_iter_c + iter_c_desc.get_size(), nullptr, (uint8_t *)weight + weight_size, (uint8_t *)workspace + workspace_size, diff_src, diff_dst, (uint8_t *)diff_src_iter + iter_desc.get_size(), (uint8_t *)diff_dst_iter + iter_desc.get_size(), (uint8_t *)diff_src_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_dst_iter_c + iter_c_desc.get_size(), (uint8_t *)diff_weight + weight_size, scratchpad}; desc.get(&mode, &bias_mode, &direction, &dt, &input_size, &hidden_size, &projection_size, &layer_size); get_rnn_configuration(src_desc.get_desc(), direction, mode, dt, hidden_size, &src_dt, &src_format_tag, &projection_size, &output_size, &seq_length, &batch_size, &direction_num, &gate_num); if (direction == rnn_direction::bidirectional) { if (layer_size > 1) { last_layer_cache = allocate(src_desc); hidden_layer_cache = allocate(src_desc); data[8] = last_layer_cache; } e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_concat, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, 2 * output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); if (layer_size > 1) { data[8] = hidden_layer_cache; data[9] = last_layer_cache; e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::bidirectional_sum, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, 1, direction_num, hidden_size, gate_num, projection_size, data, offset, layer_size - 1); _q->memcpy(diff_src, ((layer_size - 1) % 2 == 0) ? last_layer_cache : hidden_layer_cache, src_desc.get_size()); } } else { e = execute_rnn_backward_primitive( mode, ::dnnl::rnn_direction::unidirectional_left2right, bias_mode, src_dt, src_format_tag, seq_length, batch_size, output_size, output_size, layer_size, direction_num, hidden_size, gate_num, projection_size, data, offset, 1); } if (last_layer_cache && hidden_layer_cache) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(last_layer_cache, *_q); sycl::free(hidden_layer_cache, *_q); }); }); } return e; } inline size_t engine_ext::get_dropout_state_size(){ #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else sycl::queue q; if(_random_engine_state_size == -1) { if(_q){ q = *_q; } else { q = dpct::get_current_device().default_queue(); } auto rand_engine = rng_engine_t(q, 0); _random_engine_state_size = oneapi::mkl::rng::get_state_size(rand_engine); } return _random_engine_state_size; #endif } inline size_t engine_ext::get_dropout_workspace_size(const memory_desc_ext &src_desc) { return src_desc.get_size(); } inline sycl::event engine_ext::async_dropout_forward(dropout_desc &desc, const memory_desc_ext &src_desc, void *src, const memory_desc_ext &dst_desc, void *dst, void *workspace, size_t workspace_size) { if (workspace_size < src_desc.get_size()) { throw std::runtime_error("async_dropout_forward: no sufficient workspace."); } float p = desc.get_probability(); if (p == 1.f) { return _q->memset(dst, 0, dst_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, src_desc, src, 0.f, dst_desc, dst); } float scale_factor = 1.f / (1.f - p); void *cache = workspace; memory_desc_ext rng_data_desc( ::dnnl::memory::desc(src_desc.get_dims(), ::dnnl::memory::data_type::s32, src_desc.get_strides())); if (src_desc.get_desc().get_data_type() != ::dnnl::memory::data_type::s32) { cache = allocate(rng_data_desc); } desc.generate(_q, _random_engine_state_size, rng_data_desc.get_element_num(), (std::int32_t *)cache); if (cache == workspace) { async_scale(scale_factor, src_desc, workspace); } else { async_reorder(scale_factor, rng_data_desc, cache, 0.f, src_desc, workspace); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(src_desc.get_desc(), _eng, src)}, {DNNL_ARG_SRC_1, ::dnnl::memory(src_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(dst_desc.get_desc(), _eng, dst)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, src_desc.get_desc(), src_desc.get_desc(), dst_desc.get_desc()); auto e = execute_primitive(primitive, execution_args); if (cache != workspace) { _q->submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { sycl::free(cache, *_q); }); }); } return e; } inline sycl::event engine_ext::async_dropout_backward( dropout_desc &desc, const memory_desc_ext &diff_dst_desc, void *diff_dst, const memory_desc_ext &diff_src_desc, void *diff_src, void *workspace, size_t workspace_size) { float p = desc.get_probability(); if (p == 1.f) { return _q->memset(diff_src, 0, diff_src_desc.get_size()); } else if (p == 0.f) { return async_reorder(1.f, diff_dst_desc, diff_dst, 0.f, diff_src_desc, diff_src); } auto execution_args = new std::unordered_map<int, ::dnnl::memory>{ {DNNL_ARG_SRC_0, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, diff_dst)}, {DNNL_ARG_SRC_1, ::dnnl::memory(diff_dst_desc.get_desc(), _eng, workspace)}, {DNNL_ARG_DST, ::dnnl::memory(diff_src_desc.get_desc(), _eng, diff_src)}}; auto primitive = create_primitive<::dnnl::binary>( ::dnnl::algorithm::binary_mul, diff_dst_desc.get_desc(), diff_dst_desc.get_desc(), diff_src_desc.get_desc()); return execute_primitive(primitive, execution_args); } } // namespace dnnl } // namespace dpct #endif // __DPCT_DNNL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/lapack_utils.hpp
//==---- lapack_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LAPACK_UTILS_HPP__ #define __DPCT_LAPACK_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace lapack { /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The symmetric matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The symmetric matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T> inline int sygvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, T *w, T *scratchpad, int scratchpad_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<T>(a); auto b_buffer = get_buffer<T>(b); auto w_buffer = get_buffer<T>(w); auto scratchpad_buffer = get_buffer<T>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class sygvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::sygvd(queue, itype, jobz, uplo, n, a, lda, b, ldb, w, scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: sygvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes all the eigenvalues, and optionally, the eigenvectors of a complex /// generalized Hermitian positive-definite eigenproblem using a divide and /// conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1 or 2 or 3. Specifies the problem type to be solved. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrices A and B. /// \param [in,out] a The Hermitian matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b The Hermitian matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [in] w Eigenvalues. /// \param [in] scratchpad Scratchpad memory to be used by the routine /// for storing intermediate results. /// \param [in] scratchpad_size Size of scratchpad memory as a number of /// floating point elements of type T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename Tw> inline int hegvd(sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, Tw *w, T *scratchpad, int scratchpad_size, int *info) { using Ty = typename DataType<T>::T2; #ifdef DPCT_USM_LEVEL_NONE auto info_buf = get_buffer<int>(info); auto a_buffer = get_buffer<Ty>(a); auto b_buffer = get_buffer<Ty>(b); auto w_buffer = get_buffer<Tw>(w); auto scratchpad_buffer = get_buffer<Ty>(scratchpad); int info_val = 0; int ret_val = 0; try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, a_buffer, lda, b_buffer, ldb, w_buffer, scratchpad_buffer, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_val = static_cast<int>(e.info()); ret_val = 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; ret_val = 1; } queue.submit([&, info_val](sycl::handler &cgh) { auto info_acc = info_buf.get_access<sycl::access_mode::write>(cgh); cgh.single_task<dpct_kernel_name<class hegvd_set_info, T>>( [=]() { info_acc[0] = info_val; }); }); return ret_val; #else try { oneapi::mkl::lapack::hegvd(queue, itype, jobz, uplo, n, (Ty *)a, lda, (Ty *)b, ldb, w, (Ty *)scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::exception const& e) { std::cerr << "Unexpected exception caught during call to LAPACK API: hegvd" << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; int info_val = static_cast<int>(e.info()); queue.memcpy(info, &info_val, sizeof(int)).wait(); return 1; } catch (sycl::exception const& e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, sizeof(int)).wait(); return 1; } queue.memset(info, 0, sizeof(int)); return 0; #endif } /// Computes the Cholesky factorizations of a batch of symmetric (or Hermitian, /// for complex data) positive-definite matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrf_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, T *a[], int lda, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t lda_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->lda_info = lda; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrf_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->lda_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrf_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), (Ty **)a, &(matrix_info->lda_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrf_batch_scratchpad_size/potrf_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } /// Solves a batch of systems of linear equations with a Cholesky-factored /// symmetric (Hermitian) positive-definite coefficient matrices. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] queue Device queue where calculations will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] nrhs The number of right-hand sides. /// \param [in,out] a Array of pointers to matrix A. /// \param [in] lda The leading dimension of matrix A. /// \param [in,out] b Array of pointers to matrix B. /// \param [in] ldb The leading dimension of matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. /// \param [in] group_size The batch size. template <typename T> inline int potrs_batch(sycl::queue &queue, oneapi::mkl::uplo uplo, int n, int nrhs, T *a[], int lda, T *b[], int ldb, int *info, int group_size) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else using Ty = typename DataType<T>::T2; struct matrix_info_t { oneapi::mkl::uplo uplo_info; std::int64_t n_info; std::int64_t nrhs_info; std::int64_t lda_info; std::int64_t ldb_info; std::int64_t group_size_info; }; matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->uplo_info = uplo; matrix_info->n_info = n; matrix_info->nrhs_info = nrhs; matrix_info->lda_info = lda; matrix_info->ldb_info = ldb; matrix_info->group_size_info = group_size; std::int64_t scratchpad_size = 0; sycl::event e; Ty *scratchpad = nullptr; try { scratchpad_size = oneapi::mkl::lapack::potrs_batch_scratchpad_size<Ty>( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), &(matrix_info->lda_info), &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info)); scratchpad = sycl::malloc_device<Ty>(scratchpad_size, queue); e = oneapi::mkl::lapack::potrs_batch( queue, &(matrix_info->uplo_info), &(matrix_info->n_info), &(matrix_info->nrhs_info), (Ty **)a, &(matrix_info->lda_info), (Ty **)b, &(matrix_info->ldb_info), 1, &(matrix_info->group_size_info), scratchpad, scratchpad_size); } catch (oneapi::mkl::lapack::batch_error const &be) { std::cerr << "Unexpected exception caught during call to LAPACK API: " "potrs_batch_scratchpad_size/potrs_batch" << std::endl << "reason: " << be.what() << std::endl << "number: " << be.info() << std::endl; int i = 0; auto &ids = be.ids(); std::vector<int> info_vec(group_size); for (auto const &e : be.exceptions()) { try { std::rethrow_exception(e); } catch (oneapi::mkl::lapack::exception &e) { std::cerr << "Exception " << ids[i] << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl; info_vec[i] = e.info(); i++; } } queue.memcpy(info, info_vec.data(), group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; queue.memset(info, 0, group_size * sizeof(int)).wait(); std::free(matrix_info); if (scratchpad) sycl::free(scratchpad, queue); return 1; } queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); sycl::free(scratchpad, queue); }); }); queue.memset(info, 0, group_size * sizeof(int)); return 0; #endif } namespace detail { template <template <typename> typename functor_t, typename... args_t> inline int lapack_shim(sycl::queue &q, library_data_t a_type, int *info, std::string const &lapack_api_name, args_t &&...args) { auto handle_lapack_exception = [&](const oneapi::mkl::lapack::exception &e) { std::cerr << "Unexpected exception caught during call to LAPACK API: " << lapack_api_name << std::endl << "reason: " << e.what() << std::endl << "info: " << e.info() << std::endl << "detail: " << e.detail() << std::endl; if (e.info() < std::numeric_limits<int>::min() || e.info() > std::numeric_limits<int>::max()) { throw std::runtime_error("e.info() exceeds the limit of int type"); } int info_val = static_cast<int>(e.info()); if (info) dpct::detail::dpct_memcpy(q, info, &info_val, sizeof(int), memcpy_direction::host_to_device) .wait(); return 1; }; try { switch (a_type) { case library_data_t::real_float: { functor_t<float>()(std::forward<args_t>(args)...); break; } case library_data_t::real_double: { functor_t<double>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_float: { functor_t<std::complex<float>>()(std::forward<args_t>(args)...); break; } case library_data_t::complex_double: { functor_t<std::complex<double>>()(std::forward<args_t>(args)...); break; } default: throw std::runtime_error("the data type is unsupported"); } } catch (oneapi::mkl::lapack::batch_error const &be) { try { std::rethrow_exception(be.exceptions()[0]); } catch (oneapi::mkl::lapack::exception &e) { return handle_lapack_exception(e); } } catch (oneapi::mkl::lapack::exception const &e) { return handle_lapack_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught synchronous SYCL exception:" << std::endl << "reason: " << e.what() << std::endl; if (info) dpct::detail::dpct_memset(q, info, 0, sizeof(int)).wait(); return 1; } return 0; } template <typename T> class working_memory { public: working_memory(std::size_t element_number, const sycl::queue &q) : _q(q) { _ptr = dpct::detail::dpct_malloc(element_number * sizeof(T), _q); } auto get_memory() { return dpct::detail::get_memory(reinterpret_cast<T *>(_ptr)); } auto get_ptr() { return _ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_ptr) { dpct::async_dpct_free({_ptr}, {_e}, _q); } } private: void *_ptr = nullptr; sycl::event _e; sycl::queue _q; }; std::size_t byte_to_element_number(std::size_t size_in_byte, dpct::library_data_t element_type) { auto dv = std::lldiv( size_in_byte, dpct::detail::library_data_size[static_cast<unsigned int>(element_type)] / 8); if (dv.rem) { throw std::runtime_error( "size_in_byte is not divisible by the size of element (in bytes)"); } return dv.quot; } std::size_t element_number_to_byte(std::size_t size_in_element, dpct::library_data_t element_type) { auto dv = std::lldiv( dpct::detail::library_data_size[static_cast<unsigned int>(element_type)], 8); if (dv.rem) { throw std::runtime_error( "the size of element (in bits) is not divisible by 8"); } return size_in_element * dv.quot; } inline oneapi::mkl::jobsvd char2jobsvd(signed char job) { switch (job) { case 'A': return oneapi::mkl::jobsvd::vectors; case 'S': return oneapi::mkl::jobsvd::somevec; case 'O': return oneapi::mkl::jobsvd::vectorsina; case 'N': return oneapi::mkl::jobsvd::novec; default: throw std::runtime_error("the job type is unsupported"); } } template <typename T> struct getrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::getrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct getrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrf(q, m, n, a_data, lda, ipiv_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrs_impl { void operator()(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { auto ipiv_data = dpct::detail::get_memory(ipiv); std::int64_t device_ws_size = oneapi::mkl::lapack::getrs_scratchpad_size<T>( q, trans, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::getrs(q, trans, n, nrhs, a_data, lda, ipiv_data, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct geqrf_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::geqrf_scratchpad_size<T>(q, m, n, lda); } }; template <typename T> struct geqrf_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto tau_data = dpct::detail::get_memory(reinterpret_cast<T *>(tau)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::geqrf(q, m, n, a_data, lda, tau_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct getrfnp_impl { void operator()(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::int64_t a_stride = m * lda; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::getrfnp_batch(q, m, n, a_data, lda, a_stride, 1, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct gesvd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::gesvd_scratchpad_size<T>( q, jobu, jobvt, m, n, lda, ldu, ldvt); } }; template <typename T> struct ElementType { using value_tpye = T; }; template <typename T> struct ElementType<std::complex<T>> { using value_tpye = T; }; template <typename T> struct gesvd_impl { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto s_data = dpct::detail::get_memory( reinterpret_cast<typename ElementType<T>::value_tpye *>(s)); auto u_data = dpct::detail::get_memory(reinterpret_cast<T *>(u)); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::gesvd(q, jobu, jobvt, m, n, a_data, lda, s_data, u_data, ldu, vt_data, ldvt, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct gesvd_conj_impl : public gesvd_impl<T> { void operator()(sycl::queue &q, oneapi::mkl::jobsvd jobu, oneapi::mkl::jobsvd jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using base = gesvd_impl<T>; base::operator()(q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); auto vt_data = dpct::detail::get_memory(reinterpret_cast<T *>(vt)); oneapi::mkl::blas::row_major::imatcopy(q, oneapi::mkl::transpose::conjtrans, n, n, T(1.0f), vt_data, ldvt, ldvt); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct potrf_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { device_ws_size = oneapi::mkl::lapack::potrf_scratchpad_size<T>(q, uplo, n, lda); } }; template <typename T> struct potrf_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::potrf(q, uplo, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; template <typename T> struct potrs_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { std::int64_t device_ws_size = oneapi::mkl::lapack::potrs_scratchpad_size<T>( q, uplo, n, nrhs, lda, ldb); working_memory<T> device_ws(device_ws_size, q); auto device_ws_data = device_ws.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); oneapi::mkl::lapack::potrs(q, uplo, n, nrhs, a_data, lda, b_data, ldb, device_ws_data, device_ws_size); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); device_ws.set_event(e); } }; template <typename T> struct value_type_trait { using value_type = T; }; template <typename T> struct value_type_trait<std::complex<T>> { using value_type = T; }; template <typename T> auto lamch_s() { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else if constexpr (std::is_same_v<T, float>) { return slamch("S"); } else if constexpr (std::is_same_v<T, double>) { return dlamch("S"); } throw std::runtime_error("the type is unsupported"); #endif } #define DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ device_ws_size = oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ device_ws_size = oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) #define DISPATCH_FLOAT_FOR_CALCULATION(FUNC, ...) \ do { \ if constexpr (std::is_floating_point_v<T>) { \ oneapi::mkl::lapack::sy##FUNC(__VA_ARGS__); \ } else { \ oneapi::mkl::lapack::he##FUNC(__VA_ARGS__); \ } \ } while (0) template <typename T> struct syheevx_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evx_scratchpad_size<T>, q, jobz, range, uplo, n, lda, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> constexpr library_data_t get_library_data_t_from_type() { if constexpr (std::is_same_v<T, float>) { return library_data_t::real_float; } else if constexpr (std::is_same_v<T, double>) { return library_data_t::real_double; } else if constexpr (std::is_same_v<T, sycl::float2> || std::is_same_v<T, std::complex<float>>) { return library_data_t::complex_float; } else if constexpr (std::is_same_v<T, sycl::double2> || std::is_same_v<T, std::complex<double>>) { return library_data_t::complex_double; } throw std::runtime_error("the type is unsupported"); } template <typename T> struct syheevx_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(evx, q, jobz, range, uplo, n, a_data, lda, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvx_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvx_scratchpad_size<T>, q, itype, jobz, range, uplo, n, lda, ldb, vl_value, vu_value, il, iu, abstol, lda); #endif } }; template <typename T> struct syhegvx_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::compz jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; working_memory<T> z(n * lda, q); working_memory<std::int64_t> m_device(1, q); auto z_data = z.get_memory(); auto m_device_data = m_device.get_memory(); auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto vl_value = *reinterpret_cast<value_t *>(vl); auto vu_value = *reinterpret_cast<value_t *>(vu); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); auto abstol = 2 * lamch_s<value_t>(); DISPATCH_FLOAT_FOR_CALCULATION(gvx, q, itype, jobz, range, uplo, n, a_data, lda, b_data, ldb, vl_value, vu_value, il, iu, abstol, m_device_data, w_data, z_data, lda, device_ws_data, device_ws_size); dpct::async_dpct_memcpy(a, z.get_ptr(), n * lda * sizeof(T), memcpy_direction::device_to_device, q); dpct::async_dpct_memcpy(m, m_device.get_ptr(), sizeof(std::int64_t), memcpy_direction::device_to_host, q); sycl::event e = dpct::detail::dpct_memset(q, info, 0, sizeof(int)); z.set_event(e); m_device.set_event(e); #endif } }; template <typename T> struct syhegvd_scratchpad_size_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(gvd_scratchpad_size<T>, q, itype, jobz, uplo, n, lda, ldb); } }; template <typename T> struct syhegvd_impl { void operator()(sycl::queue &q, std::int64_t itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *b, std::int64_t ldb, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto b_data = dpct::detail::get_memory(reinterpret_cast<T *>(b)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(gvd, q, itype, jobz, uplo, n, a_data, lda, b_data, ldb, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; oneapi::mkl::compz job2compz(const oneapi::mkl::job &job) { oneapi::mkl::compz ret; if (job == oneapi::mkl::job::novec) { ret = oneapi::mkl::compz::novectors; } else if (job == oneapi::mkl::job::vec) { ret = oneapi::mkl::compz::vectors; } else { throw std::runtime_error("the job type is unsupported"); } return ret; } template <typename T> struct syheev_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(ev_scratchpad_size<T>, q, jobz, uplo, n, lda); #endif } }; template <typename T> struct syheev_impl { void operator()(sycl::queue &q, oneapi::mkl::compz jobz, oneapi::mkl::uplo uplo, std::int64_t n, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(ev, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; template <typename T> struct syheevd_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE(evd_scratchpad_size<T>, q, jobz, uplo, n, lda); } }; template <typename T> struct syheevd_impl { void operator()(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *w, void *device_ws, std::size_t device_ws_size, int *info) { using value_t = typename value_type_trait<T>::value_type; auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); auto w_data = dpct::detail::get_memory(reinterpret_cast<value_t *>(w)); DISPATCH_FLOAT_FOR_CALCULATION(evd, q, jobz, uplo, n, a_data, lda, w_data, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); } }; #undef DISPATCH_FLOAT_FOR_SCRATCHPAD_SIZE #undef DISPATCH_FLOAT_FOR_CALCULATION template <typename T> struct trtri_scratchpad_size_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t &device_ws_size) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else device_ws_size = oneapi::mkl::lapack::trtri_scratchpad_size<T>(q, uplo, diag, n, lda); #endif } }; template <typename T> struct trtri_impl { void operator()(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error( "The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else auto a_data = dpct::detail::get_memory(reinterpret_cast<T *>(a)); auto device_ws_data = dpct::detail::get_memory(reinterpret_cast<T *>(device_ws)); oneapi::mkl::lapack::trtri(q, uplo, diag, n, a_data, lda, device_ws_data, device_ws_size); dpct::detail::dpct_memset(q, info, 0, sizeof(int)); #endif } }; } // namespace detail /// Computes the size of workspace memory of getrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int getrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::getrf_scratchpad_size_impl>( q, a_type, nullptr, "getrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the LU factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by L and U. The unit /// diagonal elements of L are not stored. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] ipiv The pivot indices. If \p ipiv is nullptr, non-pivoting /// LU factorization is computed. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, void *device_ws, std::size_t device_ws_size, int *info) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); if (ipiv == nullptr) { return detail::lapack_shim<detail::getrfnp_impl>( q, a_type, info, "getrfnp_batch", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); } return detail::lapack_shim<detail::getrf_impl>( q, a_type, info, "getrf", q, m, n, a_type, a, lda, ipiv, device_ws, device_ws_size_in_element_number, info); #endif } /// Solves a system of linear equations with a LU-factored square coefficient /// matrix, with multiple right-hand sides. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] trans Indicates the form of the linear equation. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in] a The input matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ipiv The pivot indices. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int getrs(sycl::queue &q, oneapi::mkl::transpose trans, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, std::int64_t *ipiv, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::getrs_impl>( q, a_type, info, "getrs_scratchpad_size/getrs", q, trans, n, nrhs, a_type, a, lda, ipiv, b_type, b, ldb, info); } /// Computes the size of workspace memory of geqrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int geqrf_scratchpad_size(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::geqrf_scratchpad_size_impl>( q, a_type, nullptr, "geqrf_scratchpad_size", q, m, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the QR factorization of a general m-by-n matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] tau_type The data type of the array tau. /// \param [in] tau The array contains scalars that define elementary reflectors /// for the matrix Q in its decomposition in a product of elementary reflectors. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int geqrf(sycl::queue &q, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t tau_type, void *tau, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::geqrf_impl>( q, a_type, info, "geqrf", q, m, n, a_type, a, lda, tau_type, tau, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu_enum, jobvt_enum, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] u_type The data type of the matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] host_ws_size The host workspace size as a number of elements /// of type \param a_type. Currently the value is always zero. inline int gesvd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t u_type, std::int64_t ldu, library_data_t vt_type, std::int64_t ldvt, int *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } std::size_t device_ws_size_64; int ret = detail::lapack_shim<detail::gesvd_scratchpad_size_impl>( q, a_type, nullptr, "gesvd_scratchpad_size", q, jobu, jobvt, m, n, a_type, lda, u_type, ldu, vt_type, ldvt, device_ws_size_64); *device_ws_size = device_ws_size_64; return ret; } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobu Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] jobvt Must be 'A' (representing jobsvd::vectors), 'S' /// (representing jobsvd::somevec), 'O' (representing jobsvd::vectorsina) or 'N' /// (representing jobsvd::novec). /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, signed char jobu, signed char jobvt, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu_enum = detail::char2jobsvd(jobu); oneapi::mkl::jobsvd jobvt_enum = detail::char2jobsvd(jobvt); std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::gesvd_impl>( q, a_type, info, "gesvd", q, jobu_enum, jobvt_enum, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of gesvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::vec or job::novec. /// \param [in] all_vec Only have effects when \param jobz is job::vec.If the /// value is zero, all m columns of U are returned in the matrix U, otherwise /// the first min( \param m, \param n ) columns of U (the left singular vectors) /// are returned in the matrix U. /// \param [in] m The number of rows in the matrix A. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A and it will be overwritten according /// to \p jobu and \p jobvt. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] s_type The data type of the matrix S. /// \param [out] s The output matrix S. /// \param [in] u_type The data type of the matrix U. /// \param [out] u The output matrix U. /// \param [in] ldu The leading dimension of the matrix U. /// \param [in] vt_type The data type of the matrix VT. /// \param [out] vt The output matrix VT. /// \param [in] ldvt The leading dimension of the matrix VT. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \param a_type. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int gesvd(sycl::queue &q, oneapi::mkl::job jobz, std::int64_t all_vec, std::int64_t m, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t s_type, void *s, library_data_t u_type, void *u, std::int64_t ldu, library_data_t vt_type, void *vt, std::int64_t ldvt, void *device_ws, std::size_t device_ws_size, int *info) { oneapi::mkl::jobsvd jobu; oneapi::mkl::jobsvd jobvt; if (jobz == oneapi::mkl::job::vec) { if (all_vec) { jobu = jobvt = oneapi::mkl::jobsvd::somevec; } else { jobu = jobvt = oneapi::mkl::jobsvd::vectors; } } else if (jobz == oneapi::mkl::job::novec) { jobu = jobvt = oneapi::mkl::jobsvd::novec; } else { throw std::runtime_error("the job type is unsupported"); } detail::lapack_shim<detail::gesvd_conj_impl>( q, a_type, info, "gesvd", q, jobu, jobvt, m, n, a_type, a, lda, s_type, s, u_type, u, ldu, vt_type, vt, ldvt, device_ws, device_ws_size, info); return 0; } /// Computes the size of workspace memory of potrf function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int potrf_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::potrf_scratchpad_size_impl>( q, a_type, nullptr, "potrf_scratchpad_size", q, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the Cholesky factorization of a symmetric (Hermitian) /// positive-definite matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The number of columns in the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrf(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::potrf_impl>( q, a_type, info, "potrf", q, uplo, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); } /// Solves a system of linear equations with a Cholesky-factored symmetric /// (Hermitian) positive-definite coefficient matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q The queue where the routine should be executed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A and the number of rows in matrix B. /// \param [in] nrhs The number of right hand sides. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. Overwritten by the Cholesky factor U /// or L, as specified by \p uplo. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] b_type The data type of the matrix B. /// \param [in, out] b The matrix B, whose columns are the right-hand sides /// for the systems of equations. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int potrs(sycl::queue &q, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t nrhs, library_data_t a_type, void *a, std::int64_t lda, library_data_t b_type, void *b, std::int64_t ldb, int *info) { return detail::lapack_shim<detail::potrs_impl>( q, a_type, info, "potrs_scratchpad_size/potrs", q, uplo, n, nrhs, a_type, a, lda, b_type, b, ldb, info); } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, a_type, nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, vl, vu, il, iu, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *vl, void *vu, std::int64_t il, std::int64_t iu, std::int64_t *m, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheevx_impl>( q, a_type, info, "syevx/heevx", q, compz_jobz, range, uplo, n, a_type, a, lda, vl, vu, il, iu, m, w_type, w, device_ws, device_ws_size_in_element_number, info); q.wait(); return ret; } /// Computes the size of workspace memory of syevx/heevx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syheevx_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevx_scratchpad_size/heevx_scratchpad_size", q, compz_jobz, range, uplo, n, lda, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a /// symmetric/Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevx(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syheevx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevx/heevx", q, compz_jobz, range, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, &vl, &vu, il, iu, &m64, detail::get_library_data_t_from_type<ValueT>(), w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvx/hegvx function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T, typename ValueT> inline int syhegvx_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, int lda, int ldb, ValueT vl, ValueT vu, int il, int iu, int *device_ws_size) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvx_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvx_scratchpad_size/hegvx_scratchpad_size", q, itype, compz_jobz, range, uplo, n, lda, ldb, &vl, &vu, il, iu, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes selected eigenvalues and, optionally, eigenvectors of a real /// generalized symmetric/Hermitian definite eigenproblem. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] range Must be rangev::all, rangev::values or uplo::indices. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, the lower or upper triangle is /// overwritten. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] vl If range == rangev::values, the lower bound of the interval /// to be searched for eigenvalues /// \param [in] vu If range == rangev::values, the upper bound of the interval /// to be searched for eigenvalues /// \param [in] il If range == rangev::indices, the indices of the smallest /// eigenvalue to be returned. /// \param [in] iu If range == rangev::indices, the indices of the largest /// eigenvalue to be returned. /// \param [out] m The total number of eigenvalues found. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvx(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::rangev range, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT vl, ValueT vu, int il, int iu, int *m, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); std::int64_t m64; int ret = detail::lapack_shim<detail::syhegvx_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvx/hegvx", q, itype, compz_jobz, range, uplo, n, a, lda, b, ldb, &vl, &vu, il, iu, &m64, w, device_ws, device_ws_size, info); q.wait(); *m = (int)m64; return ret; } /// Computes the size of workspace memory of sygvd/hegvd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] ldb The leading dimension of the matrix B. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syhegvd_scratchpad_size(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int ldb, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syhegvd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "sygvd_scratchpad_size/hegvd_scratchpad_size", q, itype, jobz, uplo, n, lda, ldb, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real generalized /// symmetric/Hermitian definite eigenproblem using a divide and conquer method. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] itype Must be 1, 2 or 3. /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in, out] b The input matrix B. /// \param [in] ldb The leading dimension of the matrix B. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syhegvd(sycl::queue &q, int itype, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, T *b, int ldb, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syhegvd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "sygvd/hegvd", q, itype, jobz, uplo, n, a, lda, b, ldb, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syev/heev function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheev_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, int lda, int *device_ws_size) { std::size_t device_ws_size_tmp; oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); int ret = detail::lapack_shim<detail::syheev_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syev_scratchpad_size/heev_scratchpad_size", q, compz_jobz, uplo, n, lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /// or Hermitian matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The device workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheev(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, int n, T *a, int lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { oneapi::mkl::compz compz_jobz = detail::job2compz(jobz); return detail::lapack_shim<detail::syheev_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syev/heev", q, compz_jobz, uplo, n, a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, std::int64_t lda, library_data_t w_type, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, a_type, nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, library_data_t w_type, void *w, void *device_ws, std::size_t device_ws_size, int *info) { std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::syheevd_impl>( q, a_type, info, "syevd/heevd", q, jobz, uplo, n, a_type, a, lda, w, device_ws, device_ws_size_in_element_number, info); } /// Computes the size of workspace memory of syevd/heevd function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] device_ws_size The device workspace size as a number of /// elements of type \tparam T. template <typename T> inline int syheevd_scratchpad_size(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, std::int64_t lda, int *device_ws_size) { std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::syheevd_scratchpad_size_impl>( q, detail::get_library_data_t_from_type<T>(), nullptr, "syevd_scratchpad_size/heevd_scratchpad_size", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), lda, device_ws_size_tmp); *device_ws_size = (int)device_ws_size_tmp; return ret; } /// Computes all eigenvalues and, optionally, all eigenvectors of a real /// symmetric or Hermitian matrix using divide and conquer algorithm. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] jobz Must be job::novec or job::vec. /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// eigenvectors. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] w_type The data type of the eigenvalues. /// \param [out] w The eigenvalues of the matrix A in ascending order. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size as a number of /// elements of type \tparam T. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. template <typename T, typename ValueT> inline int syheevd(sycl::queue &q, oneapi::mkl::job jobz, oneapi::mkl::uplo uplo, std::int64_t n, T *a, std::int64_t lda, ValueT *w, T *device_ws, int device_ws_size, int *info) { return detail::lapack_shim<detail::syheevd_impl>( q, detail::get_library_data_t_from_type<T>(), info, "syevd/heevd", q, jobz, uplo, n, detail::get_library_data_t_from_type<T>(), a, lda, w, device_ws, device_ws_size, info); } /// Computes the size of workspace memory of trtri function. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in] lda The leading dimension of the matrix A. /// \param [out] device_ws_size The device workspace in bytes. /// \param [out] host_ws_size The host workspace size in bytes. Currently the /// value is always zero. inline int trtri_scratchpad_size(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, std::int64_t lda, std::size_t *device_ws_size, std::size_t *host_ws_size = nullptr) { if (host_ws_size) *host_ws_size = 0; std::size_t device_ws_size_tmp; int ret = detail::lapack_shim<detail::trtri_scratchpad_size_impl>( q, a_type, nullptr, "trtri_scratchpad_size", q, uplo, diag, n, a_type, lda, device_ws_size_tmp); *device_ws_size = detail::element_number_to_byte(device_ws_size_tmp, a_type); return ret; } /// Computes the inverse of a triangular matrix. /// \return Returns 0 if no synchronous exception, otherwise returns 1. /// \param [in] q Device queue where computation will be performed. It must /// have the in_order property when using the USM mode (DPCT_USM_LEVEL_NONE is /// not defined). /// \param [in] uplo Must be uplo::upper or uplo::lower. /// \param [in] diag Must be diag::nonunit or diag::unit. /// \param [in] n The order of the matrix A. /// \param [in] a_type The data type of the matrix A. /// \param [in, out] a The input matrix A. On exit, it is overwritten by /// the inverse matrix of A. /// \param [in] lda The leading dimension of the matrix A. /// \param [in] device_ws The workspace. /// \param [in] device_ws_size The workspace size in bytes. /// \param [out] info If lapack synchronous exception is caught, the value /// returned from info() method of the exception is set to \p info. inline int trtri(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::diag diag, std::int64_t n, library_data_t a_type, void *a, std::int64_t lda, void *device_ws, std::size_t device_ws_size, int *info) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::size_t device_ws_size_in_element_number = detail::byte_to_element_number(device_ws_size, a_type); return detail::lapack_shim<detail::trtri_impl>( q, a_type, info, "trtri", q, uplo, diag, n, a_type, a, lda, device_ws, device_ws_size_in_element_number, info); #endif } } // namespace lapack } // namespace dpct #endif // __DPCT_LAPACK_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/fft_utils.hpp
//==---- fft_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FFT_UTILS_HPP__ #define __DPCT_FFT_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <optional> #include <utility> #include "lib_common_utils.hpp" namespace dpct { namespace fft { /// An enumeration type to describe the FFT direction is forward or backward. enum fft_direction : int { forward = 0, backward }; /// An enumeration type to describe the types of FFT input and output data. enum fft_type : int { real_float_to_complex_float = 0, complex_float_to_real_float, real_double_to_complex_double, complex_double_to_real_double, complex_float_to_complex_float, complex_double_to_complex_double, }; /// A class to perform FFT calculation. class fft_engine { public: /// Default constructor. fft_engine() {} /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, library_data_t input_type, long long *onembed, long long ostride, long long odist, library_data_t output_type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<long long>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] input_type Input data type. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] output_type Output data type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, library_data_t input_type, int *onembed, int ostride, int odist, library_data_t output_type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; init<int>(dim, n, inembed, istride, idist, input_type, onembed, ostride, odist, output_type, batch, direction_and_placement); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { commit(exec_queue, dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, scratchpad_size, direction_and_placement); } /// Commit the configuration to calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n1, fft_type type, int batch, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(1); _n[0] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 1; _batch = batch; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(2); _n[0] = n2; _n[1] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 2; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Commit the configuration to calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] scratchpad_size The workspace size required for this FFT. /// If this value is used to allocate memory, \p direction_and_placement need /// to be specified explicitly to get correct result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. void commit(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, size_t *scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { _q = exec_queue; _n.resize(3); _n[0] = n3; _n[1] = n2; _n[2] = n1; std::tie(_input_type, _output_type) = fft_type_to_data_type(type); _dim = 3; _is_basic = true; if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } config_and_commit_basic(); if (scratchpad_size) { if (_is_estimate_call) *scratchpad_size = _workspace_estimate_bytes; else *scratchpad_size = _workspace_bytes; } } /// Create the class for calculate 1-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n1, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n1, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 2-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate 3-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int n3, int n2, int n1, fft_type type, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, n3, n2, n1, type, nullptr, direction_and_placement); return engine; } /// Create the class for calculate n-D FFT. /// \param [in] exec_queue The queue where the calculation should be executed. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If this value is specified, the direction parameter /// will be ignored in the fft_engine::compute function. If it is not set, /// forward direction(if current FFT is complex-to-complex) and out-of-place /// (false) are set by default. static fft_engine * create(sycl::queue *exec_queue, int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = new fft_engine(); engine->commit(exec_queue, dim, n, inembed, istride, idist, onembed, ostride, odist, type, batch, nullptr, direction_and_placement); return engine; } /// Create the class for calculate FFT without commit any config. static fft_engine *create() { fft_engine *engine = new fft_engine(); return engine; } /// Destroy the class for calculate FFT. /// \param [in] engine Pointer returned from fft_engine::craete. static void destroy(fft_engine *engine) { delete engine; } #ifdef __INTEL_MKL__ /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, long long *n, long long *inembed, long long istride, long long idist, long long *onembed, long long ostride, long long odist, fft_type type, long long batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating n-D FFT. /// \param [in] dim Dimension number of the data. /// \param [in] n Pointer to an array containing each dimension's size. /// \param [in] inembed Pointer to an array containing each dimension's size /// of the embedded input data. /// \param [in] istride Stride size of the input data. /// \param [in] idist Distance between the two batches of the input data. /// \param [in] onembed Pointer to an array containing each dimension's size /// of the embedded output data. /// \param [in] ostride Stride size of the output data. /// \param [in] odist Distance between the two batches of the output data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int dim, int *n, int *inembed, int istride, int idist, int *onembed, int ostride, int odist, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), dim, n, inembed, istride, idist, fft_type_to_data_type(type).first, onembed, ostride, odist, fft_type_to_data_type(type).second, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 1-D FFT. /// \param [in] n1 The size of the dimension of the data. /// \param [in] type The FFT type. /// \param [in] batch The number of FFT operations to perform. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT direction /// and placement info. If it is not set, forward direction(if current FFT is /// complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n1, fft_type type, int batch, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n1, type, batch, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 2-D FFT. /// \param [in] n2 The size of the 2nd dimension (outermost) of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } /// Estimates the workspace size for calculating 3-D FFT. /// \param [in] n3 The size of the 3rd dimension (outermost) of the data. /// \param [in] n2 The size of the 2nd dimension of the data. /// \param [in] n1 The size of the 1st dimension (innermost) of the data. /// \param [in] type The FFT type. /// \param [out] estimated_scratchpad_size The estimated workspace size /// required for this FFT. If this value is used to allocate memory, /// \p direction_and_placement need to be specified explicitly to get correct /// result. /// \param [in] direction_and_placement Explicitly specify the FFT /// direction and placement info. If it is not set, forward direction(if /// current FFT is complex-to-complex) and out-of-place (false) are set by default. static void estimate_size(int n3, int n2, int n1, fft_type type, size_t *estimated_scratchpad_size, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement = std::nullopt) { fft_engine *engine = fft_engine::create(); engine->_is_estimate_call = true; engine->commit(&dpct::get_default_queue(), n3, n2, n1, type, estimated_scratchpad_size, direction_and_placement); fft_engine::destroy(engine); } #endif /// Execute the FFT calculation. /// \param [in] input Pointer to the input data. /// \param [out] output Pointer to the output data. /// \param [in] direction The FFT direction. template <typename input_t, typename output_t> void compute(input_t *input, output_t *output, fft_direction direction) { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } else if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } else if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output); } } template <> void compute(float *input, sycl::float2 *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(sycl::float2 *input, float *output, fft_direction direction) { _direction = direction; compute_real<float, oneapi::mkl::dft::precision::SINGLE>((float *)input, (float *)output); } template <> void compute(double *input, sycl::double2 *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::double2 *input, double *output, fft_direction direction) { _direction = direction; compute_real<double, oneapi::mkl::dft::precision::DOUBLE>((double *)input, (double *)output); } template <> void compute(sycl::float2 *input, sycl::float2 *output, fft_direction direction) { compute_complex<float, oneapi::mkl::dft::precision::SINGLE>( (float *)input, (float *)output, direction); } template <> void compute(sycl::double2 *input, sycl::double2 *output, fft_direction direction) { compute_complex<double, oneapi::mkl::dft::precision::DOUBLE>( (double *)input, (double *)output, direction); } /// Setting the user's SYCL queue for calculation. /// \param [in] q Pointer to the SYCL queue. void set_queue(sycl::queue *q) { _q = q; } #ifdef __INTEL_MKL__ /// Setting whether to use external or internal workspace. /// \param [in] flag True means using internal workspace. False means using /// external workspace. void use_internal_workspace(bool flag = true) { _use_external_workspace = !flag; } /// Specify the external workspace. /// \param [in] ptr Pointer to the workspace. void set_workspace(void *ptr) { if (!_use_external_workspace) { return; } if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sc->set_workspace(data); } } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dc->set_workspace(data); } } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<float *>(ptr)); _desc_sr->set_workspace(data); } } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { if (_q->get_device().is_gpu()) { auto data = dpct::detail::get_memory(reinterpret_cast<double *>(ptr)); _desc_dr->set_workspace(data); } } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } #endif /// Get the workspace size. /// \param [out] scratchpad_size Workspace size in bytes. void get_workspace_size(size_t *scratchpad_size) { if (scratchpad_size) { *scratchpad_size = _workspace_bytes; } } private: static std::pair<library_data_t, library_data_t> fft_type_to_data_type(fft_type type) { switch (type) { case fft_type::real_float_to_complex_float: { return std::make_pair(library_data_t::real_float, library_data_t::complex_float); } case fft_type::complex_float_to_real_float: { return std::make_pair(library_data_t::complex_float, library_data_t::real_float); } case fft_type::real_double_to_complex_double: { return std::make_pair(library_data_t::real_double, library_data_t::complex_double); } case fft_type::complex_double_to_real_double: { return std::make_pair(library_data_t::complex_double, library_data_t::real_double); } case fft_type::complex_float_to_complex_float: { return std::make_pair(library_data_t::complex_float, library_data_t::complex_float); } case fft_type::complex_double_to_complex_double: { return std::make_pair(library_data_t::complex_double, library_data_t::complex_double); } } } void config_and_commit_basic() { if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { _desc_sc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_sc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_sc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_sc->commit(*_q); #endif } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { _desc_dc = std::make_shared< oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>>(_n); std::int64_t distance = 1; for (auto i : _n) distance = distance * i; _fwd_dist = distance; _bwd_dist = distance; _desc_dc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, distance); _desc_dc->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dc->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dc->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dc->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dc->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); else _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); _desc_dc->commit(*_q); #endif } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { _desc_sr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_sr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_sr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_sr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_sr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_sr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_sr); } else { _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); #endif } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { _desc_dr = std::make_shared<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>>( _n); if (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) _direction = fft_direction::forward; else _direction = fft_direction::backward; _desc_dr->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, _batch); #ifdef __INTEL_MKL__ if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } if (_use_external_workspace) { if (_q->get_device().is_gpu()) { _desc_dr->set_value( oneapi::mkl::dft::config_param::WORKSPACE, oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); } } if (_is_estimate_call) { if (_q->get_device().is_gpu()) { _desc_dr->get_value( oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, &_workspace_estimate_bytes); } } else { _desc_dr->commit(*_q); if (_q->get_device().is_gpu()) { _desc_dr->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, &_workspace_bytes); } } #else if (_is_user_specified_dir_and_placement && _is_inplace) { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); set_stride_and_distance_basic<true>(_desc_dr); } else { _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); #endif } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } } void config_and_commit_advanced() { #ifdef __INTEL_MKL__ #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); \ if (_use_external_workspace) { \ DESC->set_value(oneapi::mkl::dft::config_param::WORKSPACE, \ oneapi::mkl::dft::config_value::WORKSPACE_EXTERNAL); \ } \ if (_is_estimate_call) { \ if (_q->get_device().is_gpu()) { \ DESC->get_value( \ oneapi::mkl::dft::config_param::WORKSPACE_ESTIMATE_BYTES, \ &_workspace_estimate_bytes); \ } \ } else { \ DESC->commit(*_q); \ if (_is_estimate_call) { \ DESC->get_value(oneapi::mkl::dft::config_param::WORKSPACE_BYTES, \ &_workspace_bytes); \ } \ } \ } #else #define CONFIG_AND_COMMIT(DESC, PREC, DOM, TYPE) \ { \ DESC = std::make_shared<oneapi::mkl::dft::descriptor< \ oneapi::mkl::dft::precision::PREC, oneapi::mkl::dft::domain::DOM>>( \ _n); \ set_stride_advanced(DESC); \ DESC->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _fwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _bwd_dist); \ DESC->set_value(oneapi::mkl::dft::config_param::NUMBER_OF_TRANSFORMS, \ _batch); \ if (_is_user_specified_dir_and_placement && _is_inplace) \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::INPLACE); \ else \ DESC->set_value(oneapi::mkl::dft::config_param::PLACEMENT, \ oneapi::mkl::dft::config_value::NOT_INPLACE); \ DESC->commit(*_q); \ } #endif if (_input_type == library_data_t::complex_float && _output_type == library_data_t::complex_float) { CONFIG_AND_COMMIT(_desc_sc, SINGLE, COMPLEX, float); } else if (_input_type == library_data_t::complex_double && _output_type == library_data_t::complex_double) { CONFIG_AND_COMMIT(_desc_dc, DOUBLE, COMPLEX, double); } else if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::complex_float && _output_type == library_data_t::real_float)) { CONFIG_AND_COMMIT(_desc_sr, SINGLE, REAL, float); } else if ((_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double) || (_input_type == library_data_t::complex_double && _output_type == library_data_t::real_double)) { CONFIG_AND_COMMIT(_desc_dr, DOUBLE, REAL, double); } else { throw sycl::exception(sycl::make_error_code(sycl::errc::invalid), "invalid fft type"); } #undef CONFIG_AND_COMMIT } template <typename T> void init(int dim, T *n, T *inembed, T istride, T idist, library_data_t input_type, T *onembed, T ostride, T odist, library_data_t output_type, T batch, std::optional<std::pair<fft_direction, bool /*is_inplace*/>> direction_and_placement) { if (direction_and_placement.has_value()) { _is_user_specified_dir_and_placement = true; _direction = direction_and_placement->first; _is_inplace = direction_and_placement->second; } _n.resize(dim); _inembed.resize(dim); _onembed.resize(dim); _input_type = input_type; _output_type = output_type; for (int i = 0; i < dim; i++) { _n[i] = n[i]; } if (inembed && onembed) { for (int i = 0; i < dim; i++) { _inembed[i] = inembed[i]; _onembed[i] = onembed[i]; } _istride = istride; _ostride = ostride; if ((_input_type == library_data_t::real_float && _output_type == library_data_t::complex_float) || (_input_type == library_data_t::real_double && _output_type == library_data_t::complex_double)) { _fwd_dist = idist; _bwd_dist = odist; } else if ((_output_type == library_data_t::real_float && _input_type == library_data_t::complex_float) || (_output_type == library_data_t::real_double && _input_type == library_data_t::complex_double)) { _fwd_dist = odist; _bwd_dist = idist; } else { if (_is_user_specified_dir_and_placement && (_direction == fft_direction::backward)) { _fwd_dist = odist; _bwd_dist = idist; } else { _fwd_dist = idist; _bwd_dist = odist; } } } else { _is_basic = true; } _batch = batch; _dim = dim; if (_is_basic) config_and_commit_basic(); else config_and_commit_advanced(); } template <class Desc_t> void set_stride_advanced(std::shared_ptr<Desc_t> desc) { if (_dim == 1) { std::int64_t input_stride[2] = {0, _istride}; std::int64_t output_stride[2] = {0, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 2) { std::int64_t input_stride[3] = {0, _inembed[1] * _istride, _istride}; std::int64_t output_stride[3] = {0, _onembed[1] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } else if (_dim == 3) { std::int64_t input_stride[4] = {0, _inembed[2] * _inembed[1] * _istride, _inembed[2] * _istride, _istride}; std::int64_t output_stride[4] = {0, _onembed[2] * _onembed[1] * _ostride, _onembed[2] * _ostride, _ostride}; desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, input_stride); desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, output_stride); } } template <class Desc_t> void swap_distance(std::shared_ptr<Desc_t> desc) { desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, _bwd_dist); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, _fwd_dist); std::int64_t temp = _bwd_dist; _bwd_dist = _fwd_dist; _fwd_dist = temp; } template <bool Is_inplace, class Desc_t> void set_stride_and_distance_basic(std::shared_ptr<Desc_t> desc) { std::int64_t forward_distance = 0; std::int64_t backward_distance = 0; #define SET_STRIDE \ { \ if (_direction == fft_direction::forward) { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ real_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ complex_stride); \ } else { \ desc->set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, \ complex_stride); \ desc->set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, \ real_stride); \ } \ } if (_dim == 1) { if constexpr (Is_inplace) { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = 2 * (_n[0] / 2 + 1); backward_distance = _n[0] / 2 + 1; } else { std::int64_t real_stride[2] = {0, 1}; std::int64_t complex_stride[2] = {0, 1}; SET_STRIDE; forward_distance = _n[0]; backward_distance = _n[0] / 2 + 1; } } else if (_dim == 2) { if constexpr (Is_inplace) { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, 2 * (_n[1] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * 2 * (_n[1] / 2 + 1); backward_distance = _n[0] * (_n[1] / 2 + 1); } else { std::int64_t complex_stride[3] = {0, _n[1] / 2 + 1, 1}; std::int64_t real_stride[3] = {0, _n[1], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1]; backward_distance = _n[0] * (_n[1] / 2 + 1); } } else if (_dim == 3) { if constexpr (Is_inplace) { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * 2 * (_n[2] / 2 + 1), 2 * (_n[2] / 2 + 1), 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * 2 * (_n[2] / 2 + 1); backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } else { std::int64_t complex_stride[4] = {0, _n[1] * (_n[2] / 2 + 1), _n[2] / 2 + 1, 1}; std::int64_t real_stride[4] = {0, _n[1] * _n[2], _n[2], 1}; SET_STRIDE; forward_distance = _n[0] * _n[1] * _n[2]; backward_distance = _n[0] * _n[1] * (_n[2] / 2 + 1); } } #undef SET_STRIDE desc->set_value(oneapi::mkl::dft::config_param::FWD_DISTANCE, forward_distance); desc->set_value(oneapi::mkl::dft::config_param::BWD_DISTANCE, backward_distance); } #define COMPUTE(DESC) \ { \ if (_is_inplace) { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input); \ } \ } else { \ auto data_input = \ dpct::detail::get_memory(reinterpret_cast<T *>(input)); \ auto data_output = \ dpct::detail::get_memory(reinterpret_cast<T *>(output)); \ if (_direction == fft_direction::forward) { \ oneapi::mkl::dft::compute_forward(*DESC, data_input, data_output); \ } else { \ oneapi::mkl::dft::compute_backward(*DESC, data_input, data_output); \ } \ } \ } template <class T, oneapi::mkl::dft::precision Precision> void compute_complex(T *input, T *output, fft_direction direction) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The complex domain descriptor need different config values if the // FFT direction or placement is different. // Here we check the conditions, and new config values are set and // re-committed if needed. if (direction != _direction || is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { if (direction != _direction) { swap_distance(_desc_sc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_sc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_sc->commit(*_q); } else { if (direction != _direction) { swap_distance(_desc_dc); _direction = direction; } if (is_this_compute_inplace != _is_inplace) { _is_inplace = is_this_compute_inplace; #ifdef __INTEL_MKL__ if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); } #else if (_is_inplace) { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); } else { _desc_dc->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); } #endif } _desc_dc->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sc); } else { COMPUTE(_desc_dc); } } template <class T, oneapi::mkl::dft::precision Precision> void compute_real(T *input, T *output) { bool is_this_compute_inplace = input == output; if (!_is_user_specified_dir_and_placement) { // The real domain descriptor need different config values if the // FFT placement is different. // Here we check the condition, and new config values are set and // re-committed if needed. if (is_this_compute_inplace != _is_inplace) { if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_sr); } else { #ifdef __INTEL_MKL__ _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_sr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_sr); } _desc_sr->commit(*_q); } else { _is_inplace = is_this_compute_inplace; if (_is_inplace) { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<true>(_desc_dr); } else { #ifdef __INTEL_MKL__ _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, DFTI_CONFIG_VALUE::DFTI_NOT_INPLACE); #else _desc_dr->set_value(oneapi::mkl::dft::config_param::PLACEMENT, oneapi::mkl::dft::config_value::NOT_INPLACE); #endif if (_is_basic) set_stride_and_distance_basic<false>(_desc_dr); } _desc_dr->commit(*_q); } } } if constexpr (Precision == oneapi::mkl::dft::precision::SINGLE) { COMPUTE(_desc_sr); } else { COMPUTE(_desc_dr); } } #undef COMPUTE private: sycl::queue *_q = nullptr; int _dim; std::vector<std::int64_t> _n; std::vector<std::int64_t> _inembed; std::int64_t _istride; std::int64_t _fwd_dist; library_data_t _input_type; std::vector<std::int64_t> _onembed; std::int64_t _ostride; std::int64_t _bwd_dist; library_data_t _output_type; std::int64_t _batch = 1; bool _is_basic = false; bool _is_inplace = false; fft_direction _direction = fft_direction::forward; bool _is_user_specified_dir_and_placement = false; bool _use_external_workspace = false; void *_external_workspace_ptr = nullptr; size_t _workspace_bytes = 0; bool _is_estimate_call = false; size_t _workspace_estimate_bytes = 0; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::REAL>> _desc_sr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::REAL>> _desc_dr; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::SINGLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_sc; std::shared_ptr<oneapi::mkl::dft::descriptor< oneapi::mkl::dft::precision::DOUBLE, oneapi::mkl::dft::domain::COMPLEX>> _desc_dc; }; using fft_engine_ptr = fft_engine *; } // namespace fft } // namespace dpct #endif // __DPCT_FFT_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/lib_common_utils.hpp
//==---- lib_common_utils.hpp ---------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_LIB_COMMON_UTILS_HPP__ #define __DPCT_LIB_COMMON_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include "memory.hpp" #include "util.hpp" namespace dpct { namespace detail { template <typename T> inline auto get_memory(T *x) { #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<std::remove_cv_t<T>>(x); #else return x; #endif } template <typename T> inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q) { using Ty = typename DataType<T>::T2; Ty s_h; detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), automatic).wait(); return s_h; } } enum class version_field : int { major, minor, update, patch }; /// Returns the requested field of Intel(R) oneAPI Math Kernel Library version. /// \param field The version information field (major, minor, update or patch). /// \param result The result value. inline void mkl_get_version(version_field field, int *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else MKLVersion version; mkl_get_version(&version); if (version_field::major == field) { *result = version.MajorVersion; } else if (version_field::minor == field) { *result = version.MinorVersion; } else if (version_field::update == field) { *result = version.UpdateVersion; } else if (version_field::patch == field) { *result = 0; } else { throw std::runtime_error("unknown field"); } #endif } enum class library_data_t : unsigned char { real_float = 0, complex_float, real_double, complex_double, real_half, complex_half, real_bfloat16, complex_bfloat16, real_int4, complex_int4, real_uint4, complex_uint4, real_int8, complex_int8, real_uint8, complex_uint8, real_int16, complex_int16, real_uint16, complex_uint16, real_int32, complex_int32, real_uint32, complex_uint32, real_int64, complex_int64, real_uint64, complex_uint64, real_int8_4, real_int8_32, real_uint8_4, library_data_t_size }; namespace detail { template <typename ArgT> inline constexpr std::uint64_t get_type_combination_id(ArgT Val) { static_assert((unsigned char)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT"); return (std::uint64_t)Val; } template <typename FirstT, typename... RestT> inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal, RestT... RestVal) { static_assert((std::uint8_t)library_data_t::library_data_t_size <= std::numeric_limits<unsigned char>::max() && "library_data_t size exceeds limit."); static_assert(sizeof...(RestT) <= 8 && "Too many parameters"); static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT"); return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal); } inline constexpr std::size_t library_data_size[] = { 8 * sizeof(float), // real_float 8 * sizeof(std::complex<float>), // complex_float 8 * sizeof(double), // real_double 8 * sizeof(std::complex<double>), // complex_double 8 * sizeof(sycl::half), // real_half 8 * sizeof(std::complex<sycl::half>), // complex_half 16, // real_bfloat16 16 * 2, // complex_bfloat16 4, // real_int4 4 * 2, // complex_int4 4, // real_uint4 4 * 2, // complex_uint4 8, // real_int8 8 * 2, // complex_int8 8, // real_uint8 8 * 2, // complex_uint8 16, // real_int16 16 * 2, // complex_int16 16, // real_uint16 16 * 2, // complex_uint16 32, // real_int32 32 * 2, // complex_int32 32, // real_uint32 32 * 2, // complex_uint32 64, // real_int64 64 * 2, // complex_int64 64, // real_uint64 64 * 2, // complex_uint64 8, // real_int8_4 8, // real_int8_32 8 // real_uint8_4 }; } // namespace detail } // namespace dpct #endif // __DPCT_LIB_COMMON_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/sparse_utils.hpp
//==---- sparse_utils.hpp -------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_SPARSE_UTILS_HPP__ #define __DPCT_SPARSE_UTILS_HPP__ #include "lib_common_utils.hpp" #include <oneapi/mkl.hpp> #include <sycl/sycl.hpp> namespace dpct { namespace sparse { /// Describes properties of a sparse matrix. /// The properties are matrix type, diag, uplo and index base. class matrix_info { public: /// Matrix types are: /// ge: General matrix /// sy: Symmetric matrix /// he: Hermitian matrix /// tr: Triangular matrix enum class matrix_type : int { ge = 0, sy, he, tr }; auto get_matrix_type() const { return _matrix_type; } auto get_diag() const { return _diag; } auto get_uplo() const { return _uplo; } auto get_index_base() const { return _index_base; } void set_matrix_type(matrix_type mt) { _matrix_type = mt; } void set_diag(oneapi::mkl::diag d) { _diag = d; } void set_uplo(oneapi::mkl::uplo u) { _uplo = u; } void set_index_base(oneapi::mkl::index_base ib) { _index_base = ib; } private: matrix_type _matrix_type = matrix_type::ge; oneapi::mkl::diag _diag = oneapi::mkl::diag::nonunit; oneapi::mkl::uplo _uplo = oneapi::mkl::uplo::upper; oneapi::mkl::index_base _index_base = oneapi::mkl::index_base::zero; }; /// Computes a CSR format sparse matrix-dense vector product. /// y = alpha * op(A) * x + beta * y /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] num_rows Number of rows of the matrix A. /// \param [in] num_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] x Data of the vector x. /// \param [in] beta Scaling factor for the vector x. /// \param [in, out] y Data of the vector y. template <typename T> void csrmv(sycl::queue &queue, oneapi::mkl::transpose trans, int num_rows, int num_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *x, const T *beta, T *y) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, num_rows, num_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(x))); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::optimize_gemv(queue, trans, *sparse_matrix_handle); oneapi::mkl::sparse::gemv(queue, trans, alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::sy: { oneapi::mkl::sparse::symv(queue, info->get_uplo(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } case matrix_info::matrix_type::tr: { oneapi::mkl::sparse::optimize_trmv(queue, info->get_uplo(), trans, info->get_diag(), *sparse_matrix_handle); oneapi::mkl::sparse::trmv(queue, info->get_uplo(), trans, info->get_diag(), alpha_value, *sparse_matrix_handle, data_x, beta_value, data_y); break; } default: throw std::runtime_error( "the spmv does not support matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } /// Computes a CSR format sparse matrix-dense matrix product. /// C = alpha * op(A) * B + beta * C /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the matrix A. /// \param [in] sparse_rows Number of rows of the matrix A. /// \param [in] dense_cols Number of columns of the matrix B or C. /// \param [in] sparse_cols Number of columns of the matrix A. /// \param [in] alpha Scaling factor for the matrix A. /// \param [in] info Matrix info of the matrix A. /// \param [in] val An array containing the non-zero elements of the matrix A. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] b Data of the matrix B. /// \param [in] ldb Leading dimension of the matrix B. /// \param [in] beta Scaling factor for the matrix B. /// \param [in, out] c Data of the matrix C. /// \param [in] ldc Leading dimension of the matrix C. template <typename T> void csrmm(sycl::queue &queue, oneapi::mkl::transpose trans, int sparse_rows, int dense_cols, int sparse_cols, const T *alpha, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, const T *b, int ldb, const T *beta, T *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename dpct::DataType<T>::T2; auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); oneapi::mkl::sparse::matrix_handle_t *sparse_matrix_handle = new oneapi::mkl::sparse::matrix_handle_t; oneapi::mkl::sparse::init_matrix_handle(sparse_matrix_handle); auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, *sparse_matrix_handle, sparse_rows, sparse_cols, info->get_index_base(), data_row_ptr, data_col_ind, data_val); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(b))); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c)); switch (info->get_matrix_type()) { case matrix_info::matrix_type::ge: { oneapi::mkl::sparse::gemm(queue, oneapi::mkl::layout::row_major, trans, oneapi::mkl::transpose::nontrans, alpha_value, *sparse_matrix_handle, data_b, dense_cols, ldb, beta_value, data_c, ldc); break; } default: throw std::runtime_error( "the csrmm does not support matrix_info::matrix_type::sy, " "matrix_info::matrix_type::tr and matrix_info::matrix_type::he"); } sycl::event e = oneapi::mkl::sparse::release_matrix_handle(queue, sparse_matrix_handle); queue.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete sparse_matrix_handle; }); }); #endif } #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Saving the optimization information for solving a system of linear /// equations. class optimize_info { public: /// Constructor optimize_info() { oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); } /// Destructor ~optimize_info() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destructor. /// \param [in] e The event which the destructor depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } private: oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; }; #endif #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Performs internal optimizations for solving a system of linear equations for /// a CSR format sparse matrix. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans The operation applied to the sparse matrix. /// \param [in] row_col Number of rows of the sparse matrix. /// \param [in] info Matrix info of the sparse matrix. /// \param [in] val An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr An array of length \p num_rows + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] optimize_info The result of the optimizations. template <typename T> void optimize_csrsv(sycl::queue &queue, oneapi::mkl::transpose trans, int row_col, const std::shared_ptr<matrix_info> info, const T *val, const int *row_ptr, const int *col_ind, std::shared_ptr<optimize_info> optimize_info) { using Ty = typename dpct::DataType<T>::T2; auto data_row_ptr = dpct::detail::get_memory(const_cast<int *>(row_ptr)); auto data_col_ind = dpct::detail::get_memory(const_cast<int *>(col_ind)); auto data_val = dpct::detail::get_memory(reinterpret_cast<Ty *>(const_cast<T *>(val))); oneapi::mkl::sparse::set_csr_data(queue, optimize_info->get_matrix_handle(), row_col, row_col, info->get_index_base(), data_row_ptr, data_col_ind, data_val); if (info->get_matrix_type() != matrix_info::matrix_type::tr) return; #ifndef DPCT_USM_LEVEL_NONE sycl::event e; e = #endif oneapi::mkl::sparse::optimize_trsv(queue, info->get_uplo(), trans, info->get_diag(), optimize_info->get_matrix_handle()); #ifndef DPCT_USM_LEVEL_NONE optimize_info->add_dependency(e); #endif } #endif class sparse_matrix_desc; using sparse_matrix_desc_t = std::shared_ptr<sparse_matrix_desc>; /// Structure for describe a dense vector class dense_vector_desc { public: dense_vector_desc(std::int64_t ele_num, void *value, library_data_t value_type) : _ele_num(ele_num), _value(value), _value_type(value_type) {} void get_desc(std::int64_t *ele_num, const void **value, library_data_t *value_type) const noexcept { *ele_num = _ele_num; *value = _value; *value_type = _value_type; } void get_desc(std::int64_t *ele_num, void **value, library_data_t *value_type) const noexcept { get_desc(ele_num, const_cast<const void **>(value), value_type); } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } private: std::int64_t _ele_num; void *_value; library_data_t _value_type; }; /// Structure for describe a dense matrix class dense_matrix_desc { public: dense_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t leading_dim, void *value, library_data_t value_type, oneapi::mkl::layout layout) : _row_num(row_num), _col_num(col_num), _leading_dim(leading_dim), _value(value), _value_type(value_type), _layout(layout) {} void get_desc(std::int64_t *row_num, std::int64_t *col_num, std::int64_t *leading_dim, void **value, library_data_t *value_type, oneapi::mkl::layout *layout) const noexcept { *row_num = _row_num; *col_num = _col_num; *leading_dim = _leading_dim; *value = _value; *value_type = _value_type; *layout = _layout; } void *get_value() const noexcept { return _value; } void set_value(void *value) { _value = value; } std::int64_t get_col_num() const noexcept { return _col_num; } std::int64_t get_leading_dim() const noexcept { return _leading_dim; } oneapi::mkl::layout get_layout() const noexcept { return _layout; } private: std::int64_t _row_num; std::int64_t _col_num; std::int64_t _leading_dim; void *_value; library_data_t _value_type; oneapi::mkl::layout _layout; }; /// Sparse matrix data format enum matrix_format : int { csr = 1, }; /// Sparse matrix attribute enum matrix_attribute : int { uplo = 0, diag }; #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. /// Structure for describe a sparse matrix class sparse_matrix_desc { public: /// Constructor /// \param [out] desc The descriptor to be created /// \param [in] row_num Number of rows of the sparse matrix. /// \param [in] col_num Number of colums of the sparse matrix. /// \param [in] nnz Non-zero elements in the sparse matrix. /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. /// \param [in] row_ptr_type Data type of the \p row_ptr . /// \param [in] col_ind_type Data type of the \p col_ind . /// \param [in] base Indicates how input arrays are indexed. /// \param [in] value_type Data type of the \p value . /// \param [in] data_format The matrix data format. sparse_matrix_desc(std::int64_t row_num, std::int64_t col_num, std::int64_t nnz, void *row_ptr, void *col_ind, void *value, library_data_t row_ptr_type, library_data_t col_ind_type, oneapi::mkl::index_base base, library_data_t value_type, matrix_format data_format) : _row_num(row_num), _col_num(col_num), _nnz(nnz), _row_ptr(row_ptr), _col_ind(col_ind), _value(value), _row_ptr_type(row_ptr_type), _col_ind_type(col_ind_type), _base(base), _value_type(value_type), _data_format(data_format) { if (_data_format != matrix_format::csr) { throw std::runtime_error("the sparse matrix data format is unsupported"); } oneapi::mkl::sparse::init_matrix_handle(&_matrix_handle); construct(); } /// Destructor ~sparse_matrix_desc() { oneapi::mkl::sparse::release_matrix_handle(get_default_queue(), &_matrix_handle, _deps) .wait(); } /// Add dependency for the destroy method. /// \param [in] e The event which the destroy method depends on. void add_dependency(sycl::event e) { _deps.push_back(e); } /// Get the internal saved matrix handle. /// \return Returns the matrix handle. oneapi::mkl::sparse::matrix_handle_t get_matrix_handle() const noexcept { return _matrix_handle; } /// Get the values saved in the descriptor /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. /// \param [out] row_ptr An array of length \p row_num + 1. /// \param [out] col_ind An array containing the column indices in index-based /// numbering. /// \param [out] value An array containing the non-zero elements of the sparse matrix. /// \param [out] row_ptr_type Data type of the \p row_ptr . /// \param [out] col_ind_type Data type of the \p col_ind . /// \param [out] base Indicates how input arrays are indexed. /// \param [out] value_type Data type of the \p value . void get_desc(int64_t *row_num, int64_t *col_num, int64_t *nnz, void **row_ptr, void **col_ind, void **value, library_data_t *row_ptr_type, library_data_t *col_ind_type, oneapi::mkl::index_base *base, library_data_t *value_type) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; *row_ptr = _row_ptr; *col_ind = _col_ind; *value = _value; *row_ptr_type = _row_ptr_type; *col_ind_type = _col_ind_type; *base = _base; *value_type = _value_type; } /// Get the sparse matrix data format of this descriptor /// \param [out] format The matrix data format result void get_format(matrix_format *data_format) const noexcept { *data_format = _data_format; } /// Get the index base of this descriptor /// \param [out] base The index base result void get_base(oneapi::mkl::index_base *base) const noexcept { *base = _base; } /// Get the value pointer of this descriptor /// \param [out] value The value pointer result void get_value(void **value) const noexcept { *value = _value; } /// Set the value pointer of this descriptor /// \param [in] value The input value pointer void set_value(void *value) { // Assume the new data is different from the old data _value = value; construct(); } /// Get the size of the sparse matrix /// \param [out] row_num Number of rows of the sparse matrix. /// \param [out] col_num Number of colums of the sparse matrix. /// \param [out] nnz Non-zero elements in the sparse matrix. void get_size(int64_t *row_num, int64_t *col_num, int64_t *nnz) const noexcept { *row_num = _row_num; *col_num = _col_num; *nnz = _nnz; } /// Set the sparse matrix attribute /// \param [in] attribute The attribute type /// \param [in] data The attribute value /// \param [in] data_size The data size of the attribute value void set_attribute(matrix_attribute attribute, const void *data, size_t data_size) { if (attribute == matrix_attribute::diag) { const oneapi::mkl::diag *diag_ptr = reinterpret_cast<const oneapi::mkl::diag *>(data); if (*diag_ptr == oneapi::mkl::diag::unit) { _diag = oneapi::mkl::diag::unit; } else if (*diag_ptr == oneapi::mkl::diag::nonunit) { _diag = oneapi::mkl::diag::nonunit; } else { throw std::runtime_error("unsupported diag value"); } } else if (attribute == matrix_attribute::uplo) { const oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<const oneapi::mkl::uplo *>(data); if (*uplo_ptr == oneapi::mkl::uplo::upper) { _uplo = oneapi::mkl::uplo::upper; } else if (*uplo_ptr == oneapi::mkl::uplo::lower) { _uplo = oneapi::mkl::uplo::lower; } else { throw std::runtime_error("unsupported uplo value"); } } else { throw std::runtime_error("unsupported attribute"); } } /// Get the sparse matrix attribute /// \param [out] attribute The attribute type /// \param [out] data The attribute value /// \param [out] data_size The data size of the attribute value void get_attribute(matrix_attribute attribute, void *data, size_t data_size) const { if (attribute == matrix_attribute::diag) { oneapi::mkl::diag *diag_ptr = reinterpret_cast<oneapi::mkl::diag *>(data); if (_diag.has_value()) { *diag_ptr = _diag.value(); } else { *diag_ptr = oneapi::mkl::diag::nonunit; } } else if (attribute == matrix_attribute::uplo) { oneapi::mkl::uplo *uplo_ptr = reinterpret_cast<oneapi::mkl::uplo *>(data); if (_uplo.has_value()) { *uplo_ptr = _uplo.value(); } else { *uplo_ptr = oneapi::mkl::uplo::lower; } } else { throw std::runtime_error("unsupported attribute"); } } /// Set the pointers for describing the sparse matrix /// \param [in] row_ptr An array of length \p row_num + 1. /// \param [in] col_ind An array containing the column indices in index-based /// numbering. /// \param [in] value An array containing the non-zero elements of the sparse matrix. void set_pointers(void *row_ptr, void *col_ind, void *value) { // Assume the new data is different from the old data _row_ptr = row_ptr; _col_ind = col_ind; _value = value; construct(); } /// Get the diag attribute /// \return diag value std::optional<oneapi::mkl::diag> get_diag() const noexcept { return _diag; } /// Get the uplo attribute /// \return uplo value std::optional<oneapi::mkl::uplo> get_uplo() const noexcept { return _uplo; } private: template <typename index_t, typename value_t> void set_data() { auto data_row_ptr = dpct::detail::get_memory(reinterpret_cast<index_t *>(_row_ptr)); auto data_col_ind = dpct::detail::get_memory(reinterpret_cast<index_t *>(_col_ind)); auto data_value = dpct::detail::get_memory(reinterpret_cast<value_t *>(_value)); oneapi::mkl::sparse::set_csr_data(get_default_queue(), _matrix_handle, _row_num, _col_num, _base, data_row_ptr, data_col_ind, data_value); get_default_queue().wait(); } void construct() { std::uint64_t key = dpct::detail::get_type_combination_id( _row_ptr_type, _col_ind_type, _value_type); switch (key) { case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_float): { set_data<std::int32_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::real_double): { set_data<std::int32_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_float): { set_data<std::int32_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int32, library_data_t::real_int32, library_data_t::complex_double): { set_data<std::int32_t, std::complex<double>>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_float): { set_data<std::int64_t, float>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::real_double): { set_data<std::int64_t, double>(); break; } case dpct::detail::get_type_combination_id(library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_float): { set_data<std::int64_t, std::complex<float>>(); break; } case dpct::detail::get_type_combination_id( library_data_t::real_int64, library_data_t::real_int64, library_data_t::complex_double): { set_data<std::int64_t, std::complex<double>>(); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } std::int64_t _row_num; std::int64_t _col_num; std::int64_t _nnz; void *_row_ptr; void *_col_ind; void *_value; library_data_t _row_ptr_type; library_data_t _col_ind_type; oneapi::mkl::index_base _base; library_data_t _value_type; oneapi::mkl::sparse::matrix_handle_t _matrix_handle = nullptr; std::vector<sycl::event> _deps; matrix_format _data_format; std::optional<oneapi::mkl::uplo> _uplo; std::optional<oneapi::mkl::diag> _diag; }; namespace detail { #ifdef DPCT_USM_LEVEL_NONE #define SPARSE_CALL(X) \ do { \ X; \ } while (0) #else #define SPARSE_CALL(X) \ do { \ sycl::event e = X; \ a->add_dependency(e); \ } while (0) #endif template <typename Ty> inline void spmv_impl(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_x = dpct::detail::get_memory(reinterpret_cast<Ty *>(x->get_value())); auto data_y = dpct::detail::get_memory(reinterpret_cast<Ty *>(y->get_value())); if (a->get_diag().has_value() && a->get_uplo().has_value()) { oneapi::mkl::sparse::optimize_trmv(queue, a->get_uplo().value(), trans, a->get_diag().value(), a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::trmv( queue, a->get_uplo().value(), trans, a->get_diag().value(), alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } else { oneapi::mkl::sparse::optimize_gemv(queue, trans, a->get_matrix_handle()); SPARSE_CALL(oneapi::mkl::sparse::gemv(queue, trans, alpha_value, a->get_matrix_handle(), data_x, beta_value, data_y)); } } template <typename Ty> inline void spmm_impl(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c) { auto alpha_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(alpha), queue); auto beta_value = dpct::detail::get_value(reinterpret_cast<const Ty *>(beta), queue); auto data_b = dpct::detail::get_memory(reinterpret_cast<Ty *>(b->get_value())); auto data_c = dpct::detail::get_memory(reinterpret_cast<Ty *>(c->get_value())); SPARSE_CALL(oneapi::mkl::sparse::gemm( queue, b->get_layout(), trans_a, trans_b, alpha_value, a->get_matrix_handle(), data_b, b->get_col_num(), b->get_leading_dim(), beta_value, data_c, c->get_leading_dim())); } #undef SPARSE_CALL } // namespace detail /// Computes a sparse matrix-dense vector product: y = alpha * op(a) * x + beta * y. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans Specifies operation on input matrix. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] x Specifies the dense vector x. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] y Specifies the dense vector y. /// \param [in] data_type Specifies the data type of \param a, \param x and \param y . inline void spmv(sycl::queue queue, oneapi::mkl::transpose trans, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_vector_desc> x, const void *beta, std::shared_ptr<dense_vector_desc> y, library_data_t data_type) { switch (data_type) { case library_data_t::real_float: { detail::spmv_impl<float>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::real_double: { detail::spmv_impl<double>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_float: { detail::spmv_impl<std::complex<float>>(queue, trans, alpha, a, x, beta, y); break; } case library_data_t::complex_double: { detail::spmv_impl<std::complex<double>>(queue, trans, alpha, a, x, beta, y); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a sparse matrix-dense matrix product: c = alpha * op(a) * op(b) + beta * c. /// \param [in] queue The queue where the routine should be executed. It must /// have the in_order property when using the USM mode. /// \param [in] trans_a Specifies operation on input matrix a. /// \param [in] trans_b Specifies operation on input matrix b. /// \param [in] alpha Specifies the scalar alpha. /// \param [in] a Specifies the sparse matrix a. /// \param [in] b Specifies the dense matrix b. /// \param [in] beta Specifies the scalar beta. /// \param [in, out] c Specifies the dense matrix c. /// \param [in] data_type Specifies the data type of \param a, \param b and \param c . inline void spmm(sycl::queue queue, oneapi::mkl::transpose trans_a, oneapi::mkl::transpose trans_b, const void *alpha, sparse_matrix_desc_t a, std::shared_ptr<dense_matrix_desc> b, const void *beta, std::shared_ptr<dense_matrix_desc> c, library_data_t data_type) { if (b->get_layout() != c->get_layout()) throw std::runtime_error("the layout of b and c are different"); switch (data_type) { case library_data_t::real_float: { detail::spmm_impl<float>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::real_double: { detail::spmm_impl<double>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_float: { detail::spmm_impl<std::complex<float>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } case library_data_t::complex_double: { detail::spmm_impl<std::complex<double>>(queue, trans_a, trans_b, alpha, a, b, beta, c); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } #endif } // namespace sparse } // namespace dpct #endif // __DPCT_SPARSE_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/device.hpp
//==---- device.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DEVICE_HPP__ #define __DPCT_DEVICE_HPP__ #include <sycl/sycl.hpp> #include <algorithm> #include <array> #include <cstring> #include <iostream> #include <mutex> #include <set> #include <sstream> #include <map> #include <vector> #include <thread> #if defined(__linux__) #include <unistd.h> #include <sys/syscall.h> #endif #if defined(_WIN64) #define NOMINMAX #include <windows.h> #endif namespace dpct { /// SYCL default exception handler inline auto exception_handler = [](sycl::exception_list exceptions) { for (std::exception_ptr const &e : exceptions) { try { std::rethrow_exception(e); } catch (sycl::exception const &e) { std::cerr << "Caught asynchronous SYCL exception:" << std::endl << e.what() << std::endl << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; } } }; typedef sycl::event *event_ptr; typedef sycl::queue *queue_ptr; typedef char *device_ptr; /// Destroy \p event pointed memory. /// /// \param event Pointer to the sycl::event address. static void destroy_event(event_ptr event) { delete event; } class device_info { public: // get interface const char *get_name() const { return _name; } char *get_name() { return _name; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() const { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } template <typename WorkItemSizesTy = sycl::id<3>, std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::id<3>> || std::is_same_v<WorkItemSizesTy, int *>, int> = 0> auto get_max_work_item_sizes() { if constexpr (std::is_same_v<WorkItemSizesTy, sycl::id<3>>) return _max_work_item_sizes; else return _max_work_item_sizes_i; } bool get_host_unified_memory() const { return _host_unified_memory; } int get_major_version() const { return _major; } int get_minor_version() const { return _minor; } int get_integrated() const { return _integrated; } int get_max_clock_frequency() const { return _frequency; } int get_max_compute_units() const { return _max_compute_units; } int get_max_work_group_size() const { return _max_work_group_size; } int get_max_sub_group_size() const { return _max_sub_group_size; } int get_max_work_items_per_compute_unit() const { return _max_work_items_per_compute_unit; } int get_max_register_size_per_work_group() const { return _max_register_size_per_work_group; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() const { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } template <typename NDRangeSizeTy = size_t *, std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> || std::is_same_v<NDRangeSizeTy, int *>, int> = 0> auto get_max_nd_range_size() { if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>) return _max_nd_range_size; else return _max_nd_range_size_i; } size_t get_global_mem_size() const { return _global_mem_size; } size_t get_local_mem_size() const { return _local_mem_size; } /// Returns the maximum clock rate of device's global memory in kHz. If /// compiler does not support this API then returns default value 3200000 kHz. unsigned int get_memory_clock_rate() const { return _memory_clock_rate; } /// Returns the maximum bus width between device and memory in bits. If /// compiler does not support this API then returns default value 64 bits. unsigned int get_memory_bus_width() const { return _memory_bus_width; } uint32_t get_device_id() const { return _device_id; } std::array<unsigned char, 16> get_uuid() const { return _uuid; } // set interface void set_name(const char* name) { size_t length = strlen(name); if (length < 256) { std::memcpy(_name, name, length + 1); } else { std::memcpy(_name, name, 255); _name[255] = '\0'; } } void set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes) { _max_work_item_sizes = max_work_item_sizes; for (int i = 0; i < 3; ++i) _max_work_item_sizes_i[i] = max_work_item_sizes[i]; } void set_host_unified_memory(bool host_unified_memory) { _host_unified_memory = host_unified_memory; } void set_major_version(int major) { _major = major; } void set_minor_version(int minor) { _minor = minor; } void set_integrated(int integrated) { _integrated = integrated; } void set_max_clock_frequency(int frequency) { _frequency = frequency; } void set_max_compute_units(int max_compute_units) { _max_compute_units = max_compute_units; } void set_global_mem_size(size_t global_mem_size) { _global_mem_size = global_mem_size; } void set_local_mem_size(size_t local_mem_size) { _local_mem_size = local_mem_size; } void set_max_work_group_size(int max_work_group_size) { _max_work_group_size = max_work_group_size; } void set_max_sub_group_size(int max_sub_group_size) { _max_sub_group_size = max_sub_group_size; } void set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit) { _max_work_items_per_compute_unit = max_work_items_per_compute_unit; } void set_max_nd_range_size(int max_nd_range_size[]) { for (int i = 0; i < 3; i++) { _max_nd_range_size[i] = max_nd_range_size[i]; _max_nd_range_size_i[i] = max_nd_range_size[i]; } } void set_memory_clock_rate(unsigned int memory_clock_rate) { _memory_clock_rate = memory_clock_rate; } void set_memory_bus_width(unsigned int memory_bus_width) { _memory_bus_width = memory_bus_width; } void set_max_register_size_per_work_group(int max_register_size_per_work_group) { _max_register_size_per_work_group = max_register_size_per_work_group; } void set_device_id(uint32_t device_id) { _device_id = device_id; } void set_uuid(std::array<unsigned char, 16> uuid) { _uuid = std::move(uuid); } private: char _name[256]; sycl::id<3> _max_work_item_sizes; int _max_work_item_sizes_i[3]; bool _host_unified_memory = false; int _major; int _minor; int _integrated = 0; int _frequency; // Set estimated value 3200000 kHz as default value. unsigned int _memory_clock_rate = 3200000; // Set estimated value 64 bits as default value. unsigned int _memory_bus_width = 64; int _max_compute_units; int _max_work_group_size; int _max_sub_group_size; int _max_work_items_per_compute_unit; int _max_register_size_per_work_group; size_t _global_mem_size; size_t _local_mem_size; size_t _max_nd_range_size[3]; int _max_nd_range_size_i[3]; uint32_t _device_id; std::array<unsigned char, 16> _uuid; }; /// dpct device extension class device_ext : public sycl::device { typedef std::mutex mutex_type; public: device_ext() : sycl::device(), _ctx(*this) {} ~device_ext() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); } device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this) { std::lock_guard<mutex_type> lock(m_mutex); init_queues(); } int is_native_atomic_supported() { return 0; } int get_major_version() const { int major, minor; get_version(major, minor); return major; } int get_minor_version() const { int major, minor; get_version(major, minor); return minor; } int get_max_compute_units() const { return get_device_info().get_max_compute_units(); } /// Return the maximum clock frequency of this device in KHz. int get_max_clock_frequency() const { return get_device_info().get_max_clock_frequency(); } int get_integrated() const { return get_device_info().get_integrated(); } int get_max_sub_group_size() const { return get_device_info().get_max_sub_group_size(); } int get_max_register_size_per_work_group() const { return get_device_info().get_max_register_size_per_work_group(); } int get_max_work_group_size() const { return get_device_info().get_max_work_group_size(); } int get_mem_base_addr_align() const { return get_info<sycl::info::device::mem_base_addr_align>(); } size_t get_global_mem_size() const { return get_device_info().get_global_mem_size(); } /// Get the number of bytes of free and total memory on the SYCL device. /// \param [out] free_memory The number of bytes of free memory on the SYCL device. /// \param [out] total_memory The number of bytes of total memory on the SYCL device. void get_memory_info(size_t &free_memory, size_t &total_memory) { #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105) if (!has(sycl::aspect::ext_intel_free_memory)) { std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; } else { free_memory = get_info<sycl::ext::intel::info::device::free_memory>(); } #else std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl; free_memory = 0; #if defined(_MSC_VER) && !defined(__clang__) #pragma message("Querying the number of bytes of free memory is not supported") #else #warning "Querying the number of bytes of free memory is not supported" #endif #endif total_memory = get_device_info().get_global_mem_size(); } void get_device_info(device_info &out) const { device_info prop; prop.set_name(get_info<sycl::info::device::name>().c_str()); int major, minor; get_version(major, minor); prop.set_major_version(major); prop.set_minor_version(minor); prop.set_max_work_item_sizes( #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION<20220902) // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes is an enum class element get_info<sycl::info::device::max_work_item_sizes>()); #else // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by an int get_info<sycl::info::device::max_work_item_sizes<3>>()); #endif prop.set_host_unified_memory( this->has(sycl::aspect::usm_host_allocations)); prop.set_max_clock_frequency( get_info<sycl::info::device::max_clock_frequency>() * 1000); prop.set_max_compute_units( get_info<sycl::info::device::max_compute_units>()); prop.set_max_work_group_size( get_info<sycl::info::device::max_work_group_size>()); prop.set_global_mem_size( get_info<sycl::info::device::global_mem_size>()); prop.set_local_mem_size(get_info<sycl::info::device::local_mem_size>()); #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6) if (this->has(sycl::aspect::ext_intel_memory_clock_rate)) { unsigned int tmp = this->get_info<sycl::ext::intel::info::device::memory_clock_rate>(); if (tmp != 0) prop.set_memory_clock_rate(1000 * tmp); } if (this->has(sycl::aspect::ext_intel_memory_bus_width)) { prop.set_memory_bus_width( this->get_info<sycl::ext::intel::info::device::memory_bus_width>()); } if (this->has(sycl::aspect::ext_intel_device_id)) { prop.set_device_id( this->get_info<sycl::ext::intel::info::device::device_id>()); } if (this->has(sycl::aspect::ext_intel_device_info_uuid)) { prop.set_uuid( this->get_info<sycl::ext::intel::info::device::uuid>()); } #elif defined(_MSC_VER) && !defined(__clang__) #pragma message("get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value.") #else #warning "get_device_info: querying memory_clock_rate and \ memory_bus_width are not supported by the compiler used. \ Use 3200000 kHz as memory_clock_rate default value. \ Use 64 bits as memory_bus_width default value." #endif size_t max_sub_group_size = 1; std::vector<size_t> sub_group_sizes = get_info<sycl::info::device::sub_group_sizes>(); for (const auto &sub_group_size : sub_group_sizes) { if (max_sub_group_size < sub_group_size) max_sub_group_size = sub_group_size; } prop.set_max_sub_group_size(max_sub_group_size); prop.set_max_work_items_per_compute_unit( get_info<sycl::info::device::max_work_group_size>()); int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; prop.set_max_nd_range_size(max_nd_range_size); // Estimates max register size per work group, feel free to update the value // according to device properties. prop.set_max_register_size_per_work_group(65536); out = prop; } device_info get_device_info() const { device_info prop; get_device_info(prop); return prop; } void reset() { std::lock_guard<mutex_type> lock(m_mutex); clear_queues(); init_queues(); } sycl::queue &in_order_queue() { return *_q_in_order; } sycl::queue &out_of_order_queue() { return *_q_out_of_order; } sycl::queue &default_queue() { #ifdef DPCT_USM_LEVEL_NONE return out_of_order_queue(); #else return in_order_queue(); #endif // DPCT_USM_LEVEL_NONE } void queues_wait_and_throw() { std::unique_lock<mutex_type> lock(m_mutex); std::vector<std::shared_ptr<sycl::queue>> current_queues( _queues); lock.unlock(); for (const auto &q : current_queues) { q->wait_and_throw(); } // Guard the destruct of current_queues to make sure the ref count is safe. lock.lock(); } sycl::queue *create_queue(bool enable_exception_handler = false) { #ifdef DPCT_USM_LEVEL_NONE return create_out_of_order_queue(enable_exception_handler); #else return create_in_order_queue(enable_exception_handler); #endif // DPCT_USM_LEVEL_NONE } sycl::queue *create_in_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler, sycl::property::queue::in_order()); } sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) { std::lock_guard<mutex_type> lock(m_mutex); return create_queue_impl(enable_exception_handler); } void destroy_queue(sycl::queue *&queue) { std::lock_guard<mutex_type> lock(m_mutex); _queues.erase(std::remove_if(_queues.begin(), _queues.end(), [=](const std::shared_ptr<sycl::queue> &q) -> bool { return q.get() == queue; }), _queues.end()); queue = nullptr; } void set_saved_queue(sycl::queue* q) { std::lock_guard<mutex_type> lock(m_mutex); _saved_queue = q; } sycl::queue *get_saved_queue() const { std::lock_guard<mutex_type> lock(m_mutex); return _saved_queue; } sycl::context get_context() const { return _ctx; } private: void clear_queues() { _queues.clear(); _q_in_order = _q_out_of_order = _saved_queue = nullptr; } void init_queues() { _q_in_order = create_queue_impl(true, sycl::property::queue::in_order()); _q_out_of_order = create_queue_impl(true); _saved_queue = &default_queue(); } /// Caller should acquire resource \p m_mutex before calling this function. template <class... Properties> sycl::queue *create_queue_impl(bool enable_exception_handler, Properties... properties) { sycl::async_handler eh = {}; if (enable_exception_handler) { eh = exception_handler; } _queues.push_back(std::make_shared<sycl::queue>( _ctx, *this, eh, sycl::property_list( #ifdef DPCT_PROFILING_ENABLED sycl::property::queue::enable_profiling(), #endif properties...))); return _queues.back().get(); } void get_version(int &major, int &minor) const { // Version string has the following format: // a. OpenCL<space><major.minor><space><vendor-specific-information> // b. <major.minor> std::string ver; ver = get_info<sycl::info::device::version>(); std::string::size_type i = 0; while (i < ver.size()) { if (isdigit(ver[i])) break; i++; } major = std::stoi(&(ver[i])); while (i < ver.size()) { if (ver[i] == '.') break; i++; } i++; minor = std::stoi(&(ver[i])); } sycl::queue *_q_in_order, *_q_out_of_order; sycl::queue *_saved_queue; sycl::context _ctx; std::vector<std::shared_ptr<sycl::queue>> _queues; mutable mutex_type m_mutex; }; static inline unsigned int get_tid() { #if defined(__linux__) return syscall(SYS_gettid); #elif defined(_WIN64) return GetCurrentThreadId(); #else #error "Only support Windows and Linux." #endif } /// device manager class dev_mgr { public: device_ext &current_device() { unsigned int dev_id=current_device_id(); check_id(dev_id); return *_devs[dev_id]; } device_ext &cpu_device() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); if (_cpu_device == -1) { throw std::runtime_error("no valid cpu device"); } else { return *_devs[_cpu_device]; } } device_ext &get_device(unsigned int id) const { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); return *_devs[id]; } unsigned int current_device_id() const { std::lock_guard<std::recursive_mutex> lock(m_mutex); auto it=_thread2dev_map.find(get_tid()); if(it != _thread2dev_map.end()) return it->second; return DEFAULT_DEVICE_ID; } /// Select device with a device ID. /// \param [in] id The id of the device which can /// be obtained through get_device_id(const sycl::device). void select_device(unsigned int id) { std::lock_guard<std::recursive_mutex> lock(m_mutex); check_id(id); _thread2dev_map[get_tid()]=id; } unsigned int device_count() { return _devs.size(); } unsigned int get_device_id(const sycl::device &dev) { unsigned int id = 0; for(auto dev_item : _devs) { if (*dev_item == dev) { break; } id++; } return id; } template <class DeviceSelector> std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { sycl::device selected_device = sycl::device(selector); unsigned int selected_device_id = get_device_id(selected_device); select_device(selected_device_id); } /// Returns the instance of device manager singleton. static dev_mgr &instance() { static dev_mgr d_m; return d_m; } dev_mgr(const dev_mgr &) = delete; dev_mgr &operator=(const dev_mgr &) = delete; dev_mgr(dev_mgr &&) = delete; dev_mgr &operator=(dev_mgr &&) = delete; private: mutable std::recursive_mutex m_mutex; dev_mgr() { sycl::device default_device = sycl::device(sycl::default_selector_v); _devs.push_back(std::make_shared<device_ext>(default_device)); std::vector<sycl::device> sycl_all_devs = sycl::device::get_devices(sycl::info::device_type::all); // Collect other devices except for the default device. if (default_device.is_cpu()) _cpu_device = 0; for (auto &dev : sycl_all_devs) { if (dev == default_device) { continue; } _devs.push_back(std::make_shared<device_ext>(dev)); if (_cpu_device == -1 && dev.is_cpu()) { _cpu_device = _devs.size() - 1; } } } void check_id(unsigned int id) const { if (id >= _devs.size()) { throw std::runtime_error("invalid device id"); } } std::vector<std::shared_ptr<device_ext>> _devs; /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current /// thread id in _thread2dev_map, which means default device should be used /// for the current thread. const unsigned int DEFAULT_DEVICE_ID = 0; /// thread-id to device-id map. std::map<unsigned int, unsigned int> _thread2dev_map; int _cpu_device = -1; }; /// Util function to get the default queue of current selected device depends on /// the USM config. Return the default out-of-ordered queue when USM-none is /// enabled, otherwise return the default in-ordered queue. static inline sycl::queue &get_default_queue() { return dev_mgr::instance().current_device().default_queue(); } /// Util function to get the default in-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_in_order_queue() { return dev_mgr::instance().current_device().in_order_queue(); } /// Util function to get the default out-of-ordered queue of current device in /// dpct device manager. static inline sycl::queue &get_out_of_order_queue() { return dev_mgr::instance().current_device().out_of_order_queue(); } /// Util function to get the id of current device in /// dpct device manager. static inline unsigned int get_current_device_id() { return dev_mgr::instance().current_device_id(); } /// Util function to get the current device. static inline device_ext &get_current_device() { return dev_mgr::instance().current_device(); } /// Util function to get a device by id. static inline device_ext &get_device(unsigned int id) { return dev_mgr::instance().get_device(id); } /// Util function to get the context of the default queue of current /// device in dpct device manager. static inline sycl::context get_default_context() { return dpct::get_current_device().get_context(); } /// Util function to get a CPU device. static inline device_ext &cpu_device() { return dev_mgr::instance().cpu_device(); } static inline unsigned int select_device(unsigned int id) { dev_mgr::instance().select_device(id); return id; } template <class DeviceSelector> static inline std::enable_if_t< std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>> select_device(const DeviceSelector &selector = sycl::gpu_selector_v) { dev_mgr::instance().select_device(selector); } static inline unsigned int get_device_id(const sycl::device &dev){ return dev_mgr::instance().get_device_id(dev); } /// Util function to check whether a device supports some kinds of sycl::aspect. inline void has_capability_or_fail(const sycl::device &dev, const std::initializer_list<sycl::aspect> &props) { for (const auto &it : props) { if (dev.has(it)) continue; switch (it) { case sycl::aspect::fp64: throw std::runtime_error("'double' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; case sycl::aspect::fp16: throw std::runtime_error("'half' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); break; default: #define __SYCL_ASPECT(ASPECT, ID) \ case sycl::aspect::ASPECT: \ return #ASPECT; #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID) #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE) auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string { switch (AspectNum) { #include <sycl/info/aspects.def> #include <sycl/info/aspects_deprecated.def> default: return "unknown aspect"; } }; #undef __SYCL_ASPECT_DEPRECATED_ALIAS #undef __SYCL_ASPECT_DEPRECATED #undef __SYCL_ASPECT throw std::runtime_error( "'" + getAspectNameStr(it) + "' is not supported in '" + dev.get_info<sycl::info::device::name>() + "' device"); } break; } } } // namespace dpct #endif // __DPCT_DEVICE_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/memory.hpp
//==---- memory.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_HPP__ #define __DPCT_MEMORY_HPP__ #include "device.hpp" #include <sycl/sycl.hpp> #include <cassert> #include <cstdint> #include <cstring> #include <mutex> #include <unordered_map> #include <map> #include <utility> #include <thread> #include <type_traits> #if defined(__linux__) #include <sys/mman.h> #elif defined(_WIN64) #define NOMINMAX #include <windows.h> #else #error "Only support Windows and Linux." #endif namespace dpct { enum memcpy_direction { host_to_host, host_to_device, device_to_host, device_to_device, automatic }; enum memory_region { global = 0, // device global memory constant, // device constant memory local, // device local memory shared, // memory which can be accessed by host and device }; typedef uint8_t byte_t; /// Buffer type to be used in Memory Management runtime. typedef sycl::buffer<byte_t> buffer_t; /// Pitched 2D/3D memory data. class pitched_data { public: pitched_data() : pitched_data(nullptr, 0, 0, 0) {} pitched_data(void *data, size_t pitch, size_t x, size_t y) : _data(data), _pitch(pitch), _x(x), _y(y) {} void *get_data_ptr() { return _data; } void set_data_ptr(void *data) { _data = data; } size_t get_pitch() { return _pitch; } void set_pitch(size_t pitch) { _pitch = pitch; } size_t get_x() { return _x; } void set_x(size_t x) { _x = x; }; size_t get_y() { return _y; } void set_y(size_t y) { _y = y; } private: void *_data; size_t _pitch, _x, _y; }; namespace detail { class mem_mgr { mem_mgr() { // Reserved address space, no real memory allocation happens here. #if defined(__linux__) mapped_address_space = (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif defined(_WIN64) mapped_address_space = (byte_t *)VirtualAlloc( NULL, // NULL specified as the base address parameter mapped_region_size, // Size of allocation MEM_RESERVE, // Allocate reserved pages PAGE_NOACCESS); // Protection = no access #else #error "Only support Windows and Linux." #endif next_free = mapped_address_space; }; public: using buffer_id_t = int; struct allocation { buffer_t buffer; byte_t *alloc_ptr; size_t size; }; ~mem_mgr() { #if defined(__linux__) munmap(mapped_address_space, mapped_region_size); #elif defined(_WIN64) VirtualFree(mapped_address_space, 0, MEM_RELEASE); #else #error "Only support Windows and Linux." #endif }; mem_mgr(const mem_mgr &) = delete; mem_mgr &operator=(const mem_mgr &) = delete; mem_mgr(mem_mgr &&) = delete; mem_mgr &operator=(mem_mgr &&) = delete; /// Allocate void *mem_alloc(size_t size) { if (!size) return nullptr; std::lock_guard<std::mutex> lock(m_mutex); if (next_free + size > mapped_address_space + mapped_region_size) { throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool"); } // Allocation sycl::range<1> r(size); buffer_t buf(r); allocation A{buf, next_free, size}; // Map allocation to device pointer void *result = next_free; m_map.emplace(next_free + size, A); // Update pointer to the next free space. next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1); return result; } /// Deallocate void mem_free(const void *ptr) { if (!ptr) return; std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); m_map.erase(it); } /// map: device pointer -> allocation(buffer, alloc_ptr, size) allocation translate_ptr(const void *ptr) { std::lock_guard<std::mutex> lock(m_mutex); auto it = get_map_iterator(ptr); return it->second; } /// Check if the pointer represents device pointer or not. bool is_device_ptr(const void *ptr) const { std::lock_guard<std::mutex> lock(m_mutex); return (mapped_address_space <= ptr) && (ptr < mapped_address_space + mapped_region_size); } /// Returns the instance of memory manager singleton. static mem_mgr &instance() { static mem_mgr m; return m; } private: std::map<byte_t *, allocation> m_map; mutable std::mutex m_mutex; byte_t *mapped_address_space; byte_t *next_free; const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024; const size_t alignment = 256; /// This padding may be defined to some positive value to debug /// out of bound accesses. const size_t extra_padding = 0; std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr) { auto it = m_map.upper_bound((byte_t *)ptr); if (it == m_map.end()) { // Not a virtual pointer. throw std::runtime_error("can not get buffer from non-virtual pointer"); } const allocation &alloc = it->second; if (ptr < alloc.alloc_ptr) { // Out of bound. // This may happen if there's a gap between allocations due to alignment // or extra padding and pointer points to this gap. throw std::runtime_error("invalid virtual pointer"); } return it; } }; template <class T, memory_region Memory, size_t Dimension> class accessor; template <memory_region Memory, class T = byte_t> class memory_traits { public: static constexpr sycl::access::target target = sycl::access::target::device; static constexpr sycl::access_mode mode = (Memory == constant) ? sycl::access_mode::read : sycl::access_mode::read_write; static constexpr size_t type_size = sizeof(T); using element_t = typename std::conditional<Memory == constant, const T, T>::type; using value_t = typename std::remove_cv<T>::type; template <size_t Dimension = 1> using accessor_t = typename std::conditional< Memory == local, sycl::local_accessor<value_t, Dimension>, sycl::accessor<T, Dimension, mode, target>>::type; using pointer_t = T *; }; static inline void *dpct_malloc(size_t size, sycl::queue &q) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().mem_alloc(size * sizeof(byte_t)); #else return sycl::malloc_device(size, q.get_device(), q.get_context()); #endif // DPCT_USM_LEVEL_NONE } #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F)) static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z, sycl::queue &q) { pitch = PITCH_DEFAULT_ALIGN(x); return dpct_malloc(pitch * y * z, q); } /// Set \p value to the first \p size bytes starting from \p dev_ptr in \p q. /// /// \param q The queue in which the operation is done. /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns An event representing the memset operation. static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr, int value, size_t size) { #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); assert(mm.is_device_ptr(dev_ptr)); auto alloc = mm.translate_ptr(dev_ptr); size_t offset = (byte_t *)dev_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.fill(acc, (byte_t)value); }); #else return q.memset(dev_ptr, value, size); #endif // DPCT_USM_LEVEL_NONE } /// Set \p value to the 3D memory region pointed by \p data in \p q. \p size /// specifies the 3D memory size to set. /// /// \param q The queue in which the operation is done. /// \param data Pointer to the device memory region. /// \param value Value to be set. /// \param size Memory region size. /// \returns An event list representing the memset operations. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, pitched_data data, int value, sycl::range<3> size) { std::vector<sycl::event> event_list; size_t slice = data.get_pitch() * data.get_y(); unsigned char *data_surface = (unsigned char *)data.get_data_ptr(); for (size_t z = 0; z < size.get(2); ++z) { unsigned char *data_ptr = data_surface; for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0))); data_ptr += data.get_pitch(); } data_surface += slice; } return event_list; } /// memset 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memset(sycl::queue &q, void *ptr, size_t pitch, int val, size_t x, size_t y) { return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val, sycl::range<3>(x, y, 1)); } enum class pointer_access_attribute { host_only = 0, device_only, host_device, end }; static pointer_access_attribute get_pointer_attribute(sycl::queue &q, const void *ptr) { #ifdef DPCT_USM_LEVEL_NONE return mem_mgr::instance().is_device_ptr(ptr) ? pointer_access_attribute::device_only : pointer_access_attribute::host_only; #else switch (sycl::get_pointer_type(ptr, q.get_context())) { case sycl::usm::alloc::unknown: return pointer_access_attribute::host_only; case sycl::usm::alloc::device: return pointer_access_attribute::device_only; case sycl::usm::alloc::shared: case sycl::usm::alloc::host: return pointer_access_attribute::host_device; } #endif } static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr, const void *from_ptr, memcpy_direction dir) { switch (dir) { case memcpy_direction::host_to_host: case memcpy_direction::host_to_device: case memcpy_direction::device_to_host: case memcpy_direction::device_to_device: return dir; case memcpy_direction::automatic: { // table[to_attribute][from_attribute] static const memcpy_direction direction_table[static_cast<unsigned>(pointer_access_attribute::end)] [static_cast<unsigned>(pointer_access_attribute::end)] = {{memcpy_direction::host_to_host, memcpy_direction::device_to_host, memcpy_direction::host_to_host}, {memcpy_direction::host_to_device, memcpy_direction::device_to_device, memcpy_direction::device_to_device}, {memcpy_direction::host_to_host, memcpy_direction::device_to_device, memcpy_direction::device_to_device}}; return direction_table[static_cast<unsigned>(get_pointer_attribute( q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))]; } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } } static sycl::event dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { if (!size) return sycl::event{}; #ifdef DPCT_USM_LEVEL_NONE auto &mm = mem_mgr::instance(); auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); switch (real_direction) { case host_to_host: return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); }); case host_to_device: { auto alloc = mm.translate_ptr(to_ptr); size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(from_ptr, acc); }); } case device_to_host: { auto alloc = mm.translate_ptr(from_ptr); size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto o = sycl::id<1>(offset); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> acc(alloc.buffer, cgh, r, o); cgh.copy(acc, to_ptr); }); } case device_to_device: { auto to_alloc = mm.translate_ptr(to_ptr); auto from_alloc = mm.translate_ptr(from_ptr); size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr; return q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto r = sycl::range<1>(size); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, r, to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, r, from_o); cgh.copy(from_acc, to_acc); }); } default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } #else return q.memcpy(to_ptr, from_ptr, size, dep_events); #endif // DPCT_USM_LEVEL_NONE } // Get actual copy range and make sure it will not exceed range. static inline size_t get_copy_range(sycl::range<3> size, size_t slice, size_t pitch) { return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0); } static inline size_t get_offset(sycl::id<3> id, size_t slice, size_t pitch) { return slice * id.get(2) + pitch * id.get(1) + id.get(0); } /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr /// and \p from_range to another specified by \p to_ptr and \p to_range. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, sycl::range<3> to_range, sycl::range<3> from_range, sycl::id<3> to_id, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction, const std::vector<sycl::event> &dep_events = {}) { // RAII for host pointer class host_buffer { void *_buf; size_t _size; sycl::queue &_q; const std::vector<sycl::event> &_deps; // free operation depends public: host_buffer(size_t size, sycl::queue &q, const std::vector<sycl::event> &deps) : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {} void *get_ptr() const { return _buf; } size_t get_size() const { return _size; } ~host_buffer() { if (_buf) { _q.submit([&](sycl::handler &cgh) { cgh.depends_on(_deps); cgh.host_task([buf = _buf] { std::free(buf); }); }); } } }; std::vector<sycl::event> event_list; size_t to_slice = to_range.get(1) * to_range.get(0), from_slice = from_range.get(1) * from_range.get(0); unsigned char *to_surface = (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0)); const unsigned char *from_surface = (const unsigned char *)from_ptr + get_offset(from_id, from_slice, from_range.get(0)); if (to_slice == from_slice && to_slice == size.get(1) * size.get(0)) { return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2), direction, dep_events)}; } direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction); size_t size_slice = size.get(1) * size.get(0); switch (direction) { case host_to_host: for (size_t z = 0; z < size.get(2); ++z) { unsigned char *to_ptr = to_surface; const unsigned char *from_ptr = from_surface; if (to_range.get(0) == from_range.get(0) && to_range.get(0) == size.get(0)) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice, direction, dep_events)); } else { for (size_t y = 0; y < size.get(1); ++y) { event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0), direction, dep_events)); to_ptr += to_range.get(0); from_ptr += from_range.get(0); } } to_surface += to_slice; from_surface += from_slice; } break; case host_to_device: { host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q, event_list); std::vector<sycl::event> host_events; if (to_slice == size_slice) { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, dep_events); } else { // Copy host data to a temp host buffer with the shape of target. host_events = dpct_memcpy( q, buf.get_ptr(), from_surface, to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // If has padding data, not sure whether it is useless. So fill temp // buffer with it. std::vector<sycl::event>{ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(), device_to_host, dep_events)}); } // Copy from temp host buffer to device with only one submit. event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(), buf.get_size(), host_to_device, host_events)); break; } case device_to_host: { host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q, event_list); // Copy from host temp buffer to host target with reshaping. event_list = dpct_memcpy( q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host, // Copy from device to temp host buffer with only one submit. std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface, buf.get_size(), device_to_host, dep_events)}); break; } case device_to_device: #ifdef DPCT_USM_LEVEL_NONE { auto &mm = mem_mgr::instance(); auto to_alloc = mm.translate_ptr(to_surface); auto from_alloc = mm.translate_ptr(from_surface); size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr; size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr; event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); auto to_o = sycl::id<1>(to_offset); auto from_o = sycl::id<1>(from_offset); sycl::accessor<byte_t, 1, sycl::access_mode::write, sycl::access::target::device> to_acc(to_alloc.buffer, cgh, get_copy_range(size, to_slice, to_range.get(0)), to_o); sycl::accessor<byte_t, 1, sycl::access_mode::read, sycl::access::target::device> from_acc(from_alloc.buffer, cgh, get_copy_range(size, from_slice, from_range.get(0)), from_o); cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>( size, [=](sycl::id<3> id) { to_acc[get_offset(id, to_slice, to_range.get(0))] = from_acc[get_offset(id, from_slice, from_range.get(0))]; }); })); } #else event_list.push_back(q.submit([&](sycl::handler &cgh) { cgh.depends_on(dep_events); cgh.parallel_for<class dpct_memcpy_3d_detail>( size, [=](sycl::id<3> id) { to_surface[get_offset(id, to_slice, to_range.get(0))] = from_surface[get_offset(id, from_slice, from_range.get(0))]; }); })); #endif break; default: throw std::runtime_error("dpct_memcpy: invalid direction value"); } return event_list; } /// memcpy 2D/3D matrix specified by pitched_data. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id, pitched_data from, sycl::id<3> from_id, sycl::range<3> size, memcpy_direction direction = automatic) { return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(), sycl::range<3>(to.get_pitch(), to.get_y(), 1), sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id, size, direction); } /// memcpy 2D matrix with pitch. static inline std::vector<sycl::event> dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t to_pitch, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic) { return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1), sycl::range<3>(from_pitch, y, 1), sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), sycl::range<3>(x, y, 1), direction); } namespace deprecated { template <typename T, sycl::usm::alloc AllocKind> class usm_allocator { private: using Alloc = sycl::usm_allocator<T, AllocKind>; Alloc _impl; public: using value_type = typename std::allocator_traits<Alloc>::value_type; using pointer = typename std::allocator_traits<Alloc>::pointer; using const_pointer = typename std::allocator_traits<Alloc>::const_pointer; using void_pointer = typename std::allocator_traits<Alloc>::void_pointer; using const_void_pointer = typename std::allocator_traits<Alloc>::const_void_pointer; using reference = typename std::allocator_traits<Alloc>::value_type &; using const_reference = const typename std::allocator_traits<Alloc>::value_type &; using difference_type = typename std::allocator_traits<Alloc>::difference_type; using size_type = typename std::allocator_traits<Alloc>::size_type; using propagate_on_container_copy_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_copy_assignment; using propagate_on_container_move_assignment = typename std::allocator_traits< Alloc>::propagate_on_container_move_assignment; using propagate_on_container_swap = typename std::allocator_traits<Alloc>::propagate_on_container_swap; using is_always_equal = typename std::allocator_traits<Alloc>::is_always_equal; template <typename U> struct rebind { typedef usm_allocator<U, AllocKind> other; }; usm_allocator() : _impl(dpct::get_default_queue()) {} ~usm_allocator() {} usm_allocator(const usm_allocator &other) : _impl(other._impl) {} usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {} pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type cnt, const_void_pointer hint = nullptr) { return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint); } void deallocate(pointer p, size_type cnt) { std::allocator_traits<Alloc>::deallocate(_impl, p, cnt); } size_type max_size() const { return std::allocator_traits<Alloc>::max_size(_impl); } bool operator==(const usm_allocator &other) const { return _impl == other._impl; } bool operator!=(const usm_allocator &other) const { return _impl != other._impl; } }; } // namespace deprecated inline void dpct_free(void *ptr, const sycl::queue &q) { if (ptr) { #ifdef DPCT_USM_LEVEL_NONE detail::mem_mgr::instance().mem_free(ptr); #else sycl::free(ptr, q.get_context()); #endif // DPCT_USM_LEVEL_NONE } } } // namespace detail #ifdef DPCT_USM_LEVEL_NONE /// Check if the pointer \p ptr represents device pointer or not. /// /// \param ptr The pointer to be checked. /// \returns true if \p ptr is a device pointer. template<class T> static inline bool is_device_ptr(T ptr) { if constexpr (std::is_pointer<T>::value) { return detail::mem_mgr::instance().is_device_ptr(ptr); } return false; } #endif /// Get the buffer and the offset of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// If NULL is passed as an argument, an exception will be thrown. /// \returns a pair containing both the buffer and the offset. static std::pair<buffer_t, size_t> get_buffer_and_offset(const void *ptr) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); size_t offset = (byte_t *)ptr - alloc.alloc_ptr; return std::make_pair(alloc.buffer, offset); } else { throw std::runtime_error( "NULL pointer argument in get_buffer_and_offset function is invalid"); } } /// Get the data pointed from \p ptr as a 1D buffer reinterpreted as type T. template <typename T> static sycl::buffer<T> get_buffer(const void *ptr) { if (!ptr) return sycl::buffer<T>(sycl::range<1>(0)); auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.reinterpret<T>( sycl::range<1>(alloc.size / sizeof(T))); } /// Get the buffer of a piece of memory pointed to by \p ptr. /// /// \param ptr Pointer to a piece of memory. /// \returns the buffer. static buffer_t get_buffer(const void *ptr) { return detail::mem_mgr::instance().translate_ptr(ptr).buffer; } /// A wrapper class contains an accessor and an offset. template <typename dataT, sycl::access_mode accessMode = sycl::access_mode::read_write> class access_wrapper { sycl::accessor<byte_t, 1, accessMode> accessor; size_t offset; public: /// Construct the accessor wrapper for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// \param cgh The command group handler. access_wrapper(const void *ptr, sycl::handler &cgh) : accessor(get_buffer(ptr).get_access<accessMode>(cgh)), offset(0) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); offset = (byte_t *)ptr - alloc.alloc_ptr; } /// Get the device pointer. /// /// \returns a device pointer with offset. dataT get_raw_pointer() const { return (dataT)(&accessor[0] + offset); } }; /// Get the accessor for memory pointed by \p ptr. /// /// \param ptr Pointer to memory. /// If NULL is passed as an argument, an exception will be thrown. /// \param cgh The command group handler. /// \returns an accessor. template <sycl::access_mode accessMode = sycl::access_mode::read_write> static sycl::accessor<byte_t, 1, accessMode> get_access(const void *ptr, sycl::handler &cgh) { if (ptr) { auto alloc = detail::mem_mgr::instance().translate_ptr(ptr); return alloc.buffer.get_access<accessMode>(cgh); } else { throw std::runtime_error( "NULL pointer argument in get_access function is invalid"); } } /// Allocate memory block on the device. /// \param num_bytes Number of bytes to allocate. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. template <typename T> static inline void *dpct_malloc(T num_bytes, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(static_cast<size_t>(num_bytes), q); } /// Get the host pointer from a buffer that is mapped to virtual pointer ptr. /// \param ptr Virtual Pointer mapped to device buffer /// \returns A host pointer template <typename T> static inline T *get_host_ptr(const void *ptr) { auto BufferOffset = get_buffer_and_offset(ptr); auto host_ptr = BufferOffset.first.get_host_access() .get_pointer(); return (T *)(host_ptr + BufferOffset.second); } /// Allocate memory block for 3D array on the device. /// \param size Size of the memory block, in bytes. /// \param q Queue to execute the allocate task. /// \returns A pitched_data object which stores the memory info. static inline pitched_data dpct_malloc(sycl::range<3> size, sycl::queue &q = get_default_queue()) { pitched_data pitch(nullptr, 0, size.get(0), size.get(1)); size_t pitch_size; pitch.set_data_ptr(detail::dpct_malloc(pitch_size, size.get(0), size.get(1), size.get(2), q)); pitch.set_pitch(pitch_size); return pitch; } /// Allocate memory block for 2D array on the device. /// \param [out] pitch Aligned size of x in bytes. /// \param x Range in dim x. /// \param y Range in dim y. /// \param q Queue to execute the allocate task. /// \returns A pointer to the newly allocated memory. static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, sycl::queue &q = get_default_queue()) { return detail::dpct_malloc(pitch, x, y, 1, q); } /// free /// \param ptr Point to free. /// \param q Queue to execute the free task. /// \returns no return value. static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) { detail::dpct_free(ptr, q); } /// Free the device memory pointed by a batch of pointers in \p pointers which /// are related to \p q after \p events completed. /// /// \param pointers The pointers point to the device memory requested to be freed. /// \param events The events to be waited. /// \param q The sycl::queue the memory relates to. inline void async_dpct_free(const std::vector<void *> &pointers, const std::vector<sycl::event> &events, sycl::queue &q = get_default_queue()) { q.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { for (auto p : pointers) if (p) { detail::dpct_free(p, q); } }); }); } /// Synchronously copies \p size bytes from the address specified by \p from_ptr /// to the address specified by \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, /// \a device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction).wait(); } /// Asynchronously copies \p size bytes from the address specified by \p /// from_ptr to the address specified by \p to_ptr. The value of \p direction is /// used to set the copy direction, it can be \a host_to_host, \a /// host_to_device, \a device_to_host, \a device_to_device or \a automatic. The /// return of the function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param from_ptr Pointer to source memory address. /// \param size Number of bytes to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction); } /// Synchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The function will /// return after the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait(detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction)); } /// Asynchronously copies 2D matrix specified by \p x and \p y from the address /// specified by \p from_ptr to the address specified by \p to_ptr, while \p /// \p from_pitch and \p to_pitch are the range of dim x in bytes of the matrix /// specified by \p from_ptr and \p to_ptr. The value of \p direction is used to /// set the copy direction, it can be \a host_to_host, \a host_to_device, \a /// device_to_host, \a device_to_device or \a automatic. The return of the /// function does NOT guarantee the copy is completed. /// /// \param to_ptr Pointer to destination memory address. /// \param to_pitch Range of dim x in bytes of destination matrix. /// \param from_ptr Pointer to source memory address. /// \param from_pitch Range of dim x in bytes of source matrix. /// \param x Range of dim x of matrix to be copied. /// \param y Range of dim y of matrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr, size_t from_pitch, size_t x, size_t y, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y, direction); } /// Synchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The function will return after the copy is completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = dpct::get_default_queue()) { sycl::event::wait( detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction)); } /// Asynchronously copies a subset of a 3D matrix specified by \p to to another /// 3D matrix specified by \p from. The from and to position info are specified /// by \p from_pos and \p to_pos The copied matrix size is specified by \p size. /// The value of \p direction is used to set the copy direction, it can be \a /// host_to_host, \a host_to_device, \a device_to_host, \a device_to_device or /// \a automatic. The return of the function does NOT guarantee the copy is /// completed. /// /// \param to Destination matrix info. /// \param to_pos Position of destination. /// \param from Source matrix info. /// \param from_pos Position of destination. /// \param size Range of the submatrix to be copied. /// \param direction Direction of the copy. /// \param q Queue to execute the copy task. /// \returns no return value. static inline void async_dpct_memcpy(pitched_data to, sycl::id<3> to_pos, pitched_data from, sycl::id<3> from_pos, sycl::range<3> size, memcpy_direction direction = automatic, sycl::queue &q = get_default_queue()) { detail::dpct_memcpy(q, to, to_pos, from, from_pos, size, direction); } /// Synchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The function will return after the memset operation is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \param q The queue in which the operation is done. /// \returns no return value. static void dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size).wait(); } /// Asynchronously sets \p value to the first \p size bytes starting from \p /// dev_ptr. The return of the function does NOT guarantee the memset operation /// is completed. /// /// \param dev_ptr Pointer to the device memory address. /// \param value Value to be set. /// \param size Number of bytes to be set to the value. /// \returns no return value. static void async_dpct_memset(void *dev_ptr, int value, size_t size, sycl::queue &q = dpct::get_default_queue()) { detail::dpct_memset(q, dev_ptr, value, size); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The function will return after the /// memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, ptr, pitch, val, x, y)); } /// Sets \p value to the 2D memory region pointed by \p ptr in \p q. \p x and /// \p y specify the setted 2D memory size. \p pitch is the bytes in linear /// dimension, including padding bytes. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param ptr Pointer to the device memory region. /// \param pitch Bytes in linear dimension, including padding bytes. /// \param value Value to be set. /// \param x The setted memory size in linear dimension. /// \param y The setted memory size in second dimension. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(void *ptr, size_t pitch, int val, size_t x, size_t y, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, ptr, pitch, val, x, y); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The function will return after the /// memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { sycl::event::wait(detail::dpct_memset(q, pitch, val, size)); } /// Sets \p value to the 3D memory region specified by \p pitch in \p q. \p size /// specify the setted 3D memory size. The return of the function does NOT /// guarantee the memset operation is completed. /// /// \param pitch Specify the 3D memory region. /// \param value Value to be set. /// \param size The setted 3D memory size. /// \param q The queue in which the operation is done. /// \returns no return value. static inline void async_dpct_memset(pitched_data pitch, int val, sycl::range<3> size, sycl::queue &q = get_default_queue()) { detail::dpct_memset(q, pitch, val, size); } /// dpct accessor used as device function parameter. template <class T, memory_region Memory, size_t Dimension> class accessor; template <class T, memory_region Memory> class accessor<T, Memory, 3> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<3>; accessor(pointer_t data, const sycl::range<3> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<3> &in_range) : accessor(acc.get_pointer(), in_range) {} accessor<T, Memory, 2> operator[](size_t index) const { sycl::range<2> sub(_range.get(1), _range.get(2)); return accessor<T, Memory, 2>(_data + index * sub.size(), sub); } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<3> _range; }; template <class T, memory_region Memory> class accessor<T, Memory, 2> { public: using memory_t = detail::memory_traits<Memory, T>; using element_t = typename memory_t::element_t; using pointer_t = typename memory_t::pointer_t; using accessor_t = typename memory_t::template accessor_t<2>; accessor(pointer_t data, const sycl::range<2> &in_range) : _data(data), _range(in_range) {} template <memory_region M = Memory> accessor(typename std::enable_if<M != local, const accessor_t>::type &acc) : accessor(acc, acc.get_range()) {} accessor(const accessor_t &acc, const sycl::range<2> &in_range) : accessor(acc.get_pointer(), in_range) {} pointer_t operator[](size_t index) const { return _data + _range.get(1) * index; } pointer_t get_ptr() const { return _data; } private: pointer_t _data; sycl::range<2> _range; }; namespace detail { /// Device variable with address space of shared, global or constant. template <class T, memory_region Memory, size_t Dimension> class device_memory { public: using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<Dimension>; using value_t = typename detail::memory_traits<Memory, T>::value_t; using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>; device_memory() : device_memory(sycl::range<Dimension>(1)) {} /// Constructor of 1-D array with initializer list device_memory( const sycl::range<Dimension> &in_range, std::initializer_list<value_t> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range.size()); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T)); } /// Constructor of 2-D array with initializer list template <size_t D = Dimension> device_memory( const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range, std::initializer_list<std::initializer_list<value_t>> &&init_list) : device_memory(in_range) { assert(init_list.size() <= in_range[0]); _host_ptr = (value_t *)std::malloc(_size); std::memset(_host_ptr, 0, _size); auto tmp_data = _host_ptr; for (auto sub_list : init_list) { assert(sub_list.size() <= in_range[1]); std::memcpy(tmp_data, sub_list.begin(), sub_list.size() * sizeof(T)); tmp_data += in_range[1]; } } /// Constructor with range device_memory(const sycl::range<Dimension> &range_in) : _size(range_in.size() * sizeof(T)), _range(range_in), _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) { static_assert( (Memory == global) || (Memory == constant) || (Memory == shared), "device memory region should be global, constant or shared"); // Make sure that singleton class mem_mgr and dev_mgr will destruct later // than this. detail::mem_mgr::instance(); dev_mgr::instance(); } /// Constructor with range template <class... Args> device_memory(Args... Arguments) : device_memory(sycl::range<Dimension>(Arguments...)) {} ~device_memory() { if (_device_ptr && !_reference) dpct::dpct_free(_device_ptr); if (_host_ptr) std::free(_host_ptr); } /// Allocate memory with default queue, and init memory if has initial value. void init() { init(dpct::get_default_queue()); } /// Allocate memory with specified queue, and init memory if has initial value. void init(sycl::queue &q) { if (_device_ptr) return; if (!_size) return; allocate_device(q); if (_host_ptr) detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size, host_to_device); } /// The variable is assigned to a device pointer. void assign(value_t *src, size_t size) { this->~device_memory(); new (this) device_memory(src, size); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr() { return get_ptr(get_default_queue()); } /// Get memory pointer of the memory object, which is virtual pointer when /// usm is not used, and device pointer when usm is used. value_t *get_ptr(sycl::queue &q) { init(q); return _device_ptr; } /// Get the device memory object size in bytes. size_t get_size() { return _size; } template <size_t D = Dimension> typename std::enable_if<D == 1, T>::type &operator[](size_t index) { init(); #ifdef DPCT_USM_LEVEL_NONE return dpct::get_buffer<typename std::enable_if<D == 1, T>::type>( _device_ptr) .template get_access<sycl::access_mode::read_write>()[index]; #else return _device_ptr[index]; #endif // DPCT_USM_LEVEL_NONE } #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { return get_buffer(_device_ptr) .template reinterpret<T, Dimension>(_range) .template get_access<detail::memory_traits<Memory, T>::mode, detail::memory_traits<Memory, T>::target>(cgh); } #else /// Get dpct::accessor with dimension info for the device memory object /// when usm is used and dimension is greater than 1. template <size_t D = Dimension> typename std::enable_if<D != 1, dpct_accessor_t>::type get_access(sycl::handler &cgh) { return dpct_accessor_t((T *)_device_ptr, _range); } #endif // DPCT_USM_LEVEL_NONE private: device_memory(value_t *memory_ptr, size_t size) : _size(size), _range(size / sizeof(T)), _reference(true), _device_ptr(memory_ptr) {} void allocate_device(sycl::queue &q) { #ifndef DPCT_USM_LEVEL_NONE if (Memory == shared) { _device_ptr = (value_t *)sycl::malloc_shared( _size, q.get_device(), q.get_context()); return; } #endif _device_ptr = (value_t *)detail::dpct_malloc(_size, q); } size_t _size; sycl::range<Dimension> _range; bool _reference; value_t *_host_ptr; value_t *_device_ptr; }; template <class T, memory_region Memory> class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> { public: using base = device_memory<T, Memory, 1>; using value_t = typename base::value_t; using accessor_t = typename detail::memory_traits<Memory, T>::template accessor_t<0>; /// Constructor with initial value. device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {} /// Default constructor device_memory() : base(1) {} #ifdef DPCT_USM_LEVEL_NONE /// Get sycl::accessor for the device memory object when usm is not used. accessor_t get_access(sycl::handler &cgh) { auto buf = get_buffer(base::get_ptr()) .template reinterpret<T, 1>(sycl::range<1>(1)); return accessor_t(buf, cgh); } #endif // DPCT_USM_LEVEL_NONE }; } template <class T, size_t Dimension> using global_memory = detail::device_memory<T, global, Dimension>; template <class T, size_t Dimension> using constant_memory = detail::device_memory<T, constant, Dimension>; template <class T, size_t Dimension> using shared_memory = detail::device_memory<T, shared, Dimension>; // dpct::deprecated:: is for functionality that was introduced for compatibility // purpose, but relies on deprecated C++ features, which are either removed or // will be removed in the future standards. // Direct use of deprecated functionality in this namespace should be avoided. namespace deprecated { template <typename T> using usm_host_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::host>; template <typename T> using usm_device_allocator = detail::deprecated::usm_allocator<T, sycl::usm::alloc::shared>; } // namespace deprecated class pointer_attributes { public: void init(const void *ptr, sycl::queue &q = dpct::get_default_queue()) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error( "dpct::pointer_attributes: only works for USM pointer."); #else memory_type = sycl::get_pointer_type(ptr, q.get_context()); device_pointer = (memory_type != sycl::usm::alloc::unknown) ? ptr : nullptr; host_pointer = (memory_type != sycl::usm::alloc::unknown) && (memory_type != sycl::usm::alloc::device) ? ptr : nullptr; sycl::device device_obj = sycl::get_pointer_device(ptr, q.get_context()); device_id = dpct::dev_mgr::instance().get_device_id(device_obj); #endif } sycl::usm::alloc get_memory_type() { return memory_type; } const void *get_device_pointer() { return device_pointer; } const void *get_host_pointer() { return host_pointer; } bool is_memory_shared() { return memory_type == sycl::usm::alloc::shared; } unsigned int get_device_id() { return device_id; } private: sycl::usm::alloc memory_type = sycl::usm::alloc::unknown; const void *device_pointer = nullptr; const void *host_pointer = nullptr; unsigned int device_id = 0; }; } // namespace dpct #endif // __DPCT_MEMORY_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_utils.hpp
//==---- dpl_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_DPL_UTILS_HPP__ #define __DPCT_DPL_UTILS_HPP__ #define ONEDPL_USE_DPCPP_BACKEND 1 #define __USE_DPCT 1 #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "dpl_extras/memory.h" #include "dpl_extras/algorithm.h" #include "dpl_extras/numeric.h" #include "dpl_extras/iterators.h" #include "dpl_extras/vector.h" #include "dpl_extras/dpcpp_extensions.h" #endif // __DPCT_DPL_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/math.hpp
//==---- math.hpp ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MATH_HPP__ #define __DPCT_MATH_HPP__ #include <sycl/sycl.hpp> namespace dpct { namespace detail { template <typename VecT, class BinaryOperation, class = void> class vectorized_binary { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { VecT v4; for (size_t i = 0; i < v4.size(); ++i) { v4[i] = binary_op(a[i], b[i]); } return v4; } }; template <typename VecT, class BinaryOperation> class vectorized_binary< VecT, BinaryOperation, std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>> { public: inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op) { return binary_op(a, b).template as<VecT>(); } }; template <typename T> bool isnan(const T a) { return sycl::isnan(a); } // TODO: Need add more specialization such as bfloat16 version. } // namespace detail /// Compute fast_length for variable-length array /// \param [in] a The array /// \param [in] len Length of the array /// \returns The computed fast_length inline float fast_length(const float *a, int len) { switch (len) { case 1: return a[0]; case 2: return sycl::fast_length(sycl::float2(a[0], a[1])); case 3: return sycl::fast_length(sycl::float3(a[0], a[1], a[2])); case 4: return sycl::fast_length(sycl::float4(a[0], a[1], a[2], a[3])); case 0: return 0; default: float f = 0; for (int i = 0; i < len; ++i) f += a[i] * a[i]; return sycl::sqrt(f); } } /// Calculate the square root of the input array. /// \param [in] a The array pointer /// \param [in] len Length of the array /// \returns The square root template <typename T> inline T length(const T *a, const int len) { switch (len) { case 1: return a[0]; case 2: return sycl::length(sycl::vec<T, 2>(a[0], a[1])); case 3: return sycl::length(sycl::vec<T, 3>(a[0], a[1], a[2])); case 4: return sycl::length(sycl::vec<T, 4>(a[0], a[1], a[2], a[3])); default: T ret = 0; for (int i = 0; i < len; ++i) ret += a[i] * a[i]; return sycl::sqrt(ret); } } /// Performs comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> compare(const T a, const T b, const BinaryOperation binary_op) { return binary_op(a, b); } template <typename T> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<std::not_equal_to<>, T, T>, bool>, bool> compare(const T a, const T b, const std::not_equal_to<> binary_op) { return !detail::isnan(a) && !detail::isnan(b) && binary_op(a, b); } /// Performs unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t< std::is_same_v<std::invoke_result_t<BinaryOperation, T, T>, bool>, bool> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return detail::isnan(a) || detail::isnan(b) || binary_op(a, b); } /// Performs 2 element comparison and return true if both results are true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> compare_both(const T a, const T b, const BinaryOperation binary_op) { return compare(a[0], b[0], binary_op) && compare(a[1], b[1], binary_op); } /// Performs 2 element unordered comparison and return true if both results are /// true. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, bool> unordered_compare_both(const T a, const T b, const BinaryOperation binary_op) { return unordered_compare(a[0], b[0], binary_op) && unordered_compare(a[1], b[1], binary_op); } /// Performs 2 element comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> compare(const T a, const T b, const BinaryOperation binary_op) { return {compare(a[0], b[0], binary_op), compare(a[1], b[1], binary_op)}; } /// Performs 2 elements comparison, compare result of each element is 0 (false) /// or 0xffff (true), returns an unsigned int by composing compare result of two /// elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-compare(a[0], b[0], binary_op), -compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Performs 2 element unordered comparison. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline std::enable_if_t<T::size() == 2, T> unordered_compare(const T a, const T b, const BinaryOperation binary_op) { return {unordered_compare(a[0], b[0], binary_op), unordered_compare(a[1], b[1], binary_op)}; } /// Performs 2 elements unordered comparison, compare result of each element is /// 0 (false) or 0xffff (true), returns an unsigned int by composing compare /// result of two elements. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] binary_op functor that implements the binary operation /// \returns the comparison result template <typename T, class BinaryOperation> inline unsigned unordered_compare_mask(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const BinaryOperation binary_op) { return sycl::vec<short, 2>(-unordered_compare(a[0], b[0], binary_op), -unordered_compare(a[1], b[1], binary_op)) .as<sycl::vec<unsigned, 1>>(); } /// Determine whether 2 element value is NaN. /// \param [in] a The input value /// \returns the comparison result template <typename T> inline std::enable_if_t<T::size() == 2, T> isnan(const T a) { return {detail::isnan(a[0]), detail::isnan(a[1])}; } // min function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double min(const double a, const float b) { return sycl::fmin(a, static_cast<double>(b)); } inline double min(const float a, const double b) { return sycl::fmin(static_cast<double>(a), b); } inline float min(const float a, const float b) { return sycl::fmin(a, b); } inline double min(const double a, const double b) { return sycl::fmin(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t min(const std::int32_t a, const std::uint32_t b) { return sycl::min(static_cast<std::uint32_t>(a), b); } inline std::int32_t min(const std::int32_t a, const std::int32_t b) { return sycl::min(a, b); } inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int64_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int64_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::int64_t min(const std::int64_t a, const std::int64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b) { return sycl::min(a, b); } inline std::uint64_t min(const std::uint64_t a, const std::int32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::int32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b) { return sycl::min(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b) { return sycl::min(static_cast<std::uint64_t>(a), b); } // max function overloads. // For floating-point types, `float` or `double` arguments are acceptable. // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or // `std::int64_t` type arguments are acceptable. inline double max(const double a, const float b) { return sycl::fmax(a, static_cast<double>(b)); } inline double max(const float a, const double b) { return sycl::fmax(static_cast<double>(a), b); } inline float max(const float a, const float b) { return sycl::fmax(a, b); } inline double max(const double a, const double b) { return sycl::fmax(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint32_t>(b)); } inline std::uint32_t max(const std::int32_t a, const std::uint32_t b) { return sycl::max(static_cast<std::uint32_t>(a), b); } inline std::int32_t max(const std::int32_t a, const std::int32_t b) { return sycl::max(a, b); } inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int64_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int64_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::int64_t max(const std::int64_t a, const std::int64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b) { return sycl::max(a, b); } inline std::uint64_t max(const std::uint64_t a, const std::int32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::int32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b) { return sycl::max(a, static_cast<std::uint64_t>(b)); } inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b) { return sycl::max(static_cast<std::uint64_t>(a), b); } /// Performs relu saturation. /// \param [in] a The input value /// \returns the relu saturation result template <typename T> inline T relu(const T a) { if (!detail::isnan(a) && a < 0.f) return 0.f; return a; } template <class T> inline sycl::vec<T, 2> relu(const sycl::vec<T, 2> a) { return {relu(a[0]), relu(a[1])}; } /// Performs complex number multiply addition. /// \param [in] a The first value /// \param [in] b The second value /// \param [in] c The third value /// \returns the operation result template <typename T> inline sycl::vec<T, 2> complex_mul_add(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b, const sycl::vec<T, 2> c) { return sycl::vec<T, 2>{a[0] * b[0] - a[1] * b[1] + c[0], a[0] * b[1] + a[1] * b[0] + c[1]}; } /// Performs 2 elements comparison and returns the bigger one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the bigger value template <typename T> inline T fmax_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmax(a, b); } template <typename T> inline sycl::vec<T, 2> fmax_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmax_nan(a[0], b[0]), fmax_nan(a[1], b[1])}; } /// Performs 2 elements comparison and returns the smaller one. If either of /// inputs is NaN, then return NaN. /// \param [in] a The first value /// \param [in] b The second value /// \returns the smaller value template <typename T> inline T fmin_nan(const T a, const T b) { if (detail::isnan(a) || detail::isnan(b)) return NAN; return sycl::fmin(a, b); } template <typename T> inline sycl::vec<T, 2> fmin_nan(const sycl::vec<T, 2> a, const sycl::vec<T, 2> b) { return {fmin_nan(a[0], b[0]), fmin_nan(a[1], b[1])}; } /// A sycl::abs wrapper functors. struct abs { template <typename T> auto operator()(const T x) const { return sycl::abs(x); } }; /// A sycl::abs_diff wrapper functors. struct abs_diff { template <typename T> auto operator()(const T x, const T y) const { return sycl::abs_diff(x, y); } }; /// A sycl::add_sat wrapper functors. struct add_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::add_sat(x, y); } }; /// A sycl::rhadd wrapper functors. struct rhadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::rhadd(x, y); } }; /// A sycl::hadd wrapper functors. struct hadd { template <typename T> auto operator()(const T x, const T y) const { return sycl::hadd(x, y); } }; /// A sycl::max wrapper functors. struct maximum { template <typename T> auto operator()(const T x, const T y) const { return sycl::max(x, y); } }; /// A sycl::min wrapper functors. struct minimum { template <typename T> auto operator()(const T x, const T y) const { return sycl::min(x, y); } }; /// A sycl::sub_sat wrapper functors. struct sub_sat { template <typename T> auto operator()(const T x, const T y) const { return sycl::sub_sat(x, y); } }; /// Compute vectorized binary operation value for two values, with each value /// treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] BinaryOperation The binary operation class /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized binary operation value of the two values template <typename VecT, class BinaryOperation> inline unsigned vectorized_binary(unsigned a, unsigned b, const BinaryOperation binary_op) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op); v0 = v4.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized isgreater for two values, with each value treated as a /// vector type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized greater than of the two values template <typename S, typename T> inline T vectorized_isgreater(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = v2 > v3; v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized max for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized max of the two values template <typename S, typename T> inline T vectorized_max(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::max(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized min for two values, with each value treated as a vector /// type \p S. /// \tparam [in] S The type of the vector /// \tparam [in] T The type of the original values /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized min of the two values template <typename S, typename T> inline T vectorized_min(T a, T b) { sycl::vec<T, 1> v0{a}, v1{b}; auto v2 = v0.template as<S>(); auto v3 = v1.template as<S>(); auto v4 = sycl::min(v2, v3); v0 = v4.template as<sycl::vec<T, 1>>(); return v0; } /// Compute vectorized unary operation for a value, with the value treated as a /// vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \tparam [in] UnaryOperation The unary operation class /// \param [in] a The input value /// \returns The vectorized unary operation value of the input value template <typename VecT, class UnaryOperation> inline unsigned vectorized_unary(unsigned a, const UnaryOperation unary_op) { sycl::vec<unsigned, 1> v0{a}; auto v1 = v0.as<VecT>(); auto v2 = unary_op(v1); v0 = v2.template as<sycl::vec<unsigned, 1>>(); return v0; } /// Compute vectorized absolute difference for two values without modulo /// overflow, with each value treated as a vector type \p VecT. /// \tparam [in] VecT The type of the vector /// \param [in] a The first value /// \param [in] b The second value /// \returns The vectorized absolute difference of the two values template <typename VecT> inline unsigned vectorized_sum_abs_diff(unsigned a, unsigned b) { sycl::vec<unsigned, 1> v0{a}, v1{b}; auto v2 = v0.as<VecT>(); auto v3 = v1.as<VecT>(); auto v4 = sycl::abs_diff(v2, v3); unsigned sum = 0; for (size_t i = 0; i < v4.size(); ++i) { sum += v4[i]; } return sum; } } // namespace dpct #endif // __DPCT_MATH_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/blas_utils.hpp
//==---- blas_utils.hpp----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_BLAS_UTILS_HPP__ #define __DPCT_BLAS_UTILS_HPP__ #include "memory.hpp" #include "util.hpp" #include "lib_common_utils.hpp" #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #include <utility> #include <vector> #include <thread> namespace dpct { /// Get the value of \p s. /// Copy the data to host synchronously, then return the data. /// \param [in] p The pointer points the data. /// \param [in] q The queue where the memory copy should be executed. template <typename T> inline auto get_value(const T *s, sycl::queue &q) { return detail::get_value(s, q); } namespace detail { inline void mem_free(sycl::queue *exec_queue, std::vector<void *> pointers_array, sycl::event e) { e.wait(); for (auto p : pointers_array) sycl::free(p, *exec_queue); } inline int stride_for(int num_elems, int mem_align_in_elems) { return ((num_elems - 1) / mem_align_in_elems + 1) * mem_align_in_elems; } #ifndef DPCT_USM_LEVEL_NONE template<typename T> class working_memory { T *_input_ptr; T *_temp_ptr; bool _is_sycl_malloced = false; bool _is_scalar_value = false; sycl::queue _q; sycl::event _e; public: working_memory(size_t size, sycl::queue q) : _q(q) { _is_scalar_value = false; _temp_ptr = (T *)sycl::malloc_device(size, q); } working_memory(T *result_ptr, sycl::queue q) : _input_ptr(result_ptr), _q(q) { _is_scalar_value = true; _is_sycl_malloced = sycl::get_pointer_type(_input_ptr, _q.get_context()) != sycl::usm::alloc::unknown; if (!_is_sycl_malloced) _temp_ptr = sycl::malloc_shared<T>(1, _q); } auto get_ptr() { if (_is_scalar_value && _is_sycl_malloced) return _input_ptr; return _temp_ptr; } void set_event(sycl::event e) { _e = e; } ~working_memory() { if (_is_scalar_value) { if (!_is_sycl_malloced) { _q.memcpy(_input_ptr, _temp_ptr, sizeof(T)).wait(); sycl::free(_temp_ptr, _q); } } else { std::vector<void *> ptrs{_temp_ptr}; dpct::async_dpct_free(ptrs, {_e}); } } }; #endif template <typename Tx, typename Tr> inline void nrm2_impl(sycl::queue &q, int n, const void *x, int incx, void *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Tx>(x); auto r_buffer = sycl::buffer<Tr, 1>(reinterpret_cast<Tr *>(result), sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); oneapi::mkl::blas::column_major::nrm2(q, n, x_buffer, incx, r_buffer); #else working_memory<Tr> res_mem(reinterpret_cast<Tr *>(result), q); oneapi::mkl::blas::column_major::nrm2(q, n, reinterpret_cast<const Tx *>(x), incx, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate, class Txy, class Tr> inline void dotuc_impl(sycl::queue &q, int n, const Txy *x, int incx, const Txy *y, int incy, Tr *result) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else #ifdef DPCT_USM_LEVEL_NONE auto x_buffer = dpct::get_buffer<Txy>(x); auto y_buffer = dpct::get_buffer<Txy>(y); auto r_buffer = sycl::buffer<Tr, 1>((Tr *)result, sycl::range<1>(1)); if (dpct::is_device_ptr(result)) r_buffer = dpct::get_buffer<Tr>(result); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x_buffer, incx, y_buffer, incy, r_buffer); else oneapi::mkl::blas::column_major::dotu(q, n, x_buffer, incx, y_buffer, incy, r_buffer); } else oneapi::mkl::blas::column_major::dot(q, n, x_buffer, incx, y_buffer, incy, r_buffer); #else working_memory<Tr> res_mem(result, q); if constexpr (std::is_same_v<Txy, std::complex<float>> || std::is_same_v<Txy, std::complex<double>>) { if constexpr (is_conjugate) oneapi::mkl::blas::column_major::dotc(q, n, x, incx, y, incy, res_mem.get_ptr()); else oneapi::mkl::blas::column_major::dotu(q, n, x, incx, y, incy, res_mem.get_ptr()); } else oneapi::mkl::blas::column_major::dot(q, n, x, incx, y, incy, res_mem.get_ptr()); #endif #endif } template <bool is_conjugate> inline void dotuc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, y_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const float *>(x), incx, reinterpret_cast<const float *>(y), incy, reinterpret_cast<float *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const double *>(x), incx, reinterpret_cast<const double *>(y), incy, reinterpret_cast<double *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<float> *>(x), incx, reinterpret_cast<const std::complex<float> *>(y), incy, reinterpret_cast<std::complex<float> *>(result)); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const std::complex<double> *>(x), incx, reinterpret_cast<const std::complex<double> *>(y), incy, reinterpret_cast<std::complex<double> *>(result)); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::dotuc_impl<is_conjugate>( q, n, reinterpret_cast<const sycl::half *>(x), incx, reinterpret_cast<const sycl::half *>(y), incy, reinterpret_cast<sycl::half *>(result)); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } template <class Tx, class Te> inline void scal_impl(sycl::queue &q, int n, const void *alpha, void *x, int incx) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<Tx *>(x)); oneapi::mkl::blas::column_major::scal(q, n, alpha_val, data_x, incx); #endif } template <class Txy, class Te> inline void axpy_impl(sycl::queue &q, int n, const void *alpha, const void *x, int incx, void *y, int incy) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Te alpha_val = dpct::get_value(reinterpret_cast<const Te *>(alpha), q); auto data_x = get_memory(reinterpret_cast<const Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::axpy(q, n, alpha_val, data_x, incx, data_y, incy); #endif } template <class Txy, class Tc, class Ts> inline void rot_impl(sycl::queue &q, int n, void *x, int incx, void *y, int incy, const void *c, const void *s) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Tc c_value = dpct::get_value(reinterpret_cast<const Tc *>(c), q); Ts s_value = dpct::get_value(reinterpret_cast<const Ts *>(s), q); auto data_x = get_memory(reinterpret_cast<Txy *>(x)); auto data_y = get_memory(reinterpret_cast<Txy *>(y)); oneapi::mkl::blas::column_major::rot(q, n, data_x, incx, data_y, incy, c_value, s_value); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, const void *b, int ldb, const void *beta, void *c, int ldc) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); #endif } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void **a, int lda, const void **b, int ldb, const void *beta, void **c, int ldc, int batch_size) { struct matrix_info_t { oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); matrix_info_t *matrix_info = (matrix_info_t *)std::malloc(sizeof(matrix_info_t)); matrix_info->transpose_info[0] = a_trans; matrix_info->transpose_info[1] = b_trans; matrix_info->value_info[0] = alpha_value; matrix_info->value_info[1] = beta_value; matrix_info->size_info[0] = m; matrix_info->size_info[1] = n; matrix_info->size_info[2] = k; matrix_info->ld_info[0] = lda; matrix_info->ld_info[1] = ldb; matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { std::free(matrix_info); }); }); } template <class Ta, class Tb, class Tc, class Ts> inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, int lda, long long int stride_a, const void *b, int ldb, long long int stride_b, const void *beta, void *c, int ldc, long long int stride_c, int batch_size) { Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); auto data_a = get_memory(reinterpret_cast<const Ta *>(a)); auto data_b = get_memory(reinterpret_cast<const Tb *>(b)); auto data_c = get_memory(reinterpret_cast<Tc *>(c)); oneapi::mkl::blas::column_major::gemm_batch( q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } template <bool is_hermitian, class T, class Tbeta> inline void rk_impl(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { // For symmetric matrix, this function performs: C = alpha*OP(A)*(OP(B))^T + beta*C // For Hermitian matrix, this function performs: C = alpha*OP(A)*(OP(B))^H + beta*C // The gemmt() function performs: C = alpha*OPA(A)*OPB(B) + beta*C // So the OPB need be updated before we call gemmt(). using Ty = typename dpct::DataType<T>::T2; using Ts = typename dpct::DataType<Tbeta>::T2; Ty alpha_value = dpct::get_value(reinterpret_cast<const Ty *>(alpha), q); Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q); oneapi::mkl::transpose trans_A = trans, trans_B = trans; int origin_b_rows = trans == oneapi::mkl::transpose::nontrans ? n : k; int origin_b_cols = trans == oneapi::mkl::transpose::nontrans ? k : n; if ((is_hermitian && trans == oneapi::mkl::transpose::trans) || (!is_hermitian && !std::is_floating_point_v<Ty> && trans == oneapi::mkl::transpose::conjtrans)) { // In this case, OPB need be a conjugate operation, // but only notrans, conjtrans and trans are available. // So we need do a conjtrans operation first, then do a trans operation. trans_B = oneapi::mkl::transpose::trans; auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); #ifdef DPCT_USM_LEVEL_NONE auto new_B_buffer = sycl::buffer<Ty, 1>(sycl::range<1>(origin_b_rows * origin_b_cols)); auto from_buffer = dpct::get_buffer<Ty>(b); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), from_buffer, ldb, origin_b_rows * ldb, new_B_buffer, origin_b_cols, origin_b_rows * origin_b_cols, 1); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, new_B_buffer, origin_b_cols, beta_value, data_c, ldc); #else working_memory<T> new_B(origin_b_rows * origin_b_cols * sizeof(T), q); oneapi::mkl::blas::column_major::omatcopy_batch( q, oneapi::mkl::transpose::conjtrans, origin_b_rows, origin_b_cols, Ts(1.0), reinterpret_cast<const Ty *>(b), ldb, origin_b_rows * ldb, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, origin_b_rows * origin_b_cols, 1); sycl::event e = oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, reinterpret_cast<Ty *>(new_B.get_ptr()), origin_b_cols, beta_value, data_c, ldc); new_B.set_event(e); #endif } else { if constexpr (is_hermitian) { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::conjtrans : oneapi::mkl::transpose::nontrans; } else { trans_B = trans == oneapi::mkl::transpose::nontrans ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans; } auto data_a = get_memory(reinterpret_cast<const Ty *>(a)); auto data_b = get_memory(reinterpret_cast<const Ty *>(b)); auto data_c = get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::gemmt( q, uplo, trans_A, trans_B, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } } template <class Ta, class Tb, class Ts> inline void trsm_batch_impl(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, int lda, void **b, int ldb, int batch_size) { struct matrix_info_t { matrix_info_t(oneapi::mkl::side side_info, oneapi::mkl::uplo uplo_info, oneapi::mkl::transpose transpose_info, oneapi::mkl::diag diag_info, Ts value_info, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t ldb, std::int64_t groupsize_info) : side_info(side_info), uplo_info(uplo_info), transpose_info(transpose_info), diag_info(diag_info), value_info(value_info), groupsize_info(groupsize_info) { size_info[0] = m; size_info[1] = n; ld_info[0] = lda; ld_info[1] = ldb; } oneapi::mkl::side side_info; oneapi::mkl::uplo uplo_info; oneapi::mkl::transpose transpose_info; oneapi::mkl::diag diag_info; Ts value_info; std::int64_t size_info[2]; std::int64_t ld_info[2]; std::int64_t groupsize_info; }; Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q); matrix_info_t *matrix_info = new matrix_info_t(left_right, upper_lower, trans, unit_diag, alpha_value, m, n, lda, ldb, batch_size); sycl::event e = oneapi::mkl::blas::column_major::trsm_batch( q, &(matrix_info->side_info), &(matrix_info->uplo_info), &(matrix_info->transpose_info), &(matrix_info->diag_info), matrix_info->size_info, matrix_info->size_info + 1, &(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<Tb **>(b), matrix_info->ld_info + 1, 1, &(matrix_info->groupsize_info)); q.submit([&](sycl::handler &cgh) { cgh.depends_on(e); cgh.host_task([=] { delete matrix_info; }); }); } template <typename T> inline void getrfnp_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *info, int batch_size) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces " "Project does not support this API."); #else using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); std::int64_t stride_a = n * lda; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrfnp_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, batch_size); Ty *a_strided_mem = (Ty *)dpct::dpct_malloc(stride_a * batch_size * sizeof(Ty), exec_queue); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct::dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct::dpct_memcpy(a_strided_mem + i * stride_a, host_a[i], n * lda * sizeof(T)); #ifdef DPCT_USM_LEVEL_NONE { sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_strided_mem); oneapi::mkl::lapack::getrfnp_batch(exec_queue, n, n, a_buffer, lda, stride_a, batch_size, scratchpad, scratchpad_size); } std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic)); #else Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); sycl::event e = oneapi::mkl::lapack::getrfnp_batch( exec_queue, n, n, a_strided_mem, lda, stride_a, batch_size, scratchpad, scratchpad_size); std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_strided_mem + i * stride_a, n * lda * sizeof(T), automatic, {e})); std::vector<void *> ptrs{scratchpad, a_strided_mem}; dpct::async_dpct_free(ptrs, events, exec_queue); #endif exec_queue.submit([&](sycl::handler &cgh) { cgh.depends_on(events); cgh.host_task([=] { free(host_a); }); }); #endif } } // namespace detail inline oneapi::mkl::transpose get_transpose(int t) { if (t == 0) { return oneapi::mkl::transpose::nontrans; } else if (t == 1) { return oneapi::mkl::transpose::trans; } else { return oneapi::mkl::transpose::conjtrans; } } /// Computes the LU factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in, out] a Array of pointers to matrices. These matrices will be /// overwritten by lower triangulars with unit diagonal elements and upper /// triangulars. /// \param [in] lda The leading dimension of the matrices. /// \param [out] ipiv An array stores the pivot indices. If \p ipiv is nullptr, /// non-pivoting LU factorization is computed. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrf_batch_wrapper(sycl::queue &exec_queue, int n, T *a[], int lda, int *ipiv, int *info, int batch_size) { if (ipiv == nullptr) { detail::getrfnp_batch_wrapper(exec_queue, n, a, lda, info, batch_size); return; } using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, n, n, lda, stride_a, stride_ipiv, batch_size); T *a_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; auto a_buffer = get_buffer<Ty>(a_buffer_ptr); oneapi::mkl::lapack::getrf_batch(exec_queue, n, n, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); auto to_buffer = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = ipiv_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = to_buffer.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * n + id.get(1)] = static_cast<int>(from_acc[id.get(0) * stride_ipiv + id.get(1)]); }); }); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); std::vector<void *> ptrs{host_a}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; oneapi::mkl::lapack::getrf_batch(exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); sycl::event e = exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrf_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv[idx] = static_cast<int>(ipiv_int64[idx]); }); }); std::vector<void *> ptrs{scratchpad, ipiv_int64, ipiv_int64_ptr, a_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Solves a system of linear equations with a batch of LU-factored square /// coefficient matrices, with multiple right-hand sides. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] trans Indicates the form of the linear equations. /// \param [in] n The order of the matrices. /// \param [in] nrhs The number of right hand sides. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [in, out] b Array of pointers to matrices, whose columns are /// the right-hand sides for the systems of equations. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getrs_batch_wrapper(sycl::queue &exec_queue, oneapi::mkl::transpose trans, int n, int nrhs, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_b = nrhs * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, trans, n, nrhs, lda, stride_a, stride_ipiv, ldb, stride_b, batch_size); T *a_buffer_ptr, *b_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); dpct_memcpy(b_buffer_ptr + i * stride_b, host_b[i], nrhs * ldb * sizeof(T)); } { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getrs_batch(exec_queue, trans, n, nrhs, a_buffer, lda, stride_a, ipiv_buf, stride_ipiv, b_buffer, ldb, stride_b, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, nrhs * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t nrhs_int64 = nrhs; std::int64_t lda_int64 = lda; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getrs_batch_scratchpad_size<Ty>( exec_queue, &trans, &n_int64, &nrhs_int64, &lda_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getrs_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }).wait(); for (std::int64_t i = 0; i < batch_size; ++i) ipiv_int64_ptr[i] = ipiv_int64 + n * i; sycl::event e = oneapi::mkl::lapack::getrs_batch( exec_queue, &trans, &n_int64, &nrhs_int64, (Ty **)a_shared, &lda_int64, ipiv_int64_ptr, (Ty **)b_shared, &ldb_int64, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the inverses of a batch of LU-factored matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] n The order of the matrices. /// \param [in] a Array of pointers to matrices. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [in] ipiv An array stores the pivots. /// \param [out] b Array of pointers to inverse matrices. /// \param [in] ldb The leading dimension of the matrices in \p b. /// \param [out] info An array stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void getri_batch_wrapper(sycl::queue &exec_queue, int n, const T *a[], int lda, int *ipiv, T *b[], int ldb, int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info array value to 0 detail::dpct_memset(exec_queue, info, 0, sizeof(int) * batch_size); #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_b = n * ldb; std::int64_t stride_ipiv = n; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, n, ldb, stride_b, stride_ipiv, batch_size); T *b_buffer_ptr; b_buffer_ptr = (T *)dpct_malloc(stride_b * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_b = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_b, b, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) { // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_buffer_ptr + i * stride_b, host_a[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } { auto b_buffer = get_buffer<Ty>(b_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; sycl::buffer<std::int64_t, 1> ipiv_buf( sycl::range<1>(batch_size * stride_ipiv)); auto from_buf = get_buffer<int>(ipiv); exec_queue.submit([&](sycl::handler &cgh) { auto from_acc = from_buf.get_access<sycl::access_mode::read>(cgh); auto to_acc = ipiv_buf.get_access<sycl::access_mode::write>(cgh); cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<2>(batch_size, n), [=](sycl::id<2> id) { to_acc[id.get(0) * stride_ipiv + id.get(1)] = static_cast<std::int64_t>(from_acc[id.get(0) * n + id.get(1)]); }); }); oneapi::mkl::lapack::getri_batch(exec_queue, n, b_buffer, ldb, stride_b, ipiv_buf, stride_ipiv, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events; for (std::int64_t i = 0; i < batch_size; ++i) events.push_back(detail::dpct_memcpy(exec_queue, host_b[i], b_buffer_ptr + i * stride_b, n * ldb * sizeof(T), automatic)); std::vector<void *> ptrs{host_a, host_b}; std::thread mem_free_thread( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptrs, events); mem_free_thread.detach(); #else std::int64_t n_int64 = n; std::int64_t ldb_int64 = ldb; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::getri_batch_scratchpad_size<Ty>( exec_queue, &n_int64, &ldb_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); std::int64_t *ipiv_int64 = sycl::malloc_device<std::int64_t>(batch_size * n, exec_queue); std::int64_t **ipiv_int64_ptr = sycl::malloc_shared<std::int64_t *>(batch_size, exec_queue); exec_queue.submit([&](sycl::handler &cgh) { cgh.parallel_for<dpct_kernel_name<class getri_device_int64_to_int, T>>( sycl::range<1>(batch_size * n), [=](sycl::id<1> idx) { ipiv_int64[idx] = static_cast<std::int64_t>(ipiv[idx]); }); }); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **b_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(b_shared, b, batch_size * sizeof(T *)).wait(); for (std::int64_t i = 0; i < batch_size; ++i) { ipiv_int64_ptr[i] = ipiv_int64 + n * i; // Need to create a copy of input matrices "a" to keep them unchanged. // Matrices "b" (copy of matrices "a") will be used as input and output // parameter in oneapi::mkl::lapack::getri_batch call. matrix_mem_copy(b_shared[i], a_shared[i], ldb, lda, n, n, dpct::device_to_device, exec_queue); } sycl::event e = oneapi::mkl::lapack::getri_batch( exec_queue, &n_int64, (Ty **)b_shared, &ldb_int64, ipiv_int64_ptr, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, ipiv_int64_ptr, ipiv_int64, a_shared, b_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the QR factorizations of a batch of general matrices. /// \param [in] exec_queue The queue where the routine should be executed. /// \param [in] m The number of rows in the matrices. /// \param [in] n The number of columns in the matrices. /// \param [in, out] a Array of pointers to matrices. These /// matrices will be overwritten by the factorization data. /// \param [in] lda The leading dimension of the matrices in \p a. /// \param [out] tau An array stores the scalars. /// \param [out] info A value stores the error information. /// \param [in] batch_size The size of the batch. template <typename T> inline void geqrf_batch_wrapper(sycl::queue exec_queue, int m, int n, T *a[], int lda, T *tau[], int *info, int batch_size) { using Ty = typename DataType<T>::T2; // Set the info value to 0 *info = 0; #ifdef DPCT_USM_LEVEL_NONE std::int64_t stride_a = n * lda; std::int64_t stride_tau = std::max(1, std::min(m, n)); std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, m, n, lda, stride_a, stride_tau, batch_size); T *a_buffer_ptr, *tau_buffer_ptr; a_buffer_ptr = (T *)dpct_malloc(stride_a * batch_size * sizeof(T)); tau_buffer_ptr = (T *)dpct_malloc(stride_tau * batch_size * sizeof(T)); T **host_a = (T **)malloc(batch_size * sizeof(T *)); T **host_tau = (T **)malloc(batch_size * sizeof(T *)); dpct_memcpy(host_a, a, batch_size * sizeof(T *)); dpct_memcpy(host_tau, tau, batch_size * sizeof(T *)); for (std::int64_t i = 0; i < batch_size; ++i) dpct_memcpy(a_buffer_ptr + i * stride_a, host_a[i], n * lda * sizeof(T)); { auto a_buffer = get_buffer<Ty>(a_buffer_ptr); auto tau_buffer = get_buffer<Ty>(tau_buffer_ptr); sycl::buffer<Ty, 1> scratchpad{sycl::range<1>(scratchpad_size)}; oneapi::mkl::lapack::geqrf_batch(exec_queue, m, n, a_buffer, lda, stride_a, tau_buffer, stride_tau, batch_size, scratchpad, scratchpad_size); } // Copy back to the original buffers std::vector<sycl::event> events_a; std::vector<sycl::event> events_tau; for (std::int64_t i = 0; i < batch_size; ++i) { events_a.push_back(detail::dpct_memcpy(exec_queue, host_a[i], a_buffer_ptr + i * stride_a, n * lda * sizeof(T), automatic)); events_tau.push_back(detail::dpct_memcpy( exec_queue, host_tau[i], tau_buffer_ptr + i * stride_tau, std::max(1, std::min(m, n)) * sizeof(T), automatic)); } std::vector<void *> ptr_a{host_a}; std::vector<void *> ptr_tau{host_tau}; std::thread mem_free_thread_a( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_a, events_a); std::thread mem_free_thread_tau( [=](std::vector<void *> pointers_array, std::vector<sycl::event> events_array) { sycl::event::wait(events_array); for (auto p : pointers_array) free(p); }, ptr_tau, events_tau); mem_free_thread_a.detach(); mem_free_thread_tau.detach(); #else std::int64_t m_int64 = n; std::int64_t n_int64 = n; std::int64_t lda_int64 = lda; std::int64_t group_sizes = batch_size; std::int64_t scratchpad_size = oneapi::mkl::lapack::geqrf_batch_scratchpad_size<Ty>( exec_queue, &m_int64, &n_int64, &lda_int64, 1, &group_sizes); Ty *scratchpad = sycl::malloc_device<Ty>(scratchpad_size, exec_queue); T **a_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); T **tau_shared = sycl::malloc_shared<T *>(batch_size, exec_queue); exec_queue.memcpy(a_shared, a, batch_size * sizeof(T *)); exec_queue.memcpy(tau_shared, tau, batch_size * sizeof(T *)).wait(); sycl::event e = oneapi::mkl::lapack::geqrf_batch( exec_queue, &m_int64, &n_int64, (Ty **)a_shared, &lda_int64, (Ty **)tau_shared, 1, &group_sizes, scratchpad, scratchpad_size); std::vector<void *> ptrs{scratchpad, a_shared, tau_shared}; async_dpct_free(ptrs, {e}, exec_queue); #endif } /// Computes the Euclidean norm of a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void nrm2(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, void *result, library_data_t result_type) { std::uint64_t key = detail::get_type_combination_id(x_type, result_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::nrm2_impl<float, float>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::nrm2_impl<double, double>(q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::nrm2_impl<std::complex<float>, float>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::nrm2_impl<std::complex<double>, double>( q, n, x, incx, result); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::nrm2_impl<sycl::half, sycl::half>( q, n, x, incx, result); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes the dot product of two vectors. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dot(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<false>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the dot product of two vectors, conjugating the first vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in] y Input vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [out] result The result scalar. /// \param [in] result_type Data type of the result. inline void dotc(sycl::queue &q, int n, const void *x, library_data_t x_type, int incx, const void *y, library_data_t y_type, int incy, void *result, library_data_t result_type) { detail::dotuc<true>(q, n, x, x_type, incx, y, y_type, incy, result, result_type); } /// Computes the product of a vector by a scalar. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. inline void scal(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, void *x, library_data_t x_type, int incx) { std::uint64_t key = detail::get_type_combination_id(x_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float): { detail::scal_impl<float, float>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_double): { detail::scal_impl<double, double>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_float): { detail::scal_impl<std::complex<float>, std::complex<float>>(q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::complex_double): { detail::scal_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx); break; } case detail::get_type_combination_id(library_data_t::real_half): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::scal_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a vector-scalar product and adds the result to a vector. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in] alpha The scale factor alpha. /// \param [in] alpha_type The data type of alpha. /// \param [in] x Input vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. inline void axpy(sycl::queue &q, int n, const void *alpha, library_data_t alpha_type, const void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy) { std::uint64_t key = detail::get_type_combination_id(x_type, alpha_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::axpy_impl<float, float>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::axpy_impl<double, double>(q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::axpy_impl<std::complex<float>, std::complex<float>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::axpy_impl<std::complex<double>, std::complex<double>>( q, n, alpha, x, incx, y, incy); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); sycl::half alaph_half(alpha_value); detail::axpy_impl<sycl::half, sycl::half>(q, n, &alaph_half, x, incx, y, incy); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Performs rotation of points in the plane. /// \param [in] q The queue where the routine should be executed. /// \param [in] n Number of elements in vector x. /// \param [in, out] x Input/Output vector x. /// \param [in] x_type Data type of the vector x. /// \param [in] incx Stride of vector x. /// \param [in, out] y Input/Output vector y. /// \param [in] y_type Data type of the vector y. /// \param [in] incy Stride of vector y. /// \param [in] c Scaling factor. /// \param [in] s Scaling factor. /// \param [in] cs_type Data type of the scaling factors. inline void rot(sycl::queue &q, int n, void *x, library_data_t x_type, int incx, void *y, library_data_t y_type, int incy, const void *c, const void *s, library_data_t cs_type) { std::uint64_t key = detail::get_type_combination_id(x_type, cs_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float): { detail::rot_impl<float, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double): { detail::rot_impl<double, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::real_float): { detail::rot_impl<std::complex<float>, float, float>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::real_double): { detail::rot_impl<std::complex<double>, double, double>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float): { detail::rot_impl<std::complex<float>, float, std::complex<float>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double): { detail::rot_impl<std::complex<double>, double, std::complex<double>>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_half, library_data_t::real_half): { detail::rot_impl<sycl::half, sycl::half, sycl::half>(q, n, x, incx, y, incy, c, s); break; } case detail::get_type_combination_id(library_data_t::real_bfloat16, library_data_t::real_bfloat16): { detail::rot_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16>(q, n, x, incx, y, incy, c, s); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, const void *b, library_data_t b_type, int ldb, const void *beta, void *c, library_data_t c_type, int ldc, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>( q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a[], library_data_t a_type, int lda, const void *b[], library_data_t b_type, int ldb, const void *beta, void *c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { float alpha_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q); float beta_float = dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q); detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a batch of matrix-matrix product with general matrices. /// \param [in] q The queue where the routine should be executed. /// \param [in] a_trans Specifies the operation applied to A. /// \param [in] b_trans Specifies the operation applied to B. /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C. /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C. /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrix A. /// \param [in] a_type Data type of the matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] stride_a Stride between the different A matrices. /// \param [in] b Input matrix B. /// \param [in] b_type Data type of the matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] stride_b Stride between the different B matrices. /// \param [in] beta Scaling factor for matrix C. /// \param [in, out] c Input/Output matrix C. /// \param [in] c_type Data type of the matrix C. /// \param [in] ldc Leading dimension of C. /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void *alpha, const void *a, library_data_t a_type, int lda, long long int stride_a, const void *b, library_data_t b_type, int ldb, long long int stride_b, const void *beta, void *c, library_data_t c_type, int ldc, long long int stride_c, int batch_size, library_data_t scaling_type) { bool matched = false; if (scaling_type == library_data_t::real_float && c_type == library_data_t::complex_float) { scaling_type = library_data_t::complex_float; } else if (scaling_type == library_data_t::real_double && c_type == library_data_t::complex_double) { scaling_type = library_data_t::complex_double; } std::uint64_t key = detail::get_type_combination_id(a_type, b_type, c_type, scaling_type); switch (key) { case detail::get_type_combination_id( library_data_t::real_float, library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<float, float, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_double, library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::gemm_batch_impl<double, double, double, double>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::gemm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>, std::complex<float>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::gemm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>, std::complex<double>>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_half): { detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #ifdef __INTEL_MKL__ case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_int32, library_data_t::real_int32): { detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, std::int32_t>(q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_int8, library_data_t::real_int8, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_float, library_data_t::real_float): { detail::gemm_batch_impl<sycl::half, sycl::half, float, float>( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; } #endif case detail::get_type_combination_id( library_data_t::real_half, library_data_t::real_half, library_data_t::real_half, library_data_t::real_float): { float alpha_value = dpct::get_value(reinterpret_cast<const float *>(alpha), q); float beta_value = dpct::get_value(reinterpret_cast<const float *>(beta), q); sycl::half alpha_half(alpha_value); sycl::half beta_half(beta_value); detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>( q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b, &beta_half, c, ldc, stride_c, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } } /// This routines perform a special rank-k update of a symmetric matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T> inline void syrk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const T *beta, T *c, int ldc) { detail::rk_impl<false, T, T>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routines perform a special rank-k update of a Hermitian matrix C by /// general matrices A and B. /// \param [in] q The queue where the routine should be executed. /// \param [in] uplo Specifies whether C's data is stored in its upper or lower triangle. /// \param [in] trans Specifies the operation to apply. /// \param [in] n The number of rows and columns in C. /// \param [in] k The inner dimension of matrix multiplications. /// \param [in] alpha Scaling factor for the rank-k update. /// \param [in] a Input matrix A. /// \param [in] lda Leading dimension of A. /// \param [in] b Input matrix B. /// \param [in] ldb Leading dimension of B. /// \param [in] beta Scaling factor for the rank-k update. /// \param [in, out] c Input/Output matrix C. /// \param [in] ldc Leading dimension of C. template <class T, class Tbeta> inline void herk(sycl::queue &q, oneapi::mkl::uplo uplo, oneapi::mkl::transpose trans, int n, int k, const T *alpha, const T *a, int lda, const T *b, int ldb, const Tbeta *beta, T *c, int ldc) { detail::rk_impl<true, T, Tbeta>(q, uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc); } /// This routine performs a group of trsm operations. Each trsm solves an /// equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A multiplies X on the left or on the right. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of the B matrices. /// \param [in] n Number of columns of the B matrices. /// \param [in] alpha Scaling factor for the solutions. /// \param [in] a Input matrices A. /// \param [in] a_type Data type of the matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in, out] b Input and output matrices B. /// \param [in] b_type Data type of the matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [in] batch_size Specifies the number of trsm operations to perform. /// \param [in] scaling_type Data type of the scaling factors. inline void trsm_batch(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const void *alpha, const void **a, library_data_t a_type, int lda, void **b, library_data_t b_type, int ldb, int batch_size, library_data_t scaling_type) { #ifdef DPCT_USM_LEVEL_NONE throw std::runtime_error("this API is unsupported when USM level is none"); #else std::uint64_t key = detail::get_type_combination_id(a_type, b_type, scaling_type); switch (key) { case detail::get_type_combination_id(library_data_t::real_float, library_data_t::real_float, library_data_t::real_float): { detail::trsm_batch_impl<float, float, float>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::real_double, library_data_t::real_double, library_data_t::real_double): { detail::trsm_batch_impl<double, double, double>( q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_float, library_data_t::complex_float, library_data_t::complex_float): { detail::trsm_batch_impl<std::complex<float>, std::complex<float>, std::complex<float>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } case detail::get_type_combination_id(library_data_t::complex_double, library_data_t::complex_double, library_data_t::complex_double): { detail::trsm_batch_impl<std::complex<double>, std::complex<double>, std::complex<double>>(q, left_right, upper_lower, trans, unit_diag, m, n, alpha, a, lda, b, ldb, batch_size); break; } default: throw std::runtime_error("the combination of data type is unsupported"); } #endif } /// Computes a triangular matrix-general matrix product. /// \param [in] q The queue where the routine should be executed. /// \param [in] left_right Specifies A is on the left or right side of the /// multiplication. /// \param [in] upper_lower Specifies A is upper or lower triangular. /// \param [in] trans Specifies the operation applied to A. /// \param [in] unit_diag Specifies whether A is unit triangular. /// \param [in] m Number of rows of B. /// \param [in] n Number of columns of B. /// \param [in] alpha Scaling factor for the matrix-matrix product. /// \param [in] a Input matrices A. /// \param [in] lda Leading dimension of the matrices A. /// \param [in] b Input matrices B. /// \param [in] ldb Leading dimension of the matrices B. /// \param [out] c Output matrices C. /// \param [in] ldc Leading dimension of the matrices C. template <class T> inline void trmm(sycl::queue &q, oneapi::mkl::side left_right, oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, oneapi::mkl::diag unit_diag, int m, int n, const T *alpha, const T *a, int lda, const T *b, int ldb, T *c, int ldc) { using Ty = typename DataType<T>::T2; auto alpha_val = dpct::get_value(alpha, q); if (b != c) { dpct::matrix_mem_copy(c, b, ldc, ldb, m, n, dpct::device_to_device, q); } auto data_a = detail::get_memory(reinterpret_cast<const Ty *>(a)); auto data_c = detail::get_memory(reinterpret_cast<Ty *>(c)); oneapi::mkl::blas::column_major::trmm(q, left_right, upper_lower, trans, unit_diag, m, n, alpha_val, data_a, lda, data_c, ldc); } } // namespace dpct #endif // __DPCT_BLAS_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/atomic.hpp
//==---- atomic.hpp -------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ATOMIC_HPP__ #define __DPCT_ATOMIC_HPP__ #include <sycl/sycl.hpp> namespace dpct { /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_add(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_add(operand); } /// Atomically add the value operand to the value at the addr and assign the /// result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to add to the value at \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_add(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_add(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_sub(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_sub(operand); } /// Atomically subtract the value operand from the value at the addr and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to subtract from the value at \p addr /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_sub(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_sub<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_sub(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_sub<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_and(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_and(operand); } /// Atomically perform a bitwise AND between the value operand and the value at the addr /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise AND operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_and(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_and<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_and<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_and<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_and(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_and<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_or(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_or(operand); } /// Atomically or the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise OR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_or(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_or<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_or<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_or<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_or(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_or<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_xor(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_xor(operand); } /// Atomically xor the value at the addr with the value operand, and assign /// the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand The value to use in bitwise XOR operation with the value at the \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_xor(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_xor<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_xor(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_xor<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_min(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_min(operand); } /// Atomically calculate the minimum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_min(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_min<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_min<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_min<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_min(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_min<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_fetch_max(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.fetch_max(operand); } /// Atomically calculate the maximum of the value at addr and the value operand /// and assign the result to the value at addr. /// \param [in, out] addr The pointer to the data. /// \param operand. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_fetch_max(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_max<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_max<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_max<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_fetch_max(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_fetch_max<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically set \p operand to the value stored in \p addr, if old value stored in /// \p addr is equal to zero or greater than \p operand, else decrease the value stored /// in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_dec(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old == 0 || old > operand) { if (atm.compare_exchange_strong(old, operand)) break; } else if (atm.compare_exchange_strong(old, old - 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand) { auto atm = sycl::atomic_ref<unsigned int, memoryOrder, memoryScope, addressSpace>(addr[0]); unsigned int old; while (true) { old = atm.load(); if (old >= operand) { if (atm.compare_exchange_strong(old, 0)) break; } else if (atm.compare_exchange_strong(old, old + 1)) break; } return old; } /// Atomically increment the value stored in \p addr if old value stored in \p /// addr is less than \p operand, else set 0 to the value stored in \p addr. /// \param [in, out] addr The pointer to the data. /// \param operand The threshold value. /// \param memoryOrder The memory ordering used. /// \returns The old value stored in \p addr. template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline unsigned int atomic_fetch_compare_inc(unsigned int *addr, unsigned int operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_fetch_compare_inc<addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> inline T atomic_exchange(T *addr, T operand) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); return atm.exchange(operand); } /// Atomically exchange the value at the address addr with the value operand. /// \param [in, out] addr The pointer to the data. /// \param operand The value to be exchanged with the value pointed by \p addr. /// \param memoryOrder The memory ordering used. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space> inline T atomic_exchange(T *addr, T operand, sycl::memory_order memoryOrder) { switch (memoryOrder) { case sycl::memory_order::relaxed: return atomic_exchange<T, addressSpace, sycl::memory_order::relaxed, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::acq_rel: return atomic_exchange<T, addressSpace, sycl::memory_order::acq_rel, sycl::memory_scope::device>(addr, operand); case sycl::memory_order::seq_cst: return atomic_exchange<T, addressSpace, sycl::memory_order::seq_cst, sycl::memory_scope::device>(addr, operand); default: assert(false && "Invalid memory_order for atomics. Valid memory_order for " "atomics are: sycl::memory_order::relaxed, " "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!"); } } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, typename T1, typename T2> inline T1 atomic_exchange(T1 *addr, T2 operand, sycl::memory_order memoryOrder) { atomic_exchange<T1, addressSpace>(addr, operand, memoryOrder); } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in, out] addr Multi_ptr. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( sycl::multi_ptr<T, addressSpace> addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(*addr); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( sycl::multi_ptr<T1, addressSpace> addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(*addr); T1 expected_value = expected; atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomically compare the value at \p addr to the value expected and exchange /// with the value desired if the value at \p addr is equal to the value expected. /// Returns the value at the \p addr before the call. /// \param [in] addr The pointer to the data. /// \param expected The value to compare against the value at \p addr. /// \param desired The value to assign to \p addr if the value at \p addr is expected. /// \param success The memory ordering used when comparison succeeds. /// \param fail The memory ordering used when comparison fails. /// \returns The value at the \p addr before the call. template <typename T, sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device> T atomic_compare_exchange_strong( T *addr, T expected, T desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { auto atm = sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected, desired, success, fail); return expected; } template <sycl::access::address_space addressSpace = sycl::access::address_space::global_space, sycl::memory_order memoryOrder = sycl::memory_order::relaxed, sycl::memory_scope memoryScope = sycl::memory_scope::device, typename T1, typename T2, typename T3> T1 atomic_compare_exchange_strong( T1 *addr, T2 expected, T3 desired, sycl::memory_order success = sycl::memory_order::relaxed, sycl::memory_order fail = sycl::memory_order::relaxed) { T1 expected_value = expected; auto atm = sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]); atm.compare_exchange_strong(expected_value, desired, success, fail); return expected_value; } /// Atomic extension to implement standard APIs in std::atomic namespace detail{ template <typename T> struct IsValidAtomicType { static constexpr bool value = (std::is_same<T, int>::value || std::is_same<T, unsigned int>::value || std::is_same<T, long>::value || std::is_same<T, unsigned long>::value || std::is_same<T, long long>::value || std::is_same<T, unsigned long long>::value || std::is_same<T, float>::value || std::is_same<T, double>::value || std::is_pointer<T>::value); }; } // namespace detail template <typename T, sycl::memory_scope DefaultScope = sycl::memory_scope::system, sycl::memory_order DefaultOrder = sycl::memory_order::seq_cst, sycl::access::address_space Space = sycl::access::address_space::generic_space> class atomic{ static_assert( detail::IsValidAtomicType<T>::value, "Invalid atomic type. Valid types are int, unsigned int, long, " "unsigned long, long long, unsigned long long, float, double " "and pointer types"); T __d; public: /// default memory synchronization order static constexpr sycl::memory_order default_read_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_read_order; static constexpr sycl::memory_order default_write_order = sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space>::default_write_order; static constexpr sycl::memory_scope default_scope = DefaultScope; static constexpr sycl::memory_order default_read_modify_write_order = DefaultOrder; /// Default constructor. constexpr atomic() noexcept = default; /// Constructor with initialize value. constexpr atomic(T d) noexcept : __d(d){}; /// atomically replaces the value of the referenced object with a non-atomic argument /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. void store(T operand, sycl::memory_order memoryOrder = default_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); atm.store(operand, memoryOrder, memoryScope); } /// atomically obtains the value of the referenced object /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object T load(sycl::memory_order memoryOrder = default_read_order, sycl::memory_scope memoryScope = default_scope) const noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm( const_cast<T &>(__d)); return atm.load(memoryOrder, memoryScope); } /// atomically replaces the value of the referenced object and obtains the value held previously /// \param operand The value to replace the pointed value. /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T exchange(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.exchange(operand, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_weak(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_weak(expected, desired, memoryOrder, memoryScope); } /// atomically compares the value of the referenced object with non-atomic argument /// and performs atomic exchange if equal or atomic load if not /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param success The memory models for the read-modify-write /// \param failure The memory models for load operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong( T &expected, T desired, sycl::memory_order success, sycl::memory_order failure, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, success, failure, memoryScope); } /// \param expected The value expected to be found in the object referenced by the atomic_ref object /// \param desired The value to store in the referenced object if it is as expected /// \param memoryOrder The memory synchronization ordering for operations /// \param memoryScope The memory scope used. /// \returns true if the referenced object was successfully changed, false otherwise. bool compare_exchange_strong(T &expected, T desired, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.compare_exchange_strong(expected, desired, memoryOrder, memoryScope); } /// atomically adds the argument to the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic addition /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_add(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_add(operand, memoryOrder, memoryScope); } /// atomically subtracts the argument from the value stored in the atomic object and obtains the value held previously /// \param operand The other argument of arithmetic subtraction /// \param memoryOrder The memory ordering used. /// \param memoryScope The memory scope used. /// \returns The value of the referenced object before the call. T fetch_sub(T operand, sycl::memory_order memoryOrder = default_read_modify_write_order, sycl::memory_scope memoryScope = default_scope) noexcept { sycl::atomic_ref<T, DefaultOrder, DefaultScope, Space> atm(__d); return atm.fetch_sub(operand, memoryOrder, memoryScope); } }; } // namespace dpct #endif // __DPCT_ATOMIC_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/rng_utils.hpp
//==---- rng_utils.hpp ----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_RNG_UTILS_HPP__ #define __DPCT_RNG_UTILS_HPP__ #include <sycl/sycl.hpp> #include <oneapi/mkl.hpp> #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. #include <oneapi/mkl/rng/device.hpp> #endif #include "device.hpp" #include "lib_common_utils.hpp" namespace dpct { namespace rng { #ifdef __INTEL_MKL__ // The oneMKL Interfaces Project does not support this. namespace device { /// The random number generator on device. /// \tparam engine_t The device random number generator engine. It can only be /// oneapi::mkl::rng::device::mrg32k3a<1> or /// oneapi::mkl::rng::device::mrg32k3a<4> or /// oneapi::mkl::rng::device::philox4x32x10<1> or /// oneapi::mkl::rng::device::philox4x32x10<4>. template <typename engine_t> class rng_generator { static_assert( std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<4>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>, "engine_t can only be oneapi::mkl::rng::device::mrg32k3a<1> or " "oneapi::mkl::rng::device::mrg32k3a<4> or " "oneapi::mkl::rng::device::philox4x32x10<1> or " "oneapi::mkl::rng::device::philox4x32x10<4> or " "oneapi::mkl::rng::device::mcg59<1>."); static constexpr bool _is_engine_vec_size_one = std::disjunction_v< std::is_same<engine_t, oneapi::mkl::rng::device::mrg32k3a<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::philox4x32x10<1>>, std::is_same<engine_t, oneapi::mkl::rng::device::mcg59<1>>>; static constexpr std::uint64_t default_seed = 0; oneapi::mkl::rng::device::bits<std::uint32_t> _distr_bits; oneapi::mkl::rng::device::uniform_bits<std::uint32_t> _distr_uniform_bits; oneapi::mkl::rng::device::gaussian<float> _distr_gaussian_float; oneapi::mkl::rng::device::gaussian<double> _distr_gaussian_double; oneapi::mkl::rng::device::lognormal<float> _distr_lognormal_float; oneapi::mkl::rng::device::lognormal<double> _distr_lognormal_double; oneapi::mkl::rng::device::poisson<std::uint32_t> _distr_poisson; oneapi::mkl::rng::device::uniform<float> _distr_uniform_float; oneapi::mkl::rng::device::uniform<double> _distr_uniform_double; engine_t _engine; public: /// Default constructor of rng_generator rng_generator() { _engine = engine_t(default_seed); } /// Constructor of rng_generator if engine type is not mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. /// The number is calculated as: num_to_skip[0] + num_to_skip[1] * 2^64 + /// num_to_skip[2] * 2^128 + ... + num_to_skip[n-1] * 2^(64*(n-1)) template <typename T = engine_t, typename std::enable_if<!std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::initializer_list<std::uint64_t> num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Constructor of rng_generator if engine type is mcg59 /// \param [in] seed The seed to initialize the engine state. /// \param [in] num_to_skip Set the number of elements need to be skipped. template <typename T = engine_t, typename std::enable_if<std::is_same_v< T, oneapi::mkl::rng::device::mcg59<1>>>::type * = nullptr> rng_generator(std::uint64_t seed, std::uint64_t num_to_skip) { _engine = engine_t(seed, num_to_skip); } /// Generate random number(s) obeys distribution \tparam distr_t. /// \tparam T The distribution of the random number. It can only be /// oneapi::mkl::rng::device::bits<std::uint32_t>, /// oneapi::mkl::rng::device::uniform_bits<std::uint32_t>, /// oneapi::mkl::rng::device::gaussian<float>, /// oneapi::mkl::rng::device::gaussian<double>, /// oneapi::mkl::rng::device::lognormal<float>, /// oneapi::mkl::rng::device::lognormal<double>, /// oneapi::mkl::rng::device::poisson<std::uint32_t>, /// oneapi::mkl::rng::device::uniform<float> or /// oneapi::mkl::rng::device::uniform<double> /// \tparam vec_size The length of the return vector. It can only be 1, 2 /// or 4. /// \param distr_params The parameter(s) for lognormal or poisson /// distribution. /// \return The vector of the random number(s). template <typename distr_t, int vec_size, class... distr_params_t> auto generate(distr_params_t... distr_params) { static_assert(vec_size == 1 || vec_size == 2 || vec_size == 4, "vec_size is not supported."); static_assert( std::disjunction_v< std::is_same<distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::gaussian<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::lognormal<double>>, std::is_same<distr_t, oneapi::mkl::rng::device::poisson<std::uint32_t>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<float>>, std::is_same<distr_t, oneapi::mkl::rng::device::uniform<double>>>, "distribution is not supported."); if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_bits); } if constexpr (std::is_same_v< distr_t, oneapi::mkl::rng::device::uniform_bits<std::uint32_t>>) { return generate_vec<vec_size>(_distr_uniform_bits); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<float>>) { return generate_vec<vec_size>(_distr_gaussian_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::gaussian<double>>) { return generate_vec<vec_size>(_distr_gaussian_double); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<float>>) { return generate_vec<vec_size>(_distr_lognormal_float, distr_params..., 0.0f, 1.0f); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::lognormal<double>>) { return generate_vec<vec_size>(_distr_lognormal_double, distr_params..., 0.0, 1.0); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::poisson< std::uint32_t>>) { return generate_vec<vec_size>(_distr_poisson, distr_params...); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<float>>) { return generate_vec<vec_size>(_distr_uniform_float); } if constexpr (std::is_same_v<distr_t, oneapi::mkl::rng::device::uniform<double>>) { return generate_vec<vec_size>(_distr_uniform_double); } } /// Get the random number generator engine. /// \return The reference of the internal random number generator engine. engine_t &get_engine() { return _engine; } private: template <int vec_size, typename distr_t, class... distr_params_t> auto generate_vec(distr_t &distr, distr_params_t... distr_params) { if constexpr (sizeof...(distr_params_t)) { typename distr_t::param_type pt(distr_params...); distr.param(pt); } if constexpr (vec_size == 4) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 4> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); res.z() = oneapi::mkl::rng::device::generate(distr, _engine); res.w() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { return oneapi::mkl::rng::device::generate(distr, _engine); } } else if constexpr (vec_size == 1) { if constexpr (_is_engine_vec_size_one) { return oneapi::mkl::rng::device::generate(distr, _engine); } else { return oneapi::mkl::rng::device::generate_single(distr, _engine); } } else if constexpr (vec_size == 2) { if constexpr (_is_engine_vec_size_one) { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate(distr, _engine); res.y() = oneapi::mkl::rng::device::generate(distr, _engine); return res; } else { sycl::vec<typename distr_t::result_type, 2> res; res.x() = oneapi::mkl::rng::device::generate_single(distr, _engine); res.y() = oneapi::mkl::rng::device::generate_single(distr, _engine); return res; } } } }; } // namespace device #endif namespace host { namespace detail { class rng_generator_base { public: /// Set the seed of host rng_generator. /// \param seed The engine seed. virtual void set_seed(const std::uint64_t seed) = 0; /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. virtual void set_dimensions(const std::uint32_t dimensions) = 0; /// Set the queue of host rng_generator. /// \param queue The engine queue. virtual void set_queue(sycl::queue *queue) = 0; /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned int *output, std::int64_t n) = 0; /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) = 0; /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(float *output, std::int64_t n, float m, float s) = 0; /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. virtual inline void generate_lognormal(double *output, std::int64_t n, double m, double s) = 0; /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) = 0; /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. virtual inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) = 0; /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. virtual inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) = 0; /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(float *output, std::int64_t n) = 0; /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. virtual inline void generate_uniform(double *output, std::int64_t n) = 0; /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. virtual void skip_ahead(const std::uint64_t num_to_skip) = 0; protected: sycl::queue *_queue{&dpct::get_default_queue()}; std::uint64_t _seed{0}; std::uint32_t _dimensions{1}; }; /// The random number generator on host. template <typename engine_t = oneapi::mkl::rng::philox4x32x10> class rng_generator : public rng_generator_base { public: /// Constructor of rng_generator. rng_generator() : _engine(create_engine(_queue, _seed, _dimensions)) {} /// Set the seed of host rng_generator. /// \param seed The engine seed. void set_seed(const std::uint64_t seed) { if (seed == _seed) { return; } _seed = seed; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the dimensions of host rng_generator. /// \param dimensions The engine dimensions. void set_dimensions(const std::uint32_t dimensions) { if (dimensions == _dimensions) { return; } _dimensions = dimensions; _engine = create_engine(_queue, _seed, _dimensions); } /// Set the queue of host rng_generator. /// \param queue The engine queue. void set_queue(sycl::queue *queue) { if (queue == _queue) { return; } _queue = queue; _engine = create_engine(_queue, _seed, _dimensions); } /// Generate unsigned int random number(s) with 'uniform_bits' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned int *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned int) == sizeof(std::uint32_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint32_t>>( (std::uint32_t *)output, n); #endif } /// Generate unsigned long long random number(s) with 'uniform_bits' /// distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform_bits(unsigned long long *output, std::int64_t n) { #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else static_assert(sizeof(unsigned long long) == sizeof(std::uint64_t)); generate<oneapi::mkl::rng::uniform_bits<std::uint64_t>>( (std::uint64_t *)output, n); #endif } /// Generate float random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(float *output, std::int64_t n, float m, float s) { generate<oneapi::mkl::rng::lognormal<float>>(output, n, m, s); } /// Generate double random number(s) with 'lognormal' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param m Mean of associated normal distribution /// \param s Standard deviation of associated normal distribution. inline void generate_lognormal(double *output, std::int64_t n, double m, double s) { generate<oneapi::mkl::rng::lognormal<double>>(output, n, m, s); } /// Generate float random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(float *output, std::int64_t n, float mean, float stddev) { generate<oneapi::mkl::rng::gaussian<float>>(output, n, mean, stddev); } /// Generate double random number(s) with 'gaussian' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param mean Mean of normal distribution /// \param stddev Standard deviation of normal distribution. inline void generate_gaussian(double *output, std::int64_t n, double mean, double stddev) { generate<oneapi::mkl::rng::gaussian<double>>(output, n, mean, stddev); } /// Generate unsigned int random number(s) with 'poisson' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. /// \param lambda Lambda for the Poisson distribution. inline void generate_poisson(unsigned int *output, std::int64_t n, double lambda) { generate<oneapi::mkl::rng::poisson<unsigned int>>(output, n, lambda); } /// Generate float random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(float *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<float>>(output, n); } /// Generate double random number(s) with 'uniform' distribution. /// \param output The pointer of the first random number. /// \param n The number of random numbers. inline void generate_uniform(double *output, std::int64_t n) { generate<oneapi::mkl::rng::uniform<double>>(output, n); } /// Skip ahead several random number(s). /// \param num_to_skip The number of random numbers to be skipped. void skip_ahead(const std::uint64_t num_to_skip) { #ifndef __INTEL_MKL__ oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #else if constexpr (std::is_same_v<engine_t, oneapi::mkl::rng::mt2203>) throw std::runtime_error("no skip_ahead method of mt2203 engine."); else oneapi::mkl::rng::skip_ahead(_engine, num_to_skip); #endif } private: static inline engine_t create_engine(sycl::queue *queue, const std::uint64_t seed, const std::uint32_t dimensions) { #ifdef __INTEL_MKL__ return std::is_same_v<engine_t, oneapi::mkl::rng::sobol> ? engine_t(*queue, dimensions) : engine_t(*queue, seed); #else return engine_t(*queue, seed); #endif } template <typename distr_t, typename buffer_t, class... distr_params_t> void generate(buffer_t *output, const std::int64_t n, const distr_params_t... distr_params) { auto output_buf = dpct::detail::get_memory(output); oneapi::mkl::rng::generate(distr_t(distr_params...), _engine, n, output_buf); } engine_t _engine{}; }; } // namespace detail } // namespace host enum class random_engine_type { philox4x32x10, mrg32k3a, mt2203, mt19937, sobol, mcg59 }; typedef std::shared_ptr<rng::host::detail::rng_generator_base> host_rng_ptr; /// Create a host random number generator. /// \param type The random engine type. /// \return The pointer of random number generator. inline host_rng_ptr create_host_rng(const random_engine_type type) { switch (type) { case random_engine_type::philox4x32x10: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::philox4x32x10>>(); case random_engine_type::mrg32k3a: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mrg32k3a>>(); #ifndef __INTEL_MKL__ throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) " "Interfaces Project does not support this API."); #else case random_engine_type::mt2203: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt2203>>(); case random_engine_type::mt19937: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mt19937>>(); case random_engine_type::sobol: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::sobol>>(); case random_engine_type::mcg59: return std::make_shared< rng::host::detail::rng_generator<oneapi::mkl::rng::mcg59>>(); #endif } } } // namespace rng } // namespace dpct #endif // __DPCT_RNG_UTILS_HPP__
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/numeric.h
//==---- numeric.h --------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_NUMERIC_H__ #define __DPCT_NUMERIC_H__ namespace dpct { template <typename Policy, typename InputIt1, typename InputIt2, typename T> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init); } template <typename Policy, typename InputIt1, typename InputIt2, typename T, typename BinaryOperation1, typename BinaryOperation2> T inner_product(Policy &&policy, InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 op1, BinaryOperation2 op2) { return std::transform_reduce(std::forward<Policy>(policy), first1, last1, first2, init, op1, op2); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/iterators.h
//==---- iterators.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ITERATORS_H__ #define __DPCT_ITERATORS_H__ #include <oneapi/dpl/iterator> #include "functional.h" namespace dpct { namespace internal { // Wrapper class returned from a dereferenced transform_iterator which was // created using // make_transform_output_iterator(). Used to apply the supplied transform // function when writing into an object of this class. // // Example: // int a[] = {0, 1, 2, 3, 4}; // int* p = a; // auto f = [](auto v) {return v*v;}; // auto tr_out = dpct::make_transform_output_iterator(p+1, f); // auto wrap = *tr_out; // wrap is a transform_output_ref_wrapper // std::cout<<*(p+1)<<std::endl; // '1' // wrap = 2; // apply function, store 2*2=4 // std::cout<<*(p+1)<<std::endl; // '4' template <typename T, typename _UnaryFunc> class transform_output_ref_wrapper { private: T __my_reference_; _UnaryFunc __my_unary_func_; public: template <typename U> transform_output_ref_wrapper(U &&__reference, _UnaryFunc __unary_func) : __my_reference_(std::forward<U>(__reference)), __my_unary_func_(__unary_func) {} // When writing to an object of this type, apply the supplied unary function, // then write to the wrapped reference template <typename UnaryInputType> transform_output_ref_wrapper &operator=(const UnaryInputType &e) { __my_reference_ = __my_unary_func_(e); return *this; } }; // Unary functor to create a transform_output_reference_wrapper when a // transform_iterator is dereferenced, so that a // the supplied unary function may be applied on write, resulting in a // transform_output_iterator template <typename _UnaryFunc> struct _Unary_Out { _Unary_Out(_UnaryFunc __f_) : __f(__f_) {} _UnaryFunc __f; template <typename T> auto operator()(T &&val) const { return transform_output_ref_wrapper<T, _UnaryFunc>(std::forward<T>(val), __f); } }; } // end namespace internal using std::advance; using std::distance; template <typename T> oneapi::dpl::counting_iterator<T> make_counting_iterator(const T &input) { return oneapi::dpl::counting_iterator<T>(input); } template <typename _Tp> class constant_iterator { public: typedef std::false_type is_hetero; typedef std::true_type is_passed_directly; typedef std::ptrdiff_t difference_type; typedef _Tp value_type; typedef _Tp *pointer; // There is no storage behind the iterator, so we return a value instead of // reference. typedef const _Tp reference; typedef const _Tp const_reference; typedef std::random_access_iterator_tag iterator_category; explicit constant_iterator(_Tp __init) : __my_value_(__init), __my_counter_(0) {} private: // used to construct iterator instances with different counter values required // by arithmetic operators constant_iterator(const _Tp &__value, const difference_type &__offset) : __my_value_(__value), __my_counter_(__offset) {} public: // non-const variants of access operators are not provided so unintended // writes are caught at compile time. const_reference operator*() const { return __my_value_; } const_reference operator[](difference_type) const { return __my_value_; } difference_type operator-(const constant_iterator &__it) const { return __my_counter_ - __it.__my_counter_; } constant_iterator &operator+=(difference_type __forward) { __my_counter_ += __forward; return *this; } constant_iterator &operator-=(difference_type __backward) { return *this += -__backward; } constant_iterator &operator++() { return *this += 1; } constant_iterator &operator--() { return *this -= 1; } constant_iterator operator++(int) { constant_iterator __it(*this); ++(*this); return __it; } constant_iterator operator--(int) { constant_iterator __it(*this); --(*this); return __it; } constant_iterator operator-(difference_type __backward) const { return constant_iterator(__my_value_, __my_counter_ - __backward); } constant_iterator operator+(difference_type __forward) const { return constant_iterator(__my_value_, __my_counter_ + __forward); } friend constant_iterator operator+(difference_type __forward, const constant_iterator __it) { return __it + __forward; } bool operator==(const constant_iterator &__it) const { return __my_value_ == __it.__my_value_ && this->__my_counter_ == __it.__my_counter_; } bool operator!=(const constant_iterator &__it) const { return !(*this == __it); } bool operator<(const constant_iterator &__it) const { return *this - __it < 0; } bool operator>(const constant_iterator &__it) const { return __it < *this; } bool operator<=(const constant_iterator &__it) const { return !(*this > __it); } bool operator>=(const constant_iterator &__it) const { return !(*this < __it); } private: _Tp __my_value_; uint64_t __my_counter_; }; template <typename _Tp> constant_iterator<_Tp> make_constant_iterator(_Tp __value) { return constant_iterator<_Tp>(__value); } // key_value_pair class to represent a key and value, specifically a // dereferenced arg_index_input_iterator template <typename _KeyTp, typename _ValueTp> class key_value_pair { public: key_value_pair() = default; key_value_pair(const _KeyTp &_key, const _ValueTp &_value) : key(_key), value(_value) {} bool operator==(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key == _kvp.key) && (value == _kvp.value); } bool operator!=(const key_value_pair<_KeyTp, _ValueTp> &_kvp) const { return (key != _kvp.key) || (value != _kvp.value); } _KeyTp key; _ValueTp value; }; namespace detail { template <typename KeyTp, typename _ValueTp> struct make_key_value_pair { template <typename ValRefTp> key_value_pair<KeyTp, _ValueTp> operator()(const oneapi::dpl::__internal::tuple<KeyTp, ValRefTp> &tup) const { return ::dpct::key_value_pair<KeyTp, _ValueTp>(::std::get<0>(tup), ::std::get<1>(tup)); } }; template <class T> struct __zip_iterator_impl; template <class... Ts> struct __zip_iterator_impl<std::tuple<Ts...>> { using type = oneapi::dpl::zip_iterator<Ts...>; }; } // end namespace detail // dpct::zip_iterator can only accept std::tuple type as template argument for // compatibility purpose. Please use oneapi::dpl::zip_iterator if you want to // pass iterator's types directly. template <typename... Ts> using zip_iterator = typename detail::__zip_iterator_impl<Ts...>::type; // arg_index_input_iterator is an iterator over a input iterator, with a index. // When dereferenced, it returns a key_value_pair, which can be interrogated for // the index key or the value from the input iterator template <typename InputIteratorT, typename OffsetT = ptrdiff_t, typename OutputValueT = typename ::std::iterator_traits<InputIteratorT>::value_type> class arg_index_input_iterator : public oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>> { using arg_index_input_iterator_wrap = oneapi::dpl::transform_iterator< oneapi::dpl::zip_iterator<oneapi::dpl::counting_iterator<OffsetT>, InputIteratorT>, detail::make_key_value_pair<OffsetT, OutputValueT>>; public: typedef OffsetT difference_type; // signal to __get_sycl_range that this iterator is as a direct pass iterator using is_zip = ::std::true_type; arg_index_input_iterator(const arg_index_input_iterator_wrap &__arg_wrap) : arg_index_input_iterator_wrap(__arg_wrap) {} arg_index_input_iterator(InputIteratorT __iter) : arg_index_input_iterator_wrap( oneapi::dpl::make_zip_iterator( oneapi::dpl::counting_iterator(OffsetT(0)), __iter), detail::make_key_value_pair<OffsetT, OutputValueT>()) {} arg_index_input_iterator &operator=(const arg_index_input_iterator &__input) { arg_index_input_iterator_wrap::operator=(__input); return *this; } arg_index_input_iterator &operator++() { arg_index_input_iterator_wrap::operator++(); return *this; } arg_index_input_iterator &operator--() { arg_index_input_iterator_wrap::operator--(); return *this; } arg_index_input_iterator operator++(int) { arg_index_input_iterator __it(*this); ++(*this); return __it; } arg_index_input_iterator operator--(int) { arg_index_input_iterator __it(*this); --(*this); return __it; } arg_index_input_iterator operator+(difference_type __forward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator+(__forward)); } arg_index_input_iterator operator-(difference_type __backward) const { return arg_index_input_iterator( arg_index_input_iterator_wrap::operator-(__backward)); } arg_index_input_iterator &operator+=(difference_type __forward) { arg_index_input_iterator_wrap::operator+=(__forward); return *this; } arg_index_input_iterator &operator-=(difference_type __backward) { arg_index_input_iterator_wrap::operator-=(__backward); return *this; } friend arg_index_input_iterator operator+(difference_type __forward, const arg_index_input_iterator &__it) { return __it + __forward; } difference_type operator-(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator-(__it); } bool operator==(const arg_index_input_iterator &__it) const { return arg_index_input_iterator_wrap::operator==(__it); } bool operator!=(const arg_index_input_iterator &__it) const { return !(*this == __it); } bool operator<(const arg_index_input_iterator &__it) const { return *this - __it < 0; } bool operator>(const arg_index_input_iterator &__it) const { return __it < *this; } bool operator<=(const arg_index_input_iterator &__it) const { return !(*this > __it); } bool operator>=(const arg_index_input_iterator &__it) const { return !(*this < __it); } // returns an arg_index_input_iterator with the same iter position, but a // count reset to 0 arg_index_input_iterator create_normalized() { return arg_index_input_iterator( ::std::get<1>(arg_index_input_iterator_wrap::base().base())); } }; template <typename IterT> struct io_iterator_pair { inline io_iterator_pair() : selector(false) {} inline io_iterator_pair(const IterT &first, const IterT &second) : selector(false) { iter[0] = first; iter[1] = second; } inline IterT first() const { return selector ? iter[1] : iter[0]; } inline IterT second() const { return selector ? iter[0] : iter[1]; } inline void swap() { selector = !selector; } bool selector; IterT iter[2]; }; template <typename _Iter, typename _UnaryFunc> auto make_transform_output_iterator(_Iter __it, _UnaryFunc __unary_func) { return oneapi::dpl::transform_iterator( __it, internal::_Unary_Out<_UnaryFunc>(__unary_func)); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/algorithm.h
//==---- algorithm.h ------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_ALGORITHM_H__ #define __DPCT_ALGORITHM_H__ #include <oneapi/dpl/execution> #include <oneapi/dpl/algorithm> #include <oneapi/dpl/numeric> #include "functional.h" #include "iterators.h" #include "vector.h" namespace dpct { template <typename Policy, typename Iter1, typename Iter2, typename Pred, typename T> void replace_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::transform(std::forward<Policy>(policy), first, last, mask, first, internal::replace_if_fun<typename std::iterator_traits<Iter1>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred, typename T> Iter3 replace_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p, const T &new_value) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::transform(std::forward<Policy>(policy), first, last, mask, result, internal::replace_if_fun<typename std::iterator_traits<Iter3>::value_type, Pred>(p, new_value)); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using internal::__buffer; using ValueType = typename std::iterator_traits<Iter1>::value_type; __buffer<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.get(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(std::forward<Policy>(policy), _tmp.get(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type remove_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; using policy_type = typename std::decay<Policy>::type; using ValueType = typename std::iterator_traits<Iter1>::value_type; std::vector<ValueType> _tmp(std::distance(first, last)); auto end = std::copy_if( policy, make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(_tmp.begin(), oneapi::dpl::discard_iterator()), internal::negate_predicate_key_fun<Pred>(p)); return std::copy(policy, _tmp.begin(), std::get<0>(end.base()), first); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 remove_copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using oneapi::dpl::make_zip_iterator; auto ret_val = std::remove_copy_if( std::forward<Policy>(policy), make_zip_iterator(first, mask), make_zip_iterator(last, mask + std::distance(first, last)), make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class BinaryPred> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_first, values_first), ret_val); return std::make_pair(keys_first + n1, values_first + n1); } template <class Policy, class Iter1, class Iter2> std::pair<Iter1, Iter2> unique(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; return unique(std::forward<Policy>(policy), keys_first, keys_last, values_first, std::equal_to<T>()); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryPred> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result, BinaryPred binary_pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::unique_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::unique_fun<BinaryPred>(binary_pred)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4> std::pair<Iter3, Iter4> unique_copy(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Iter3 keys_result, Iter4 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; auto comp = std::equal_to<T>(); return unique_copy(std::forward<Policy>(policy), keys_first, keys_last, values_first, keys_result, values_result, comp); } template <typename Policy, typename Iter, typename Pred> Iter partition_point(Policy &&policy, Iter first, Iter last, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); if (std::is_partitioned(std::forward<Policy>(policy), first, last, p)) return std::find_if_not(std::forward<Policy>(policy), first, last, p); else return first; } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Pred> Iter3 copy_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::copy_if( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(result, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(pred)); return std::get<0>(ret_val.base()); } template <class Policy, class Iter1, class Iter2, class UnaryOperation, class Pred> Iter2 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, result), oneapi::dpl::make_zip_iterator(first, result) + n, internal::transform_if_fun<T, Pred, UnaryOperation>(pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class UnaryOperation, class Pred> Iter3 transform_if(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 result, UnaryOperation unary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using T = typename std::iterator_traits<Iter1>::value_type; using Ref1 = typename std::iterator_traits<Iter1>::reference; using Ref2 = typename std::iterator_traits<Iter2>::reference; const auto n = std::distance(first, last); std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask, result), oneapi::dpl::make_zip_iterator(first, mask, result) + n, internal::transform_if_unary_zip_mask_fun<T, Pred, UnaryOperation>( pred, unary_op)); return result + n; } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class BinaryOperation, class Pred> Iter4 transform_if(Policy &&policy, Iter1 first1, Iter1 last1, Iter2 first2, Iter3 mask, Iter4 result, BinaryOperation binary_op, Pred pred) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); const auto n = std::distance(first1, last1); using ZipIterator = typename oneapi::dpl::zip_iterator<Iter1, Iter2, Iter3, Iter4>; using T = typename std::iterator_traits<ZipIterator>::value_type; std::for_each( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first1, first2, mask, result), oneapi::dpl::make_zip_iterator(last1, first2 + n, mask + n, result + n), internal::transform_if_zip_mask_fun<T, Pred, BinaryOperation>(pred, binary_op)); return result + n; } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> void scatter(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); oneapi::dpl::copy(policy, first, last, oneapi::dpl::make_permutation_iterator(result, map)); } template <typename Policy, typename InputIter1, typename InputIter2, typename OutputIter> OutputIter gather(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 input_first, OutputIter result) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = ::std::distance(map_first, map_last); return oneapi::dpl::copy(policy, perm_begin, perm_begin + n, result); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> void scatter_if(Policy &&policy, InputIter1 first, InputIter1 last, InputIter2 map, InputIter3 mask, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); transform_if(policy, first, last, mask, oneapi::dpl::make_permutation_iterator(result, map), [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename InputIter1, typename InputIter2, typename InputIter3, typename OutputIter, typename Predicate> OutputIter gather_if(Policy &&policy, InputIter1 map_first, InputIter1 map_last, InputIter2 mask, InputIter3 input_first, OutputIter result, Predicate pred) { static_assert( std::is_same<typename std::iterator_traits<InputIter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<InputIter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same< typename std::iterator_traits<OutputIter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto perm_begin = oneapi::dpl::make_permutation_iterator(input_first, map_first); const int n = std::distance(map_first, map_last); return transform_if(policy, perm_begin, perm_begin + n, mask, result, [=](auto &&v) { return v; }, [=](auto &&m) { return pred(m); }); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Iter5, typename Iter6, typename Comp> std::pair<Iter5, Iter6> merge(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto n1 = std::distance(keys_first1, keys_last1); auto n2 = std::distance(keys_first2, keys_last2); std::merge(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator(keys_last1, values_first1 + n1), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator(keys_last2, values_first2 + n2), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); return std::make_pair(keys_result + n1 + n2, values_result + n1 + n2); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init, T step) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, internal::sequence_fun<T>(init, step)); } template <class Policy, class Iter, class T> void iota(Policy &&policy, Iter first, Iter last, T init) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); iota(std::forward<Policy>(policy), first, last, init, T(1)); } template <class Policy, class Iter> void iota(Policy &&policy, Iter first, Iter last) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; iota(std::forward<Policy>(policy), first, last, DiffSize(0), DiffSize(1)); } template <class Policy, class Iter1, class Iter2, class Comp> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto first = oneapi::dpl::make_zip_iterator(keys_first, values_first); auto last = first + std::distance(keys_first, keys_last); std::sort(std::forward<Policy>(policy), first, last, internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter1, class Iter2, class Comp> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); std::stable_sort( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first, values_first), oneapi::dpl::make_zip_iterator( keys_last, values_first + std::distance(keys_first, keys_last)), internal::compare_key_fun<Comp>(comp)); } template <class Policy, class Iter1, class Iter2> void stable_sort(Policy &&policy, Iter1 keys_first, Iter1 keys_last, Iter2 values_first) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); stable_sort(std::forward<Policy>(policy), keys_first, keys_last, values_first, internal::__less()); } template <class Policy, class Iter, class Operator> void for_each_index(Policy &&policy, Iter first, Iter last, Operator unary_op) { static_assert( std::is_same<typename std::iterator_traits<Iter>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); using DiffSize = typename std::iterator_traits<Iter>::difference_type; std::transform( std::forward<Policy>(policy), oneapi::dpl::counting_iterator<DiffSize>(0), oneapi::dpl::counting_iterator<DiffSize>(std::distance(first, last)), first, unary_op); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Comp> std::pair<Iter4, Iter5> set_intersection(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 keys_result, Iter5 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_intersection( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_last2, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_symmetric_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_symmetric_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> std::pair<Iter5, Iter6> set_difference(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_difference( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<>()); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <class Policy, class Iter1, class Iter2, class Iter3, class Iter4, class Iter5, class Iter6, class Comp> internal::enable_if_execution_policy<Policy, std::pair<Iter5, Iter6>> set_union(Policy &&policy, Iter1 keys_first1, Iter1 keys_last1, Iter2 keys_first2, Iter2 keys_last2, Iter3 values_first1, Iter4 values_first2, Iter5 keys_result, Iter6 values_result, Comp comp) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter5>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter6>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::set_union( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(keys_first1, values_first1), oneapi::dpl::make_zip_iterator( keys_last1, values_first1 + std::distance(keys_first1, keys_last1)), oneapi::dpl::make_zip_iterator(keys_first2, values_first2), oneapi::dpl::make_zip_iterator( keys_last2, values_first2 + std::distance(keys_first2, keys_last2)), oneapi::dpl::make_zip_iterator(keys_result, values_result), internal::compare_key_fun<Comp>(comp)); auto n1 = std::distance( oneapi::dpl::make_zip_iterator(keys_result, values_result), ret_val); return std::make_pair(keys_result + n1, values_result + n1); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); auto ret_val = std::partition_copy( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, mask), oneapi::dpl::make_zip_iterator(last, mask + std::distance(first, last)), oneapi::dpl::make_zip_iterator(out_true, oneapi::dpl::discard_iterator()), oneapi::dpl::make_zip_iterator(out_false, oneapi::dpl::discard_iterator()), internal::predicate_key_fun<Pred>(p)); return std::make_pair(std::get<0>(ret_val.first.base()), std::get<0>(ret_val.second.base())); } template <typename Policy, typename Iter1, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> stable_partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return std::partition_copy(std::forward<Policy>(policy), first, last, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3, typename Iter4, typename Pred> internal::enable_if_execution_policy<Policy, std::pair<Iter3, Iter4>> partition_copy(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Iter3 out_true, Iter4 out_false, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter3>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter4>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition_copy(std::forward<Policy>(policy), first, last, mask, out_true, out_false, p); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_hetero_execution_policy<Policy, Iter1> stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; internal::__buffer<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.get()); auto ret_val = std::stable_partition(std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.get()), oneapi::dpl::make_zip_iterator( last, _tmp.get() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> typename std::enable_if<!internal::is_hetero_execution_policy< typename std::decay<Policy>::type>::value, Iter1>::type stable_partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); typedef typename std::decay<Policy>::type policy_type; std::vector<typename std::iterator_traits<Iter1>::value_type> _tmp( std::distance(first, last)); std::copy(std::forward<Policy>(policy), mask, mask + std::distance(first, last), _tmp.begin()); auto ret_val = std::stable_partition( std::forward<Policy>(policy), oneapi::dpl::make_zip_iterator(first, _tmp.begin()), oneapi::dpl::make_zip_iterator(last, _tmp.begin() + std::distance(first, last)), internal::predicate_key_fun<Pred>(p)); return std::get<0>(ret_val.base()); } template <typename Policy, typename Iter1, typename Iter2, typename Pred> internal::enable_if_execution_policy<Policy, Iter1> partition(Policy &&policy, Iter1 first, Iter1 last, Iter2 mask, Pred p) { static_assert( std::is_same<typename std::iterator_traits<Iter1>::iterator_category, std::random_access_iterator_tag>::value && std::is_same<typename std::iterator_traits<Iter2>::iterator_category, std::random_access_iterator_tag>::value, "Iterators passed to algorithms must be random-access iterators."); return stable_partition(std::forward<Policy>(policy), first, last, mask, p); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8); namespace internal { // Transforms key to a specific bit range and sorts the transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transformed_key_t> inline void transform_and_sort(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto trans_key = translate_key<key_t_value_t, transformed_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange // desired. auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, [=](const auto a, const auto b) { return comp(trans_key(a), trans_key(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<transformed_key_t>()); else partial_sort_with_comp(::std::less<transformed_key_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline void sort_only(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; if constexpr (::std::is_floating_point<key_t_value_t>::value) { if (descending) { // Comparison operator that is not std::greater() ensures stability of // -0.0 and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_descending = [=](const auto a, const auto b) { return a > b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_descending); } else { // Comparison operator that is not std::less() ensures stability of -0.0 // and 0.0 // at the cost of some performance because radix sort will not be used. auto comp_ascending = [=](const auto a, const auto b) { return a < b; }; oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, comp_ascending); } } else { if (descending) { oneapi::dpl::partial_sort_copy( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n, ::std::greater<key_t_value_t>()); } else { oneapi::dpl::partial_sort_copy(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_in + n, keys_out, keys_out + n); } } } // Transforms key from a pair to a specific bit range and sorts the pairs by the // transformed key template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename transform_key_t, typename value_t, typename value_out_t> inline void transform_and_sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); auto trans_key = translate_key<key_t_value_t, transform_key_t>(begin_bit, end_bit); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to provide the transformation of the key to the bitrange desired // and also to select the key from the zipped pair. auto load_val = [=](const auto a) { return trans_key(std::get<0>(a)); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline void sort_only_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; auto zip_input = oneapi::dpl::zip_iterator(keys_in, values_in); auto zip_output = oneapi::dpl::zip_iterator(keys_out, values_out); // Use of the comparison operator that is not simply std::greater() or // std::less() will result in // not using radix sort which will cost some performance. However, this is // necessary to select the key from the zipped pair. auto load_val = [=](const auto a) { return std::get<0>(a); }; auto partial_sort_with_comp = [&](const auto &comp) { return oneapi::dpl::partial_sort_copy( std::forward<_ExecutionPolicy>(policy), zip_input, zip_input + n, zip_output, zip_output + n, [=](const auto a, const auto b) { return comp(load_val(a), load_val(b)); }); }; if (descending) partial_sort_with_comp(::std::greater<key_t_value_t>()); else partial_sort_with_comp(::std::less<key_t_value_t>()); } // overload for key_out_t != std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<!::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_pairs_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort_pairs<decltype(policy), key_t, key_out_t, T, value_t, value_out_t>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_pairs_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_pairs_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_pairs_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_pairs_f.template operator()<uint64_t>(0); } } // overload for key_out_t == std::nullptr_t template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> typename ::std::enable_if<::std::is_null_pointer<key_out_t>::value>::type sort_pairs_impl(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { // create temporary keys_out to discard, memory footprint could be improved by // a specialized iterator with a single // unchanging dummy key_t element using key_t_value_t = typename std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> temp_keys_out{sycl::range<1>(n)}; internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(temp_keys_out), values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { using offset_type = typename ::std::iterator_traits<OffsetIteratorT>::value_type; ::std::vector<offset_type> host_accessible_offset_starts(nsegments); ::std::vector<offset_type> host_accessible_offset_ends(nsegments); // make offsets accessible on host ::std::copy(::std::forward<_ExecutionPolicy>(policy), begin_offsets, begin_offsets + nsegments, host_accessible_offset_starts.begin()); ::std::copy(::std::forward<_ExecutionPolicy>(policy), end_offsets, end_offsets + nsegments, host_accessible_offset_ends.begin()); for (::std::uint64_t i = 0; i < nsegments; i++) { uint64_t segment_begin = host_accessible_offset_starts[i]; uint64_t segment_end = ::std::min(n, (int64_t)host_accessible_offset_ends[i]); if (segment_begin < segment_end) { ::dpct::sort_keys(::std::forward<_ExecutionPolicy>(policy), keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); } } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_pairs(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, values_in + segment_begin, values_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_parallel_for_of_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { uint64_t segment_begin = begin_offsets[i]; uint64_t segment_end = ::std::min(n, (int64_t)end_offsets[i]); if (segment_begin == segment_end) { return; } ::dpct::sort_keys(::std::execution::seq, keys_in + segment_begin, keys_out + segment_begin, segment_end - segment_begin, descending, begin_bit, end_bit); }); }); policy.queue().wait(); } template <typename _ExecutionPolicy, typename OffsetIteratorT> inline void mark_segments(_ExecutionPolicy &&policy, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, int64_t n, int64_t nsegments, sycl::buffer<::std::size_t, 1> segments) { ::std::size_t work_group_size = policy.queue() .get_device() .template get_info<sycl::info::device::max_work_group_size>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); ::std::size_t sub_group_size = sg_sizes.empty() ? 0 : sg_sizes.back(); float avg_seg_size = (float)n / (float)nsegments; if (avg_seg_size > work_group_size) { // If average segment size is larger than workgroup, use workgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(work_group_size, ([=](sycl::id<1> id) { for (::std::size_t seg = 0; seg < nsegments; seg++) { ::std::size_t i = begin_offsets[seg]; ::std::size_t end = end_offsets[seg]; while (i + id < end) { segments_acc[i + id] = seg; i += work_group_size; } } })); }) .wait(); } else if (sub_group_size > 0 && avg_seg_size > sub_group_size / 2) { // If average segment size is larger than half a subgroup, use subgroup to // coordinate to mark segments policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for( sycl::nd_range<1>{work_group_size, work_group_size}, ([=](sycl::nd_item<1> item) { auto sub_group = item.get_sub_group(); ::std::size_t num_subgroups = sub_group.get_group_range().size(); ::std::size_t local_size = sub_group.get_local_range().size(); ::std::size_t sub_group_id = sub_group.get_group_id(); while (sub_group_id < nsegments) { ::std::size_t subgroup_local_id = sub_group.get_local_id(); ::std::size_t i = begin_offsets[sub_group_id]; ::std::size_t end = end_offsets[sub_group_id]; while (i + subgroup_local_id < end) { segments_acc[i + subgroup_local_id] = sub_group_id; i += local_size; } sub_group_id += num_subgroups; } })); }) .wait(); } else { // If average segment size is small as compared to subgroup, use single // work item to mark each segment policy.queue() .submit([&](sycl::handler &h) { auto segments_acc = segments.get_access<sycl::access_mode::write>(h); h.parallel_for(nsegments, ([=](sycl::id<1> seg) { for (::std::size_t i = begin_offsets[seg]; i < end_offsets[seg]; i++) { segments_acc[i] = seg; } })); }) .wait(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline void segmented_sort_keys_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(segments), oneapi::dpl::begin(segments_sorted), n, descending); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), oneapi::dpl::begin(keys_temp), keys_out, n, false); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline void segmented_sort_pairs_by_two_pair_sorts( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_out_t values_in, value_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sycl::buffer<::std::size_t, 1> segments{sycl::range<1>(n)}; sycl::buffer<::std::size_t, 1> segments_sorted{sycl::range<1>(n)}; using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; sycl::buffer<key_t_value_t, 1> keys_temp{sycl::range<1>(n)}; using value_t_value_t = typename ::std::iterator_traits<value_t>::value_type; sycl::buffer<value_t_value_t, 1> values_temp{sycl::range<1>(n)}; mark_segments(::std::forward<_ExecutionPolicy>(policy), begin_offsets, end_offsets, n, nsegments, segments); auto zip_seg_vals = oneapi::dpl::make_zip_iterator(oneapi::dpl::begin(segments), values_in); auto zip_seg_vals_out = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(values_temp)); // Part 1: Sort by keys keeping track of which segment were in dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys_in, oneapi::dpl::begin(keys_temp), zip_seg_vals, zip_seg_vals_out, n, descending); auto zip_keys_vals = oneapi::dpl::make_zip_iterator( oneapi::dpl::begin(keys_temp), oneapi::dpl::begin(values_temp)); auto zip_keys_vals_out = oneapi::dpl::make_zip_iterator(keys_out, values_out); // Part 2: Sort the segments with a stable sort to get back sorted segments. dpct::sort_pairs(::std::forward<_ExecutionPolicy>(policy), oneapi::dpl::begin(segments_sorted), oneapi::dpl::begin(segments), zip_keys_vals, zip_keys_vals_out, n, false); } } // end namespace internal template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> sort_pairs(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, bool descending, int begin_bit, int end_bit) { internal::sort_pairs_impl(std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, descending, begin_bit, end_bit); } template <typename _ExecutionPolicy, typename key_t, typename value_t> inline void sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_pairs(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> sort_keys(_ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, bool descending, int begin_bit, int end_bit) { using key_t_value_t = typename ::std::iterator_traits<key_t>::value_type; int clipped_begin_bit = ::std::max(begin_bit, 0); int clipped_end_bit = ::std::min((::std::uint64_t)end_bit, sizeof(key_t_value_t) * 8); int num_bytes = (clipped_end_bit - clipped_begin_bit - 1) / 8 + 1; auto transform_and_sort_f = [&](auto x) { using T = typename ::std::decay_t<decltype(x)>; internal::transform_and_sort<decltype(policy), key_t, key_out_t, T>( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending, clipped_begin_bit, clipped_end_bit); }; if (clipped_end_bit - clipped_begin_bit == sizeof(key_t_value_t) * 8) { internal::sort_only(::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, descending); } else if (num_bytes == 1) { transform_and_sort_f.template operator()<uint8_t>(0); } else if (num_bytes == 2) { transform_and_sort_f.template operator()<uint16_t>(0); } else if (num_bytes <= 4) { transform_and_sort_f.template operator()<uint32_t>(0); } else // if (num_bytes <= 8) { transform_and_sort_f.template operator()<uint64_t>(0); } } template <typename _ExecutionPolicy, typename key_t> inline void sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { sort_keys(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, descending, begin_bit, end_bit); if (do_swap_iters) keys.swap(); } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value> segmented_sort_keys( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_keys_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_keys_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_keys_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename OffsetIteratorT> inline void segmented_sort_keys( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_keys(::std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); } } template <typename _ExecutionPolicy, typename key_t, typename key_out_t, typename value_t, typename value_out_t, typename OffsetIteratorT> inline ::std::enable_if_t<dpct::internal::is_iterator<key_t>::value && dpct::internal::is_iterator<key_out_t>::value && dpct::internal::is_iterator<value_t>::value && dpct::internal::is_iterator<value_out_t>::value> segmented_sort_pairs( _ExecutionPolicy &&policy, key_t keys_in, key_out_t keys_out, value_t values_in, value_out_t values_out, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { int compute_units = policy.queue() .get_device() .template get_info<sycl::info::device::max_compute_units>(); auto sg_sizes = policy.queue() .get_device() .template get_info<sycl::info::device::sub_group_sizes>(); int subgroup_size = sg_sizes.empty() ? 1 : sg_sizes.back(); // parallel for of serial sorts when we have sufficient number of segments for // load balance when number of segments is large as compared to our target // compute capability if (nsegments > compute_units * (policy.queue().get_device().is_gpu() ? subgroup_size : 1)) { dpct::internal::segmented_sort_pairs_by_parallel_for_of_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else if (nsegments < 512) // for loop of parallel sorts when we have a small // number of total sorts to limit total overhead { dpct::internal::segmented_sort_pairs_by_parallel_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } else // decent catch all using 2 full sorts { dpct::internal::segmented_sort_pairs_by_two_pair_sorts( ::std::forward<_ExecutionPolicy>(policy), keys_in, keys_out, values_in, values_out, n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); } } template <typename _ExecutionPolicy, typename key_t, typename value_t, typename OffsetIteratorT> inline void segmented_sort_pairs( _ExecutionPolicy &&policy, io_iterator_pair<key_t> &keys, io_iterator_pair<value_t> &values, int64_t n, int64_t nsegments, OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets, bool descending = false, bool do_swap_iters = false, int begin_bit = 0, int end_bit = sizeof(typename ::std::iterator_traits<key_t>::value_type) * 8) { segmented_sort_pairs(std::forward<_ExecutionPolicy>(policy), keys.first(), keys.second(), values.first(), values.second(), n, nsegments, begin_offsets, end_offsets, descending, begin_bit, end_bit); if (do_swap_iters) { keys.swap(); values.swap(); } } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmax(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::max_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename Iter2> inline void reduce_argmin(_ExecutionPolicy &&policy, Iter1 input, Iter2 output, ::std::size_t n) { dpct::arg_index_input_iterator<decltype(input), int> input_arg_idx(input); auto ret = ::std::min_element( ::std::forward<_ExecutionPolicy>(policy), input_arg_idx, input_arg_idx + n, [](const auto &a, const auto &b) { return (a.value < b.value); }); ::std::copy(::std::forward<_ExecutionPolicy>(policy), ret, ret + 1, output); } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable, typename StrictWeakOrdering> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value, StrictWeakOrdering comp) { ::std::vector<::std::int64_t> res_lower(1); ::std::vector<::std::int64_t> res_upper(1); ::std::vector<ValueLessComparable> value_vec(1, value); ::oneapi::dpl::lower_bound(policy, start, end, value_vec.begin(), value_vec.end(), res_lower.begin(), comp); ::oneapi::dpl::upper_bound(::std::forward<_ExecutionPolicy>(policy), start, end, value_vec.begin(), value_vec.end(), res_upper.begin(), comp); auto result = ::std::make_pair(start + res_lower[0], start + res_upper[0]); return result; } template <typename _ExecutionPolicy, typename Iter1, typename ValueLessComparable> inline ::std::pair<Iter1, Iter1> equal_range(_ExecutionPolicy &&policy, Iter1 start, Iter1 end, const ValueLessComparable &value) { return equal_range(::std::forward<_ExecutionPolicy>(policy), start, end, value, internal::__less()); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmin(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::max()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::min_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } template <typename Policy, typename Iter1, typename Iter2, typename Iter3> inline ::std::enable_if_t< dpct::internal::is_iterator<Iter1>::value && dpct::internal::is_iterator<Iter2>::value && internal::is_hetero_execution_policy<::std::decay_t<Policy>>::value> segmented_reduce_argmax(Policy &&policy, Iter1 keys_in, Iter2 keys_out, ::std::int64_t nsegments, Iter3 begin_offsets, Iter3 end_offsets) { policy.queue().submit([&](sycl::handler &cgh) { cgh.parallel_for(nsegments, [=](sycl::id<1> i) { if (end_offsets[i] <= begin_offsets[i]) { keys_out[i] = dpct::key_value_pair( 1, ::std::numeric_limits< typename ::std::iterator_traits<Iter1>::value_type>::lowest()); } else { dpct::arg_index_input_iterator<Iter1, int> arg_index(keys_in + begin_offsets[i]); keys_out[i] = *::std::max_element( arg_index, arg_index + (end_offsets[i] - begin_offsets[i]), [](const auto &a, const auto &b) { return a.value < b.value; }); } }); }); policy.queue().wait(); } } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/memory.h
//==---- memory.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_MEMORY_H__ #define __DPCT_MEMORY_H__ #include <sycl/sycl.hpp> // Memory management section: // device_pointer, device_reference, swap, device_iterator, malloc_device, // device_new, free_device, device_delete namespace dpct { namespace detail { template <typename T> struct make_allocatable { using type = T; }; template <> struct make_allocatable<void> { using type = dpct::byte_t; }; #if defined(__LIBSYCL_MAJOR_VERSION) && defined(__LIBSYCL_MINOR_VERSION) && \ defined(__LIBSYCL_PATCH_VERSION) #define _DPCT_LIBSYCL_VERSION \ (__LIBSYCL_MAJOR_VERSION * 10000 + __LIBSYCL_MINOR_VERSION * 100 + \ __LIBSYCL_PATCH_VERSION) #else #define _DPCT_LIBSYCL_VERSION 0 #endif template <typename _DataT> using __buffer_allocator = #if _DPCT_LIBSYCL_VERSION >= 60000 sycl::buffer_allocator<typename make_allocatable<_DataT>::type>; #else sycl::buffer_allocator; #endif } // namespace detail #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_pointer; #else template <typename T> class device_pointer; #endif template <typename T> struct device_reference { using pointer = device_pointer<T>; using value_type = T; template <typename OtherT> device_reference(const device_reference<OtherT> &input) : value(input.value) {} device_reference(const pointer &input) : value((*input).value) {} device_reference(value_type &input) : value(input) {} template <typename OtherT> device_reference &operator=(const device_reference<OtherT> &input) { value = input; return *this; }; device_reference &operator=(const device_reference &input) { T val = input.value; value = val; return *this; }; device_reference &operator=(const value_type &x) { value = x; return *this; }; pointer operator&() const { return pointer(&value); }; operator value_type() const { return T(value); } device_reference &operator++() { ++value; return *this; }; device_reference &operator--() { --value; return *this; }; device_reference operator++(int) { device_reference ref(*this); ++(*this); return ref; }; device_reference operator--(int) { device_reference ref(*this); --(*this); return ref; }; device_reference &operator+=(const T &input) { value += input; return *this; }; device_reference &operator-=(const T &input) { value -= input; return *this; }; device_reference &operator*=(const T &input) { value *= input; return *this; }; device_reference &operator/=(const T &input) { value /= input; return *this; }; device_reference &operator%=(const T &input) { value %= input; return *this; }; device_reference &operator&=(const T &input) { value &= input; return *this; }; device_reference &operator|=(const T &input) { value |= input; return *this; }; device_reference &operator^=(const T &input) { value ^= input; return *this; }; device_reference &operator<<=(const T &input) { value <<= input; return *this; }; device_reference &operator>>=(const T &input) { value >>= input; return *this; }; void swap(device_reference &input) { T tmp = (*this); *this = (input); input = (tmp); } T &value; }; template <typename T> void swap(device_reference<T> &x, device_reference<T> &y) { x.swap(y); } template <typename T> void swap(T &x, T &y) { T tmp = x; x = y; y = tmp; } namespace internal { // struct for checking if iterator is heterogeneous or not template <typename Iter, typename Void = void> // for non-heterogeneous iterators struct is_hetero_iterator : std::false_type {}; template <typename Iter> // for heterogeneous iterators struct is_hetero_iterator< Iter, typename std::enable_if<Iter::is_hetero::value, void>::type> : std::true_type {}; } // namespace internal #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode, typename Allocator> class device_iterator; template <typename ValueType, typename Allocator, typename Derived> class device_pointer_base { protected: sycl::buffer<ValueType, 1, Allocator> buffer; std::size_t idx; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(sycl::buffer<ValueType, 1> in, std::size_t i = 0) : buffer(in), idx(i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer_base(OtherT *ptr) : buffer( dpct::detail::mem_mgr::instance() .translate_ptr(ptr) .buffer.template reinterpret<ValueType, 1>(sycl::range<1>( dpct::detail::mem_mgr::instance().translate_ptr(ptr).size / sizeof(ValueType)))), idx(ptr - (ValueType*)dpct::detail::mem_mgr::instance() .translate_ptr(ptr).alloc_ptr) {} #endif device_pointer_base(const std::size_t count) : buffer(sycl::range<1>(count / sizeof(ValueType))), idx() {} // buffer has no default ctor we pass zero-range to create an empty buffer device_pointer_base() : buffer(sycl::range<1>(0)) {} device_pointer_base(const device_pointer_base &in) : buffer(in.buffer), idx(in.idx) {} pointer get() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() { auto res = (buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } operator ValueType *() const { auto res = (const_cast<device_pointer_base *>(this) ->buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); return res + idx; } Derived operator+(difference_type forward) const { return Derived{buffer, idx + forward}; } Derived operator-(difference_type backward) const { return Derived{buffer, idx - backward}; } Derived operator++(int) { Derived p(buffer, idx); idx += 1; return p; } Derived operator--(int) { Derived p(buffer, idx); idx -= 1; return p; } difference_type operator-(const Derived &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - std::distance(oneapi::dpl::begin(buffer), it); } std::size_t get_idx() const { return idx; } // required sycl::buffer<ValueType, 1, Allocator> get_buffer() { return buffer; } // required }; template <typename T, sycl::access_mode Mode, typename Allocator> class device_pointer : public device_pointer_base<T, Allocator, device_pointer<T, Mode, Allocator>> { private: using base_type = device_pointer_base<T, Allocator, device_pointer>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<T, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; template <sycl::access_mode Mode, typename Allocator> class device_pointer<void, Mode, Allocator> : public device_pointer_base<dpct::byte_t, Allocator, device_pointer<void, Mode, Allocator>> { private: using base_type = device_pointer_base<dpct::byte_t, Allocator, device_pointer>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; static constexpr sycl::access_mode mode = Mode; // required device_pointer(sycl::buffer<value_type, 1> in, std::size_t i = 0) : base_type(in, i) {} #ifdef __USE_DPCT template <typename OtherT> device_pointer(OtherT *ptr) : base_type(ptr) {} #endif // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer(const device_pointer &in) : base_type(in) {} device_pointer &operator+=(difference_type forward) { this->idx += forward; return *this; } device_pointer &operator-=(difference_type backward) { this->idx -= backward; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { this->idx += 1; return *this; } device_pointer &operator--() { this->idx -= 1; return *this; } }; #else template <typename T> class device_iterator; template <typename ValueType, typename Derived> class device_pointer_base { protected: ValueType *ptr; public: using pointer = ValueType *; using difference_type = std::make_signed<std::size_t>::type; device_pointer_base(ValueType *p) : ptr(p) {} device_pointer_base(const std::size_t count) { sycl::queue default_queue = dpct::get_default_queue(); ptr = static_cast<ValueType *>(sycl::malloc_shared( count, default_queue.get_device(), default_queue.get_context())); } device_pointer_base() {} pointer get() const { return ptr; } operator ValueType *() { return ptr; } operator ValueType *() const { return ptr; } ValueType &operator[](difference_type idx) { return ptr[idx]; } ValueType &operator[](difference_type idx) const { return ptr[idx]; } Derived operator+(difference_type forward) const { return Derived{ptr + forward}; } Derived operator-(difference_type backward) const { return Derived{ptr - backward}; } Derived operator++(int) { Derived p(ptr); ++ptr; return p; } Derived operator--(int) { Derived p(ptr); --ptr; return p; } difference_type operator-(const Derived &it) const { return ptr - it.ptr; } }; template <typename T> class device_pointer : public device_pointer_base<T, device_pointer<T>> { private: using base_type = device_pointer_base<T, device_pointer<T>>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using const_reference = const T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(T *p) : base_type(p) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} device_pointer &operator=(const device_iterator<T> &in) { this->ptr = static_cast<device_pointer<T>>(in).ptr; return *this; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; template <> class device_pointer<void> : public device_pointer_base<dpct::byte_t, device_pointer<void>> { private: using base_type = device_pointer_base<dpct::byte_t, device_pointer<void>>; public: using value_type = dpct::byte_t; using difference_type = std::make_signed<std::size_t>::type; using pointer = void *; using reference = value_type &; using const_reference = const value_type &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required device_pointer(void *p) : base_type(static_cast<value_type *>(p)) {} // needed for malloc_device, count is number of bytes to allocate device_pointer(const std::size_t count) : base_type(count) {} device_pointer() : base_type() {} pointer get() const { return static_cast<pointer>(this->ptr); } operator void *() { return this->ptr; } operator void *() const { return this->ptr; } // include operators from base class using base_type::operator++; using base_type::operator--; device_pointer &operator++() { ++(this->ptr); return *this; } device_pointer &operator--() { --(this->ptr); return *this; } device_pointer &operator+=(difference_type forward) { this->ptr = this->ptr + forward; return *this; } device_pointer &operator-=(difference_type backward) { this->ptr = this->ptr - backward; return *this; } }; #endif #ifdef DPCT_USM_LEVEL_NONE template <typename T, sycl::access_mode Mode = sycl::access_mode::read_write, typename Allocator = detail::__buffer_allocator<T>> class device_iterator : public device_pointer<T, Mode, Allocator> { using Base = device_pointer<T, Mode, Allocator>; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = T *; using reference = T &; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::true_type; // required using is_passed_directly = std::false_type; // required static constexpr sycl::access_mode mode = Mode; // required device_iterator() : Base() {} device_iterator(sycl::buffer<T, 1, Allocator> vec, std::size_t index) : Base(vec, index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T, inMode, Allocator> &in) : Base(in.buffer, in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::buffer = in.buffer; Base::idx = in.idx; return *this; } reference operator*() const { return const_cast<device_iterator *>(this) ->buffer.template get_access<mode>()[Base::idx]; } reference operator[](difference_type i) const { return *(*this + i); } device_iterator &operator++() { ++Base::idx; return *this; } device_iterator &operator--() { --Base::idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = Base::idx + forward; return {Base::buffer, new_idx}; } device_iterator &operator+=(difference_type forward) { Base::idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::buffer, Base::idx - backward}; } device_iterator &operator-=(difference_type backward) { Base::idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return Base::idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return Base::idx - std::distance(oneapi::dpl::begin(Base::buffer), it); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return Base::idx; } // required sycl::buffer<T, 1, Allocator> get_buffer() { return Base::buffer; } // required }; #else template <typename T> class device_iterator : public device_pointer<T> { using Base = device_pointer<T>; protected: std::size_t idx; public: using value_type = T; using difference_type = std::make_signed<std::size_t>::type; using pointer = typename Base::pointer; using reference = typename Base::reference; using iterator_category = std::random_access_iterator_tag; using is_hetero = std::false_type; // required using is_passed_directly = std::true_type; // required static constexpr sycl::access_mode mode = sycl::access_mode::read_write; // required device_iterator() : Base(nullptr), idx(0) {} device_iterator(T *vec, std::size_t index) : Base(vec), idx(index) {} template <sycl::access_mode inMode> device_iterator(const device_iterator<T> &in) : Base(in.ptr), idx(in.idx) {} // required for iter_mode device_iterator &operator=(const device_iterator &in) { Base::operator=(in); idx = in.idx; return *this; } reference operator*() const { return *(Base::ptr + idx); } reference operator[](difference_type i) { return Base::ptr[idx + i]; } reference operator[](difference_type i) const { return Base::ptr[idx + i]; } device_iterator &operator++() { ++idx; return *this; } device_iterator &operator--() { --idx; return *this; } device_iterator operator++(int) { device_iterator it(*this); ++(*this); return it; } device_iterator operator--(int) { device_iterator it(*this); --(*this); return it; } device_iterator operator+(difference_type forward) const { const auto new_idx = idx + forward; return {Base::ptr, new_idx}; } device_iterator &operator+=(difference_type forward) { idx += forward; return *this; } device_iterator operator-(difference_type backward) const { return {Base::ptr, idx - backward}; } device_iterator &operator-=(difference_type backward) { idx -= backward; return *this; } friend device_iterator operator+(difference_type forward, const device_iterator &it) { return it + forward; } difference_type operator-(const device_iterator &it) const { return idx - it.idx; } template <typename OtherIterator> typename std::enable_if<internal::is_hetero_iterator<OtherIterator>::value, difference_type>::type operator-(const OtherIterator &it) const { return idx - it.get_idx(); } bool operator==(const device_iterator &it) const { return *this - it == 0; } bool operator!=(const device_iterator &it) const { return !(*this == it); } bool operator<(const device_iterator &it) const { return *this - it < 0; } bool operator>(const device_iterator &it) const { return it < *this; } bool operator<=(const device_iterator &it) const { return !(*this > it); } bool operator>=(const device_iterator &it) const { return !(*this < it); } std::size_t get_idx() const { return idx; } // required device_iterator &get_buffer() { return *this; } // required std::size_t size() const { return idx; } }; #endif template <typename T> device_pointer<T> malloc_device(const std::size_t num_elements) { return device_pointer<T>(num_elements * sizeof(T)); } static inline device_pointer<void> malloc_device(const std::size_t num_bytes) { return device_pointer<void>(num_bytes); } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const T &value, const std::size_t count = 1) { std::vector<T> result(count, value); p.buffer = sycl::buffer<T, 1>(result.begin(), result.end()); return p + count; } template <typename T> device_pointer<T> device_new(device_pointer<T> p, const std::size_t count = 1) { return device_new(p, T{}, count); } template <typename T> device_pointer<T> device_new(const std::size_t count = 1) { return device_pointer<T>(count); } template <typename T> void free_device(device_pointer<T> ptr) {} template <typename T> typename std::enable_if<!std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T> p, const std::size_t count = 1) { for (std::size_t i = 0; i < count; ++i) { p[i].~T(); } } template <typename T> typename std::enable_if<std::is_trivially_destructible<T>::value, void>::type device_delete(device_pointer<T>, const std::size_t count = 1) {} template <typename T> device_pointer<T> get_device_pointer(T *ptr) { return device_pointer<T>(ptr); } template <typename T> device_pointer<T> get_device_pointer(const device_pointer<T> &ptr) { return device_pointer<T>(ptr); } template <typename T> T *get_raw_pointer(const device_pointer<T> &ptr) { return ptr.get(); } template <typename Pointer> Pointer get_raw_pointer(const Pointer &ptr) { return ptr; } template <typename T> const T &get_raw_reference(const device_reference<T> &ref) { return ref.value; } template <typename T> T &get_raw_reference(device_reference<T> &ref) { return ref.value; } template <typename T> const T &get_raw_reference(const T &ref) { return ref; } template <typename T> T &get_raw_reference(T &ref) { return ref; } } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/vector.h
//==---- vector.h ---------------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_VECTOR_H__ #define __DPCT_VECTOR_H__ #include <oneapi/dpl/algorithm> #include <oneapi/dpl/execution> #include <sycl/sycl.hpp> #include "memory.h" #include <algorithm> #include <iterator> #include <vector> #include "../device.hpp" namespace dpct { namespace internal { template <typename Iter, typename Void = void> // for non-iterators struct is_iterator : std::false_type {}; template <typename Iter> // For iterators struct is_iterator< Iter, typename std::enable_if< !std::is_void<typename Iter::iterator_category>::value, void>::type> : std::true_type {}; template <typename T> // For pointers struct is_iterator<T *> : std::true_type {}; } // end namespace internal #ifndef DPCT_USM_LEVEL_NONE template <typename T, typename Allocator = sycl::usm_allocator<T, sycl::usm::alloc::shared>> class device_vector { public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename ::std::iterator_traits<iterator>::difference_type; using size_type = ::std::size_t; private: Allocator _alloc; size_type _size; size_type _capacity; pointer _storage; size_type _min_capacity() const { return size_type(1); } void _set_capacity_and_alloc() { _capacity = ::std::max(_size * 2, _min_capacity()); _storage = _alloc.allocate(_capacity); } public: template <typename OtherA> operator ::std::vector<T, OtherA>() const { auto __tmp = ::std::vector<T, OtherA>(this->size()); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _alloc(get_default_queue()), _size(0), _capacity(_min_capacity()) { _set_capacity_and_alloc(); } ~device_vector() /*= default*/ { _alloc.deallocate(_storage, _capacity); }; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _alloc(get_default_queue()), _size(n) { _set_capacity_and_alloc(); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), T(value)); } } device_vector(const device_vector &other) : _alloc(get_default_queue()) { _size = other.size(); _capacity = other.capacity(); _storage = _alloc.allocate(_capacity); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } device_vector(device_vector &&other) : _alloc(get_default_queue()), _size(other.size()), _capacity(other.capacity()), _storage(other._storage) { other._size = 0; other._capacity = 0; other._storage = nullptr; } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && ::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if<::std::is_pointer<InputIterator>::value, InputIterator>::type last) : _alloc(get_default_queue()) { _size = ::std::distance(first, last); _set_capacity_and_alloc(); if (_size > 0) { auto ptr_type = sycl::get_pointer_type(first, get_default_context()); if (ptr_type != sycl::usm::alloc::host && ptr_type != sycl::usm::alloc::unknown) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } else { sycl::buffer<T, 1> buf(first, last); auto buf_first = oneapi::dpl::begin(buf); auto buf_last = oneapi::dpl::end(buf); ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), buf_first, buf_last, begin()); } } } template <typename InputIterator> device_vector(InputIterator first, typename ::std::enable_if< internal::is_iterator<InputIterator>::value && !::std::is_pointer<InputIterator>::value && !::std::is_same<typename ::std::iterator_traits< InputIterator>::iterator_category, ::std::random_access_iterator_tag>::value, InputIterator>::type last) : _alloc(get_default_queue()), _size(::std::distance(first, last)) { _set_capacity_and_alloc(); ::std::vector<T> _tmp(first, last); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), _tmp.begin(), _tmp.end(), this->begin()); } } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _storage(v.real_begin()), _size(v.size()), _capacity(v.capacity()) {} template <typename OtherAllocator> device_vector(::std::vector<T, OtherAllocator> &v) : _alloc(get_default_queue()), _size(v.size()) { _set_capacity_and_alloc(); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), this->begin()); } } template <typename OtherAllocator> device_vector &operator=(const ::std::vector<T, OtherAllocator> &v) { resize(v.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.begin(), v.end(), begin()); } return *this; } device_vector &operator=(const device_vector &other) { // Copy assignment operator: resize(other.size()); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), other.begin(), other.end(), begin()); } return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: device_vector dummy(::std::move(other)); this->swap(dummy); return *this; } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(_storage, 0); } iterator end() { return device_iterator<T>(_storage, size()); } const_iterator begin() const noexcept { return device_iterator<T>(_storage, 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(_storage, size()); } const_iterator cend() const { return end(); } T *real_begin() { return _storage; } const T *real_begin() const { return _storage; } void swap(device_vector &v) { ::std::swap(_size, v._size); ::std::swap(_capacity, v._capacity); ::std::swap(_storage, v._storage); ::std::swap(_alloc, v._alloc); } reference operator[](size_type n) { return _storage[n]; } const_reference operator[](size_type n) const { return _storage[n]; } void reserve(size_type n) { if (n > capacity()) { // allocate buffer for new size auto tmp = _alloc.allocate(2 * n); // copy content (old buffer to new buffer) ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); // deallocate old memory _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = 2 * n; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin() + _size, begin() + new_size, x); } _size = new_size; } size_type max_size(void) const { return ::std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _capacity; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return _storage; } const_pointer data(void) const { return _storage; } void shrink_to_fit(void) { if (_size != capacity()) { size_type tmp_capacity = ::std::max(_size, _min_capacity()); auto tmp = _alloc.allocate(tmp_capacity); if (_size > 0) { ::std::copy( oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), end(), tmp); } _alloc.deallocate(_storage, _capacity); _storage = tmp; _capacity = tmp_capacity; } } void assign(size_type n, const T &x) { resize(n); if (_size > 0) { ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), begin(), begin() + n, x); } } template <typename InputIterator> void assign(InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); resize(n); if (_size > 0) { ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, begin()); } } void clear(void) { _size = 0; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = ::std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } auto m = ::std::distance(last, end()); if (m <= 0) { return end(); } auto tmp = _alloc.allocate(m); // copy remainder to temporary buffer. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), last, end(), tmp); // override (erase) subsequence in storage. ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, first); _alloc.deallocate(tmp, m); _size -= n; return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = ::std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), end() - n, end(), x); } else { auto i_n = ::std::distance(begin(), position); // allocate temporary storage auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); // copy remainder ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::fill(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, position + n, x); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename ::std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = ::std::distance(first, last); if (position == end()) { resize(size() + n); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, end()); } else { auto m = ::std::distance(position, end()); // will throw if position is not inside active vector auto tmp = _alloc.allocate(m); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), position, end(), tmp); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, position); ::std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), tmp, tmp + m, position + n); _alloc.deallocate(tmp, m); } } Allocator get_allocator() const { return _alloc; } }; #else template <typename T, typename Allocator = detail::__buffer_allocator<T>> class device_vector { static_assert( std::is_same<Allocator, detail::__buffer_allocator<T>>::value, "device_vector doesn't support custom allocator when USM is not used."); public: using iterator = device_iterator<T>; using const_iterator = const iterator; using reference = device_reference<T>; using const_reference = const reference; using value_type = T; using pointer = T *; using const_pointer = const T *; using difference_type = typename std::iterator_traits<iterator>::difference_type; using size_type = std::size_t; private: using Buffer = sycl::buffer<T, 1>; using Range = sycl::range<1>; // Using mem_mgr to handle memory allocation void *_storage; size_type _size; size_type _min_capacity() const { return size_type(1); } void *alloc_store(size_type num_bytes) { return detail::mem_mgr::instance().mem_alloc(num_bytes); } public: template <typename OtherA> operator std::vector<T, OtherA>() const { auto __tmp = std::vector<T, OtherA>(this->size()); std::copy(oneapi::dpl::execution::dpcpp_default, this->begin(), this->end(), __tmp.begin()); return __tmp; } device_vector() : _storage(alloc_store(_min_capacity() * sizeof(T))), _size(0) {} ~device_vector() = default; explicit device_vector(size_type n) : device_vector(n, T()) {} explicit device_vector(size_type n, const T &value) : _storage(alloc_store(std::max(n, _min_capacity()) * sizeof(T))), _size(n) { auto buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(buf), oneapi::dpl::begin(buf) + n, T(value)); } device_vector(const device_vector &other) : _storage(other._storage), _size(other.size()) {} device_vector(device_vector &&other) : _storage(std::move(other._storage)), _size(other.size()) {} template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value && std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), first, last, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if<std::is_pointer<InputIterator>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); Buffer tmp_buf(first, last); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename InputIterator> device_vector(InputIterator first, typename std::enable_if< internal::is_iterator<InputIterator>::value && !std::is_same<typename std::iterator_traits< InputIterator>::iterator_category, std::random_access_iterator_tag>::value, InputIterator>::type last) : _storage(alloc_store(std::distance(first, last) * sizeof(T))), _size(std::distance(first, last)) { auto buf = get_buffer(); std::vector<T> tmp(first, last); Buffer tmp_buf(tmp); auto start = oneapi::dpl::begin(tmp_buf); auto end = oneapi::dpl::end(tmp_buf); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), start, end, dst); } template <typename OtherAllocator> device_vector(const device_vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { auto buf = get_buffer(); auto dst = oneapi::dpl::begin(buf); std::copy(oneapi::dpl::execution::make_device_policy(get_default_queue()), v.real_begin(), v.real_begin() + v.size(), dst); } template <typename OtherAllocator> device_vector(std::vector<T, OtherAllocator> &v) : _storage(alloc_store(v.size() * sizeof(T))), _size(v.size()) { std::copy(oneapi::dpl::execution::dpcpp_default, v.begin(), v.end(), oneapi::dpl::begin(get_buffer())); } device_vector &operator=(const device_vector &other) { // Copy assignment operator: _size = other.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(other.get_buffer()), oneapi::dpl::end(other.get_buffer()), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } device_vector &operator=(device_vector &&other) { // Move assignment operator: _size = other.size(); this->_storage = std::move(other._storage); return *this; } template <typename OtherAllocator> device_vector &operator=(const std::vector<T, OtherAllocator> &v) { Buffer data(v.begin(), v.end()); _size = v.size(); void *tmp = alloc_store(_size * sizeof(T)); auto tmp_buf = detail::mem_mgr::instance() .translate_ptr(tmp) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(data), oneapi::dpl::end(data), oneapi::dpl::begin(tmp_buf)); detail::mem_mgr::instance().mem_free(_storage); _storage = tmp; return *this; } Buffer get_buffer() const { return detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template reinterpret<T, 1>(sycl::range<1>(capacity())); } size_type size() const { return _size; } iterator begin() noexcept { return device_iterator<T>(get_buffer(), 0); } iterator end() { return device_iterator<T>(get_buffer(), _size); } const_iterator begin() const noexcept { return device_iterator<T>(get_buffer(), 0); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const { return device_iterator<T>(get_buffer(), _size); } const_iterator cend() const { return end(); } T *real_begin() { return (detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>()) .get_pointer(); } const T *real_begin() const { return const_cast<device_vector *>(this) ->detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.template get_access<sycl::access_mode::read_write>() .get_pointer(); } void swap(device_vector &v) { void *temp = v._storage; v._storage = this->_storage; this->_storage = temp; std::swap(_size, v._size); } reference operator[](size_type n) { return *(begin() + n); } const_reference operator[](size_type n) const { return *(begin() + n); } void reserve(size_type n) { if (n > capacity()) { // create new buffer (allocate for new size) void *a = alloc_store(n * sizeof(T)); // copy content (old buffer to new buffer) if (_storage != nullptr) { auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(n)); auto src_buf = get_buffer(); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf), oneapi::dpl::end(src_buf), oneapi::dpl::begin(tmp)); // deallocate old memory detail::mem_mgr::instance().mem_free(_storage); } _storage = a; } } void resize(size_type new_size, const T &x = T()) { reserve(new_size); if (_size < new_size) { auto src_buf = get_buffer(); std::fill(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(src_buf) + _size, oneapi::dpl::begin(src_buf) + new_size, x); } _size = new_size; } size_type max_size(void) const { return std::numeric_limits<size_type>::max() / sizeof(T); } size_type capacity() const { return _storage != nullptr ? detail::mem_mgr::instance() .translate_ptr(_storage) .buffer.size() / sizeof(T) : 0; } const_reference front() const { return *begin(); } reference front() { return *begin(); } const_reference back(void) const { return *(end() - 1); } reference back(void) { return *(end() - 1); } pointer data(void) { return reinterpret_cast<pointer>(_storage); } const_pointer data(void) const { return reinterpret_cast<const_pointer>(_storage); } void shrink_to_fit(void) { if (_size != capacity()) { void *a = alloc_store(_size * sizeof(T)); auto tmp = detail::mem_mgr::instance() .translate_ptr(a) .buffer.template reinterpret<T, 1>(sycl::range<1>(_size)); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(get_buffer()), oneapi::dpl::begin(get_buffer()) + _size, oneapi::dpl::begin(tmp)); detail::mem_mgr::instance().mem_free(_storage); _storage = a; } } void assign(size_type n, const T &x) { resize(n); std::fill(oneapi::dpl::execution::dpcpp_default, begin(), begin() + n, x); } template <typename InputIterator> void assign(InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); resize(n); if (internal::is_iterator<InputIterator>::value && !std::is_pointer<InputIterator>::value) std::copy(oneapi::dpl::execution::dpcpp_default, first, last, begin()); else { Buffer tmp(first, last); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), begin()); } } void clear(void) { _size = 0; detail::mem_mgr::instance().mem_free(_storage); _storage = nullptr; } bool empty(void) const { return (size() == 0); } void push_back(const T &x) { insert(end(), size_type(1), x); } void pop_back(void) { if (_size > 0) --_size; } iterator erase(iterator first, iterator last) { auto n = std::distance(first, last); if (last == end()) { _size = _size - n; return end(); } Buffer tmp{Range(std::distance(last, end()))}; // copy remainder to temporary buffer. std::copy(oneapi::dpl::execution::dpcpp_default, last, end(), oneapi::dpl::begin(tmp)); // override (erase) subsequence in storage. std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), first); resize(_size - n); return begin() + first.get_idx() + n; } iterator erase(iterator pos) { return erase(pos, pos + 1); } iterator insert(iterator position, const T &x) { auto n = std::distance(begin(), position); insert(position, size_type(1), x); return begin() + n; } void insert(iterator position, size_type n, const T &x) { if (position == end()) { resize(size() + n); std::fill(oneapi::dpl::execution::dpcpp_default, end() - n, end(), x); } else { auto i_n = std::distance(begin(), position); // allocate temporary storage Buffer tmp{Range(std::distance(position, end()))}; // copy remainder std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::fill(oneapi::dpl::execution::dpcpp_default, position, position + n, x); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } template <typename InputIterator> void insert(iterator position, InputIterator first, typename std::enable_if<internal::is_iterator<InputIterator>::value, InputIterator>::type last) { auto n = std::distance(first, last); if (position == end()) { resize(size() + n); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, end()); } else { Buffer tmp{Range(std::distance(position, end()))}; std::copy(oneapi::dpl::execution::dpcpp_default, position, end(), oneapi::dpl::begin(tmp)); resize(size() + n); // resizing might invalidate position position = begin() + position.get_idx(); std::copy(oneapi::dpl::execution::dpcpp_default, first, last, position); std::copy(oneapi::dpl::execution::dpcpp_default, oneapi::dpl::begin(tmp), oneapi::dpl::end(tmp), position + n); } } }; #endif } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/dpcpp_extensions.h
//==---- dpcpp_extensions.h ------------------*- C++ -*---------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------===// #ifndef __DPCT_DPCPP_EXTENSIONS_H__ #define __DPCT_DPCPP_EXTENSIONS_H__ #include <sycl/sycl.hpp> #include <stdexcept> #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS #include <sycl/ext/oneapi/experimental/user_defined_reductions.hpp> #endif #include "../dpct.hpp" namespace dpct { namespace group { namespace detail { template <typename... _Args> constexpr auto __reduce_over_group(_Args... __args) { return sycl::reduce_over_group(__args...); } template <typename... _Args> constexpr auto __group_broadcast(_Args... __args) { return sycl::group_broadcast(__args...); } template <typename... _Args> constexpr auto __exclusive_scan_over_group(_Args... __args) { return sycl::exclusive_scan_over_group(__args...); } template <typename... _Args> constexpr auto __inclusive_scan_over_group(_Args... __args) { return sycl::inclusive_scan_over_group(__args...); } } // end namespace detail /// Perform an exclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void exclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], T init, BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); T input = inputs[0]; if (item.get_local_linear_id() == 0) { outputs[0] = init; } else { outputs[0] = exclusive_result; } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { T output = binary_op(input, outputs[i - 1]); input = inputs[i]; outputs[i] = output; } } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param init initial value of the scan result. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns exclusive scan of the first i /// work-items where item is the i-th work item. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, T init, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__exclusive_scan_over_group(item.get_group(), input, init, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an exclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns exclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T exclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = detail::__exclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = binary_op(output, input); } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); T group_prefix = prefix_callback_op(group_aggregate); if (item.get_local_linear_id() == 0) { output = group_prefix; } else { output = binary_op(group_prefix, output); } return output; } namespace detail { typedef uint16_t digit_counter_type; typedef uint32_t packed_counter_type; template <int N, int CURRENT_VAL = N, int COUNT = 0> struct log2 { enum { VALUE = log2<N, (CURRENT_VAL >> 1), COUNT + 1>::VALUE }; }; template <int N, int COUNT> struct log2<N, 0, COUNT> { enum { VALUE = (1 << (COUNT - 1) < N) ? COUNT : COUNT - 1 }; }; __dpct_inline__ uint32_t bfe(uint32_t source, uint32_t bit_start, uint32_t num_bits) { const uint32_t MASK = (1 << num_bits) - 1; return (source >> bit_start) & MASK; } template <int RADIX_BITS, bool DESCENDING = false> class radix_rank { public: static size_t get_local_memory_size(size_t group_threads) { return group_threads * PADDED_COUNTER_LANES * sizeof(packed_counter_type); } radix_rank(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item, int VALUES_PER_THREAD> __dpct_inline__ void rank_keys(const Item &item, uint32_t (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD], int current_bit, int num_bits) { digit_counter_type thread_prefixes[VALUES_PER_THREAD]; digit_counter_type *digit_counters[VALUES_PER_THREAD]; digit_counter_type *buffer = reinterpret_cast<digit_counter_type *>(_local_memory); reset_local_memory(item); item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { uint32_t digit = bfe(keys[i], current_bit, num_bits); uint32_t sub_counter = digit >> LOG_COUNTER_LANES; uint32_t counter_lane = digit & (COUNTER_LANES - 1); if (DESCENDING) { sub_counter = PACKING_RATIO - 1 - sub_counter; counter_lane = COUNTER_LANES - 1 - counter_lane; } digit_counters[i] = &buffer[counter_lane * item.get_local_range().size() * PACKING_RATIO + item.get_local_linear_id() * PACKING_RATIO + sub_counter]; thread_prefixes[i] = *digit_counters[i]; *digit_counters[i] = thread_prefixes[i] + 1; } item.barrier(sycl::access::fence_space::local_space); scan_counters(item); item.barrier(sycl::access::fence_space::local_space); for (int i = 0; i < VALUES_PER_THREAD; ++i) { ranks[i] = thread_prefixes[i] + *digit_counters[i]; } } private: template <typename Item> __dpct_inline__ void reset_local_memory(const Item &item) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[i * item.get_local_range().size() + item.get_local_linear_id()] = 0; } } template <typename Item> __dpct_inline__ packed_counter_type upsweep(const Item &item) { packed_counter_type sum = 0; packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; i++) { cached_segment[i] = ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i]; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { sum += cached_segment[i]; } return sum; } template <typename Item> __dpct_inline__ void exclusive_downsweep(const Item &item, packed_counter_type raking_partial) { packed_counter_type *ptr = reinterpret_cast<packed_counter_type *>(_local_memory); packed_counter_type sum = raking_partial; #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { packed_counter_type value = cached_segment[i]; cached_segment[i] = sum; sum += value; } #pragma unroll for (int i = 0; i < PADDED_COUNTER_LANES; ++i) { ptr[item.get_local_linear_id() * PADDED_COUNTER_LANES + i] = cached_segment[i]; } } struct prefix_callback { __dpct_inline__ packed_counter_type operator()(packed_counter_type block_aggregate) { packed_counter_type block_prefix = 0; #pragma unroll for (int packed = 1; packed < PACKING_RATIO; packed++) { block_prefix += block_aggregate << (sizeof(digit_counter_type) * 8 * packed); } return block_prefix; } }; template <typename Item> __dpct_inline__ void scan_counters(const Item &item) { packed_counter_type raking_partial = upsweep(item); prefix_callback callback; packed_counter_type exclusive_partial = exclusive_scan( item, raking_partial, sycl::ext::oneapi::plus<packed_counter_type>(), callback); exclusive_downsweep(item, exclusive_partial); } private: static constexpr int PACKING_RATIO = sizeof(packed_counter_type) / sizeof(digit_counter_type); static constexpr int LOG_PACKING_RATIO = log2<PACKING_RATIO>::VALUE; static constexpr int LOG_COUNTER_LANES = RADIX_BITS - LOG_PACKING_RATIO; static constexpr int COUNTER_LANES = 1 << LOG_COUNTER_LANES; static constexpr int PADDED_COUNTER_LANES = COUNTER_LANES + 1; packed_counter_type cached_segment[PADDED_COUNTER_LANES]; uint8_t *_local_memory; }; template <typename T, typename U> struct base_traits { static __dpct_inline__ U twiddle_in(U key) { throw std::runtime_error("Not implemented"); } static __dpct_inline__ U twiddle_out(U key) { throw std::runtime_error("Not implemented"); } }; template <typename U> struct base_traits<uint32_t, U> { static __dpct_inline__ U twiddle_in(U key) { return key; } static __dpct_inline__ U twiddle_out(U key) { return key; } }; template <typename U> struct base_traits<int, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { return key ^ HIGH_BIT; } static __dpct_inline__ U twiddle_out(U key) { return key ^ HIGH_BIT; } }; template <typename U> struct base_traits<float, U> { static constexpr U HIGH_BIT = U(1) << ((sizeof(U) * 8) - 1); static __dpct_inline__ U twiddle_in(U key) { U mask = (key & HIGH_BIT) ? U(-1) : HIGH_BIT; return key ^ mask; } static __dpct_inline__ U twiddle_out(U key) { U mask = (key & HIGH_BIT) ? HIGH_BIT : U(-1); return key ^ mask; } }; template <typename T> struct traits : base_traits<T, T> {}; template <> struct traits<uint32_t> : base_traits<uint32_t, uint32_t> {}; template <> struct traits<int> : base_traits<int, uint32_t> {}; template <> struct traits<float> : base_traits<float, uint32_t> {}; } // namespace detail namespace detail { template <int N> struct power_of_two { enum { VALUE = ((N & (N - 1)) == 0) }; }; __dpct_inline__ uint32_t shr_add(uint32_t x, uint32_t shift, uint32_t addend) { return (x >> shift) + addend; } } // namespace detail /// Implements scatter to blocked exchange pattern used in radix sort algorithm. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread template <typename T, int VALUES_PER_THREAD> class exchange { public: static size_t get_local_memory_size(size_t group_threads) { size_t padding_values = (INSERT_PADDING) ? ((group_threads * VALUES_PER_THREAD) >> LOG_LOCAL_MEMORY_BANKS) : 0; return (group_threads * VALUES_PER_THREAD + padding_values) * sizeof(T); } exchange(uint8_t *local_memory) : _local_memory(local_memory) {} /// Rearrange elements from rank order to blocked order template <typename Item> __dpct_inline__ void scatter_to_blocked(Item item, T (&keys)[VALUES_PER_THREAD], int (&ranks)[VALUES_PER_THREAD]) { T *buffer = reinterpret_cast<T *>(_local_memory); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = ranks[i]; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); buffer[offset] = keys[i]; } item.barrier(sycl::access::fence_space::local_space); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; i++) { int offset = (item.get_local_id(0) * VALUES_PER_THREAD) + i; if (INSERT_PADDING) offset = detail::shr_add(offset, LOG_LOCAL_MEMORY_BANKS, offset); keys[i] = buffer[offset]; } } private: static constexpr int LOG_LOCAL_MEMORY_BANKS = 5; static constexpr bool INSERT_PADDING = (VALUES_PER_THREAD > 4) && (detail::power_of_two<VALUES_PER_THREAD>::VALUE); uint8_t *_local_memory; }; /// Implements radix sort to sort integer data elements assigned to all threads /// in the group. /// /// \tparam T type of the data elements exchanges /// \tparam VALUES_PER_THREAD number of data elements assigned to a thread /// \tparam DECENDING boolean value indicating if data elements are sorted in /// decending order. template <typename T, int VALUES_PER_THREAD, bool DESCENDING = false> class radix_sort { public: static size_t get_local_memory_size(size_t group_threads) { size_t ranks_size = detail::radix_rank<RADIX_BITS>::get_local_memory_size(group_threads); size_t exchange_size = exchange<T, VALUES_PER_THREAD>::get_local_memory_size(group_threads); return sycl::max(ranks_size, exchange_size); } radix_sort(uint8_t *local_memory) : _local_memory(local_memory) {} template <typename Item> __dpct_inline__ void sort(const Item &item, T (&keys)[VALUES_PER_THREAD], int begin_bit = 0, int end_bit = 8 * sizeof(T)) { uint32_t(&unsigned_keys)[VALUES_PER_THREAD] = reinterpret_cast<uint32_t(&)[VALUES_PER_THREAD]>(keys); #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_in(unsigned_keys[i]); } while (true) { int pass_bits = sycl::min(RADIX_BITS, end_bit - begin_bit); int ranks[VALUES_PER_THREAD]; detail::radix_rank<RADIX_BITS, DESCENDING>(_local_memory) .template rank_keys(item, unsigned_keys, ranks, begin_bit, pass_bits); begin_bit += RADIX_BITS; item.barrier(sycl::access::fence_space::local_space); exchange<T, VALUES_PER_THREAD>(_local_memory) .scatter_to_blocked(item, keys, ranks); item.barrier(sycl::access::fence_space::local_space); if (begin_bit >= end_bit) break; } #pragma unroll for (int i = 0; i < VALUES_PER_THREAD; ++i) { unsigned_keys[i] = detail::traits<T>::twiddle_out(unsigned_keys[i]); } } private: static constexpr int RADIX_BITS = 4; uint8_t *_local_memory; }; /// Perform a reduction of the data elements assigned to all threads in the /// group. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the reduce operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ T reduce(Item item, T (&inputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; i++) { result = binary_op(result, inputs[i]); } return detail::__reduce_over_group(item.get_group(), result, binary_op); } /// Perform a reduction on a limited number of the work items in a subgroup /// /// \param item A work-item in a group. /// \param value value per work item which is to be reduced /// \param items_to_reduce num work items at the start of the subgroup to reduce /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns value of the reduction using binary_op template <typename Item, typename T, class BinaryOperation> __dpct_inline__ typename ::std::enable_if_t<sycl::has_known_identity_v<BinaryOperation, T>, T> reduce_over_partial_group(const Item &item, const T &value, const ::std::uint16_t &items_to_reduce, BinaryOperation binary_op) { T value_temp = (item.get_local_linear_id() < items_to_reduce) ? value : sycl::known_identity_v<BinaryOperation, T>; return detail::__reduce_over_group(item.get_sub_group(), value_temp, binary_op); } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param inputs Pointer to the input data for the scan operation. /// \param outputs Pointer to the location where scan results will be stored. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \returns inclusive scan of the input elements assigned to /// work-items in the group. template <typename Item, typename T, class BinaryOperation, int VALUES_PER_THREAD> __dpct_inline__ void inclusive_scan(const Item &item, T (&inputs)[VALUES_PER_THREAD], T (&outputs)[VALUES_PER_THREAD], BinaryOperation binary_op) { T result = inputs[0]; #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { result = binary_op(result, inputs[i]); } T exclusive_result = detail::__exclusive_scan_over_group(item.get_group(), result, binary_op); if (item.get_local_linear_id() == 0) { outputs[0] = inputs[0]; } else { outputs[0] = binary_op(inputs[0], exclusive_result); } #pragma unroll for (int i = 1; i < VALUES_PER_THREAD; ++i) { outputs[i] = binary_op(inputs[i], outputs[i - 1]); } } /// Perform an inclusive scan over the values of inputs from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Pointer to the input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param group_aggregate group-wide aggregate of all inputs /// in the work-items of the group. \returns inclusive scan of the input /// elements assigned to work-items in the group. template <typename Item, typename T, class BinaryOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, T &group_aggregate) { T output = detail::__inclusive_scan_over_group(item.get_group(), input, binary_op); if (item.get_local_linear_id() == item.get_local_range().size() - 1) { group_aggregate = output; } group_aggregate = detail::__group_broadcast( item.get_group(), group_aggregate, item.get_local_range().size() - 1); return output; } /// Perform an inclusive scan over the values of input from all work-items in /// the group using the operator binary_op, which must be one of the SYCL 2020 /// group algorithms library function objects. /// /// \param item A work-item in a group. /// \param input Input data for the scan operation. /// \param binary_op functor that implements the binary operation used to /// perform the scan. \param prefix_callback_op functor invoked by the first /// work-item in the group that returns the /// initial value in the resulting scan of the work-items in the group. /// \returns inclusive scan of the input elements assigned to work-items in the /// group. template <typename Item, typename T, class BinaryOperation, class GroupPrefixCallbackOperation> __dpct_inline__ T inclusive_scan(const Item &item, T input, BinaryOperation binary_op, GroupPrefixCallbackOperation &prefix_callback_op) { T group_aggregate; T output = inclusive_scan(item, input, binary_op, group_aggregate); T group_prefix = prefix_callback_op(group_aggregate); return binary_op(group_prefix, output); } } // namespace group namespace device { namespace detail { template <typename... _Args> constexpr auto __joint_reduce(_Args... __args) { return sycl::joint_reduce(__args...); } } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); queue.submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } sycl::multi_ptr<T, sycl::access::address_space::global_space> input_ptr = inputs; T group_aggregate = detail::__joint_reduce( item.get_group(), input_ptr + segment_begin, input_ptr + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } #ifdef SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS namespace experimental { namespace detail { template <typename _Tp, typename... _Ts> struct __is_any { constexpr static bool value = std::disjunction_v< std::is_same<std::remove_cv_t<_Tp>, std::remove_cv_t<_Ts>>...>; }; template <typename _Tp, typename _Bp> struct __in_native_op_list { constexpr static bool value = __is_any<_Bp, sycl::plus<_Tp>, sycl::bit_or<_Tp>, sycl::bit_xor<_Tp>, sycl::bit_and<_Tp>, sycl::maximum<_Tp>, sycl::minimum<_Tp>, sycl::multiplies<_Tp>>::value; }; template <typename _Tp, typename _Bp> struct __is_native_op { constexpr static bool value = __in_native_op_list<_Tp, _Bp>::value || __in_native_op_list<void, _Bp>::value; }; } // namespace detail /// Perform a reduce on each of the segments specified within data stored on /// the device. Compared with dpct::device::segmented_reduce, this experimental /// feature support user define reductions. /// /// \param queue Command queue used to access device used for reduction /// \param inputs Pointer to the data elements on the device to be reduced /// \param outputs Pointer to the storage where the reduced value for each /// segment will be stored \param segment_count number of segments to be reduced /// \param begin_offsets Pointer to the set of indices that are the first /// element in each segment \param end_offsets Pointer to the set of indices /// that are one past the last element in each segment \param binary_op functor /// that implements the binary operation used to perform the scan. \param init /// initial value of the reduction for each segment. template <int GROUP_SIZE, typename T, typename OffsetT, class BinaryOperation> void segmented_reduce(sycl::queue queue, T *inputs, T *outputs, size_t segment_count, OffsetT *begin_offsets, OffsetT *end_offsets, BinaryOperation binary_op, T init) { sycl::range<1> global_size(segment_count * GROUP_SIZE); sycl::range<1> local_size(GROUP_SIZE); if constexpr (!detail::__is_native_op<T, BinaryOperation>::value) { queue.submit([&](sycl::handler &cgh) { size_t temp_memory_size = GROUP_SIZE * sizeof(T); auto scratch = sycl::local_accessor<std::byte, 1>(temp_memory_size, cgh); cgh.parallel_for( sycl::nd_range<1>(global_size, local_size), [=](sycl::nd_item<1> item) { OffsetT segment_begin = begin_offsets[item.get_group_linear_id()]; OffsetT segment_end = end_offsets[item.get_group_linear_id()]; if (segment_begin == segment_end) { if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = init; } return; } // Create a handle that associates the group with an allocation it // can use auto handle = sycl::ext::oneapi::experimental::group_with_scratchpad( item.get_group(), sycl::span(&scratch[0], temp_memory_size)); T group_aggregate = sycl::ext::oneapi::experimental::joint_reduce( handle, inputs + segment_begin, inputs + segment_end, init, binary_op); if (item.get_local_linear_id() == 0) { outputs[item.get_group_linear_id()] = group_aggregate; } }); }); } else { dpct::device::segmented_reduce<GROUP_SIZE>(queue, inputs, outputs, segment_count, begin_offsets, end_offsets, binary_op, init); } } } // namespace experimental #endif // SYCL_EXT_ONEAPI_USER_DEFINED_REDUCTIONS } // namespace device } // namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/03_sycl_migrated_optimized/include/dpct/dpl_extras/functional.h
//==---- functional.h -----------------------------*- C++ -*----------------==// // // Copyright (C) Intel Corporation // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // See https://llvm.org/LICENSE.txt for license information. // //===----------------------------------------------------------------------===// #ifndef __DPCT_FUNCTIONAL_H__ #define __DPCT_FUNCTIONAL_H__ #include <functional> #include <oneapi/dpl/functional> #include <oneapi/dpl/iterator> #if ONEDPL_USE_DPCPP_BACKEND #include <oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_utils.h> #endif #include <tuple> #include <utility> namespace dpct { struct null_type {}; namespace internal { template <class _ExecPolicy, class _T> using enable_if_execution_policy = typename std::enable_if<oneapi::dpl::execution::is_execution_policy< typename std::decay<_ExecPolicy>::type>::value, _T>::type; template <typename _T> struct is_hetero_execution_policy : ::std::false_type {}; template <typename... PolicyParams> struct is_hetero_execution_policy< oneapi::dpl::execution::device_policy<PolicyParams...>> : ::std::true_type { }; template <typename _T> struct is_fpga_execution_policy : ::std::false_type {}; #if _ONEDPL_FPGA_DEVICE template <unsigned int unroll_factor, typename... PolicyParams> struct is_hetero_execution_policy< execution::fpga_policy<unroll_factor, PolicyParams...>> : ::std::true_type { }; #endif template <class _ExecPolicy, class _T> using enable_if_hetero_execution_policy = typename std::enable_if< is_hetero_execution_policy<typename std::decay<_ExecPolicy>::type>::value, _T>::type; #if _ONEDPL_CPP14_INTEGER_SEQUENCE_PRESENT template <std::size_t... _Sp> using index_sequence = std::index_sequence<_Sp...>; template <std::size_t _Np> using make_index_sequence = std::make_index_sequence<_Np>; #else template <std::size_t... _Sp> class index_sequence {}; template <std::size_t _Np, std::size_t... _Sp> struct make_index_sequence_impl : make_index_sequence_impl<_Np - 1, _Np - 1, _Sp...> {}; template <std::size_t... _Sp> struct make_index_sequence_impl<0, _Sp...> { using type = index_sequence<_Sp...>; }; template <std::size_t _Np> using make_index_sequence = typename make_index_sequence_impl<_Np>::type; #endif // Minimal buffer implementations for temporary storage in mapping rules // Some of our algorithms need to start with raw memory buffer, // not an initialized array, because initialization/destruction // would make the span be at least O(N). #if ONEDPL_USE_DPCPP_BACKEND template <typename _Tp> class __buffer { sycl::buffer<_Tp, 1> __buf; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(std::size_t __n) : __buf(sycl::range<1>(__n)) {} // Return pointer to buffer, or NULL if buffer could not be obtained. auto get() -> decltype(oneapi::dpl::begin(__buf)) const { return oneapi::dpl::begin(__buf); } }; #else template <typename _Tp> class __buffer { std::unique_ptr<_Tp> _M_ptr; __buffer(const __buffer &) = delete; void operator=(const __buffer &) = delete; public: // Try to obtain buffer of given size to store objects of _Tp type __buffer(const std::size_t __n) : _M_ptr(new _Tp[__n]) {} // Return pointer to buffer, or NULL if buffer could not be obtained. _Tp *get() const { return _M_ptr.get(); } }; #endif // Implements C++14 std::less<void> specialization to allow parameter type // deduction. class __less { public: template <typename _Xp, typename _Yp> bool operator()(_Xp &&__x, _Yp &&__y) const { return std::forward<_Xp>(__x) < std::forward<_Yp>(__y); } }; template <typename Policy, typename NewName> struct rebind_policy { using type = Policy; }; template <typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::device_policy<KernelName>, NewName> { using type = oneapi::dpl::execution::device_policy<NewName>; }; #if _ONEDPL_FPGA_DEVICE template <unsigned int factor, typename KernelName, typename NewName> struct rebind_policy<oneapi::dpl::execution::fpga_policy<factor, KernelName>, NewName> { using type = oneapi::dpl::execution::fpga_policy<factor, NewName>; }; #endif template <typename T1, typename T2, typename R1 = typename std::iterator_traits<T1>::reference, typename R2 = typename std::iterator_traits<T2>::reference> struct perm_fun { typedef R2 result_of; perm_fun(T1 input) : source(input) {} R2 operator()(R1 x) const { return *(source + x); } private: T1 source; }; // Functor compares first element (key) from tied sequence. template <typename Compare = class internal::__less> struct compare_key_fun { typedef bool result_of; compare_key_fun(Compare _comp = internal::__less()) : comp(_comp) {} template <typename _T1, typename _T2> result_of operator()(_T1 &&a, _T2 &&b) const { using std::get; return comp(get<0>(a), get<0>(b)); } private: mutable Compare comp; }; // Functor evaluates second element of tied sequence with predicate. // Used by: copy_if, remove_copy_if, stable_partition_copy // Lambda: template <typename Predicate> struct predicate_key_fun { typedef bool result_of; predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return pred(get<1>(a)); } private: mutable Predicate pred; }; // Used by: remove_if template <typename Predicate> struct negate_predicate_key_fun { typedef bool result_of; negate_predicate_key_fun(Predicate _pred) : pred(_pred) {} template <typename _T1> result_of operator()(_T1 &&a) const { using std::get; return !pred(get<1>(a)); } private: mutable Predicate pred; }; template <typename T> struct sequence_fun { using result_type = T; sequence_fun(T _init, T _step) : init(_init), step(_step) {} template <typename _T> result_type operator()(_T &&i) const { return static_cast<T>(init + step * i); } private: const T init; const T step; }; //[binary_pred](Ref a, Ref b){ return(binary_pred(get<0>(a),get<0>(b))); template <typename Predicate> struct unique_fun { typedef bool result_of; unique_fun(Predicate _pred) : pred(_pred) {} template <typename _T> result_of operator()(_T &&a, _T &&b) const { using std::get; return pred(get<0>(a), get<0>(b)); } private: mutable Predicate pred; }; // Lambda: [pred, &new_value](Ref1 a, Ref2 s) {return pred(s) ? new_value : a; // }); template <typename T, typename Predicate> struct replace_if_fun { public: typedef T result_of; replace_if_fun(Predicate _pred, T _new_value) : pred(_pred), new_value(_new_value) {} template <typename _T1, typename _T2> T operator()(_T1 &&a, _T2 &&s) const { return pred(s) ? new_value : a; } private: mutable Predicate pred; const T new_value; }; //[pred,op](Ref a){return pred(a) ? op(a) : a; } template <typename T, typename Predicate, typename Operator> struct transform_if_fun { transform_if_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<0>(t))) get<1>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; //[pred, op](Ref1 a, Ref2 s) { return pred(s) ? op(a) : a; }); template <typename T, typename Predicate, typename Operator> struct transform_if_unary_zip_mask_fun { transform_if_unary_zip_mask_fun(Predicate _pred, Operator _op) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T&& t) const { using std::get; if (pred(get<1>(t))) get<2>(t) = op(get<0>(t)); } private: mutable Predicate pred; mutable Operator op; }; template <typename T, typename Predicate, typename BinaryOperation> class transform_if_zip_mask_fun { public: transform_if_zip_mask_fun(Predicate _pred = oneapi::dpl::identity(), BinaryOperation _op = oneapi::dpl::identity()) : pred(_pred), op(_op) {} template <typename _T> void operator()(_T &&t) const { using std::get; if (pred(get<2>(t))) get<3>(t) = op(get<0>(t), get<1>(t)); } private: mutable Predicate pred; mutable BinaryOperation op; }; // This following code is similar to a section of code in // oneDPL/include/oneapi/dpl/pstl/hetero/dpcpp/parallel_backend_sycl_radix_sort.h // It has a similar approach, and could be consolidated. // Outside of some differences in approach, there are two significant // differences in function. // // 1) This code allows the output type of the bit range translation to be fit // into to the minimal type required to provide that many bits. The code in // oneDPL to calculate the bucket for the radix is similar but its output is // always std::uint32_t. The assumption that the bit range desired will fit in // 32 bits is not true for this code. // // 2) This code ensures that for floating point type, -0.0f and 0.0f map to the // same value. This allows the output of this translation to be used to provide // a sort which ensures the stability of these values for floating point types. template <int N> struct uint_byte_map {}; template <> struct uint_byte_map<1> { using type = uint8_t; }; template <> struct uint_byte_map<2> { using type = uint16_t; }; template <> struct uint_byte_map<4> { using type = uint32_t; }; template <> struct uint_byte_map<8> { using type = uint64_t; }; template <typename T> struct uint_map { using type = typename uint_byte_map<sizeof(T)>::type; }; template <typename T, typename OutKeyT> class translate_key { using uint_type_t = typename uint_map<T>::type; public: translate_key(int begin_bit, int end_bit) { shift = begin_bit; mask = ~OutKeyT(0); // all ones mask = mask >> (sizeof(OutKeyT) * 8 - (end_bit - begin_bit)); // setup appropriate mask flip_sign = uint_type_t(1) << (sizeof(uint_type_t) * 8 - 1); // sign bit flip_key = ~uint_type_t(0); // 0xF...F } inline OutKeyT operator()(const T &key) const { uint_type_t intermediate; if constexpr (std::is_floating_point<T>::value) { // normal case (both -0.0f and 0.0f equal -0.0f) if (key != T(-0.0f)) { uint_type_t is_negative = reinterpret_cast<const uint_type_t &>(key) >> (sizeof(uint_type_t) * 8 - 1); intermediate = reinterpret_cast<const uint_type_t &>(key) ^ ((is_negative * flip_key) | flip_sign); } else // special case for -0.0f to keep stability with 0.0f { T negzero = T(-0.0f); intermediate = reinterpret_cast<const uint_type_t &>(negzero); } } else if constexpr (std::is_signed<T>::value) { intermediate = reinterpret_cast<const uint_type_t &>(key) ^ flip_sign; } else { intermediate = key; } return static_cast<OutKeyT>(intermediate >> shift) & mask; // shift, cast, and mask } private: uint8_t shift; OutKeyT mask; uint_type_t flip_sign; uint_type_t flip_key; }; } // end namespace internal } // end namespace dpct #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/helper_timer.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Helper Timing Functions #ifndef COMMON_HELPER_TIMER_H_ #define COMMON_HELPER_TIMER_H_ #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // includes, system #include <vector> // includes, project #include <exception.h> // Definition of the StopWatch Interface, this is used if we don't want to use // the CUT functions But rather in a self contained class interface class StopWatchInterface { public: StopWatchInterface() {} virtual ~StopWatchInterface() {} public: //! Start time measurement virtual void start() = 0; //! Stop time measurement virtual void stop() = 0; //! Reset time counters to zero virtual void reset() = 0; //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned virtual float getTime() = 0; //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time virtual float getAverageTime() = 0; }; ////////////////////////////////////////////////////////////////// // Begin Stopwatch timer class definitions for all OS platforms // ////////////////////////////////////////////////////////////////// #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // includes, system #define WINDOWS_LEAN_AND_MEAN #include <windows.h> #undef min #undef max //! Windows specific implementation of StopWatch class StopWatchWin : public StopWatchInterface { public: //! Constructor, default StopWatchWin() : start_time(), end_time(), diff_time(0.0f), total_time(0.0f), running(false), clock_sessions(0), freq(0), freq_set(false) { if (!freq_set) { // helper variable LARGE_INTEGER temp; // get the tick frequency from the OS QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER *>(&temp)); // convert to type in which it is needed freq = (static_cast<double>(temp.QuadPart)) / 1000.0; // rememeber query freq_set = true; } } // Destructor ~StopWatchWin() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // member variables //! Start of measurement LARGE_INTEGER start_time; //! End of measurement LARGE_INTEGER end_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; //! tick frequency double freq; //! flag if the frequency has been set bool freq_set; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::start() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::stop() { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&end_time)); diff_time = static_cast<float>(((static_cast<double>(end_time.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); total_time += diff_time; clock_sessions++; running = false; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchWin::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&start_time)); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { LARGE_INTEGER temp; QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER *>(&temp)); retval += static_cast<float>(((static_cast<double>(temp.QuadPart) - static_cast<double>(start_time.QuadPart)) / freq)); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchWin::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } #else // Declarations for Stopwatch on Linux and Mac OSX // includes, system #include <sys/time.h> #include <ctime> //! Windows specific implementation of StopWatch class StopWatchLinux : public StopWatchInterface { public: //! Constructor, default StopWatchLinux() : start_time(), diff_time(0.0), total_time(0.0), running(false), clock_sessions(0) {} // Destructor virtual ~StopWatchLinux() {} public: //! Start time measurement inline void start(); //! Stop time measurement inline void stop(); //! Reset time counters to zero inline void reset(); //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned, otherwise the //! time between the last start() and stop call is returned inline float getTime(); //! Mean time to date based on the number of times the stopwatch has been //! _stopped_ (ie finished sessions) and the current total time inline float getAverageTime(); private: // helper functions //! Get difference between start time and current time inline float getDiffTime(); private: // member variables //! Start of measurement struct timeval start_time; //! Time difference between the last start and stop float diff_time; //! TOTAL time difference between starts and stops float total_time; //! flag if the stop watch is running bool running; //! Number of times clock has been started //! and stopped to allow averaging int clock_sessions; }; // functions, inlined //////////////////////////////////////////////////////////////////////////////// //! Start time measurement //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::start() { gettimeofday(&start_time, 0); running = true; } //////////////////////////////////////////////////////////////////////////////// //! Stop time measurement and increment add to the current diff_time summation //! variable. Also increment the number of times this clock has been run. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::stop() { diff_time = getDiffTime(); total_time += diff_time; running = false; clock_sessions++; } //////////////////////////////////////////////////////////////////////////////// //! Reset the timer to 0. Does not change the timer running state but does //! recapture this point in time as the current start time if it is running. //////////////////////////////////////////////////////////////////////////////// inline void StopWatchLinux::reset() { diff_time = 0; total_time = 0; clock_sessions = 0; if (running) { gettimeofday(&start_time, 0); } } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. after start. If the stop watch is still running (i.e. there //! was no call to stop()) then the elapsed time is returned added to the //! current diff_time sum, otherwise the current summed time difference alone //! is returned. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getTime() { // Return the TOTAL time to date float retval = total_time; if (running) { retval += getDiffTime(); } return retval; } //////////////////////////////////////////////////////////////////////////////// //! Time in msec. for a single run based on the total number of COMPLETED runs //! and the total time. //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getAverageTime() { return (clock_sessions > 0) ? (total_time / clock_sessions) : 0.0f; } //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// inline float StopWatchLinux::getDiffTime() { struct timeval t_time; gettimeofday(&t_time, 0); // time difference in milli-seconds return static_cast<float>(1000.0 * (t_time.tv_sec - start_time.tv_sec) + (0.001 * (t_time.tv_usec - start_time.tv_usec))); } #endif // WIN32 //////////////////////////////////////////////////////////////////////////////// //! Timer functionality exported //////////////////////////////////////////////////////////////////////////////// //! Create a new timer //! @return true if a time has been created, otherwise false //! @param name of the new timer, 0 if the creation failed //////////////////////////////////////////////////////////////////////////////// inline bool sdkCreateTimer(StopWatchInterface **timer_interface) { // printf("sdkCreateTimer called object %08x\n", (void *)*timer_interface); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchWin()); #else *timer_interface = reinterpret_cast<StopWatchInterface *>(new StopWatchLinux()); #endif return (*timer_interface != NULL) ? true : false; } //////////////////////////////////////////////////////////////////////////////// //! Delete a timer //! @return true if a time has been deleted, otherwise false //! @param name of the timer to delete //////////////////////////////////////////////////////////////////////////////// inline bool sdkDeleteTimer(StopWatchInterface **timer_interface) { // printf("sdkDeleteTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { delete *timer_interface; *timer_interface = NULL; } return true; } //////////////////////////////////////////////////////////////////////////////// //! Start the time with name \a name //! @param name name of the timer to start //////////////////////////////////////////////////////////////////////////////// inline bool sdkStartTimer(StopWatchInterface **timer_interface) { // printf("sdkStartTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->start(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Stop the time with name \a name. Does not reset. //! @param name name of the timer to stop //////////////////////////////////////////////////////////////////////////////// inline bool sdkStopTimer(StopWatchInterface **timer_interface) { // printf("sdkStopTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->stop(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Resets the timer's counter. //! @param name name of the timer to reset. //////////////////////////////////////////////////////////////////////////////// inline bool sdkResetTimer(StopWatchInterface **timer_interface) { // printf("sdkResetTimer called object %08x\n", (void *)*timer_interface); if (*timer_interface) { (*timer_interface)->reset(); } return true; } //////////////////////////////////////////////////////////////////////////////// //! Return the average time for timer execution as the total time //! for the timer dividied by the number of completed (stopped) runs the timer //! has made. //! Excludes the current running time if the timer is currently running. //! @param name name of the timer to return the time of //////////////////////////////////////////////////////////////////////////////// inline float sdkGetAverageTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetAverageTimerValue called object %08x\n", (void // *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getAverageTime(); } else { return 0.0f; } } //////////////////////////////////////////////////////////////////////////////// //! Total execution time for the timer over all runs since the last reset //! or timer creation. //! @param name name of the timer to obtain the value of. //////////////////////////////////////////////////////////////////////////////// inline float sdkGetTimerValue(StopWatchInterface **timer_interface) { // printf("sdkGetTimerValue called object %08x\n", (void *)*timer_interface); if (*timer_interface) { return (*timer_interface)->getTime(); } else { return 0.0f; } } #endif // COMMON_HELPER_TIMER_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/helper_string.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, timers, etc) #ifndef COMMON_HELPER_STRING_H_ #define COMMON_HELPER_STRING_H_ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <string> #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE #endif #ifndef STRCASECMP #define STRCASECMP _stricmp #endif #ifndef STRNCASECMP #define STRNCASECMP _strnicmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy_s(sFilePath, nLength, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #ifndef SPRINTF #define SPRINTF sprintf_s #endif #else // Linux Includes #include <string.h> #include <strings.h> #ifndef STRCASECMP #define STRCASECMP strcasecmp #endif #ifndef STRNCASECMP #define STRNCASECMP strncasecmp #endif #ifndef STRCPY #define STRCPY(sFilePath, nLength, sPath) strcpy(sFilePath, sPath) #endif #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #ifndef SPRINTF #define SPRINTF sprintf #endif #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // CUDA Utility Helper Functions inline int stringRemoveDelimiter(char delimiter, const char *string) { int string_start = 0; while (string[string_start] == delimiter) { string_start++; } if (string_start >= static_cast<int>(strlen(string) - 1)) { return 0; } return string_start; } inline int getFileExtension(char *filename, char **extension) { int string_length = static_cast<int>(strlen(filename)); while (filename[string_length--] != '.') { if (string_length == 0) break; } if (string_length > 0) string_length += 2; if (string_length == 0) *extension = NULL; else *extension = &filename[string_length]; return string_length; } inline bool checkCmdLineFlag(const int argc, const char **argv, const char *string_ref) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; const char *equal_pos = strchr(string_argv, '='); int argv_length = static_cast<int>( equal_pos == 0 ? strlen(string_argv) : equal_pos - string_argv); int length = static_cast<int>(strlen(string_ref)); if (length == argv_length && !STRNCASECMP(string_argv, string_ref, length)) { bFound = true; continue; } } } return bFound; } // This function wraps the CUDA Driver API into a template function template <class T> inline bool getCmdLineArgumentValue(const int argc, const char **argv, const char *string_ref, T *value) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; *value = (T)atoi(&string_argv[length + auto_inc]); } bFound = true; i = argc; } } } return bFound; } inline int getCmdLineArgumentInt(const int argc, const char **argv, const char *string_ref) { bool bFound = false; int value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = atoi(&string_argv[length + auto_inc]); } else { value = 0; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline float getCmdLineArgumentFloat(const int argc, const char **argv, const char *string_ref) { bool bFound = false; float value = -1; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); const char *string_argv = &argv[i][string_start]; int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { if (length + 1 <= static_cast<int>(strlen(string_argv))) { int auto_inc = (string_argv[length] == '=') ? 1 : 0; value = static_cast<float>(atof(&string_argv[length + auto_inc])); } else { value = 0.f; } bFound = true; continue; } } } if (bFound) { return value; } else { return 0; } } inline bool getCmdLineArgumentString(const int argc, const char **argv, const char *string_ref, char **string_retval) { bool bFound = false; if (argc >= 1) { for (int i = 1; i < argc; i++) { int string_start = stringRemoveDelimiter('-', argv[i]); char *string_argv = const_cast<char *>(&argv[i][string_start]); int length = static_cast<int>(strlen(string_ref)); if (!STRNCASECMP(string_argv, string_ref, length)) { *string_retval = &string_argv[length + 1]; bFound = true; continue; } } } if (!bFound) { *string_retval = NULL; } return bFound; } ////////////////////////////////////////////////////////////////////////////// //! Find the path for a file assuming that //! files are found in the searchPath. //! //! @return the path if succeeded, otherwise 0 //! @param filename name of the file //! @param executable_path optional absolute path of the executable ////////////////////////////////////////////////////////////////////////////// inline char *sdkFindFilePath(const char *filename, const char *executable_path) { // <executable_name> defines a variable that is replaced with the name of the // executable // Typical relative search paths to locate needed companion files (e.g. sample // input data, or JIT source files) The origin for the relative search may be // the .exe file, a .bat file launching an .exe, a browser .exe launching the // .exe or .bat, etc const char *searchPath[] = { "./", // same dir "./data/", // same dir "../../../../Samples/<executable_name>/", // up 4 in tree "../../../Samples/<executable_name>/", // up 3 in tree "../../Samples/<executable_name>/", // up 2 in tree "../../../../Samples/<executable_name>/data/", // up 4 in tree "../../../Samples/<executable_name>/data/", // up 3 in tree "../../Samples/<executable_name>/data/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/", // up 2 in tree "../../../../Samples/0_Introduction/<executable_name>/data/", // up 4 in tree "../../../Samples/0_Introduction/<executable_name>/data/", // up 3 in tree "../../Samples/0_Introduction/<executable_name>/data/", // up 2 in tree "../../../../Samples/1_Utilities/<executable_name>/data/", // up 4 in tree "../../../Samples/1_Utilities/<executable_name>/data/", // up 3 in tree "../../Samples/1_Utilities/<executable_name>/data/", // up 2 in tree "../../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 4 in tree "../../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 3 in tree "../../Samples/2_Concepts_and_Techniques/<executable_name>/data/", // up 2 in tree "../../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 4 in tree "../../../Samples/3_CUDA_Features/<executable_name>/data/", // up 3 in tree "../../Samples/3_CUDA_Features/<executable_name>/data/", // up 2 in tree "../../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 4 in tree "../../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 3 in tree "../../Samples/4_CUDA_Libraries/<executable_name>/data/", // up 2 in tree "../../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 4 in tree "../../../Samples/5_Domain_Specific/<executable_name>/data/", // up 3 in tree "../../Samples/5_Domain_Specific/<executable_name>/data/", // up 2 in tree "../../../../Samples/6_Performance/<executable_name>/data/", // up 4 in tree "../../../Samples/6_Performance/<executable_name>/data/", // up 3 in tree "../../Samples/6_Performance/<executable_name>/data/", // up 2 in tree "../../../../Common/data/", // up 4 in tree "../../../Common/data/", // up 3 in tree "../../Common/data/" // up 2 in tree }; // Extract the executable name std::string executable_name; if (executable_path != 0) { executable_name = std::string(executable_path); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // Windows path delimiter size_t delimiter_pos = executable_name.find_last_of('\\'); executable_name.erase(0, delimiter_pos + 1); if (executable_name.rfind(".exe") != std::string::npos) { // we strip .exe, only if the .exe is found executable_name.resize(executable_name.size() - 4); } #else // Linux & OSX path delimiter size_t delimiter_pos = executable_name.find_last_of('/'); executable_name.erase(0, delimiter_pos + 1); #endif } // Loop over all search paths and return the first hit for (unsigned int i = 0; i < sizeof(searchPath) / sizeof(char *); ++i) { std::string path(searchPath[i]); size_t executable_name_pos = path.find("<executable_name>"); // If there is executable_name variable in the searchPath // replace it with the value if (executable_name_pos != std::string::npos) { if (executable_path != 0) { path.replace(executable_name_pos, strlen("<executable_name>"), executable_name); } else { // Skip this path entry if no executable argument is given continue; } } #ifdef _DEBUG printf("sdkFindFilePath <%s> in %s\n", filename, path.c_str()); #endif // Test if the file exists path.append(filename); FILE *fp; FOPEN(fp, path.c_str(), "rb"); if (fp != NULL) { fclose(fp); // File found // returning an allocated array here for backwards compatibility reasons char *file_path = reinterpret_cast<char *>(malloc(path.length() + 1)); STRCPY(file_path, path.length() + 1, path.c_str()); return file_path; } if (fp) { fclose(fp); } } // File not found printf("\nerror: sdkFindFilePath: file <%s> not found!\n", filename); return 0; } #endif // COMMON_HELPER_STRING_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/helper_image.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (image,bitmap) #ifndef COMMON_HELPER_IMAGE_H_ #define COMMON_HELPER_IMAGE_H_ #include <assert.h> #include <exception.h> #include <math.h> #include <stdint.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> #ifndef MIN #define MIN(a, b) ((a < b) ? a : b) #endif #ifndef MAX #define MAX(a, b) ((a > b) ? a : b) #endif #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #include <helper_string.h> // namespace unnamed (internal) namespace helper_image_internal { //! size of PGM file header const unsigned int PGMHeaderSize = 0x40; // types //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterFromUByte; //! Data converter from unsigned char / unsigned byte template <> struct ConverterFromUByte<unsigned char> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<unsigned char>(val); } }; //! Data converter from unsigned char / unsigned byte to float template <> struct ConverterFromUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert float operator()(const unsigned char &val) { return static_cast<float>(val) / 255.0f; } }; //! Data converter from unsigned char / unsigned byte to type T template <class T> struct ConverterToUByte; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<unsigned char> { //! Conversion operator (essentially a passthru //! @return converted value //! @param val value to convert unsigned char operator()(const unsigned char &val) { return val; } }; //! Data converter from unsigned char / unsigned byte to unsigned int template <> struct ConverterToUByte<float> { //! Conversion operator //! @return converted value //! @param val value to convert unsigned char operator()(const float &val) { return static_cast<unsigned char>(val * 255.0f); } }; } // namespace helper_image_internal #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) #ifndef FOPEN #define FOPEN(fHandle, filename, mode) fopen_s(&fHandle, filename, mode) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result != 0) #endif #ifndef SSCANF #define SSCANF sscanf_s #endif #else #ifndef FOPEN #define FOPEN(fHandle, filename, mode) (fHandle = fopen(filename, mode)) #endif #ifndef FOPEN_FAIL #define FOPEN_FAIL(result) (result == NULL) #endif #ifndef SSCANF #define SSCANF sscanf #endif #endif inline bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels) { FILE *fp = NULL; if (FOPEN_FAIL(FOPEN(fp, file, "rb"))) { std::cerr << "__LoadPPM() : Failed to open file: " << file << std::endl; return false; } // check header char header[helper_image_internal::PGMHeaderSize]; if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (strncmp(header, "P5", 2) == 0) { *channels = 1; } else if (strncmp(header, "P6", 2) == 0) { *channels = 3; } else { std::cerr << "__LoadPPM() : File is not a PPM or PGM image" << std::endl; *channels = 0; return false; } // parse header, read maxval, width and height unsigned int width = 0; unsigned int height = 0; unsigned int maxval = 0; unsigned int i = 0; while (i < 3) { if (fgets(header, helper_image_internal::PGMHeaderSize, fp) == NULL) { std::cerr << "__LoadPPM() : reading PGM header returned NULL" << std::endl; return false; } if (header[0] == '#') { continue; } if (i == 0) { i += SSCANF(header, "%u %u %u", &width, &height, &maxval); } else if (i == 1) { i += SSCANF(header, "%u %u", &height, &maxval); } else if (i == 2) { i += SSCANF(header, "%u", &maxval); } } // check if given handle for the data is initialized if (NULL != *data) { if (*w != width || *h != height) { std::cerr << "__LoadPPM() : Invalid image dimensions." << std::endl; } } else { *data = (unsigned char *)malloc(sizeof(unsigned char) * width * height * *channels); *w = width; *h = height; } // read and close file if (fread(*data, sizeof(unsigned char), width * height * *channels, fp) == 0) { std::cerr << "__LoadPPM() read data returned error." << std::endl; } fclose(fp); return true; } template <class T> inline bool sdkLoadPGM(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = NULL; unsigned int channels; if (true != __loadPPM(file, &idata, w, h, &channels)) { return false; } unsigned int size = *w * *h * channels; // initialize mem if necessary // the correct size is checked / set in loadPGMc() if (NULL == *data) { *data = reinterpret_cast<T *>(malloc(sizeof(T) * size)); } // copy and cast data std::transform(idata, idata + size, *data, helper_image_internal::ConverterFromUByte<T>()); free(idata); return true; } template <class T> inline bool sdkLoadPPM4(const char *file, T **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = reinterpret_cast<T *>(malloc(sizeof(T) * size * 4)); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels) { assert(NULL != data); assert(w > 0); assert(h > 0); std::fstream fh(file, std::fstream::out | std::fstream::binary); if (fh.bad()) { std::cerr << "__savePPM() : Opening file failed." << std::endl; return false; } if (channels == 1) { fh << "P5\n"; } else if (channels == 3) { fh << "P6\n"; } else { std::cerr << "__savePPM() : Invalid number of channels." << std::endl; return false; } fh << w << "\n" << h << "\n" << 0xff << std::endl; for (unsigned int i = 0; (i < (w * h * channels)) && fh.good(); ++i) { fh << data[i]; } fh.flush(); if (fh.bad()) { std::cerr << "__savePPM() : Writing data failed." << std::endl; return false; } fh.close(); return true; } template <class T> inline bool sdkSavePGM(const char *file, T *data, unsigned int w, unsigned int h) { unsigned int size = w * h; unsigned char *idata = (unsigned char *)malloc(sizeof(unsigned char) * size); std::transform(data, data + size, idata, helper_image_internal::ConverterToUByte<T>()); // write file bool result = __savePPM(file, idata, w, h, 1); // cleanup free(idata); return result; } inline bool sdkSavePPM4ub(const char *file, unsigned char *data, unsigned int w, unsigned int h) { // strip 4th component int size = w * h; unsigned char *ndata = (unsigned char *)malloc(sizeof(unsigned char) * size * 3); unsigned char *ptr = ndata; for (int i = 0; i < size; i++) { *ptr++ = *data++; *ptr++ = *data++; *ptr++ = *data++; data++; } bool result = __savePPM(file, ndata, w, h, 3); free(ndata); return result; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFile(const char *filename, T **data, unsigned int *len, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // intermediate storage for the data read std::vector<T> data_read; // open file for reading FILE *fh = NULL; // check if filestream is valid if (FOPEN_FAIL(FOPEN(fh, filename, "r"))) { printf("Unable to open input file: %s\n", filename); return false; } // read all data elements T token; while (!feof(fh)) { fscanf(fh, "%f", &token); data_read.push_back(token); } // the last element is read twice data_read.pop_back(); fclose(fh); // check if the given handle is already initialized if (NULL != *data) { if (*len != data_read.size()) { std::cerr << "sdkReadFile() : Initialized memory given but " << "size mismatch with signal read " << "(data read / data init = " << (unsigned int)data_read.size() << " / " << *len << ")" << std::endl; return false; } } else { // allocate storage for the data read *data = reinterpret_cast<T *>(malloc(sizeof(T) * data_read.size())); // store signal size *len = static_cast<unsigned int>(data_read.size()); } // copy data memcpy(*data, &data_read.front(), sizeof(T) * data_read.size()); return true; } ////////////////////////////////////////////////////////////////////////////// //! Read file \filename and return the data //! @return bool if reading the file succeeded, otherwise false //! @param filename name of the source file //! @param data uninitialized pointer, returned initialized and pointing to //! the data read //! @param len number of data elements in data, -1 on error ////////////////////////////////////////////////////////////////////////////// template <class T> inline bool sdkReadFileBlocks(const char *filename, T **data, unsigned int *len, unsigned int block_num, unsigned int block_size, bool verbose) { // check input arguments assert(NULL != filename); assert(NULL != len); // open file for reading FILE *fh = fopen(filename, "rb"); if (fh == NULL && verbose) { std::cerr << "sdkReadFile() : Opening file failed." << std::endl; return false; } // check if the given handle is already initialized // allocate storage for the data read data[block_num] = reinterpret_cast<T *>(malloc(block_size)); // read all data elements fseek(fh, block_num * block_size, SEEK_SET); *len = fread(data[block_num], sizeof(T), block_size / sizeof(T), fh); fclose(fh); return true; } ////////////////////////////////////////////////////////////////////////////// //! Write a data file \filename //! @return true if writing the file succeeded, otherwise false //! @param filename name of the source file //! @param data data to write //! @param len number of data elements in data, -1 on error //! @param epsilon epsilon for comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool sdkWriteFile(const char *filename, const T *data, unsigned int len, const S epsilon, bool verbose, bool append = false) { assert(NULL != filename); assert(NULL != data); // open file for writing // if (append) { std::fstream fh(filename, std::fstream::out | std::fstream::ate); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write/append." << std::endl; } /* } else { std::fstream fh(filename, std::fstream::out); if (verbose) { std::cerr << "sdkWriteFile() : Open file " << filename << " for write." << std::endl; } } */ // check if filestream is valid if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Opening file failed." << std::endl; } return false; } // first write epsilon fh << "# " << epsilon << "\n"; // write data for (unsigned int i = 0; (i < len) && (fh.good()); ++i) { fh << data[i] << ' '; } // Check if writing succeeded if (!fh.good()) { if (verbose) { std::cerr << "sdkWriteFile() : Writing file failed." << std::endl; } return false; } // file ends with nl fh << std::endl; return true; } ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference timer_interface to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareData(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); bool result = true; unsigned int error_count = 0; for (unsigned int i = 0; i < len; ++i) { float diff = static_cast<float>(reference[i]) - static_cast<float>(data[i]); bool comp = (diff <= epsilon) && (diff >= -epsilon); result &= comp; error_count += !comp; #if 0 if (!comp) { std::cerr << "ERROR, i = " << i << ",\t " << reference[i] << " / " << data[i] << " (reference / data)\n"; } #endif } if (threshold == 0.0f) { return (result) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return (len * threshold > error_count) ? true : false; } } #ifndef __MIN_EPSILON_ERROR #define __MIN_EPSILON_ERROR 1e-3f #endif ////////////////////////////////////////////////////////////////////////////// //! Compare two arrays of arbitrary type //! @return true if \a reference and \a data are identical, otherwise false //! @param reference handle to the reference data / gold image //! @param data handle to the computed data //! @param len number of elements in reference and data //! @param epsilon epsilon to use for the comparison //! @param epsilon threshold % of (# of bytes) for pass/fail ////////////////////////////////////////////////////////////////////////////// template <class T, class S> inline bool compareDataAsFloatThreshold(const T *reference, const T *data, const unsigned int len, const S epsilon, const float threshold) { assert(epsilon >= 0); // If we set epsilon to be 0, let's set a minimum threshold float max_error = MAX((float)epsilon, __MIN_EPSILON_ERROR); int error_count = 0; bool result = true; for (unsigned int i = 0; i < len; ++i) { float diff = fabs(static_cast<float>(reference[i]) - static_cast<float>(data[i])); bool comp = (diff < max_error); result &= comp; if (!comp) { error_count++; } } if (threshold == 0.0f) { if (error_count) { printf("total # of errors = %d\n", error_count); } return (error_count == 0) ? true : false; } else { if (error_count) { printf("%4.2f(%%) of bytes mismatched (count=%d)\n", static_cast<float>(error_count) * 100 / static_cast<float>(len), error_count); } return ((len * threshold > error_count) ? true : false); } } inline void sdkDumpBin(void *data, unsigned int bytes, const char *filename) { printf("sdkDumpBin: <%s>\n", filename); FILE *fp; FOPEN(fp, filename, "wb"); fwrite(data, bytes, 1, fp); fflush(fp); fclose(fp); } inline bool sdkCompareBin2BinUint(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { unsigned int *src_buffer, *ref_buffer; FILE *src_fp = NULL, *ref_fp = NULL; uint64_t error_count = 0; size_t fsize = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <unsigned int> unable to open src_file: %s\n", src_file); error_count++; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <unsigned int> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", ref_file); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf( "compareBin2Bin <unsigned int>" " unable to open ref_file: %s\n", ref_file_path); error_count++; } if (src_fp && ref_fp) { src_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); ref_buffer = (unsigned int *)malloc(nelements * sizeof(unsigned int)); fsize = fread(src_buffer, nelements, sizeof(unsigned int), src_fp); fsize = fread(ref_buffer, nelements, sizeof(unsigned int), ref_fp); printf( "> compareBin2Bin <unsigned int> nelements=%d," " epsilon=%4.2f, threshold=%4.2f\n", nelements, epsilon, threshold); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize)); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize)); if (!compareData<unsigned int, float>(ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareBin2BinFloat(const char *src_file, const char *ref_file, unsigned int nelements, const float epsilon, const float threshold, char *exec_path) { float *src_buffer = NULL, *ref_buffer = NULL; FILE *src_fp = NULL, *ref_fp = NULL; size_t fsize = 0; uint64_t error_count = 0; if (FOPEN_FAIL(FOPEN(src_fp, src_file, "rb"))) { printf("compareBin2Bin <float> unable to open src_file: %s\n", src_file); error_count = 1; } char *ref_file_path = sdkFindFilePath(ref_file, exec_path); if (ref_file_path == NULL) { printf("compareBin2Bin <float> unable to find <%s> in <%s>\n", ref_file, exec_path); printf(">>> Check info.xml and [project//data] folder <%s> <<<\n", exec_path); printf("Aborting comparison!\n"); printf(" FAILED\n"); error_count++; if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } else { if (FOPEN_FAIL(FOPEN(ref_fp, ref_file_path, "rb"))) { printf("compareBin2Bin <float> unable to open ref_file: %s\n", ref_file_path); error_count = 1; } if (src_fp && ref_fp) { src_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); ref_buffer = reinterpret_cast<float *>(malloc(nelements * sizeof(float))); printf( "> compareBin2Bin <float> nelements=%d, epsilon=%4.2f," " threshold=%4.2f\n", nelements, epsilon, threshold); fsize = fread(src_buffer, sizeof(float), nelements, src_fp); printf(" src_file <%s>, size=%d bytes\n", src_file, static_cast<int>(fsize * sizeof(float))); fsize = fread(ref_buffer, sizeof(float), nelements, ref_fp); printf(" ref_file <%s>, size=%d bytes\n", ref_file_path, static_cast<int>(fsize * sizeof(float))); if (!compareDataAsFloatThreshold<float, float>( ref_buffer, src_buffer, nelements, epsilon, threshold)) { error_count++; } fclose(src_fp); fclose(ref_fp); free(src_buffer); free(ref_buffer); } else { if (src_fp) { fclose(src_fp); } if (ref_fp) { fclose(ref_fp); } } } if (error_count == 0) { printf(" OK\n"); } else { printf(" FAILURE: %d errors...\n", (unsigned int)error_count); } return (error_count == 0); // returns true if all pixels pass } inline bool sdkCompareL2fe(const float *reference, const float *data, const unsigned int len, const float epsilon) { assert(epsilon >= 0); float error = 0; float ref = 0; for (unsigned int i = 0; i < len; ++i) { float diff = reference[i] - data[i]; error += diff * diff; ref += reference[i] * reference[i]; } float normRef = sqrtf(ref); if (fabs(ref) < 1e-7) { #ifdef _DEBUG std::cerr << "ERROR, reference l2-norm is 0\n"; #endif return false; } float normError = sqrtf(error); error = normError / normRef; bool result = error < epsilon; #ifdef _DEBUG if (!result) { std::cerr << "ERROR, l2-norm error " << error << " is greater than epsilon " << epsilon << "\n"; } #endif return result; } inline bool sdkLoadPPMub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned int channels; return __loadPPM(file, data, w, h, &channels); } inline bool sdkLoadPPM4ub(const char *file, unsigned char **data, unsigned int *w, unsigned int *h) { unsigned char *idata = 0; unsigned int channels; if (__loadPPM(file, &idata, w, h, &channels)) { // pad 4th component int size = *w * *h; // keep the original pointer unsigned char *idata_orig = idata; *data = (unsigned char *)malloc(sizeof(unsigned char) * size * 4); unsigned char *ptr = *data; for (int i = 0; i < size; i++) { *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = *idata++; *ptr++ = 0; } free(idata_orig); return true; } else { free(idata); return false; } } inline bool sdkComparePPM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data, *ref_data; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PPMvsPPM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPM4ub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PPMvsPPM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPM4ub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PPMvsPPM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PPMvsPPM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) { std::cerr << "PPMvsPPM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; } if (compareData(ref_data, src_data, src_width * src_height * 4, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } inline bool sdkComparePGM(const char *src_file, const char *ref_file, const float epsilon, const float threshold, bool verboseErrors) { unsigned char *src_data = 0, *ref_data = 0; uint64_t error_count = 0; unsigned int ref_width, ref_height; unsigned int src_width, src_height; if (src_file == NULL || ref_file == NULL) { if (verboseErrors) { std::cerr << "PGMvsPGM: src_file or ref_file is NULL." " Aborting comparison\n"; } return false; } if (verboseErrors) { std::cerr << "> Compare (a)rendered: <" << src_file << ">\n"; std::cerr << "> (b)reference: <" << ref_file << ">\n"; } if (sdkLoadPPMub(ref_file, &ref_data, &ref_width, &ref_height) != true) { if (verboseErrors) { std::cerr << "PGMvsPGM: unable to load ref image file: " << ref_file << "\n"; } return false; } if (sdkLoadPPMub(src_file, &src_data, &src_width, &src_height) != true) { std::cerr << "PGMvsPGM: unable to load src image file: " << src_file << "\n"; return false; } if (src_height != ref_height || src_width != ref_width) { if (verboseErrors) { std::cerr << "PGMvsPGM: source and ref size mismatch (" << src_width << "," << src_height << ")vs(" << ref_width << "," << ref_height << ")\n"; } } if (verboseErrors) std::cerr << "PGMvsPGM: comparing images size (" << src_width << "," << src_height << ") epsilon(" << epsilon << "), threshold(" << threshold * 100 << "%)\n"; if (compareData(ref_data, src_data, src_width * src_height, epsilon, threshold) == false) { error_count = 1; } if (error_count == 0) { if (verboseErrors) { std::cerr << " OK\n\n"; } } else { if (verboseErrors) { std::cerr << " FAILURE! " << error_count << " errors...\n\n"; } } // returns true if all pixels pass return (error_count == 0) ? true : false; } #endif // COMMON_HELPER_IMAGE_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/exception.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* CUda UTility Library */ #ifndef COMMON_EXCEPTION_H_ #define COMMON_EXCEPTION_H_ // includes, system #include <stdlib.h> #include <exception> #include <iostream> #include <stdexcept> #include <string> //! Exception wrapper. //! @param Std_Exception Exception out of namespace std for easy typing. template <class Std_Exception> class Exception : public Std_Exception { public: //! @brief Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const char *detailed = "-"); //! Static construction interface //! @return Alwayss throws ( Located_Exception<Exception>) //! @param file file in which the Exception occurs //! @param line line in which the Exception occurs //! @param detailed details on the code fragment causing the Exception static void throw_it(const char *file, const int line, const std::string &detailed); //! Destructor virtual ~Exception() throw(); private: //! Constructor, default (private) Exception(); //! Constructor, standard //! @param str string returned by what() explicit Exception(const std::string &str); }; //////////////////////////////////////////////////////////////////////////////// //! Exception handler function for arbitrary exceptions //! @param ex exception to handle //////////////////////////////////////////////////////////////////////////////// template <class Exception_Typ> inline void handleException(const Exception_Typ &ex) { std::cerr << ex.what() << std::endl; exit(EXIT_FAILURE); } //! Convenience macros //! Exception caused by dynamic program behavior, e.g. file does not exist #define RUNTIME_EXCEPTION(msg) \ Exception<std::runtime_error>::throw_it(__FILE__, __LINE__, msg) //! Logic exception in program, e.g. an assert failed #define LOGIC_EXCEPTION(msg) \ Exception<std::logic_error>::throw_it(__FILE__, __LINE__, msg) //! Out of range exception #define RANGE_EXCEPTION(msg) \ Exception<std::range_error>::throw_it(__FILE__, __LINE__, msg) //////////////////////////////////////////////////////////////////////////////// //! Implementation // includes, system #include <sstream> //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const char *detailed) { std::stringstream s; // Quiet heavy-weight but exceptions are not for // performance / release versions s << "Exception in file '" << file << "' in line " << line << "\n" << "Detailed description: " << detailed << "\n"; throw Exception(s.str()); } //////////////////////////////////////////////////////////////////////////////// //! Static construction interface. //! @param Exception causing code fragment (file and line) and detailed infos. //////////////////////////////////////////////////////////////////////////////// /*static*/ template <class Std_Exception> void Exception<Std_Exception>::throw_it(const char *file, const int line, const std::string &msg) { throw_it(file, line, msg.c_str()); } //////////////////////////////////////////////////////////////////////////////// //! Constructor, default (private). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception() : Std_Exception("Unknown Exception.\n") {} //////////////////////////////////////////////////////////////////////////////// //! Constructor, standard (private). //! String returned by what(). //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::Exception(const std::string &s) : Std_Exception(s) {} //////////////////////////////////////////////////////////////////////////////// //! Destructor //////////////////////////////////////////////////////////////////////////////// template <class Std_Exception> Exception<Std_Exception>::~Exception() throw() {} // functions, exported #endif // COMMON_EXCEPTION_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/helper_cuda.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // These are CUDA Helper functions for initialization and error checking #ifndef COMMON_HELPER_CUDA_H_ #define COMMON_HELPER_CUDA_H_ #pragma once #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <helper_string.h> #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif // Note, it is required that your SDK sample to include the proper header // files, please refer the CUDA examples for examples of the needed CUDA // headers, which may change depending on which CUDA functions are used. // CUDA Runtime error messages #ifdef __DPCT_HPP__ static const char *_cudaGetErrorEnum(dpct::err0 error) { /* DPCT1009:16: SYCL uses exceptions to report errors and does not use the error codes. The original code was commented out and a warning string was inserted. You need to rewrite this code. */ return "cudaGetErrorName is not supported" /*cudaGetErrorName(error)*/; } #endif #ifdef CUDA_DRIVER_API // CUDA Driver API errors static const char *_cudaGetErrorEnum(CUresult error) { static char unknown[] = "<unknown>"; const char *ret = NULL; cuGetErrorName(error, &ret); return ret ? ret : unknown; } #endif #ifdef CUBLAS_API_H_ // cuBLAS API errors static const char *_cudaGetErrorEnum(cublasStatus_t error) { switch (error) { case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS"; case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED"; case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED"; case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE"; case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH"; case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR"; case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED"; case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR"; case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED"; case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR"; } return "<unknown>"; } #endif #ifdef _CUFFT_H_ // cuFFT API errors static const char *_cudaGetErrorEnum(cufftResult error) { switch (error) { case CUFFT_SUCCESS: return "CUFFT_SUCCESS"; case CUFFT_INVALID_PLAN: return "CUFFT_INVALID_PLAN"; case CUFFT_ALLOC_FAILED: return "CUFFT_ALLOC_FAILED"; case CUFFT_INVALID_TYPE: return "CUFFT_INVALID_TYPE"; case CUFFT_INVALID_VALUE: return "CUFFT_INVALID_VALUE"; case CUFFT_INTERNAL_ERROR: return "CUFFT_INTERNAL_ERROR"; case CUFFT_EXEC_FAILED: return "CUFFT_EXEC_FAILED"; case CUFFT_SETUP_FAILED: return "CUFFT_SETUP_FAILED"; case CUFFT_INVALID_SIZE: return "CUFFT_INVALID_SIZE"; case CUFFT_UNALIGNED_DATA: return "CUFFT_UNALIGNED_DATA"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "CUFFT_INCOMPLETE_PARAMETER_LIST"; case CUFFT_INVALID_DEVICE: return "CUFFT_INVALID_DEVICE"; case CUFFT_PARSE_ERROR: return "CUFFT_PARSE_ERROR"; case CUFFT_NO_WORKSPACE: return "CUFFT_NO_WORKSPACE"; case CUFFT_NOT_IMPLEMENTED: return "CUFFT_NOT_IMPLEMENTED"; case CUFFT_LICENSE_ERROR: return "CUFFT_LICENSE_ERROR"; case CUFFT_NOT_SUPPORTED: return "CUFFT_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSPARSEAPI // cuSPARSE API errors static const char *_cudaGetErrorEnum(cusparseStatus_t error) { switch (error) { case CUSPARSE_STATUS_SUCCESS: return "CUSPARSE_STATUS_SUCCESS"; case CUSPARSE_STATUS_NOT_INITIALIZED: return "CUSPARSE_STATUS_NOT_INITIALIZED"; case CUSPARSE_STATUS_ALLOC_FAILED: return "CUSPARSE_STATUS_ALLOC_FAILED"; case CUSPARSE_STATUS_INVALID_VALUE: return "CUSPARSE_STATUS_INVALID_VALUE"; case CUSPARSE_STATUS_ARCH_MISMATCH: return "CUSPARSE_STATUS_ARCH_MISMATCH"; case CUSPARSE_STATUS_MAPPING_ERROR: return "CUSPARSE_STATUS_MAPPING_ERROR"; case CUSPARSE_STATUS_EXECUTION_FAILED: return "CUSPARSE_STATUS_EXECUTION_FAILED"; case CUSPARSE_STATUS_INTERNAL_ERROR: return "CUSPARSE_STATUS_INTERNAL_ERROR"; case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; } return "<unknown>"; } #endif #ifdef CUSOLVER_COMMON_H_ // cuSOLVER API errors static const char *_cudaGetErrorEnum(cusolverStatus_t error) { switch (error) { case CUSOLVER_STATUS_SUCCESS: return "CUSOLVER_STATUS_SUCCESS"; case CUSOLVER_STATUS_NOT_INITIALIZED: return "CUSOLVER_STATUS_NOT_INITIALIZED"; case CUSOLVER_STATUS_ALLOC_FAILED: return "CUSOLVER_STATUS_ALLOC_FAILED"; case CUSOLVER_STATUS_INVALID_VALUE: return "CUSOLVER_STATUS_INVALID_VALUE"; case CUSOLVER_STATUS_ARCH_MISMATCH: return "CUSOLVER_STATUS_ARCH_MISMATCH"; case CUSOLVER_STATUS_MAPPING_ERROR: return "CUSOLVER_STATUS_MAPPING_ERROR"; case CUSOLVER_STATUS_EXECUTION_FAILED: return "CUSOLVER_STATUS_EXECUTION_FAILED"; case CUSOLVER_STATUS_INTERNAL_ERROR: return "CUSOLVER_STATUS_INTERNAL_ERROR"; case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED: return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED"; case CUSOLVER_STATUS_NOT_SUPPORTED: return "CUSOLVER_STATUS_NOT_SUPPORTED "; case CUSOLVER_STATUS_ZERO_PIVOT: return "CUSOLVER_STATUS_ZERO_PIVOT"; case CUSOLVER_STATUS_INVALID_LICENSE: return "CUSOLVER_STATUS_INVALID_LICENSE"; } return "<unknown>"; } #endif #ifdef CURAND_H_ // cuRAND API errors static const char *_cudaGetErrorEnum(int error) { switch (error) { case 0: return "CURAND_STATUS_SUCCESS"; case 100: return "CURAND_STATUS_VERSION_MISMATCH"; case 101: return "CURAND_STATUS_NOT_INITIALIZED"; case 102: return "CURAND_STATUS_ALLOCATION_FAILED"; case 103: return "CURAND_STATUS_TYPE_ERROR"; case 104: return "CURAND_STATUS_OUT_OF_RANGE"; case 105: return "CURAND_STATUS_LENGTH_NOT_MULTIPLE"; case 106: return "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED"; case 201: return "CURAND_STATUS_LAUNCH_FAILURE"; case 202: return "CURAND_STATUS_PREEXISTING_FAILURE"; case 203: return "CURAND_STATUS_INITIALIZATION_FAILED"; case 204: return "CURAND_STATUS_ARCH_MISMATCH"; case 999: return "CURAND_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NVJPEGAPI // nvJPEG API errors static const char *_cudaGetErrorEnum(nvjpegStatus_t error) { switch (error) { case NVJPEG_STATUS_SUCCESS: return "NVJPEG_STATUS_SUCCESS"; case NVJPEG_STATUS_NOT_INITIALIZED: return "NVJPEG_STATUS_NOT_INITIALIZED"; case NVJPEG_STATUS_INVALID_PARAMETER: return "NVJPEG_STATUS_INVALID_PARAMETER"; case NVJPEG_STATUS_BAD_JPEG: return "NVJPEG_STATUS_BAD_JPEG"; case NVJPEG_STATUS_JPEG_NOT_SUPPORTED: return "NVJPEG_STATUS_JPEG_NOT_SUPPORTED"; case NVJPEG_STATUS_ALLOCATOR_FAILURE: return "NVJPEG_STATUS_ALLOCATOR_FAILURE"; case NVJPEG_STATUS_EXECUTION_FAILED: return "NVJPEG_STATUS_EXECUTION_FAILED"; case NVJPEG_STATUS_ARCH_MISMATCH: return "NVJPEG_STATUS_ARCH_MISMATCH"; case NVJPEG_STATUS_INTERNAL_ERROR: return "NVJPEG_STATUS_INTERNAL_ERROR"; } return "<unknown>"; } #endif #ifdef NV_NPPIDEFS_H // NPP API errors static const char *_cudaGetErrorEnum(NppStatus error) { switch (error) { case NPP_NOT_SUPPORTED_MODE_ERROR: return "NPP_NOT_SUPPORTED_MODE_ERROR"; case NPP_ROUND_MODE_NOT_SUPPORTED_ERROR: return "NPP_ROUND_MODE_NOT_SUPPORTED_ERROR"; case NPP_RESIZE_NO_OPERATION_ERROR: return "NPP_RESIZE_NO_OPERATION_ERROR"; case NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY: return "NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_BAD_ARG_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFF_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECT_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUAD_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEM_ALLOC_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTO_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_INPUT: return "NPP_INVALID_INPUT"; case NPP_POINTER_ERROR: return "NPP_POINTER_ERROR"; case NPP_WARNING: return "NPP_WARNING"; case NPP_ODD_ROI_WARNING: return "NPP_ODD_ROI_WARNING"; #else // These are for CUDA 5.5 or higher case NPP_BAD_ARGUMENT_ERROR: return "NPP_BAD_ARGUMENT_ERROR"; case NPP_COEFFICIENT_ERROR: return "NPP_COEFFICIENT_ERROR"; case NPP_RECTANGLE_ERROR: return "NPP_RECTANGLE_ERROR"; case NPP_QUADRANGLE_ERROR: return "NPP_QUADRANGLE_ERROR"; case NPP_MEMORY_ALLOCATION_ERR: return "NPP_MEMORY_ALLOCATION_ERROR"; case NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR: return "NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR"; case NPP_INVALID_HOST_POINTER_ERROR: return "NPP_INVALID_HOST_POINTER_ERROR"; case NPP_INVALID_DEVICE_POINTER_ERROR: return "NPP_INVALID_DEVICE_POINTER_ERROR"; #endif case NPP_LUT_NUMBER_OF_LEVELS_ERROR: return "NPP_LUT_NUMBER_OF_LEVELS_ERROR"; case NPP_TEXTURE_BIND_ERROR: return "NPP_TEXTURE_BIND_ERROR"; case NPP_WRONG_INTERSECTION_ROI_ERROR: return "NPP_WRONG_INTERSECTION_ROI_ERROR"; case NPP_NOT_EVEN_STEP_ERROR: return "NPP_NOT_EVEN_STEP_ERROR"; case NPP_INTERPOLATION_ERROR: return "NPP_INTERPOLATION_ERROR"; case NPP_RESIZE_FACTOR_ERROR: return "NPP_RESIZE_FACTOR_ERROR"; case NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR: return "NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) <= 0x5000 case NPP_MEMFREE_ERR: return "NPP_MEMFREE_ERR"; case NPP_MEMSET_ERR: return "NPP_MEMSET_ERR"; case NPP_MEMCPY_ERR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERR: return "NPP_MIRROR_FLIP_ERR"; #else case NPP_MEMFREE_ERROR: return "NPP_MEMFREE_ERROR"; case NPP_MEMSET_ERROR: return "NPP_MEMSET_ERROR"; case NPP_MEMCPY_ERROR: return "NPP_MEMCPY_ERROR"; case NPP_MIRROR_FLIP_ERROR: return "NPP_MIRROR_FLIP_ERROR"; #endif case NPP_ALIGNMENT_ERROR: return "NPP_ALIGNMENT_ERROR"; case NPP_STEP_ERROR: return "NPP_STEP_ERROR"; case NPP_SIZE_ERROR: return "NPP_SIZE_ERROR"; case NPP_NULL_POINTER_ERROR: return "NPP_NULL_POINTER_ERROR"; case NPP_CUDA_KERNEL_EXECUTION_ERROR: return "NPP_CUDA_KERNEL_EXECUTION_ERROR"; case NPP_NOT_IMPLEMENTED_ERROR: return "NPP_NOT_IMPLEMENTED_ERROR"; case NPP_ERROR: return "NPP_ERROR"; case NPP_SUCCESS: return "NPP_SUCCESS"; case NPP_WRONG_INTERSECTION_QUAD_WARNING: return "NPP_WRONG_INTERSECTION_QUAD_WARNING"; case NPP_MISALIGNED_DST_ROI_WARNING: return "NPP_MISALIGNED_DST_ROI_WARNING"; case NPP_AFFINE_QUAD_INCORRECT_WARNING: return "NPP_AFFINE_QUAD_INCORRECT_WARNING"; case NPP_DOUBLE_SIZE_WARNING: return "NPP_DOUBLE_SIZE_WARNING"; case NPP_WRONG_INTERSECTION_ROI_WARNING: return "NPP_WRONG_INTERSECTION_ROI_WARNING"; #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x6000 /* These are 6.0 or higher */ case NPP_LUT_PALETTE_BITSIZE_ERROR: return "NPP_LUT_PALETTE_BITSIZE_ERROR"; case NPP_ZC_MODE_NOT_SUPPORTED_ERROR: return "NPP_ZC_MODE_NOT_SUPPORTED_ERROR"; case NPP_QUALITY_INDEX_ERROR: return "NPP_QUALITY_INDEX_ERROR"; case NPP_CHANNEL_ORDER_ERROR: return "NPP_CHANNEL_ORDER_ERROR"; case NPP_ZERO_MASK_VALUE_ERROR: return "NPP_ZERO_MASK_VALUE_ERROR"; case NPP_NUMBER_OF_CHANNELS_ERROR: return "NPP_NUMBER_OF_CHANNELS_ERROR"; case NPP_COI_ERROR: return "NPP_COI_ERROR"; case NPP_DIVISOR_ERROR: return "NPP_DIVISOR_ERROR"; case NPP_CHANNEL_ERROR: return "NPP_CHANNEL_ERROR"; case NPP_STRIDE_ERROR: return "NPP_STRIDE_ERROR"; case NPP_ANCHOR_ERROR: return "NPP_ANCHOR_ERROR"; case NPP_MASK_SIZE_ERROR: return "NPP_MASK_SIZE_ERROR"; case NPP_MOMENT_00_ZERO_ERROR: return "NPP_MOMENT_00_ZERO_ERROR"; case NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR: return "NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR"; case NPP_THRESHOLD_ERROR: return "NPP_THRESHOLD_ERROR"; case NPP_CONTEXT_MATCH_ERROR: return "NPP_CONTEXT_MATCH_ERROR"; case NPP_FFT_FLAG_ERROR: return "NPP_FFT_FLAG_ERROR"; case NPP_FFT_ORDER_ERROR: return "NPP_FFT_ORDER_ERROR"; case NPP_SCALE_RANGE_ERROR: return "NPP_SCALE_RANGE_ERROR"; case NPP_DATA_TYPE_ERROR: return "NPP_DATA_TYPE_ERROR"; case NPP_OUT_OFF_RANGE_ERROR: return "NPP_OUT_OFF_RANGE_ERROR"; case NPP_DIVIDE_BY_ZERO_ERROR: return "NPP_DIVIDE_BY_ZERO_ERROR"; case NPP_RANGE_ERROR: return "NPP_RANGE_ERROR"; case NPP_NO_MEMORY_ERROR: return "NPP_NO_MEMORY_ERROR"; case NPP_ERROR_RESERVED: return "NPP_ERROR_RESERVED"; case NPP_NO_OPERATION_WARNING: return "NPP_NO_OPERATION_WARNING"; case NPP_DIVIDE_BY_ZERO_WARNING: return "NPP_DIVIDE_BY_ZERO_WARNING"; #endif #if ((NPP_VERSION_MAJOR << 12) + (NPP_VERSION_MINOR << 4)) >= 0x7000 /* These are 7.0 or higher */ case NPP_OVERFLOW_ERROR: return "NPP_OVERFLOW_ERROR"; case NPP_CORRUPTED_DATA_ERROR: return "NPP_CORRUPTED_DATA_ERROR"; #endif } return "<unknown>"; } #endif template <typename T> void check(T result, char const *const func, const char *const file, int const line) { } #ifdef __DPCT_HPP__ // This will output the proper CUDA error strings in the event // that a CUDA host call returns an error #define checkCudaErrors(val) check((val), #val, __FILE__, __LINE__) // This will output the proper error string when calling cudaGetLastError #define getLastCudaError(msg) __getLastCudaError(msg, __FILE__, __LINE__) inline void __getLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:17: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } // This will only print the proper error string when calling cudaGetLastError // but not exit program incase error detected. #define printLastCudaError(msg) __printLastCudaError(msg, __FILE__, __LINE__) inline void __printLastCudaError(const char *errorMessage, const char *file, const int line) { /* DPCT1010:19: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to rewrite this code. */ dpct::err0 err = 0; } #endif #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // Float To Int conversion inline int ftoi(float value) { return (value >= 0 ? static_cast<int>(value + 0.5) : static_cast<int>(value - 0.5)); } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the # of cores per SM typedef struct dpct_type_113531 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { {0x30, 192}, {0x32, 192}, {0x35, 192}, {0x37, 192}, {0x50, 128}, {0x52, 128}, {0x53, 128}, {0x60, 64}, {0x61, 128}, {0x62, 128}, {0x70, 64}, {0x72, 64}, {0x75, 64}, {0x80, 64}, {0x86, 128}, {0x87, 128}, {0x89, 128}, {0x90, 128}, {-1, -1}}; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoCores for SM %d.%d is undefined." " Default to use %d Cores/SM\n", major, minor, nGpuArchCoresPerSM[index - 1].Cores); return nGpuArchCoresPerSM[index - 1].Cores; } inline const char* _ConvertSMVer2ArchName(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine // the GPU Arch name) typedef struct dpct_type_281558 { int SM; // 0xMm (hexidecimal notation), M = SM Major version, // and m = SM minor version const char* name; } sSMtoArchName; sSMtoArchName nGpuArchNameSM[] = { {0x30, "Kepler"}, {0x32, "Kepler"}, {0x35, "Kepler"}, {0x37, "Kepler"}, {0x50, "Maxwell"}, {0x52, "Maxwell"}, {0x53, "Maxwell"}, {0x60, "Pascal"}, {0x61, "Pascal"}, {0x62, "Pascal"}, {0x70, "Volta"}, {0x72, "Xavier"}, {0x75, "Turing"}, {0x80, "Ampere"}, {0x86, "Ampere"}, {0x87, "Ampere"}, {0x89, "Ada"}, {0x90, "Hopper"}, {-1, "Graphics Device"}}; int index = 0; while (nGpuArchNameSM[index].SM != -1) { if (nGpuArchNameSM[index].SM == ((major << 4) + minor)) { return nGpuArchNameSM[index].name; } index++; } // If we don't find the values, we default use the previous one // to run properly printf( "MapSMtoArchName for SM %d.%d is undefined." " Default to use %s\n", major, minor, nGpuArchNameSM[index - 1].name); return nGpuArchNameSM[index - 1].name; } // end of GPU Architecture definitions #ifdef __DPCT_HPP__ // General GPU Device CUDA Initialization inline int gpuDeviceInit(int devID) { int device_count; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuDeviceInit() CUDA error: " "no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } if (devID < 0) { devID = 0; } if (devID > device_count - 1) { fprintf(stderr, "\n"); fprintf(stderr, ">> %d CUDA capable GPU device(s) detected. <<\n", device_count); fprintf(stderr, ">> gpuDeviceInit (-device=%d) is not a valid" " GPU device. <<\n", devID); fprintf(stderr, "\n"); return -devID; } int computeMode = -1, major = 0, minor = 0; /* DPCT1035:21: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); /* DPCT1035:22: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode == 0) { fprintf(stderr, "Error: device is running in <Compute Mode " "Prohibited>, no threads can use cudaSetDevice().\n"); return -1; } if (major < 1) { fprintf(stderr, "gpuDeviceInit(): GPU device does not support CUDA.\n"); exit(EXIT_FAILURE); } /* DPCT1093:23: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); printf("gpuDeviceInit() CUDA Device [%d]: \"%s\n", devID, _ConvertSMVer2ArchName(major, minor)); return devID; } // This function returns the best GPU (with maximum GFLOPS) inline int gpuGetMaxGflopsDeviceId() try { int current_device = 0, sm_per_multiproc = 0; int max_perf_device = 0; int device_count = 0; int devices_prohibited = 0; uint64_t max_compute_perf = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the best CUDA capable GPU device current_device = 0; while (current_device < device_count) { int computeMode = -1, major = 0, minor = 0; /* DPCT1035:24: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list /* DPCT1035:25: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (computeMode != 0) { if (major == 9999 && minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(major, minor); } int multiProcessorCount = 0, clockRate = 0; checkCudaErrors( DPCT_CHECK_ERROR(multiProcessorCount = dpct::dev_mgr::instance() .get_device(current_device) .get_max_compute_units())); dpct::err0 result = DPCT_CHECK_ERROR(clockRate = dpct::dev_mgr::instance() .get_device(current_device) .get_max_clock_frequency()); uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate; if (compute_perf > max_compute_perf) { max_compute_perf = compute_perf; max_perf_device = current_device; } } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } return max_perf_device; } catch (sycl::exception const &exc) { std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl; std::exit(1); } // Initialization code to find the best CUDA Device inline int findCudaDevice(int argc, const char **argv) { int devID = 0; // If the command-line has a device number specified, use it if (checkCmdLineFlag(argc, argv, "device")) { devID = getCmdLineArgumentInt(argc, argv, "device="); if (devID < 0) { printf("Invalid command line parameter\n "); exit(EXIT_FAILURE); } else { devID = gpuDeviceInit(devID); if (devID < 0) { printf("exiting...\n"); exit(EXIT_FAILURE); } } } else { // Otherwise pick the device with highest Gflops/s devID = gpuGetMaxGflopsDeviceId(); /* DPCT1093:26: The "devID" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(devID))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(devID).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(devID).get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, _ConvertSMVer2ArchName(major, minor), major, minor); } return devID; } inline int findIntegratedGPU() { int current_device = 0; int device_count = 0; int devices_prohibited = 0; checkCudaErrors(DPCT_CHECK_ERROR( device_count = dpct::dev_mgr::instance().device_count())); if (device_count == 0) { fprintf(stderr, "CUDA error: no devices supporting CUDA.\n"); exit(EXIT_FAILURE); } // Find the integrated GPU which is compute capable while (current_device < device_count) { int computeMode = -1, integrated = -1; /* DPCT1035:27: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ checkCudaErrors(DPCT_CHECK_ERROR(computeMode = 1)); checkCudaErrors( DPCT_CHECK_ERROR(integrated = dpct::dev_mgr::instance() .get_device(current_device) .get_integrated())); // If GPU is integrated and is not running on Compute Mode prohibited, // then cuda can map to GLES resource /* DPCT1035:28: All SYCL devices can be used by the host to submit tasks. You may need to adjust this code. */ if (integrated && (computeMode != 0)) { /* DPCT1093:29: The "current_device" device may be not the one intended for use. Adjust the selected device if needed. */ checkCudaErrors(DPCT_CHECK_ERROR(dpct::select_device(current_device))); int major = 0, minor = 0; checkCudaErrors(DPCT_CHECK_ERROR(major = dpct::dev_mgr::instance() .get_device(current_device) .get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR(minor = dpct::dev_mgr::instance() .get_device(current_device) .get_minor_version())); printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", current_device, _ConvertSMVer2ArchName(major, minor), major, minor); return current_device; } else { devices_prohibited++; } current_device++; } if (devices_prohibited == device_count) { fprintf(stderr, "CUDA error:" " No GLES-CUDA Interop capable GPU found.\n"); exit(EXIT_FAILURE); } return -1; } // General check for CUDA GPU SM Capabilities inline bool checkCudaCapabilities(int major_version, int minor_version) { int dev; int major = 0, minor = 0; checkCudaErrors(dev = dpct::dev_mgr::instance().current_device_id()); checkCudaErrors(DPCT_CHECK_ERROR( major = dpct::dev_mgr::instance().get_device(dev).get_major_version())); checkCudaErrors(DPCT_CHECK_ERROR( minor = dpct::dev_mgr::instance().get_device(dev).get_minor_version())); if ((major > major_version) || (major == major_version && minor >= minor_version)) { printf(" Device %d: <%16s >, Compute SM %d.%d detected\n", dev, _ConvertSMVer2ArchName(major, minor), major, minor); return true; } else { printf( " No GPU device was found that can support " "CUDA compute capability %d.%d.\n", major_version, minor_version); return false; } } #endif // end of CUDA Helper Functions #endif // COMMON_HELPER_CUDA_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Common/helper_functions.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // These are helper functions for the SDK samples (string parsing, // timers, image helpers, etc) #ifndef COMMON_HELPER_FUNCTIONS_H_ #define COMMON_HELPER_FUNCTIONS_H_ #ifdef WIN32 #pragma warning(disable : 4996) #endif // includes, project #include <assert.h> #include <exception.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <fstream> #include <iostream> #include <string> #include <vector> // includes, timer, string parsing, image helpers #include <helper_image.h> // helper functions for image compare, dump, data comparisons #include <helper_string.h> // helper functions for string parsing #include <helper_timer.h> // helper functions for timers #ifndef EXIT_WAIVED #define EXIT_WAIVED 2 #endif #endif // COMMON_HELPER_FUNCTIONS_H_
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/addKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// /// CUDA kernel /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// void AddKernel(const float *op1, const float *op2, int count, float *sum, const sycl::nd_item<3> &item_ct1) { const int pos = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); if (pos >= count) return; sum[pos] = op1[pos] + op2[pos]; } /////////////////////////////////////////////////////////////////////////////// /// \brief add two vectors of size _count_ /// \param[in] op1 term one /// \param[in] op2 term two /// \param[in] count vector size /// \param[out] sum result /////////////////////////////////////////////////////////////////////////////// static void Add(const float *op1, const float *op2, int count, float *sum) { sycl::range<3> threads(1, 1, 256); sycl::range<3> blocks(1, 1, iDivUp(count, threads[2])); /* DPCT1049:15: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ dpct::get_default_queue().parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { AddKernel(op1, op2, count, sum, item_ct1); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_GOLD_H #define FLOW_GOLD_H void ComputeFlowGold( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/common.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /////////////////////////////////////////////////////////////////////////////// // Header for common includes and utility functions /////////////////////////////////////////////////////////////////////////////// #ifndef COMMON_H #define COMMON_H /////////////////////////////////////////////////////////////////////////////// // Common includes /////////////////////////////////////////////////////////////////////////////// #include <stdlib.h> #include <stdio.h> #include <time.h> #include <memory.h> #include <math.h> #include <helper_cuda.h> /////////////////////////////////////////////////////////////////////////////// // Common constants /////////////////////////////////////////////////////////////////////////////// const int StrideAlignment = 32; /////////////////////////////////////////////////////////////////////////////// // Common functions /////////////////////////////////////////////////////////////////////////////// // Align up n to the nearest multiple of m inline int iAlignUp(int n, int m = StrideAlignment) { int mod = n % m; if (mod) return n + m - mod; else return n; } // round up n/m inline int iDivUp(int n, int m) { return (n + m - 1) / m; } // swap two values template <typename T> inline void Swap(T &a, T &b) { T t = a; a = b; b = t; } #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/downscaleKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void DownscaleKernel(int width, int height, int stride, float *out, dpct::image_accessor_ext<float, 2> texFine, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); if (ix >= width || iy >= height) { return; } float dx = 1.0f / (float)width; float dy = 1.0f / (float)height; float x = ((float)ix + 0.5f) * dx; float y = ((float)iy + 0.5f) * dy; out[ix + iy * stride] = 0.25f * (texFine.read(x - dx * 0.25f, y) + texFine.read(x + dx * 0.25f, y) + texFine.read(x, y - dy * 0.25f) + texFine.read(x, y + dy * 0.25f)); } /////////////////////////////////////////////////////////////////////////////// /// \brief downscale image /// /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out) { sycl::range<3> threads(1, 8, 32); sycl::range<3> blocks(1, iDivUp(newHeight, threads[1]), iDivUp(newWidth, threads[2])); dpct::image_wrapper_base_p texFine; dpct::image_data texRes; memset(&texRes, 0, sizeof(dpct::image_data)); texRes.set_data_type(dpct::image_data_type::pitch); texRes.set_data_ptr((void *)src); /* DPCT1059:1: SYCL only supports 4-channel image format. Adjust the code. */ texRes.set_channel(dpct::image_channel::create<float>()); texRes.set_x(width); texRes.set_y(height); texRes.set_pitch(stride * sizeof(float)); dpct::sampling_info texDescr; memset(&texDescr, 0, sizeof(dpct::sampling_info)); texDescr.set(sycl::addressing_mode::mirrored_repeat, sycl::filtering_mode::linear, sycl::coordinate_normalization_mode::normalized); /* DPCT1007:2: Migration of cudaTextureDesc::readMode is not supported. */ texDescr.readMode = cudaReadModeElementType; checkCudaErrors( DPCT_CHECK_ERROR(texFine = dpct::create_image_wrapper(texRes, texDescr))); /* DPCT1049:0: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ dpct::get_default_queue().submit([&](sycl::handler &cgh) { auto texFine_acc = static_cast<dpct::image_wrapper<float, 2> *>(texFine)->get_access(cgh); auto texFine_smpl = texFine->get_sampler(); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { DownscaleKernel(newWidth, newHeight, newStride, out, dpct::image_accessor_ext<float, 2>( texFine_smpl, texFine_acc), item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/flowCUDA.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" // include kernels #include "downscaleKernel.dp.hpp" #include "upscaleKernel.dp.hpp" #include "warpingKernel.dp.hpp" #include "derivativesKernel.dp.hpp" #include "solverKernel.dp.hpp" #include "addKernel.dp.hpp" /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocations, control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowCUDA(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on GPU...\n"); // pI0 and pI1 will hold device pointers const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; // device memory pointers float *d_tmp; float *d_du0; float *d_dv0; float *d_du1; float *d_dv1; float *d_Ix; float *d_Iy; float *d_Iz; float *d_u; float *d_v; float *d_nu; float *d_nv; const int dataSize = stride * height * sizeof(float); checkCudaErrors(DPCT_CHECK_ERROR(d_tmp = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_du0 = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv0 = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_du1 = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_dv1 = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_Ix = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iy = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_Iz = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( d_u = (float *)sycl::malloc_device(dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( d_v = (float *)sycl::malloc_device(dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_nu = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(d_nv = (float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); // prepare pyramid int currentLevel = nLevels - 1; // allocate GPU memory for input images checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel) = (const float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel) = (const float *)sycl::malloc_device( dataSize, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_default_queue() .memcpy((void *)pI0[currentLevel], I0, dataSize) .wait())); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_default_queue() .memcpy((void *)pI1[currentLevel], I1, dataSize) .wait())); pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); checkCudaErrors(DPCT_CHECK_ERROR( *(pI0 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( *(pI1 + currentLevel - 1) = (const float *)sycl::malloc_device( ns * nh * sizeof(float), dpct::get_default_queue()))); Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1]); Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1]); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_default_queue() .memset(d_u, 0, stride * height * sizeof(float)) .wait())); checkCudaErrors( DPCT_CHECK_ERROR(dpct::get_default_queue() .memset(d_v, 0, stride * height * sizeof(float)) .wait())); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memset(d_du0, 0, dataSize).wait())); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memset(d_dv0, 0, dataSize).wait())); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memset(d_du1, 0, dataSize).wait())); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memset(d_dv1, 0, dataSize).wait())); // on current level we compute optical flow // between frame 0 and warped frame 1 WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], d_u, d_v, d_tmp); ComputeDerivatives(pI0[currentLevel], d_tmp, pW[currentLevel], pH[currentLevel], pS[currentLevel], d_Ix, d_Iy, d_Iz); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(d_du0, d_dv0, d_Ix, d_Iy, d_Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, d_du1, d_dv1); Swap(d_du0, d_du1); Swap(d_dv0, d_dv1); } // update u, v Add(d_u, d_du0, pH[currentLevel] * pS[currentLevel], d_u); Add(d_v, d_dv0, pH[currentLevel] * pS[currentLevel], d_v); } if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(d_u, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, d_nu); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(d_v, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, d_nv); Swap(d_u, d_nu); Swap(d_v, d_nv); } } checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memcpy(u, d_u, dataSize).wait())); checkCudaErrors(DPCT_CHECK_ERROR( dpct::get_default_queue().memcpy(v, d_v, dataSize).wait())); // cleanup for (int i = 0; i < nLevels; ++i) { checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI0[i], dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR( sycl::free((void *)pI1[i], dpct::get_default_queue()))); } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_tmp, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du0, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv0, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_du1, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_dv1, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Ix, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iy, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_Iz, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nu, dpct::get_default_queue()))); checkCudaErrors( DPCT_CHECK_ERROR(sycl::free(d_nv, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_u, dpct::get_default_queue()))); checkCudaErrors(DPCT_CHECK_ERROR(sycl::free(d_v, dpct::get_default_queue()))); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/main.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ const static char *const sSDKsample = "HSOpticalFlow"; // CPU-GPU discrepancy threshold for self-test const float THRESHOLD = 0.05f; #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" #include "flowGold.h" #include "flowCUDA.h" #include <helper_functions.h> #include <cmath> /////////////////////////////////////////////////////////////////////////////// /// \brief save optical flow in format described on vision.middlebury.edu/flow /// \param[in] name output file name /// \param[in] w optical flow field width /// \param[in] h optical flow field height /// \param[in] s optical flow field row stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void WriteFloFile(const char *name, int w, int h, int s, const float *u, const float *v) { FILE *stream; stream = fopen(name, "wb"); if (stream == 0) { printf("Could not save flow to \"%s\"\n", name); return; } float data = 202021.25f; fwrite(&data, sizeof(float), 1, stream); fwrite(&w, sizeof(w), 1, stream); fwrite(&h, sizeof(h), 1, stream); for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; fwrite(u + pos, sizeof(float), 1, stream); fwrite(v + pos, sizeof(float), 1, stream); } } fclose(stream); } /////////////////////////////////////////////////////////////////////////////// /// \brief /// load 4-channel unsigned byte image /// and convert it to single channel FP32 image /// \param[out] img_data pointer to raw image data /// \param[out] img_w image width /// \param[out] img_h image height /// \param[out] img_s image row stride /// \param[in] name image file name /// \param[in] exePath executable file path /// \return true if image is successfully loaded or false otherwise /////////////////////////////////////////////////////////////////////////////// bool LoadImageAsFP32(float *&img_data, int &img_w, int &img_h, int &img_s, const char *name, const char *exePath) { printf("Loading \"%s\" ...\n", name); char *name_ = sdkFindFilePath(name, exePath); if (!name_) { printf("File not found\n"); return false; } unsigned char *data = 0; unsigned int w = 0, h = 0; bool result = sdkLoadPPM4ub(name_, &data, &w, &h); if (result == false) { printf("Invalid file format\n"); return false; } img_w = w; img_h = h; img_s = iAlignUp(img_w); img_data = new float[img_s * h]; // source is 4 channel image const int widthStep = 4 * img_w; for (int i = 0; i < img_h; ++i) { for (int j = 0; j < img_w; ++j) { img_data[j + i * img_s] = ((float)data[j * 4 + i * widthStep]) / 255.0f; } } return true; } /////////////////////////////////////////////////////////////////////////////// /// \brief compare given flow field with gold (L1 norm) /// \param[in] width optical flow field width /// \param[in] height optical flow field height /// \param[in] stride optical flow field row stride /// \param[in] h_uGold horizontal displacement, gold /// \param[in] h_vGold vertical displacement, gold /// \param[in] h_u horizontal displacement /// \param[in] h_v vertical displacement /// \return true if discrepancy is lower than a given threshold /////////////////////////////////////////////////////////////////////////////// bool CompareWithGold(int width, int height, int stride, const float *h_uGold, const float *h_vGold, const float *h_u, const float *h_v) { float error = 0.0f; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int pos = j + i * stride; error += fabsf(h_u[pos] - h_uGold[pos]) + fabsf(h_v[pos] - h_vGold[pos]); } } error /= (float)(width * height); printf("L1 error : %.6f\n", error); return (error < THRESHOLD); } /////////////////////////////////////////////////////////////////////////////// /// application entry point /////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // welcome message printf("%s Starting...\n\n", sSDKsample); // pick GPU findCudaDevice(argc, (const char **)argv); // find images const char *const sourceFrameName = "frame10.ppm"; const char *const targetFrameName = "frame11.ppm"; // image dimensions int width; int height; // row access stride int stride; // flow is computed from source image to target image float *h_source; // source image, host memory float *h_target; // target image, host memory // load image from file if (!LoadImageAsFP32(h_source, width, height, stride, sourceFrameName, argv[0])) { exit(EXIT_FAILURE); } if (!LoadImageAsFP32(h_target, width, height, stride, targetFrameName, argv[0])) { exit(EXIT_FAILURE); } // allocate host memory for CPU results float *h_uGold = new float[stride * height]; float *h_vGold = new float[stride * height]; // allocate host memory for GPU results float *h_u = new float[stride * height]; float *h_v = new float[stride * height]; // smoothness // if image brightness is not within [0,1] // this paramter should be scaled appropriately const float alpha = 0.2f; // number of pyramid levels const int nLevels = 5; // number of solver iterations on each level const int nSolverIters = 500; // number of warping iterations const int nWarpIters = 3; ComputeFlowGold(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_uGold, h_vGold); ComputeFlowCUDA(h_source, h_target, width, height, stride, alpha, nLevels, nWarpIters, nSolverIters, h_u, h_v); // compare results (L1 norm) bool status = CompareWithGold(width, height, stride, h_uGold, h_vGold, h_u, h_v); WriteFloFile("FlowGPU.flo", width, height, stride, h_u, h_v); WriteFloFile("FlowCPU.flo", width, height, stride, h_uGold, h_vGold); // free resources delete[] h_uGold; delete[] h_vGold; delete[] h_u; delete[] h_v; delete[] h_source; delete[] h_target; // report self-test status exit(status ? EXIT_SUCCESS : EXIT_FAILURE); }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/flowGold.cpp.dp.cpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common.h" #include "flowGold.h" #include <cmath> /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read from arbitrary position within image using bilinear interpolation /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2D(const float *t, int w, int h, int s, float x, float y) { // integer parts in floating point format float intPartX, intPartY; // get fractional parts of coordinates float dx = fabsf(modff(x, &intPartX)); float dy = fabsf(modff(y, &intPartY)); // assume pixels are squares // one of the corners int ix0 = (int)intPartX; int iy0 = (int)intPartY; // mirror out-of-range position if (ix0 < 0) ix0 = abs(ix0 + 1); if (iy0 < 0) iy0 = abs(iy0 + 1); if (ix0 >= w) ix0 = w * 2 - ix0 - 1; if (iy0 >= h) iy0 = h * 2 - iy0 - 1; // corner which is opposite to (ix0, iy0) int ix1 = ix0 + 1; int iy1 = iy0 + 1; if (ix1 >= w) ix1 = w * 2 - ix1 - 1; if (iy1 >= h) iy1 = h * 2 - iy1 - 1; float res = t[ix0 + iy0 * s] * (1.0f - dx) * (1.0f - dy); res += t[ix1 + iy0 * s] * dx * (1.0f - dy); res += t[ix0 + iy1 * s] * (1.0f - dx) * dy; res += t[ix1 + iy1 * s] * dx * dy; return res; } /////////////////////////////////////////////////////////////////////////////// /// \brief host texture fetch /// /// read specific texel value /// out of range coords are mirrored /// \param[in] t texture raw data /// \param[in] w texture width /// \param[in] h texture height /// \param[in] s texture stride /// \param[in] x x coord of the point to fetch value at /// \param[in] y y coord of the point to fetch value at /// \return fetched value /////////////////////////////////////////////////////////////////////////////// inline float Tex2Di(const float *src, int w, int h, int s, int x, int y) { if (x < 0) x = abs(x + 1); if (y < 0) y = abs(y + 1); if (x >= w) x = w * 2 - x - 1; if (y >= h) y = h * 2 - y - 1; return src[x + y * s]; } /////////////////////////////////////////////////////////////////////////////// /// \brief resize image /// \param[in] src image to downscale /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] newWidth image new width /// \param[in] newHeight image new height /// \param[in] newStride image new stride /// \param[out] out downscaled image data /////////////////////////////////////////////////////////////////////////////// static void Downscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { const int srcX = j * 2; const int srcY = i * 2; // average 4 neighbouring pixels float sum; sum = Tex2Di(src, width, height, stride, srcX + 0, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 0, srcY + 1); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 0); sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 1); // normalize sum *= 0.25f; out[j + i * newStride] = sum; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief upscale one component of a displacement field /// \param[in] src field component to upscale /// \param[in] width field current width /// \param[in] height field current height /// \param[in] stride field current stride /// \param[in] newWidth field new width /// \param[in] newHeight field new height /// \param[in] newStride field new stride /// \param[in] scale value scale factor (multiplier) /// \param[out] out upscaled field component /////////////////////////////////////////////////////////////////////////////// static void Upscale(const float *src, int width, int height, int stride, int newWidth, int newHeight, int newStride, float scale, float *out) { for (int i = 0; i < newHeight; ++i) { for (int j = 0; j < newWidth; ++j) { // position within smaller image float x = ((float)j - 0.5f) * 0.5f; float y = ((float)i - 0.5f) * 0.5f; out[j + i * newStride] = Tex2D(src, width, height, stride, x, y) * scale; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, int w, int h, int s, const float *u, const float *v, float *out) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; // warped coords float x = (float)j + u[pos]; float y = (float)i + v[pos]; out[pos] = Tex2D(src, w, h, s, x, y); } } } /////////////////////////////////////////////////////////////////////////////// /// \brief computes image derivatives for a pair of images /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w images width /// \param[in] h images height /// \param[in] s images stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, int w, int h, int s, float *Ix, float *Iy, float *Iz) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; float t0, t1; // derivative filter is (1, -8, 0, 8, -1)/12 // x derivative t0 = Tex2Di(I0, w, h, s, j - 2, i); t0 -= Tex2Di(I0, w, h, s, j - 1, i) * 8.0f; t0 += Tex2Di(I0, w, h, s, j + 1, i) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j + 2, i); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j - 2, i); t1 -= Tex2Di(I1, w, h, s, j - 1, i) * 8.0f; t1 += Tex2Di(I1, w, h, s, j + 1, i) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j + 2, i); t1 /= 12.0f; // spatial derivatives are averaged Ix[pos] = (t0 + t1) * 0.5f; // t derivative Iz[pos] = I1[pos] - I0[pos]; // y derivative t0 = Tex2Di(I0, w, h, s, j, i - 2); t0 -= Tex2Di(I0, w, h, s, j, i - 1) * 8.0f; t0 += Tex2Di(I0, w, h, s, j, i + 1) * 8.0f; t0 -= Tex2Di(I0, w, h, s, j, i + 2); t0 /= 12.0f; t1 = Tex2Di(I1, w, h, s, j, i - 2); t1 -= Tex2Di(I1, w, h, s, j, i - 1) * 8.0f; t1 += Tex2Di(I1, w, h, s, j, i + 1) * 8.0f; t1 -= Tex2Di(I1, w, h, s, j, i + 2); t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method /// /// It is one iteration of Jacobi method for a corresponding linear system /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const int pos = j + i * s; int left, right, up, down; // handle borders if (j != 0) left = pos - 1; else left = pos; if (j != w - 1) right = pos + 1; else right = pos; if (i != 0) down = pos - s; else down = pos; if (i != h - 1) up = pos + s; else up = pos; float sumU = (du0[left] + du0[right] + du0[up] + du0[down]) * 0.25f; float sumV = (dv0[left] + dv0[right] + dv0[up] + dv0[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } } } /////////////////////////////////////////////////////////////////////////////// /// \brief method logic /// /// handles memory allocation and control flow /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] width images width /// \param[in] height images height /// \param[in] stride images stride /// \param[in] alpha degree of displacement field smoothness /// \param[in] nLevels number of levels in a pyramid /// \param[in] nWarpIters number of warping iterations per pyramid level /// \param[in] nSolverIters number of solver iterations (Jacobi iterations) /// \param[out] u horizontal displacement /// \param[out] v vertical displacement /////////////////////////////////////////////////////////////////////////////// void ComputeFlowGold(const float *I0, const float *I1, int width, int height, int stride, float alpha, int nLevels, int nWarpIters, int nSolverIters, float *u, float *v) { printf("Computing optical flow on CPU...\n"); float *u0 = u; float *v0 = v; const float **pI0 = new const float *[nLevels]; const float **pI1 = new const float *[nLevels]; int *pW = new int[nLevels]; int *pH = new int[nLevels]; int *pS = new int[nLevels]; const int pixelCountAligned = height * stride; float *tmp = new float[pixelCountAligned]; float *du0 = new float[pixelCountAligned]; float *dv0 = new float[pixelCountAligned]; float *du1 = new float[pixelCountAligned]; float *dv1 = new float[pixelCountAligned]; float *Ix = new float[pixelCountAligned]; float *Iy = new float[pixelCountAligned]; float *Iz = new float[pixelCountAligned]; float *nu = new float[pixelCountAligned]; float *nv = new float[pixelCountAligned]; // prepare pyramid int currentLevel = nLevels - 1; pI0[currentLevel] = I0; pI1[currentLevel] = I1; pW[currentLevel] = width; pH[currentLevel] = height; pS[currentLevel] = stride; for (; currentLevel > 0; --currentLevel) { int nw = pW[currentLevel] / 2; int nh = pH[currentLevel] / 2; int ns = iAlignUp(nw); pI0[currentLevel - 1] = new float[ns * nh]; pI1[currentLevel - 1] = new float[ns * nh]; Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1]); Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1]); pW[currentLevel - 1] = nw; pH[currentLevel - 1] = nh; pS[currentLevel - 1] = ns; } // initial approximation memset(u, 0, stride * height * sizeof(float)); memset(v, 0, stride * height * sizeof(float)); // compute flow for (; currentLevel < nLevels; ++currentLevel) { for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) { memset(du0, 0, pixelCountAligned * sizeof(float)); memset(dv0, 0, pixelCountAligned * sizeof(float)); memset(du1, 0, pixelCountAligned * sizeof(float)); memset(dv1, 0, pixelCountAligned * sizeof(float)); WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel], pS[currentLevel], u, v, tmp); // on current level we compute optical flow // between frame 0 and warped frame 1 ComputeDerivatives(pI0[currentLevel], tmp, pW[currentLevel], pH[currentLevel], pS[currentLevel], Ix, Iy, Iz); for (int iter = 0; iter < nSolverIters; ++iter) { SolveForUpdate(du0, dv0, Ix, Iy, Iz, pW[currentLevel], pH[currentLevel], pS[currentLevel], alpha, du1, dv1); Swap(du0, du1); Swap(dv0, dv1); } // update u, v for (int i = 0; i < pH[currentLevel] * pS[currentLevel]; ++i) { u[i] += du0[i]; v[i] += dv0[i]; } } // end for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) if (currentLevel != nLevels - 1) { // prolongate solution float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel]; Upscale(u, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleX, nu); float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel]; Upscale(v, pW[currentLevel], pH[currentLevel], pS[currentLevel], pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1], scaleY, nv); Swap(u, nu); Swap(v, nv); } } // end for (; currentLevel < nLevels; ++currentLevel) if (u != u0) { // solution is not in the specified array // copy memcpy(u0, u, pixelCountAligned * sizeof(float)); memcpy(v0, v, pixelCountAligned * sizeof(float)); Swap(u, nu); Swap(v, nv); } // cleanup // last level is not being freed here // because it refers to input images for (int i = 0; i < nLevels - 1; ++i) { delete[] pI0[i]; delete[] pI1[i]; } delete[] pI0; delete[] pI1; delete[] pW; delete[] pH; delete[] pS; delete[] tmp; delete[] du0; delete[] dv0; delete[] du1; delete[] dv1; delete[] Ix; delete[] Iy; delete[] Iz; delete[] nu; delete[] nv; }
cpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/flowCUDA.h
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FLOW_CUDA_H #define FLOW_CUDA_H void ComputeFlowCUDA( const float *I0, // source frame const float *I1, // tracked frame int width, // frame width int height, // frame height int stride, // row access stride float alpha, // smoothness coefficient int nLevels, // number of levels in pyramid int nWarpIters, // number of warping iterations per pyramid level int nSolverIters, // number of solver iterations (for linear system) float *u, // output horizontal flow float *v); // output vertical flow #endif
h
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/warpingKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with a given displacement field, CUDA kernel. /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out result /////////////////////////////////////////////////////////////////////////////// void WarpingKernel(int width, int height, int stride, const float *u, const float *v, float *out, dpct::image_accessor_ext<float, 2> texToWarp, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float x = ((float)ix + u[pos] + 0.5f) / (float)width; float y = ((float)iy + v[pos] + 0.5f) / (float)height; out[pos] = texToWarp.read(x, y); } /////////////////////////////////////////////////////////////////////////////// /// \brief warp image with provided vector field, CUDA kernel wrapper. /// /// For each output pixel there is a vector which tells which pixel /// from a source image should be mapped to this particular output /// pixel. /// It is assumed that images and the vector field have the same stride and /// resolution. /// \param[in] src source image /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] u horizontal displacement /// \param[in] v vertical displacement /// \param[out] out warped image /////////////////////////////////////////////////////////////////////////////// static void WarpImage(const float *src, int w, int h, int s, const float *u, const float *v, float *out) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); dpct::image_wrapper_base_p texToWarp; dpct::image_data texRes; memset(&texRes, 0, sizeof(dpct::image_data)); texRes.set_data_type(dpct::image_data_type::pitch); texRes.set_data_ptr((void *)src); /* DPCT1059:7: SYCL only supports 4-channel image format. Adjust the code. */ texRes.set_channel(dpct::image_channel::create<float>()); texRes.set_x(w); texRes.set_y(h); texRes.set_pitch(s * sizeof(float)); dpct::sampling_info texDescr; memset(&texDescr, 0, sizeof(dpct::sampling_info)); texDescr.set(sycl::addressing_mode::mirrored_repeat, sycl::filtering_mode::linear, sycl::coordinate_normalization_mode::normalized); /* DPCT1007:8: Migration of cudaTextureDesc::readMode is not supported. */ texDescr.readMode = cudaReadModeElementType; checkCudaErrors(DPCT_CHECK_ERROR( texToWarp = dpct::create_image_wrapper(texRes, texDescr))); /* DPCT1049:6: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ dpct::get_default_queue().submit([&](sycl::handler &cgh) { auto texToWarp_acc = static_cast<dpct::image_wrapper<float, 2> *>(texToWarp)->get_access( cgh); auto texToWarp_smpl = texToWarp->get_sampler(); cgh.parallel_for(sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { WarpingKernel(w, h, s, u, v, out, dpct::image_accessor_ext<float, 2>( texToWarp_smpl, texToWarp_acc), item_ct1); }); }); }
hpp
oneAPI-samples
data/projects/oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_HSOpticalFlow_SYCLMigration/01_dpct_output/Samples/5_Domain_Specific/HSOpticalFlow/derivativesKernel.dp.hpp
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sycl/sycl.hpp> #include <dpct/dpct.hpp> #include "common.h" /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// CUDA kernel, relies heavily on texture unit /// \param[in] width image width /// \param[in] height image height /// \param[in] stride image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// void ComputeDerivativesKernel(int width, int height, int stride, float *Ix, float *Iy, float *Iz, dpct::image_accessor_ext<float, 2> texSource, dpct::image_accessor_ext<float, 2> texTarget, const sycl::nd_item<3> &item_ct1) { const int ix = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); const int iy = item_ct1.get_local_id(1) + item_ct1.get_group(1) * item_ct1.get_local_range(1); const int pos = ix + iy * stride; if (ix >= width || iy >= height) return; float dx = 1.0f / (float)width; float dy = 1.0f / (float)height; float x = ((float)ix + 0.5f) * dx; float y = ((float)iy + 0.5f) * dy; float t0, t1; // x derivative t0 = texSource.read(x - 2.0f * dx, y); t0 -= texSource.read(x - 1.0f * dx, y) * 8.0f; t0 += texSource.read(x + 1.0f * dx, y) * 8.0f; t0 -= texSource.read(x + 2.0f * dx, y); t0 /= 12.0f; t1 = texTarget.read(x - 2.0f * dx, y); t1 -= texTarget.read(x - 1.0f * dx, y) * 8.0f; t1 += texTarget.read(x + 1.0f * dx, y) * 8.0f; t1 -= texTarget.read(x + 2.0f * dx, y); t1 /= 12.0f; Ix[pos] = (t0 + t1) * 0.5f; // t derivative Iz[pos] = texTarget.read(x, y) - texSource.read(x, y); // y derivative t0 = texSource.read(x, y - 2.0f * dy); t0 -= texSource.read(x, y - 1.0f * dy) * 8.0f; t0 += texSource.read(x, y + 1.0f * dy) * 8.0f; t0 -= texSource.read(x, y + 2.0f * dy); t0 /= 12.0f; t1 = texTarget.read(x, y - 2.0f * dy); t1 -= texTarget.read(x, y - 1.0f * dy) * 8.0f; t1 += texTarget.read(x, y + 1.0f * dy) * 8.0f; t1 -= texTarget.read(x, y + 2.0f * dy); t1 /= 12.0f; Iy[pos] = (t0 + t1) * 0.5f; } /////////////////////////////////////////////////////////////////////////////// /// \brief compute image derivatives /// /// \param[in] I0 source image /// \param[in] I1 tracked image /// \param[in] w image width /// \param[in] h image height /// \param[in] s image stride /// \param[out] Ix x derivative /// \param[out] Iy y derivative /// \param[out] Iz temporal derivative /////////////////////////////////////////////////////////////////////////////// static void ComputeDerivatives(const float *I0, const float *I1, int w, int h, int s, float *Ix, float *Iy, float *Iz) { sycl::range<3> threads(1, 6, 32); sycl::range<3> blocks(1, iDivUp(h, threads[1]), iDivUp(w, threads[2])); dpct::image_wrapper_base_p texSource, texTarget; dpct::image_data texRes; memset(&texRes, 0, sizeof(dpct::image_data)); texRes.set_data_type(dpct::image_data_type::pitch); texRes.set_data_ptr((void *)I0); /* DPCT1059:10: SYCL only supports 4-channel image format. Adjust the code. */ texRes.set_channel(dpct::image_channel::create<float>()); texRes.set_x(w); texRes.set_y(h); texRes.set_pitch(s * sizeof(float)); dpct::sampling_info texDescr; memset(&texDescr, 0, sizeof(dpct::sampling_info)); texDescr.set(sycl::addressing_mode::mirrored_repeat, sycl::filtering_mode::linear, sycl::coordinate_normalization_mode::normalized); /* DPCT1007:11: Migration of cudaTextureDesc::readMode is not supported. */ texDescr.readMode = cudaReadModeElementType; checkCudaErrors(DPCT_CHECK_ERROR( texSource = dpct::create_image_wrapper(texRes, texDescr))); memset(&texRes, 0, sizeof(dpct::image_data)); texRes.set_data_type(dpct::image_data_type::pitch); texRes.set_data_ptr((void *)I1); /* DPCT1059:12: SYCL only supports 4-channel image format. Adjust the code. */ texRes.set_channel(dpct::image_channel::create<float>()); texRes.set_x(w); texRes.set_y(h); texRes.set_pitch(s * sizeof(float)); checkCudaErrors(DPCT_CHECK_ERROR( texTarget = dpct::create_image_wrapper(texRes, texDescr))); /* DPCT1049:9: The work-group size passed to the SYCL kernel may exceed the limit. To get the device limit, query info::device::max_work_group_size. Adjust the work-group size if needed. */ dpct::get_default_queue().submit([&](sycl::handler &cgh) { auto texSource_acc = static_cast<dpct::image_wrapper<float, 2> *>(texSource)->get_access( cgh); auto texTarget_acc = static_cast<dpct::image_wrapper<float, 2> *>(texTarget)->get_access( cgh); auto texSource_smpl = texSource->get_sampler(); auto texTarget_smpl = texTarget->get_sampler(); cgh.parallel_for( sycl::nd_range<3>(blocks * threads, threads), [=](sycl::nd_item<3> item_ct1) { ComputeDerivativesKernel( w, h, s, Ix, Iy, Iz, dpct::image_accessor_ext<float, 2>(texSource_smpl, texSource_acc), dpct::image_accessor_ext<float, 2>(texTarget_smpl, texTarget_acc), item_ct1); }); }); }
hpp