code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" return base * power(__SCREAMING_SNAKE_CASE , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _lowercase : List[Any] = int(input("Enter the base: ").strip()) _lowercase : Any = int(input("Enter the exponent: ").strip()) _lowercase : Union[str, Any] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowercase : int = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
93
'''simple docstring''' import argparse import copy def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : List[Any] = {} with open(__SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase_ : Union[str, Any] = [] _list.append([line.split()[1], line.split()[2]] ) lowercase_ : str = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase_ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) lowercase_ : Dict = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : List[str] = f.read(1 ) lowercase_ : Optional[int] = start_node lowercase_ : Any = [] lowercase_ : List[str] = start_node lowercase_ : Optional[Any] = 0 while visiting not in first_solution: lowercase_ : Any = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: lowercase_ : List[Any] = k[1] lowercase_ : List[Any] = k[0] first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = distance_of_first_solution + int(__SCREAMING_SNAKE_CASE ) lowercase_ : int = best_node first_solution.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase_ : Optional[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : Tuple = [] for n in solution[1:-1]: lowercase_ : List[str] = solution.index(__SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: lowercase_ : Any = solution.index(__SCREAMING_SNAKE_CASE ) if n == kn: continue lowercase_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = kn lowercase_ : List[Any] = n lowercase_ : str = 0 for k in _tmp[:-1]: lowercase_ : Tuple = _tmp[_tmp.index(__SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase_ : Optional[Any] = distance + int(i[1] ) _tmp.append(__SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase_ : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : List[str] = first_solution lowercase_ : Dict = [] lowercase_ : List[str] = distance_of_first_solution lowercase_ : Optional[Any] = solution while count <= iters: lowercase_ : int = find_neighborhood(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 lowercase_ : Dict = neighborhood[index_of_best_solution] lowercase_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Tuple = False while not found: lowercase_ : Optional[int] = 0 while i < len(__SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: lowercase_ : Tuple = best_solution[i] lowercase_ : Optional[int] = solution[i] break lowercase_ : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase_ : Tuple = True lowercase_ : Optional[int] = best_solution[:-1] lowercase_ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase_ : Optional[Any] = cost lowercase_ : int = solution else: lowercase_ : Any = index_of_best_solution + 1 lowercase_ : Any = neighborhood[index_of_best_solution] if len(__SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) lowercase_ : List[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" lowercase_ : Any = generate_neighbours(args.File ) lowercase_ , lowercase_ : Union[str, Any] = generate_first_solution( args.File , __SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = tabu_search( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
93
1
import os import time import numpy as np import onnxruntime as ort A_ : int = '1' A_ : Any = '0' A_ : Optional[int] = '1' A_ : str = ort.SessionOptions() A_ : Any = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') A_ : Tuple = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] A_ : Dict = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) A_ : str = ort.RunOptions() A_ : Union[str, Any] = 128 A_ : str = 1 A_ : str = np.ones((batch, sequence), dtype=np.intaa) A_ : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) A_ : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') A_ : Tuple = time.time() A_ : int = 2000 A_ : Optional[int] = {} for iter in range(max_iters): A_ : Dict = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
141
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ : Union[str, Any] = logging.get_logger(__name__) A_ : str = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , A__=None , **A__ ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Dict = model A__ : Any = kwargs.get("""model_save_dir""" , A__ ) A__ : Optional[int] = kwargs.get("""latest_model_name""" , A__ ) def __call__( self , **A__ ): A__ : int = {k: np.array(A__ ) for k, v in kwargs.items()} return self.model.run(A__ , A__ ) @staticmethod def __A ( A__ , A__=None , A__=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(A__ , providers=[provider] , sess_options=A__ ) def __A ( self , A__ , A__ = None , **A__ ): A__ : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[int] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : str = self.model_save_dir.joinpath(A__ ) if src_path.exists(): A__ : List[str] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass def __A ( self , A__ , **A__ , ): if os.path.isfile(A__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(A__ , exist_ok=A__ ) # saving model weights/files self._save_pretrained(A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = None , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , A__ = None , **A__ , ): A__ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A__ ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(A__ , A__ ) , provider=A__ , sess_options=A__ ) A__ : Optional[Any] = Path(A__ ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=A__ , filename=A__ , use_auth_token=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , ) A__ : List[str] = Path(A__ ).parent A__ : str = Path(A__ ).name A__ : Optional[int] = OnnxRuntimeModel.load_model(A__ , provider=A__ , sess_options=A__ ) return cls(model=A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = True , A__ = None , A__ = None , **A__ , ): A__ : Optional[Any] = None if len(str(A__ ).split("""@""" ) ) == 2: A__ , A__ : Union[str, Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , use_auth_token=A__ , **A__ , )
141
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): pass class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None def __iter__( self : Optional[int] ): """simple docstring""" UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase = node.next_node @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Node(1) _SCREAMING_SNAKE_CASE = Node(2) _SCREAMING_SNAKE_CASE = Node(3) _SCREAMING_SNAKE_CASE = Node(4) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = root_node.next_node print(root_node.has_loop) # True _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) _SCREAMING_SNAKE_CASE = Node(5) _SCREAMING_SNAKE_CASE = Node(6) print(root_node.has_loop) # False _SCREAMING_SNAKE_CASE = Node(1) print(root_node.has_loop) # False
343
1
def UpperCamelCase ( ): """simple docstring""" for n in range(1, 1000000 ): yield n * (n + 1) // 2 def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = 1 __magic_name__ : Any = 2 while i * i <= n: __magic_name__ : Any = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 ) if __name__ == "__main__": print(solution())
351
import os from pathlib import Path def UpperCamelCase ( ): """simple docstring""" from torch.utils.cpp_extension import load __magic_name__ : Dict = Path(_A ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __magic_name__ : Optional[int] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""", """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""", """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""", _A, with_cuda=_A, extra_include_paths=[str(_A )], extra_cflags=["""-DWITH_CUDA=1"""], extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ], ) import MultiScaleDeformableAttention as MSDA return MSDA
138
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
260
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
0
from __future__ import annotations def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) UpperCamelCase : str = number_of_bytes // partitions UpperCamelCase : List[Any] = [] for i in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = i * bytes_per_partition + 1 UpperCamelCase : Any = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
140
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( __snake_case ): def __init__( self , A_ , A_=None , A_=None , A_=0 ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 1.0 if scale is None else scale UpperCamelCase : Optional[int] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCamelCase( self ): '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Union[str, Any] = args_dim UpperCamelCase : str = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) UpperCamelCase : Union[str, Any] = domain_map def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A__ ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : str = function def __UpperCamelCase( self , A_ , *A_ ): '''simple docstring''' return self.function(A_ , *A_ ) class A__ : _UpperCAmelCase :type _UpperCAmelCase :int _UpperCAmelCase :Dict[str, int] def __init__( self , A_ = 1 ): '''simple docstring''' UpperCamelCase : Tuple = dim UpperCamelCase : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , ): '''simple docstring''' UpperCamelCase : str = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def __UpperCamelCase( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.event_shape ) @property def __UpperCamelCase( self ): '''simple docstring''' return 0.0 def __UpperCamelCase( self , A_ ): '''simple docstring''' return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCamelCase( self , *A_ ): '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCAmelCase :type = StudentT @classmethod def __UpperCamelCase( cls , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : int = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"loc": 1, "scale": 1} _UpperCAmelCase :type = Normal @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCAmelCase :type = NegativeBinomial @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
140
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = len(lowerCAmelCase ) for i in range(length - 1 ): _lowerCAmelCase = i for k in range(i + 1 , lowerCAmelCase ): if collection[k] < collection[least]: _lowerCAmelCase = k if least != i: _lowerCAmelCase , _lowerCAmelCase = (collection[i], collection[least]) return collection if __name__ == "__main__": A__ : str =input('''Enter numbers separated by a comma:\n''').strip() A__ : Optional[int] =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
70
"""simple docstring""" from math import pow, sqrt def lowerCamelCase__ ( *_lowerCamelCase : float ) -> bool: lowerCamelCase_ = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
183
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ () -> List[Any]: __lowerCAmelCase : List[str] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" __lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert("""RGB""" ) return image def snake_case_ (__A : int ) -> Optional[int]: __lowerCAmelCase : Tuple = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def snake_case_ (__A : Union[str, Any] , __A : List[str] , __A : Dict ) -> Tuple: __lowerCAmelCase : str = dct.pop(_UpperCAmelCase ) __lowerCAmelCase : Optional[int] = val def snake_case_ (__A : Optional[int] , __A : Optional[Any] ) -> int: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCAmelCase : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) __lowerCAmelCase : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __lowerCAmelCase : Tuple = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) __lowerCAmelCase : Optional[Any] = qkv_bias def snake_case_ (__A : Any ) -> Union[str, Any]: __lowerCAmelCase : Optional[Any] = 3_6_4 if "coco" in model_name else 2_2_4 __lowerCAmelCase : Optional[int] = InstructBlipVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: __lowerCAmelCase : int = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCAmelCase : Dict = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: __lowerCAmelCase : Tuple = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: __lowerCAmelCase : Optional[int] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 __lowerCAmelCase : Optional[int] = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() __lowerCAmelCase : int = InstructBlipConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase , qformer_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def snake_case_ (__A : int , __A : Optional[Any]=None , __A : int=False ) -> List[Any]: __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: __lowerCAmelCase : int = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) __lowerCAmelCase : Union[str, Any] = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) __lowerCAmelCase : str = get_blipa_config(_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = InstructBlipForConditionalGeneration(_UpperCAmelCase ).eval() __lowerCAmelCase : str = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } __lowerCAmelCase : Any = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) __lowerCAmelCase : Tuple = "cuda:1" if torch.cuda.is_available() else "cpu" __lowerCAmelCase : str = "cuda:2" if torch.cuda.is_available() else "cpu" __lowerCAmelCase : str = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print("""Done!""" ) # update state dict keys __lowerCAmelCase : Any = original_model.state_dict() __lowerCAmelCase : Any = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCAmelCase : str = state_dict.pop(_UpperCAmelCase ) if key.startswith("""Qformer.bert""" ): __lowerCAmelCase : Any = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: __lowerCAmelCase : Any = key.replace("""self""" , """attention""" ) if "llm_proj" in key: __lowerCAmelCase : Optional[int] = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: __lowerCAmelCase : Tuple = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): __lowerCAmelCase : Any = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): __lowerCAmelCase : str = key.replace("""t5""" , """language""" ) __lowerCAmelCase : Dict = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) __lowerCAmelCase : Dict = load_demo_image() __lowerCAmelCase : Dict = "What is unusual about this image?" # create processor __lowerCAmelCase : Dict = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) __lowerCAmelCase : List[str] = InstructBlipProcessor( image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase , qformer_tokenizer=_UpperCAmelCase , ) __lowerCAmelCase : Any = processor(images=_UpperCAmelCase , text=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # make sure processor creates exact same pixel values __lowerCAmelCase : List[Any] = vis_processors["eval"](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) __lowerCAmelCase : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "vicuna" in model_name: __lowerCAmelCase : Optional[Any] = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits __lowerCAmelCase : Optional[Any] = hf_model(**_UpperCAmelCase ).logits else: __lowerCAmelCase : str = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits __lowerCAmelCase : Optional[Any] = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(_UpperCAmelCase ) __lowerCAmelCase : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) __lowerCAmelCase : List[str] = hf_model(**_UpperCAmelCase , labels=_UpperCAmelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape __lowerCAmelCase : Any = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , _UpperCAmelCase , atol=_UpperCAmelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) __lowerCAmelCase : List[Any] = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) __lowerCAmelCase : Tuple = hf_model.generate( **_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? __lowerCAmelCase : int = 2 print("""Original generation:""" , _UpperCAmelCase ) __lowerCAmelCase : str = processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowerCAmelCase : Dict = [text.strip() for text in output_text] print("""HF generation:""" , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) __UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Union[str, Any] =MBartConfig lowerCamelCase : Optional[Any] ={} lowerCamelCase : Dict ="gelu" def __init__( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=20 , lowerCAmelCase : Any=2 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : str=0 , ) -> Any: """simple docstring""" __lowerCAmelCase : str = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : int = seq_length __lowerCAmelCase : Tuple = is_training __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Dict = num_hidden_layers __lowerCAmelCase : int = num_attention_heads __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : List[Any] = attention_probs_dropout_prob __lowerCAmelCase : Tuple = max_position_embeddings __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : Optional[Any] = pad_token_id __lowerCAmelCase : int = bos_token_id def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : Tuple = prepare_mbart_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = TFMBartModel(config=lowerCAmelCase ).get_decoder() __lowerCAmelCase : Tuple = inputs_dict["""input_ids"""] __lowerCAmelCase : Optional[Any] = input_ids[:1, :] __lowerCAmelCase : Union[str, Any] = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase : Tuple = inputs_dict["""head_mask"""] __lowerCAmelCase : Any = 1 # first forward pass __lowerCAmelCase : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) __lowerCAmelCase ,__lowerCAmelCase : List[str] = outputs.to_tuple() __lowerCAmelCase : Union[str, Any] = past_key_values[1] def snake_case_ (__A : str , __A : Union[str, Any] , __A : Tuple , __A : Tuple=None , __A : Optional[Any]=None , __A : Optional[Any]=None , __A : Optional[int]=None , __A : Optional[Any]=None , ) -> int: if attention_mask is None: __lowerCAmelCase : Dict = tf.cast(tf.math.not_equal(__A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] =(TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCamelCase : List[str] =(TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCamelCase : Union[str, Any] =( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase : str =True lowerCamelCase : Tuple =False lowerCamelCase : Dict =False def SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = TFMBartModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] =[ " UN Chief Says There Is No Military Solution in Syria", ] lowerCamelCase : Tuple =[ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCamelCase : List[Any] ="facebook/mbart-large-en-ro" @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase ) self.assertListEqual(self.expected_text , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase : int ) -> str: """simple docstring""" __lowerCAmelCase : Dict = self.tokenizer(self.src_text , **lowerCAmelCase , return_tensors="""tf""" ) __lowerCAmelCase : Union[str, Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowerCAmelCase : List[str] = self.tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
139
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[Any] ): """simple docstring""" __lowercase =StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowercase =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase ='A painting of a squirrel eating a burger' __lowercase =torch.manual_seed(0 ) __lowercase =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase =np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase ='A painting of a squirrel eating a burger' __lowercase =torch.manual_seed(0 ) __lowercase =sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase =np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def snake_case ( self : Any ): """simple docstring""" __lowercase =StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase =sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowercase ='A painting of a squirrel eating a burger' __lowercase =torch.manual_seed(0 ) __lowercase =sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=__lowercase , ) __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase =np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
141
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( A ): def __init__( self : Optional[Any] , *__lowercase : str , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(*__lowercase , **__lowercase ) __lowercase ={} def snake_case ( self : Union[str, Any] , __lowercase : List[Any] , *__lowercase : Optional[int] , **__lowercase : int ): """simple docstring""" __lowercase =super().add_tokens(__lowercase , *__lowercase , **__lowercase ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self : int , __lowercase : List[Any] , *__lowercase : Union[str, Any] , __lowercase : Dict=1 , **__lowercase : Dict ): """simple docstring""" __lowercase =[] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) else: __lowercase =[] for i in range(__lowercase ): __lowercase =placeholder_token + f'''_{i}''' self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __lowercase =output def snake_case ( self : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int]=False , __lowercase : Optional[int]=1.0 ): """simple docstring""" if isinstance(__lowercase , __lowercase ): __lowercase =[] for i in range(len(__lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase =self.token_map[placeholder_token] __lowercase =tokens[: 1 + int(len(__lowercase ) * prop_tokens_to_load )] if vector_shuffle: __lowercase =copy.copy(__lowercase ) random.shuffle(__lowercase ) __lowercase =text.replace(__lowercase , ' '.join(__lowercase ) ) return text def __call__( self : int , __lowercase : List[Any] , *__lowercase : Tuple , __lowercase : Optional[Any]=False , __lowercase : Dict=1.0 , **__lowercase : List[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , ) def snake_case ( self : Dict , __lowercase : List[str] , *__lowercase : Tuple , __lowercase : Dict=False , __lowercase : List[str]=1.0 , **__lowercase : Optional[int] ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , )
141
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( __A, __A, __A, __A=1_024 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = list(zip(__A, __A ) ) UpperCAmelCase__ , UpperCAmelCase__ = sorted_examples[0] def is_too_big(__A ): return tok(__A, return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ = new_src + " " + src UpperCAmelCase__ = new_tgt + " " + tgt if is_too_big(__A ) or is_too_big(__A ): # cant fit, finalize example finished_src.append(__A ) finished_tgt.append(__A ) UpperCAmelCase__ , UpperCAmelCase__ = src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__A ) finished_tgt.append(__A ) return finished_src, finished_tgt def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = Path(__A ) save_path.mkdir(exist_ok=__A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" UpperCAmelCase__ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase__ = [x.rstrip() for x in Path(__A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ = pack_examples(__A, __A, __A, __A ) print(f"""packed {split} split from {len(__A )} examples -> {len(__A )}.""" ) Path(save_path / f"""{split}.source""" ).open("w" ).write("\n".join(__A ) ) Path(save_path / f"""{split}.target""" ).open("w" ).write("\n".join(__A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(__A, save_path / f"""{split}.source""" ) shutil.copyfile(__A, save_path / f"""{split}.target""" ) def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--tok_name", type=__A, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len", type=__A, default=128 ) parser.add_argument("--data_dir", type=__A ) parser.add_argument("--save_path", type=__A ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__A, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
143
from __future__ import annotations def lowerCAmelCase_ ( __A, __A, __A, ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
143
1
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__ ( nn.Module): A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = True A_ : bool = False A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] __lowerCAmelCase : Any = [] for i in range(self.num_layers ): __lowerCAmelCase : Tuple = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : Any = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = resnets __lowerCAmelCase : Optional[int] = attentions if self.add_downsample: __lowerCAmelCase : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Tuple = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCAmelCase : Tuple = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Tuple = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module): A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : bool = True A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = [] for i in range(self.num_layers ): __lowerCAmelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : str = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = resnets if self.add_downsample: __lowerCAmelCase : Optional[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : List[str] = () for resnet in self.resnets: __lowerCAmelCase : List[Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Union[str, Any] = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module): A_ : int A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = True A_ : bool = False A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] __lowerCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): __lowerCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = resnets __lowerCAmelCase : Optional[Any] = attentions if self.add_upsample: __lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[-1] __lowerCAmelCase : List[str] = res_hidden_states_tuple[:-1] __lowerCAmelCase : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : Union[str, Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase : Optional[Any] = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module): A_ : int A_ : int A_ : int A_ : float = 0.0 A_ : int = 1 A_ : bool = True A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = [] for i in range(self.num_layers ): __lowerCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : List[Any] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = resnets if self.add_upsample: __lowerCAmelCase : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet in self.resnets: # pop res hidden states __lowerCAmelCase : Any = res_hidden_states_tuple[-1] __lowerCAmelCase : List[Any] = res_hidden_states_tuple[:-1] __lowerCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : List[Any] = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: __lowerCAmelCase : Dict = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module): A_ : int A_ : float = 0.0 A_ : int = 1 A_ : int = 1 A_ : bool = False A_ : bool = False A_ : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): # there is always at least one resnet __lowerCAmelCase : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCAmelCase : List[Any] = [] for _ in range(self.num_layers ): __lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = resnets __lowerCAmelCase : Union[str, Any] = attentions def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : int = self.resnets[0](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCAmelCase : int = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
86
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __A : Tuple = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = "dhaka", _UpperCAmelCase = 5 ) -> int: '''simple docstring''' lowerCAmelCase : List[Any] = min(_UpperCAmelCase, 50 ) # Prevent abuse! lowerCAmelCase : str = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } lowerCAmelCase : Optional[Any] = requests.get('https://www.google.com/search', params=_UpperCAmelCase, headers=_UpperCAmelCase ) lowerCAmelCase : int = BeautifulSoup(html.text, 'html.parser' ) lowerCAmelCase : List[Any] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);', str(soup.select('script' ) ) ) ) lowerCAmelCase : Optional[int] = json.dumps(_UpperCAmelCase ) lowerCAmelCase : str = json.loads(_UpperCAmelCase ) lowerCAmelCase : str = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",', _UpperCAmelCase, ) if not matched_google_image_data: return 0 lowerCAmelCase : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]', '', str(_UpperCAmelCase ), ) lowerCAmelCase : Dict = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]', _UpperCAmelCase, ) for index, fixed_full_res_image in enumerate(_UpperCAmelCase ): if index >= max_images: return index lowerCAmelCase : Any = bytes(_UpperCAmelCase, 'ascii' ).decode( 'unicode-escape' ) lowerCAmelCase : Tuple = bytes(_UpperCAmelCase, 'ascii' ).decode( 'unicode-escape' ) lowerCAmelCase : Optional[Any] = urllib.request.build_opener() lowerCAmelCase : Any = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_UpperCAmelCase ) lowerCAmelCase : List[str] = f"query_{query.replace(' ', '_' )}" if not os.path.exists(_UpperCAmelCase ): os.makedirs(_UpperCAmelCase ) urllib.request.urlretrieve( # noqa: S310 _UpperCAmelCase, f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __A : Tuple = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
138
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowercase ( a_ ): _a = "switch_transformers" _a = ["past_key_values"] _a = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _a=3_2128 , _a=768 , _a=64 , _a=2048 , _a=64 , _a=12 , _a=3 , _a=12 , _a=3 , _a=12 , _a=8 , _a=False , _a=0.01 , _a="float32" , _a=False , _a=32 , _a=128 , _a=0.1 , _a=1e-6 , _a=0.001 , _a=0.001 , _a=1.0 , _a="relu" , _a=True , _a=False , _a=True , _a=0 , _a=1 , **_a , ) -> List[Any]: _A : str = vocab_size _A : Dict = d_model _A : str = d_kv _A : Optional[int] = d_ff _A : str = num_sparse_encoder_layers _A : Optional[Any] = num_layers _A : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _A : Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _A : str = self.num_layers // self.num_sparse_encoder_layers else: _A : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _A : Optional[int] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _A : Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers _A : List[str] = num_heads _A : Union[str, Any] = num_experts _A : Dict = expert_capacity _A : str = router_bias _A : Tuple = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _A : Optional[int] = router_dtype _A : Optional[Any] = router_ignore_padding_tokens _A : List[Any] = relative_attention_num_buckets _A : Optional[int] = relative_attention_max_distance _A : int = dropout_rate _A : List[str] = layer_norm_epsilon _A : int = initializer_factor _A : Tuple = feed_forward_proj _A : List[Any] = use_cache _A : List[Any] = add_router_probs _A : Optional[int] = router_z_loss_coef _A : Union[str, Any] = router_aux_loss_coef _A : Optional[Any] = self.feed_forward_proj.split("""-""" ) _A : Optional[Any] = act_info[-1] _A : Optional[Any] = act_info[0] == '''gated''' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _A : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , )
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__A ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , **lowercase ): """simple docstring""" super().__init__(**lowercase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowercase , **lowercase ): """simple docstring""" return super().__call__(lowercase , **lowercase ) def lowerCAmelCase_ ( self , **lowercase ): """simple docstring""" A_ : str = {} if "candidate_labels" in kwargs: A_ : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A_ : Optional[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowerCAmelCase_ ( self , lowercase , lowercase=None , lowercase="This is a photo of {}." ): """simple docstring""" A_ : Union[str, Any] = load_image(lowercase ) A_ : Tuple = self.image_processor(images=[image] , return_tensors=self.framework ) A_ : List[Any] = candidate_labels A_ : List[Any] = [hypothesis_template.format(lowercase ) for x in candidate_labels] A_ : str = self.tokenizer(lowercase , return_tensors=self.framework , padding=lowercase ) A_ : Union[str, Any] = [text_inputs] return inputs def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = model_inputs.pop('candidate_labels' ) A_ : List[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowercase ): A_ : Dict = text_inputs[0] else: # Batching case. A_ : Optional[Any] = text_inputs[0][0] A_ : List[Any] = self.model(**lowercase , **lowercase ) A_ : Union[str, Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = model_outputs.pop('candidate_labels' ) A_ : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": A_ : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) A_ : Optional[Any] = probs.tolist() if not isinstance(lowercase , lowercase ): A_ : List[str] = [scores] elif self.framework == "tf": A_ : Any = stable_softmax(lowercase , axis=-1 ) A_ : Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) A_ : Dict = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowercase , lowercase ) , key=lambda lowercase : -x[0] ) ] return result
140
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Optional[Any] ,__lowercase : Optional[int]=8 ): '''simple docstring''' A_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) A_ : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if latents is None: A_ : List[str] = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ : List[str] = latents.to(lowercase ) A_ : int = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A_ : Dict = torch.device(F'''cuda:{gpu_id}''' ) A_ : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def lowerCAmelCase_ ( self , lowercase=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A_ : Tuple = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: A_ , A_ : int = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. A_ : Optional[int] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 5_1_2 , lowercase = 5_1_2 , lowercase = 1_0_0 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): """simple docstring""" A_ : Dict = self._execution_device A_ : Dict = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): A_ : Dict = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : str = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): A_ : Optional[Any] = torch.cat(lowercase , dim=0 ) A_ : str = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : str = image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) A_ : Optional[Any] = hint.repeat_interleave(lowercase , dim=0 ) A_ : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) A_ : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) A_ : Any = self.scheduler.timesteps A_ : str = self.movq.config.latent_channels A_ , A_ : List[Any] = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent A_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Any = {'image_embeds': image_embeds, 'hint': hint} A_ : Dict = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: A_ , A_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) A_ , A_ : List[str] = noise_pred.chunk(2 ) A_ , A_ : List[str] = variance_pred.chunk(2 ) A_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_ , A_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing A_ : Any = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: A_ : Optional[Any] = image * 0.5 + 0.5 A_ : int = image.clamp(0 , 1 ) A_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
140
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _a : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): a : int =CLIPConfig a : Dict =["""CLIPEncoderLayer"""] def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(_a ) __lowerCAmelCase = CLIPVisionModelWithProjection(config.vision_config ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim,1 ) __lowerCAmelCase = nn.Linear(config.vision_config.projection_dim,1 ) @torch.no_grad() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0.5,__SCREAMING_SNAKE_CASE=0.5 ): '''simple docstring''' __lowerCAmelCase = self.vision_model(_a )[0] __lowerCAmelCase = self.p_head(_a ) __lowerCAmelCase = nsfw_detected.flatten() __lowerCAmelCase = nsfw_detected > p_threshold __lowerCAmelCase = nsfw_detected.tolist() if any(_a ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(_a ): if nsfw_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) __lowerCAmelCase = self.w_head(_a ) __lowerCAmelCase = watermark_detected.flatten() __lowerCAmelCase = watermark_detected > w_threshold __lowerCAmelCase = watermark_detected.tolist() if any(_a ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(_a ): if watermark_detected_: __lowerCAmelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
369
'''simple docstring''' import sys def _lowerCAmelCase ( lowercase ) -> List[str]: __lowerCAmelCase = len(lowercase ) __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] __lowerCAmelCase = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): __lowerCAmelCase = a + chain_length - 1 __lowerCAmelCase = sys.maxsize for c in range(lowercase , lowercase ): __lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __lowerCAmelCase = cost __lowerCAmelCase = c return matrix, sol def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Union[str, Any]: if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] __lowerCAmelCase = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __lowerCAmelCase , __lowerCAmelCase = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
46
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _a ( __a ): __a : List[str] = """align_text_model""" def __init__( self : Dict , lowercase : str=30_522 , lowercase : List[Any]=768 , lowercase : Union[str, Any]=12 , lowercase : Optional[Any]=12 , lowercase : Union[str, Any]=3_072 , lowercase : Tuple="gelu" , lowercase : Dict=0.1 , lowercase : int=0.1 , lowercase : Optional[int]=512 , lowercase : Union[str, Any]=2 , lowercase : Dict=0.02 , lowercase : Tuple=1E-12 , lowercase : Any=0 , lowercase : Any="absolute" , lowercase : str=True , **lowercase : Any , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = pad_token_id @classmethod def A ( cls : Any , lowercase : Union[str, os.PathLike] , **lowercase : Dict ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """align_vision_model""" def __init__( self : int , lowercase : int = 3 , lowercase : int = 600 , lowercase : float = 2.0 , lowercase : float = 3.1 , lowercase : int = 8 , lowercase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase : List[int] = [] , lowercase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase : float = 0.25 , lowercase : str = "swish" , lowercase : int = 2_560 , lowercase : str = "mean" , lowercase : float = 0.02 , lowercase : float = 0.001 , lowercase : float = 0.99 , lowercase : float = 0.2 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = width_coefficient UpperCAmelCase = depth_coefficient UpperCAmelCase = depth_divisor UpperCAmelCase = kernel_sizes UpperCAmelCase = in_channels UpperCAmelCase = out_channels UpperCAmelCase = depthwise_padding UpperCAmelCase = strides UpperCAmelCase = num_block_repeats UpperCAmelCase = expand_ratios UpperCAmelCase = squeeze_expansion_ratio UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dim UpperCAmelCase = pooling_type UpperCAmelCase = initializer_range UpperCAmelCase = batch_norm_eps UpperCAmelCase = batch_norm_momentum UpperCAmelCase = drop_connect_rate UpperCAmelCase = sum(lowercase ) * 4 @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : List[Any] = """align""" __a : str = True def __init__( self : Optional[int] , lowercase : Optional[Any]=None , lowercase : Optional[int]=None , lowercase : List[Any]=640 , lowercase : Optional[int]=1.0 , lowercase : List[Any]=0.02 , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) UpperCAmelCase = AlignTextConfig(**lowercase ) UpperCAmelCase = AlignVisionConfig(**lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = temperature_init_value UpperCAmelCase = initializer_range @classmethod def A ( cls : str , lowercase : AlignTextConfig , lowercase : AlignVisionConfig , **lowercase : List[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
34
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor A_ = logging.get_logger(__name__) class _snake_case ( _a ): def __init__( self : Optional[int] ,*SCREAMING_SNAKE_CASE__ : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : str ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
139
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(A__ ): os.makedirs(A__ ) UpperCamelCase = model.state_dict() def to_tf_var_name(A__ ): for patt, repl in iter(A__ ): UpperCamelCase = name.replace(A__ , A__ ) return F"""bert/{name}""" def create_tf_var(A__ , A__ , A__ ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=A__ , shape=tensor.shape , name=A__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(A__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(A__ ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=A__ , name=A__ , session=A__ ) tf.keras.backend.set_value(A__ , A__ ) UpperCamelCase = session.run(A__ ) print(F"""Successfully created {tf_name}: {np.allclose(A__ , A__ )}""" ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(A__ , os.path.join(A__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def __lowerCamelCase ( A__=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=A__ , required=A__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=A__ , default=A__ , required=A__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=A__ , required=A__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=A__ , required=A__ , help='Directory in which to save tensorflow model' ) UpperCamelCase = parser.parse_args(A__ ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=A__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
249
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def A ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = generator('Something there' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) UpperCamelCase = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) UpperCamelCase = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def A ( self : Dict ): """simple docstring""" UpperCamelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility UpperCamelCase = generator('Something there' , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ''}] ) UpperCamelCase = 3 UpperCamelCase = generator( 'Something there' , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) UpperCamelCase = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = generator('This is a test' , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) UpperCamelCase = generator.model.config.eos_token_id UpperCamelCase = '<pad>' UpperCamelCase = generator( ['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def A ( self : str ): """simple docstring""" UpperCamelCase = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility UpperCamelCase = generator('Something there' , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ''}] )
249
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __snake_case ( yaml.SafeLoader ): def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Optional[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case__ : Tuple = [tuple(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else key for key in keys] snake_case__ : Optional[int] = Counter(__UpperCamelCase ) snake_case__ : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = super().construct_mapping(__UpperCamelCase , deep=__UpperCamelCase ) self._check_no_duplicates_on_constructed_node(__UpperCamelCase ) return mapping def UpperCamelCase__ ( A__ ) -> Tuple[Optional[str], str]: snake_case__ : Optional[Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case__ : Optional[Any] = full_content[1:].index('---' ) + 1 snake_case__ : Optional[Any] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(A__ ) class __snake_case ( _lowerCamelCase ): # class attributes __lowerCamelCase = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def __a ( cls , __UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' with open(__UpperCamelCase , encoding='utf-8' ) as readme_file: snake_case__ , snake_case__ : Any = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCamelCase ) else: return cls() def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if path.exists(): with open(__UpperCamelCase , encoding='utf-8' ) as readme_file: snake_case__ : Dict = readme_file.read() else: snake_case__ : List[Any] = None snake_case__ : List[str] = self._to_readme(__UpperCamelCase ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(__UpperCamelCase ) def __a ( self , __UpperCamelCase = None ) -> str: '''simple docstring''' if readme_content is not None: snake_case__ , snake_case__ : str = _split_yaml_from_readme(__UpperCamelCase ) snake_case__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: snake_case__ : List[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __a ( cls , __UpperCamelCase ) -> "DatasetMetadata": '''simple docstring''' snake_case__ : Dict = yaml.load(__UpperCamelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case__ : str = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCamelCase ) def __a ( self ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCamelCase , allow_unicode=__UpperCamelCase , encoding='utf-8' , ).decode('utf-8' ) lowerCAmelCase__ : Dict = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCAmelCase__ : int = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCAmelCase__ : Dict = ap.parse_args() lowerCAmelCase__ : Any = Path(args.readme_filepath) lowerCAmelCase__ : Optional[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
143
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
1
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
import argparse import json import subprocess def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode("utf-8" ) lowercase__ = json.loads(SCREAMING_SNAKE_CASE_ ) lowercase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return values.split("," ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
224
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _lowercase = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def _snake_case ( snake_case__ : Dict , snake_case__ : List[str] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , 'sklearn' ) return (preds == labels).mean() def _snake_case ( snake_case__ : Any , snake_case__ : Union[str, Any] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , 'sklearn' ) A = simple_accuracy(snake_case__ , snake_case__ ) A = fa_score(y_true=snake_case__ , y_pred=snake_case__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _snake_case ( snake_case__ : str , snake_case__ : Union[str, Any] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , 'sklearn' ) A = pearsonr(snake_case__ , snake_case__ )[0] A = spearmanr(snake_case__ , snake_case__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _snake_case ( snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : str ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , 'sklearn' ) assert len(snake_case__ ) == len(snake_case__ ), F'Predictions and labels have mismatched lengths {len(snake_case__ )} and {len(snake_case__ )}' if task_name == "cola": return {"mcc": matthews_corrcoef(snake_case__ , snake_case__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "mrpc": return acc_and_fa(snake_case__ , snake_case__ ) elif task_name == "sts-b": return pearson_and_spearman(snake_case__ , snake_case__ ) elif task_name == "qqp": return acc_and_fa(snake_case__ , snake_case__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "qnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "rte": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "wnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} elif task_name == "hans": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError(snake_case__ ) def _snake_case ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): warnings.warn(snake_case__ , snake_case__ ) requires_backends(snake_case__ , 'sklearn' ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError(F'Predictions and labels have mismatched lengths {len(snake_case__ )} and {len(snake_case__ )}' ) if task_name == "xnli": return {"acc": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError(snake_case__ )
74
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="replace" , lowerCamelCase_ : Any="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : int="<pad>" , lowerCamelCase_ : List[str]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCamelCase_ ( self : str ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : str ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(lowerCamelCase_ ) UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_ ) UpperCamelCase = """ """.join(lowerCamelCase_ ) UpperCamelCase = word return word def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Tuple ): """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_ ): UpperCamelCase = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : str ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def lowerCamelCase_ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCamelCase = 0 with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCamelCase = """ """ + text return (text, kwargs) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , ): """simple docstring""" UpperCamelCase = super()._pad( encoded_inputs=lowerCamelCase_ , max_length=lowerCamelCase_ , padding_strategy=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCamelCase = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
343
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = tokenizer.decode(greedy_ids[0]) _UpperCamelCase = TextIteratorStreamer(lowercase_) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_) _UpperCamelCase = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase = tokenizer.decode(new_greedy_ids[0]) with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_prompt=lowercase_) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("distilgpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("distilgpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = torch.ones((1, 5) , device=lowercase_).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase = TextStreamer(lowercase_ , skip_special_tokens=lowercase_) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase = cs.out[:-1] # Remove the final "\n" _UpperCamelCase = tokenizer(lowercase_ , return_tensors="pt") self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1)) def __UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") _UpperCamelCase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(lowercase_) _UpperCamelCase = -1 _UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size).to(lowercase_) _UpperCamelCase = TextIteratorStreamer(lowercase_ , timeout=0.0_01) _UpperCamelCase = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase = Thread(target=model.generate , kwargs=lowercase_) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_): _UpperCamelCase = "" for new_text in streamer: streamer_text += new_text
371
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase__ = {'''facebook/blenderbot_small-90M''': 512} def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char _UpperCamelCase = set(a__ ) return pairs class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any]="__start__" , lowercase_ : Optional[int]="__end__" , lowercase_ : List[Any]="__unk__" , lowercase_ : List[str]="__null__" , **lowercase_ : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_) with open(lowercase_ , encoding="utf-8") as vocab_handle: _UpperCamelCase = json.load(lowercase_) _UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8") as merges_handle: _UpperCamelCase = merges_handle.read().split("\n")[1:-1] _UpperCamelCase = [tuple(merge.split()) for merge in merges] _UpperCamelCase = dict(zip(lowercase_ , range(len(lowercase_)))) _UpperCamelCase = {} @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return len(self.encoder) def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCamelCase = re.sub("([.,!?()])" , R" \1" , lowercase_) _UpperCamelCase = re.sub("(')" , R" \1 " , lowercase_) _UpperCamelCase = re.sub(R"\s{2,}" , " " , lowercase_) if "\n" in token: _UpperCamelCase = token.replace("\n" , " __newln__") _UpperCamelCase = token.split(" ") _UpperCamelCase = [] for token in tokens: if not len(lowercase_): continue _UpperCamelCase = token.lower() _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _UpperCamelCase = get_pairs(lowercase_) if not pairs: words.append(lowercase_) continue while True: _UpperCamelCase = min(lowercase_ , key=lambda lowercase_: self.bpe_ranks.get(lowercase_ , float("inf"))) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(lowercase_): try: _UpperCamelCase = word.index(lowercase_ , lowercase_) new_word.extend(word[i:j]) _UpperCamelCase = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = new_word if len(lowercase_) == 1: break else: _UpperCamelCase = get_pairs(lowercase_) _UpperCamelCase = "@@ ".join(lowercase_) _UpperCamelCase = word[:-4] _UpperCamelCase = word words.append(lowercase_) return " ".join(lowercase_) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = re.findall(R"\S+\n?" , lowercase_) for token in words: split_tokens.extend(list(self.bpe(lowercase_).split(" "))) return split_tokens def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> int: """simple docstring""" _UpperCamelCase = token.lower() return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token)) def __UpperCAmelCase ( self : Any , lowercase_ : int) -> str: """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token) def __UpperCAmelCase ( self : Any , lowercase_ : List[str]) -> str: """simple docstring""" _UpperCamelCase = " ".join(lowercase_).replace("@@ " , "").strip() return out_string def __UpperCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowercase_ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_) + "\n") _UpperCamelCase = 0 with open(lowercase_ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!") _UpperCamelCase = token_index writer.write(" ".join(lowercase_) + "\n") index += 1 return vocab_file, merge_file
63
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowercase ( A_ )-> Optional[int]: '''simple docstring''' a : str = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Tuple = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: a : Union[str, Any] = s_dict.pop(A_ ) elif "subsample" in key: a : Optional[Any] = s_dict.pop(A_ ) def lowercase ( A_ )-> Optional[int]: '''simple docstring''' a , a : int = emb.weight.shape a : List[str] = nn.Linear(A_ , A_ , bias=A_ ) a : List[Any] = emb.weight.data return lin_layer def lowercase ( A_ , A_ )-> Dict: '''simple docstring''' a : Optional[Any] = torch.load(A_ , map_location="cpu" ) a : Union[str, Any] = mam_aaa["args"] a : Tuple = mam_aaa["model"] a : Tuple = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(A_ ) rename_keys(A_ ) a : str = state_dict["decoder.embed_tokens.weight"].shape[0] a : List[Any] = args.share_decoder_input_output_embed a : str = [int(A_ ) for i in args.conv_kernel_sizes.split("," )] a : Optional[int] = SpeechaTextConfig( vocab_size=A_ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(A_ ) , conv_channels=args.conv_channels , conv_kernel_sizes=A_ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A_ , num_beams=5 , max_length=200 , use_cache=A_ , decoder_start_token_id=2 , early_stopping=A_ , ) a : Dict = SpeechaTextForConditionalGeneration(A_ ) a , a : List[Any] = model.model.load_state_dict(A_ , strict=A_ ) if len(A_ ) > 0 and not set(A_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: a : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a : Union[str, Any] = lm_head_weights model.save_pretrained(A_ ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowercase = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
40
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'longformer' def __init__( self , lowercase = 512 , lowercase = 2 , lowercase = 1 , lowercase = 0 , lowercase = 2 , lowercase = 30_522 , lowercase = 768 , lowercase = 12 , lowercase = 12 , lowercase = 3_072 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 512 , lowercase = 2 , lowercase = 0.02 , lowercase = 1e-12 , lowercase = False , **lowercase , ) -> Optional[int]: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = attention_window lowerCAmelCase = sep_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = onnx_export class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = "default" , lowercase = None ) -> Tuple: super().__init__(lowercase , lowercase , lowercase ) lowerCAmelCase = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = super().outputs if self.task == "default": lowerCAmelCase = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1e-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: lowerCAmelCase = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowerCAmelCase = 1 return inputs
46
0
from math import pi, sqrt, tan def a_ ( lowerCAmelCase_ : float ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a_ ( lowerCAmelCase_ : float ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def a_ ( lowerCAmelCase_ : float ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(lowerCAmelCase_, 2 ) * torus_radius * tube_radius def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def a_ ( lowerCAmelCase_ : float ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCAmelCase = (sidea + sidea + sidea) / 2 __lowerCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def a_ ( lowerCAmelCase_ : float ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : float ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
368
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a_ = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = [1] __lowercase ,__lowercase ,__lowercase : List[str] = 0, 0, 0 __lowercase : List[str] = ugly_nums[ia] * 2 __lowercase : Any = ugly_nums[ia] * 3 __lowercase : str = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): __lowercase : Union[str, Any] = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 __lowercase : List[str] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowercase : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowercase : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_0_0) = }")
249
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler("sample_euler" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler("sample_euler" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=_UpperCAmelCase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
364
"""simple docstring""" def a__ ( lowerCAmelCase__ = 2000000 ): UpperCAmelCase_ = [0 for i in range(n + 1 )] UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCAmelCase__ ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 for i in range(lowerCAmelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
241
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Any ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[str] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): requires_backends(cls , ['flax'] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : int ): requires_backends(self , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(cls , ['flax'] ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Tuple ): requires_backends(cls , ['flax'] )
224
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delta=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = None ops.enable_eager_execution_internal() lowerCAmelCase_ : str = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase_ : Dict = tf.config.list_logical_devices(device_type='CPU' ) lowerCAmelCase_ : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase_ : Union[str, Any] = GradientAccumulator() lowerCAmelCase_ : int = tf.Variable([4.0, 3.0] ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = create_optimizer(5E-5 , 1_0 , 5 ) lowerCAmelCase_ : Union[str, Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE_ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE_ : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): with strategy.scope(): lowerCAmelCase_ : Tuple = strategy.experimental_local_results(SCREAMING_SNAKE_CASE_ ) local_variables[0].assign(SCREAMING_SNAKE_CASE_ ) local_variables[1].assign(SCREAMING_SNAKE_CASE_ ) strategy.run(SCREAMING_SNAKE_CASE_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE_ ) def _check_local_values(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
224
1
"""simple docstring""" from __future__ import annotations import math A = "2020.9.26" A = "xcodz-dot, cclaus, dhruvmanila" def __A ( a_ :float , a_ :float , a_ :float , a_ :float , a_ :float) -> tuple[float, float]: if not all(isinstance(UpperCAmelCase_ , (float, int)) for val in locals().values()): __a : Union[str, Any] = F"""Input values must either be float or int: {list(locals().values())}""" raise TypeError(UpperCAmelCase_) __a : List[Any] = ((x * distance) / (z + distance)) * scale __a : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __A ( a_ :float , a_ :float , a_ :float , a_ :str , a_ :float) -> tuple[float, float, float]: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('''Axis must be a str''') __a : Tuple = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase_ , (float, int)) for val in input_variables.values()): __a : Optional[Any] = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values())}""" ) raise TypeError(UpperCAmelCase_) __a : Dict = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": __a : List[str] = x * math.cos(UpperCAmelCase_) - y * math.sin(UpperCAmelCase_) __a : str = y * math.cos(UpperCAmelCase_) + x * math.sin(UpperCAmelCase_) __a : str = z elif axis == "x": __a : Union[str, Any] = y * math.cos(UpperCAmelCase_) - z * math.sin(UpperCAmelCase_) __a : Union[str, Any] = z * math.cos(UpperCAmelCase_) + y * math.sin(UpperCAmelCase_) __a : Union[str, Any] = x elif axis == "y": __a : Tuple = x * math.cos(UpperCAmelCase_) - z * math.sin(UpperCAmelCase_) __a : List[str] = z * math.cos(UpperCAmelCase_) + x * math.sin(UpperCAmelCase_) __a : Union[str, Any] = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''') return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(F'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
357
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=1 , ): __a : Dict = parent __a : str = batch_size __a : Union[str, Any] = seq_length __a : Any = is_training __a : int = use_input_mask __a : Optional[int] = use_token_type_ids __a : int = use_labels __a : int = vocab_size __a : int = hidden_size __a : str = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : List[str] = type_sequence_label_size __a : List[str] = initializer_range __a : Optional[int] = num_labels __a : List[str] = num_choices __a : int = scope __a : Union[str, Any] = q_groups __a : Dict = k_groups __a : List[str] = v_groups __a : Any = post_attention_groups __a : Optional[int] = intermediate_groups __a : List[str] = output_groups def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[Any] = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.seq_length] ) __a : List[str] = None __a : Union[str, Any] = None __a : int = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = self.num_labels __a : List[Any] = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = self.num_labels __a : List[str] = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self.num_choices __a : Union[str, Any] = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Optional[Any] = config_and_inputs __a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowerCAmelCase = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Union[str, Any] = SqueezeBertModelTester(self ) __a : Dict = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __a : Tuple = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) __a : List[str] = model(_UpperCAmelCase )[0] __a : int = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __a : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
188
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE : Any = get_tests_dir('''fixtures''') _SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _SCREAMING_SNAKE_CASE : Dict = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__a , __a ) def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def lowercase_ ( self : List[Any] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop('''feature_extractor_type''' ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__a , __a ) def lowercase_ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaisesRegex( __a , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def lowercase_ ( self : Optional[Any] ) -> List[str]: with self.assertRaisesRegex( __a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a , revision='''aaaaaa''' ) def lowercase_ ( self : List[Any] ) -> Any: with self.assertRaisesRegex( __a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : List[Any] ) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__a ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def lowercase_ ( self : Any ) -> Any: try: AutoConfig.register('''custom''' , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ) -> List[str]: class UpperCAmelCase__ ( lowerCamelCase_ ): """simple docstring""" a = True try: AutoConfig.register('''custom''' , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(__a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
314
'''simple docstring''' import math class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : List[str] , __a : list[list[float]] , __a : list[int] ): _a = 0.0 _a = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self : List[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ): for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCamelCase ( ) -> None: # Training Examples ( m, n ) _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowercase , lowercase ) # Update the winning vector _a = self_organizing_map.update(lowercase , lowercase , lowercase , lowercase ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowercase , lowercase ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
0
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square(__lowerCAmelCase , __lowerCAmelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCAmelCase : Optional[Any] = update_area_of_max_square(__lowerCAmelCase , col + 1 ) _UpperCAmelCase : Union[str, Any] = update_area_of_max_square(row + 1 , col + 1 ) _UpperCAmelCase : str = update_area_of_max_square(row + 1 , __lowerCAmelCase ) if mat[row][col]: _UpperCAmelCase : str = 1 + min([right, diagonal, down] ) _UpperCAmelCase : Dict = max(largest_square_area[0] , __lowerCAmelCase ) return sub_problem_sol else: return 0 _UpperCAmelCase : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def update_area_of_max_square_using_dp_array( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCAmelCase : str = update_area_of_max_square_using_dp_array(__lowerCAmelCase , col + 1 , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowerCAmelCase ) _UpperCAmelCase : Any = update_area_of_max_square_using_dp_array(row + 1 , __lowerCAmelCase , __lowerCAmelCase ) if mat[row][col]: _UpperCAmelCase : Any = 1 + min([right, diagonal, down] ) _UpperCAmelCase : List[str] = max(largest_square_area[0] , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = sub_problem_sol return sub_problem_sol else: return 0 _UpperCAmelCase : Optional[Any] = [0] _UpperCAmelCase : Union[str, Any] = [[-1] * cols for _ in range(__lowerCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowerCAmelCase ) return largest_square_area[0] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCAmelCase : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase : Union[str, Any] = dp_array[row][col + 1] _UpperCAmelCase : str = dp_array[row + 1][col + 1] _UpperCAmelCase : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCAmelCase : Tuple = 1 + min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[str] = max(dp_array[row][col] , __lowerCAmelCase ) else: _UpperCAmelCase : Optional[Any] = 0 return largest_square_area def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = [0] * (cols + 1) _UpperCAmelCase : Optional[Any] = [0] * (cols + 1) _UpperCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCAmelCase : List[Any] = current_row[col + 1] _UpperCAmelCase : Union[str, Any] = next_row[col + 1] _UpperCAmelCase : List[str] = next_row[col] if mat[row][col] == 1: _UpperCAmelCase : Any = 1 + min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : int = max(current_row[col] , __lowerCAmelCase ) else: _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
356
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
0
"""simple docstring""" from functools import lru_cache @lru_cache def _snake_case ( lowercase__ ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
96
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( _a , _a ): """simple docstring""" @register_to_config def __init__( self : str , snake_case : int = 32 , snake_case : int = 64 , snake_case : int = 20 , snake_case : int = 768 , snake_case : Tuple=77 , snake_case : List[Any]=4 , snake_case : float = 0.0 , snake_case : str = "silu" , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = "linear" , snake_case : Optional[str] = "prd" , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , ) -> List[str]: super().__init__() __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[Any] = additional_embeddings __UpperCAmelCase : Any = time_embed_dim or inner_dim __UpperCAmelCase : Any = embedding_proj_dim or embedding_dim __UpperCAmelCase : Union[str, Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(snake_case , snake_case , 0 ) __UpperCAmelCase : Optional[Any] = TimestepEmbedding(snake_case , snake_case , out_dim=snake_case , act_fn=snake_case ) __UpperCAmelCase : str = nn.Linear(snake_case , snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : str = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : str = nn.LayerNorm(snake_case ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) __UpperCAmelCase : List[Any] = nn.Linear(snake_case , snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) __UpperCAmelCase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , 1 , snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) __UpperCAmelCase : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( snake_case , snake_case , snake_case , dropout=snake_case , activation_fn='''gelu''' , attention_bias=snake_case , ) for d in range(snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Tuple = nn.LayerNorm(snake_case ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) __UpperCAmelCase : Dict = nn.LayerNorm(snake_case ) __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) __UpperCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : str = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case , persistent=snake_case ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , snake_case ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : int ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case : str , snake_case : torch.nn.Module , snake_case : Dict[str, AttentionProcessor] ): if hasattr(snake_case , '''set_processor''' ): __UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , snake_case , snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case , snake_case , snake_case ) return processors def lowerCamelCase__ ( self : Optional[Any] , snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(snake_case , snake_case ) and len(snake_case ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(snake_case )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(snake_case : str , snake_case : torch.nn.Module , snake_case : int ): if hasattr(snake_case , '''set_processor''' ): if not isinstance(snake_case , snake_case ): module.set_processor(snake_case ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , snake_case , snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case , snake_case , snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[torch.Tensor, float, int] , snake_case : torch.FloatTensor , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.BoolTensor] = None , snake_case : bool = True , ) -> List[Any]: __UpperCAmelCase : Any = hidden_states.shape[0] __UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(snake_case ): __UpperCAmelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Any = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps * torch.ones(snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Tuple = self.time_proj(snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[int] = self.time_embedding(snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case ) __UpperCAmelCase : str = self.embedding_proj(snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : Optional[int] = self.proj_in(snake_case ) __UpperCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case , -1 , -1 ) additional_embeds.append(snake_case ) __UpperCAmelCase : Dict = torch.cat( snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCAmelCase : str = F.pad(snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block(snake_case , attention_mask=snake_case ) __UpperCAmelCase : int = self.norm_out(snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : Optional[int] = hidden_states[:, -1] else: __UpperCAmelCase : List[Any] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Dict = self.proj_to_clip_embeddings(snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] ) -> str: __UpperCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
240
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : """simple docstring""" def __init__( self : List[str] , snake_case : Any , snake_case : Tuple=13 , snake_case : Any=10 , snake_case : Any=3 , snake_case : Dict=2 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : List[Any]=32 , snake_case : Dict=5 , snake_case : List[str]=4 , snake_case : Dict=37 , snake_case : Any="gelu" , snake_case : Optional[int]=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : Optional[int]=10 , snake_case : Dict=0.02 , snake_case : Tuple="divided_space_time" , snake_case : List[Any]=None , ) -> Optional[int]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : List[str] = num_frames __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : str = use_labels __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Any = attention_type __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = scope __UpperCAmelCase : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : str = (image_size // patch_size) ** 2 __UpperCAmelCase : int = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase__ ( self : List[Any] ) -> Tuple: __UpperCAmelCase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __UpperCAmelCase : str = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Optional[int] = self.num_labels return config def lowerCamelCase__ ( self : Dict , snake_case : Any , snake_case : Optional[int] , snake_case : List[Any] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = TimesformerModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Tuple = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : int , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[Any] ) -> str: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case ) # verify the logits shape __UpperCAmelCase : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case ) def lowerCamelCase__ ( self : Any ) -> List[str]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase__ ( self : int ) -> str: __UpperCAmelCase : Tuple = TimesformerModelTester(self ) __UpperCAmelCase : str = ConfigTester( self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Dict , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int]=False ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = copy.deepcopy(snake_case ) if return_labels: if model_class in get_values(snake_case ): __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Any ) -> Dict: pass def lowerCamelCase__ ( self : Optional[Any] ) -> int: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(snake_case ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Tuple ) -> Dict: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> str: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = TimesformerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[Any]: if not self.has_attentions: pass else: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = self.model_tester.seq_length __UpperCAmelCase : int = self.model_tester.num_frames __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : str = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : List[Any] = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : Tuple = len(snake_case ) # Check attention is always last and order is fine __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + 1 , len(snake_case ) ) __UpperCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: def check_hidden_states_output(snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple ): __UpperCAmelCase : str = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) __UpperCAmelCase : int = outputs.hidden_states __UpperCAmelCase : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case ) , snake_case ) __UpperCAmelCase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : str = True check_hidden_states_output(snake_case , snake_case , snake_case ) def _a ( ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __UpperCAmelCase : int = np.load(_lowercase ) return list(_lowercase ) @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( snake_case ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Dict = prepare_video() __UpperCAmelCase : Union[str, Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(snake_case ) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**snake_case ) # verify the logits __UpperCAmelCase : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , snake_case ) __UpperCAmelCase : List[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
240
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __UpperCAmelCase = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __UpperCAmelCase = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __UpperCAmelCase = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def _UpperCamelCase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def _UpperCamelCase ( self , _A , _A , _A = 1 , _A = 4 , ) -> Optional[Any]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a_ , hypotheses=a_ , min_len=a_ , max_len=a_ ) }
299
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Optional[Any] , a_ : int , a_ : Optional[int]=13 , a_ : Optional[Any]=7 , a_ : Tuple=True , a_ : Optional[int]=True , a_ : List[str]=True , a_ : Union[str, Any]=True , a_ : List[Any]=99 , a_ : List[Any]=32 , a_ : Dict=5 , a_ : Tuple=4 , a_ : Any=37 , a_ : int="gelu" , a_ : Any=0.1 , a_ : Union[str, Any]=0.1 , a_ : Dict=5_12 , a_ : Union[str, Any]=16 , a_ : Optional[int]=2 , a_ : Dict=0.02 , a_ : List[str]=False , a_ : str=True , a_ : Any="None" , a_ : Dict=3 , a_ : List[str]=4 , a_ : Optional[Any]=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Any = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : List[Any] = use_input_mask lowerCAmelCase_ : str = use_token_type_ids lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[Any] = num_labels lowerCAmelCase_ : List[Any] = num_choices lowerCAmelCase_ : Optional[Any] = relative_attention lowerCAmelCase_ : Optional[int] = position_biased_input lowerCAmelCase_ : Union[str, Any] = pos_att_type lowerCAmelCase_ : Tuple = scope def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ : int = None if self.use_token_type_ids: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self : int ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.get_config() lowerCAmelCase_ : Tuple = 3_00 return config def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , a_ : Union[str, Any] , a_ : Dict , a_ : str , a_ : int , a_ : Any , a_ : Tuple ): lowerCAmelCase_ : Union[str, Any] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : List[str] = model(a_ , token_type_ids=a_ )[0] lowerCAmelCase_ : Optional[Any] = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase ( self : Optional[Any] , a_ : Optional[int] , a_ : int , a_ : List[str] , a_ : int , a_ : Tuple , a_ : int , a_ : List[Any] ): lowerCAmelCase_ : List[Any] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self : str , a_ : List[str] , a_ : Tuple , a_ : Any , a_ : str , a_ : List[Any] , a_ : Tuple , a_ : Union[str, Any] ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : List[str] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def lowerCamelCase ( self : Any , a_ : Union[str, Any] , a_ : Any , a_ : str , a_ : int , a_ : Dict , a_ : int , a_ : Tuple ): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Any = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : int = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self : Dict , a_ : Dict , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Any , a_ : List[Any] , a_ : int , a_ : str ): lowerCAmelCase_ : Optional[int] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase_ : Tuple = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[Any] = config_and_inputs lowerCAmelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a_ : Dict = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) a_ : List[Any] = True a_ : Dict = False a_ : int = False a_ : str = False a_ : List[Any] = False def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = DebertaModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def lowerCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def lowerCamelCase ( self : Union[str, Any] ): pass @slow def lowerCamelCase ( self : str ): lowerCAmelCase_ : int = DebertaModel.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCAmelCase_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. lowerCAmelCase_ : Optional[Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
241
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __a = _symbol_database.Default() __a = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) __a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __a = None __a = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __a = 45 __a = 1_581 __a = 1_517 __a = 1_570 __a = 1_584 __a = 1_793 __a = 1_795 __a = 1_916 __a = 1_864 __a = 1_905 __a = 1_919 __a = 2_429 __a = 2_208 __a = 2_418 __a = 2_323 __a = 2_407 # @@protoc_insertion_point(module_scope)
366
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
235
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "sew-d" def __init__( self : Dict , lowercase_ : Optional[Any]=32 , lowercase_ : List[Any]=768 , lowercase_ : int=12 , lowercase_ : Dict=12 , lowercase_ : Union[str, Any]=3072 , lowercase_ : Dict=2 , lowercase_ : List[Any]=512 , lowercase_ : Union[str, Any]=256 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : List[Any]=("p2c", "c2p") , lowercase_ : Optional[int]="layer_norm" , lowercase_ : List[Any]="gelu_python" , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : Any=0.1 , lowercase_ : Dict=0.02 , lowercase_ : str=1e-7 , lowercase_ : Optional[int]=1e-5 , lowercase_ : int="group" , lowercase_ : str="gelu" , lowercase_ : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase_ : int=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase_ : List[Any]=False , lowercase_ : int=128 , lowercase_ : List[Any]=16 , lowercase_ : Tuple=True , lowercase_ : Any=0.05 , lowercase_ : Tuple=10 , lowercase_ : List[str]=2 , lowercase_ : Any=0.0 , lowercase_ : int=10 , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[Any]="mean" , lowercase_ : List[Any]=False , lowercase_ : int=False , lowercase_ : str=256 , lowercase_ : int=0 , lowercase_ : str=1 , lowercase_ : Any=2 , **lowercase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = feat_extract_norm SCREAMING_SNAKE_CASE_ : Optional[Any] = feat_extract_activation SCREAMING_SNAKE_CASE_ : Optional[int] = list(lowercase_) SCREAMING_SNAKE_CASE_ : str = list(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = list(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = conv_bias SCREAMING_SNAKE_CASE_ : int = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ : Dict = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ : List[Any] = len(self.conv_dim) SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : int = squeeze_factor SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = position_buckets SCREAMING_SNAKE_CASE_ : Tuple = share_att_key SCREAMING_SNAKE_CASE_ : Optional[int] = relative_attention SCREAMING_SNAKE_CASE_ : Tuple = norm_rel_ebd SCREAMING_SNAKE_CASE_ : Optional[int] = list(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE_ : str = feat_proj_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = final_dropout SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = feature_layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Any = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)' F'= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : Optional[Any] = apply_spec_augment SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_time_prob SCREAMING_SNAKE_CASE_ : Dict = mask_time_length SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : List[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_ : Tuple = mask_feature_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE_ : int = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : Any = ctc_zero_infinity # sequence classification SCREAMING_SNAKE_CASE_ : Optional[Any] = use_weighted_layer_sum SCREAMING_SNAKE_CASE_ : List[Any] = classifier_proj_size @property def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
91
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = 16 ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ = 8 else: SCREAMING_SNAKE_CASE__ = None return tokenizer.pad( UpperCamelCase_ , padding='longest' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ , drop_last=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config['lr'] SCREAMING_SNAKE_CASE__ = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE__ = int(config['seed'] ) SCREAMING_SNAKE_CASE__ = int(config['batch_size'] ) SCREAMING_SNAKE_CASE__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , UpperCamelCase_ ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
169
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowercase__ : def __init__( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Tuple=None , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = self.vocab_size - 1 def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , *UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTLMHeadModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTDoubleHeadsModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = OpenAIGPTForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Union[str, Any] =( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ : Any =( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ : Dict =( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def A_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=False ): SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = inputs_dict['labels'] SCREAMING_SNAKE_CASE__ = inputs_dict['labels'] SCREAMING_SNAKE_CASE__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37 ) def A_ ( self : Optional[int] ): self.config_tester.run_common_tests() def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCAmelCase_ ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCAmelCase_ ) @slow def A_ ( self : Optional[int] ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = OpenAIGPTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_torch class lowercase__ ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCAmelCase_ ) # the president is SCREAMING_SNAKE_CASE__ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE__ = model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , UpperCAmelCase_ )
169
1
import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase : str = '' __lowerCAmelCase : Tuple = '' __lowerCAmelCase : Tuple = '' __lowerCAmelCase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def a__ ( ): '''simple docstring''' __magic_name__ = get_dataset(A_, A_ ) print("""Processing...""" ) __magic_name__ = update_image_and_anno(A_, A_, A_ ) for index, image in enumerate(A_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __magic_name__ = random_chars(32 ) __magic_name__ = paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0] __magic_name__ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''', A_, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(A_ )} with {file_name}''' ) __magic_name__ = [] for anno in new_annos[index]: __magic_name__ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(A_ ) with open(f'''/{file_root}.txt''', """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] for label_file in glob.glob(os.path.join(A_, """*.txt""" ) ): __magic_name__ = label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(A_ ) as in_file: __magic_name__ = in_file.readlines() __magic_name__ = os.path.join(A_, f'''{label_name}.jpg''' ) __magic_name__ = [] for obj_list in obj_lists: __magic_name__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(A_ ) labels.append(A_ ) return img_paths, labels def a__ ( A_, A_, A_ = 1 ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] for idx in range(len(A_ ) ): __magic_name__ = [] __magic_name__ = img_list[idx] path_list.append(A_ ) __magic_name__ = anno_list[idx] __magic_name__ = cva.imread(A_ ) if flip_type == 1: __magic_name__ = cva.flip(A_, A_ ) for bbox in img_annos: __magic_name__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __magic_name__ = cva.flip(A_, A_ ) for bbox in img_annos: __magic_name__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(A_ ) new_imgs_list.append(A_ ) return new_imgs_list, new_annos_lists, path_list def a__ ( A_ = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __magic_name__ = ascii_lowercase + digits return "".join(random.choice(A_ ) for _ in range(A_ ) ) if __name__ == "__main__": main() print('DONE ✅')
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> List[str]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __snake_case : Dict = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" if exitstatus == 5: __snake_case : List[Any] = 0 # Doctest custom flag to ignore output. __UpperCamelCase = doctest.register_optionflag("IGNORE_RESULT") __UpperCamelCase = doctest.OutputChecker class _A ( __lowercase ): def lowercase__ ( self : int , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> List[Any]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __magic_name__ , __magic_name__ , __magic_name__ ) __UpperCamelCase = CustomOutputChecker __UpperCamelCase = HfDoctestModule __UpperCamelCase = HfDocTestParser
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case : int = '''Create a default config file for Accelerate with only a few flags set.''' def __lowercase ( __lowerCAmelCase : int="no" , __lowerCAmelCase : str = default_json_config_file , __lowerCAmelCase : bool = False ): a__ = Path(__lowerCAmelCase ) path.parent.mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False a__ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) a__ = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): a__ = torch.cuda.device_count() a__ = num_gpus a__ = False if num_gpus > 1: a__ = 'MULTI_GPU' else: a__ = 'NO' elif is_xpu_available() and use_xpu: a__ = torch.xpu.device_count() a__ = num_xpus a__ = False if num_xpus > 1: a__ = 'MULTI_XPU' else: a__ = 'NO' elif is_npu_available(): a__ = torch.npu.device_count() a__ = num_npus a__ = False if num_npus > 1: a__ = 'MULTI_NPU' else: a__ = 'NO' else: a__ = 0 a__ = True a__ = 1 a__ = 'NO' a__ = ClusterConfig(**__lowerCAmelCase ) config.to_json_file(__lowerCAmelCase ) return path def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): a__ = parser.add_parser('default' , parents=__lowerCAmelCase , help=__lowerCAmelCase , formatter_class=__lowerCAmelCase ) parser.add_argument( '--config_file' , default=__lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__lowerCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__lowerCAmelCase ) return parser def __lowercase ( __lowerCAmelCase : Dict ): a__ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
240
from argparse import ArgumentParser from .env import EnvironmentCommand def __lowercase ( ): a__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) a__ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__lowerCAmelCase ) # Let's go a__ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run a__ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
240
1
from __future__ import annotations def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
292
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =LongformerTokenizer a : Optional[int] =True a : Tuple =LongformerTokenizerFast a : Dict =True def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase_: Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase_: Tuple = {'unk_token': '<unk>'} UpperCamelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = 'lower newer' UpperCamelCase_: Optional[Any] = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Any = 'lower newer' UpperCamelCase_: Any = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase_: str = tokenizer.tokenize(_lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Dict = tokens + [tokenizer.unk_token] UpperCamelCase_: int = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_lowerCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_lowerCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def _a ( self ): UpperCamelCase_: int = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) UpperCamelCase_: Dict = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Any = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: int = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCamelCase_: Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a ( self ): UpperCamelCase_: Optional[int] = self.get_tokenizer() UpperCamelCase_: Optional[int] = 'Encode this sequence.' UpperCamelCase_: List[Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments UpperCamelCase_: Dict = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) UpperCamelCase_: Optional[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowerCamelCase , _lowerCamelCase ) # Testing spaces after special tokens UpperCamelCase_: List[Any] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase )} ) # mask token has a left space UpperCamelCase_: List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) UpperCamelCase_: Dict = 'Encode <mask> sequence' UpperCamelCase_: Dict = 'Encode <mask>sequence' UpperCamelCase_: Any = tokenizer.encode(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = encoded.index(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer.encode(_lowerCamelCase ) UpperCamelCase_: List[Any] = encoded.index(_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self ): pass def _a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Any = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Tuple = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[Any] = 'A, <mask> AllenNLP sentence.' UpperCamelCase_: int = tokenizer_r.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) UpperCamelCase_: Any = tokenizer_p.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCamelCase_: List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase_: str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( _lowerCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _lowerCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _a ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase_: Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _lowerCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _lowerCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _lowerCamelCase ) def _a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase_: Union[str, Any] = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: str = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: str = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ), len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: List[str] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ), len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: Optional[int] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Tuple = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ) + 1, 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: Dict = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ), 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCamelCase_: Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ), 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , )
292
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a__ ( _UpperCamelCase : Any ): __lowerCamelCase = int(__a ) __lowerCamelCase = t // 36_00, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Any=3_00 ): return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def a__ ( _UpperCamelCase : Optional[int] ): __lowerCamelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCamelCase = F"""{elt:.6f}""" if isinstance(__a ,__a ) else str(__a ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowerCAmelCase : lowerCAmelCase__ = 5 lowerCAmelCase__ = 0.2 def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 300 , ): '''simple docstring''' __lowerCamelCase = total __lowerCamelCase = '''''' if prefix is None else prefix __lowerCamelCase = leave __lowerCamelCase = parent __lowerCamelCase = width __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = value if comment is not None: __lowerCamelCase = comment if self.last_value is None: __lowerCamelCase = time.time() __lowerCamelCase = value __lowerCamelCase = None __lowerCamelCase = self.warmup __lowerCamelCase = 1 self.update_bar(_a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCamelCase = time.time() __lowerCamelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCamelCase = self.elapsed_time / (value - self.start_value) else: __lowerCamelCase = None if value >= self.total: __lowerCamelCase = self.total __lowerCamelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCamelCase = self.average_time_per_item * (self.total - value) self.update_bar(_a ) __lowerCamelCase = value __lowerCamelCase = current_time if self.average_time_per_item is None: __lowerCamelCase = 1 else: __lowerCamelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = ''' ''' * (len(str(self.total ) ) - len(str(_a ) )) + str(_a ) if self.elapsed_time is None: __lowerCamelCase = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: __lowerCamelCase = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: __lowerCamelCase = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def lowerCamelCase ( self ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __lowerCAmelCase ( __lowercase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' super().__init__(_a ) __lowerCamelCase = None if column_names is None else [column_names] __lowerCamelCase = None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=_a ) else: self.output.update(disp.HTML(self.html_code ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if self.inner_table is None: __lowerCamelCase = [list(values.keys() ), list(values.values() )] else: __lowerCamelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_a ) __lowerCamelCase = columns self.inner_table.append([values[c] for c in columns] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=300 ): '''simple docstring''' __lowerCamelCase = NotebookProgressBar(_a , prefix=_a , parent=self , width=_a ) return self.child_bar def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = None self.display() class __lowerCAmelCase ( __lowercase ): def __init__( self ): '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = False def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __lowerCamelCase = NotebookTrainingTracker(state.max_steps , _a ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) __lowerCamelCase = False def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if not has_length(_a ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCamelCase = self.training_tracker.add_child(len(_a ) ) else: __lowerCamelCase = NotebookProgressBar(len(_a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCamelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCamelCase = state.global_step self.training_tracker.write_line(_a ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if self.training_tracker is not None: __lowerCamelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __lowerCamelCase = log['''loss'''] break if self.first_column == "Epoch": __lowerCamelCase = int(state.epoch ) else: __lowerCamelCase = state.global_step __lowerCamelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __lowerCamelCase = re.sub(r'''\_loss$''' , '''''' , _a ) __lowerCamelCase = metrics.pop('''total_flos''' , _a ) __lowerCamelCase = metrics.pop('''epoch''' , _a ) __lowerCamelCase = metrics.pop(F"""{metric_key_prefix}_runtime""" , _a ) __lowerCamelCase = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , _a ) __lowerCamelCase = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , _a ) __lowerCamelCase = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , _a ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": __lowerCamelCase = v else: __lowerCamelCase = k.split('''_''' ) __lowerCamelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) __lowerCamelCase = v self.training_tracker.write_line(_a ) self.training_tracker.remove_child() __lowerCamelCase = None # Evaluation takes a long time so we should force the next update. __lowerCamelCase = True def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=_a ) __lowerCamelCase = None
330
a__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
235
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : set ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) UpperCAmelCase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE__ , row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , row - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) count += depth_first_search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , col - 1 , SCREAMING_SNAKE_CASE__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = ShapEPipeline lowerCAmelCase_ : List[str] = ["""prompt"""] lowerCAmelCase_ : Union[str, Any] = ["""prompt"""] lowerCAmelCase_ : str = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowerCAmelCase_ : int = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return 8 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCAmelCase__ = PriorTransformer(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase__ = ShapERenderer(**_UpperCAmelCase ) return model def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.dummy_prior UpperCAmelCase__ = self.dummy_text_encoder UpperCAmelCase__ = self.dummy_tokenizer UpperCAmelCase__ = self.dummy_renderer UpperCAmelCase__ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) UpperCAmelCase__ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=0 ): """simple docstring""" if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase__ = output.images[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase__ = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = torch_device == """cpu""" UpperCAmelCase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase__ = batch_size * [inputs[key]] UpperCAmelCase__ = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) UpperCAmelCase__ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase__ = pipe( """a shark""" , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
61
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _lowerCAmelCase : int = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Tuple , *lowerCamelCase :Dict , **lowerCamelCase :Optional[Any] ) -> None: warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
169
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def UpperCAmelCase_ ( *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> Tuple: pass @is_pipeline_test @require_vision class _UpperCamelCase ( unittest.TestCase ): @require_torch def UpperCAmelCase_ ( self :int ) -> Optional[Any]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase ) , [ [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}], [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "c"}, {"score": 0.3_33, "label": "b"}], ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self :List[str] ) -> Optional[int]: UpperCAmelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], [ {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, {"score": 0.3_33, "label": ANY(lowerCamelCase )}, ], ] , ) @slow @require_torch def UpperCAmelCase_ ( self :str ) -> Dict: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: UpperCAmelCase__ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase__ = image_classifier(lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase__ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(lowerCamelCase ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , )
169
1
def UpperCamelCase_( snake_case__: int = 50 ) -> List[Any]: UpperCAmelCase__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
356
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase : List[Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def A_ ( _UpperCAmelCase ): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def A_ ( _UpperCAmelCase ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_: Union[str, Any] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: SCREAMING_SNAKE_CASE_: Tuple = 0 # Doctest custom flag to ignore output. lowerCAmelCase : Any = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase : str = doctest.OutputChecker class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) lowerCAmelCase : Union[str, Any] = CustomOutputChecker lowerCAmelCase : Dict = HfDoctestModule lowerCAmelCase : Union[str, Any] = HfDocTestParser
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers A : Optional[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def a__ ( ): SCREAMING_SNAKE_CASE_ = os.path.dirname(os.path.realpath(lowercase_ ) ) SCREAMING_SNAKE_CASE_ = os.path.join(lowercase_ , "words.txt" ) SCREAMING_SNAKE_CASE_ = "" with open(lowercase_ ) as f: SCREAMING_SNAKE_CASE_ = f.readline() SCREAMING_SNAKE_CASE_ = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] SCREAMING_SNAKE_CASE_ = [ word for word in [sum(ord(lowercase_ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowercase_ ) if __name__ == "__main__": print(solution())
362
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _snake_case : List[str] = get_logger(__name__) _snake_case : List[Any] = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _UpperCAmelCase : @add_start_docstrings(__UpperCamelCase ) def __call__( self :int , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCAmelCase : @add_start_docstrings(__UpperCamelCase ) def __call__( self :Optional[Any] , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray ): raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _UpperCAmelCase ( lowercase_ ): @add_start_docstrings(__UpperCamelCase ) def __call__( self :str , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int , **__UpperCamelCase :Any ): for processor in self: A = inspect.signature(processor.__call__ ).parameters if len(__UpperCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"Make sure that all the required parameters: {list(function_args.keys() )} for " f"{processor.__class__} are passed to the logits processor." ) A = processor(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) else: A = processor(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Tuple , __UpperCamelCase :float ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}" ) A = temperature def __call__( self :Optional[Any] , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A = scores / self.temperature return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :List[Any] , __UpperCamelCase :float , __UpperCamelCase :float = -float("Inf" ) , __UpperCamelCase :int = 1 ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}" ) A = top_p A = filter_value A = min_tokens_to_keep def __call__( self :Dict , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A, A = lax.top_k(__UpperCamelCase , scores.shape[-1] ) A = jnp.full_like(__UpperCamelCase , self.filter_value ) A = jax.nn.softmax(__UpperCamelCase , axis=-1 ).cumsum(axis=-1 ) A = cumulative_probs < self.top_p # include the token that is higher than top_p as well A = jnp.roll(__UpperCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__UpperCamelCase ) # min tokens to keep A = score_mask.at[:, : self.min_tokens_to_keep].set(__UpperCamelCase ) A = jnp.where(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = jax.lax.sort_key_val(__UpperCamelCase , __UpperCamelCase )[-1] return next_scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Any , __UpperCamelCase :int , __UpperCamelCase :float = -float("Inf" ) , __UpperCamelCase :int = 1 ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}" ) A = max(__UpperCamelCase , __UpperCamelCase ) A = filter_value def __call__( self :Tuple , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A, A = scores.shape A = jnp.full(batch_size * vocab_size , self.filter_value ) A = min(self.top_k , scores.shape[-1] ) # Safety check A, A = lax.top_k(__UpperCamelCase , __UpperCamelCase ) A = jnp.broadcast_to((jnp.arange(__UpperCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A = topk_scores.flatten() A = topk_indices.flatten() + shift A = next_scores_flat.at[topk_indices_flat].set(__UpperCamelCase ) A = next_scores_flat.reshape(__UpperCamelCase , __UpperCamelCase ) return next_scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :int ): A = bos_token_id def __call__( self :List[Any] , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A = jnp.full(scores.shape , -float("inf" ) ) A = 1 - jnp.bool_(cur_len - 1 ) A = jnp.where(__UpperCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __UpperCamelCase ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Tuple , __UpperCamelCase :int , __UpperCamelCase :int ): A = max_length A = eos_token_id def __call__( self :List[Any] , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A = jnp.full(scores.shape , -float("inf" ) ) A = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A = jnp.where(__UpperCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __UpperCamelCase ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Dict , __UpperCamelCase :int , __UpperCamelCase :int ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}" ) A = min_length A = eos_token_id def __call__( self :Any , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): # create boolean flag to decide if min length penalty should be applied A = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A = jnp.where(__UpperCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __UpperCamelCase ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Union[str, Any] , __UpperCamelCase :Dict , __UpperCamelCase :Dict ): A = list(__UpperCamelCase ) A = begin_index def __call__( self :Optional[int] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[str] , __UpperCamelCase :int ): A = 1 - jnp.bool_(cur_len - self.begin_index ) A = jnp.where(__UpperCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __UpperCamelCase ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :List[str] , __UpperCamelCase :list ): A = list(__UpperCamelCase ) def __call__( self :str , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): A = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Dict , __UpperCamelCase :List[str] ): A = dict(__UpperCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A = force_token_array.at[index].set(__UpperCamelCase ) A = jnp.intaa(__UpperCamelCase ) def __call__( self :Tuple , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :jnp.ndarray , __UpperCamelCase :int ): def _force_token(__UpperCamelCase :Any ): A = scores.shape[0] A = self.force_token_array[generation_idx] A = jnp.ones_like(__UpperCamelCase , dtype=scores.dtype ) * -float("inf" ) A = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A = lax.dynamic_update_slice(__UpperCamelCase , __UpperCamelCase , (0, current_token) ) return new_scores A = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__UpperCamelCase ) , lambda: scores , ) , ) return scores class _UpperCAmelCase ( lowercase_ ): def __init__( self :Optional[int] , __UpperCamelCase :Dict , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = generate_config.eos_token_id A = generate_config.no_timestamps_token_id A = generate_config.no_timestamps_token_id + 1 A = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__UpperCamelCase , "max_initial_timestamp_index" ): A = generate_config.max_initial_timestamp_index else: A = model_config.vocab_size if self.max_initial_timestamp_index is None: A = model_config.vocab_size def __call__( self :Any , __UpperCamelCase :str , __UpperCamelCase :Any , __UpperCamelCase :int ): # suppress <|notimestamps|> which is handled by without_timestamps A = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__UpperCamelCase :Union[str, Any] , __UpperCamelCase :List[Any] ): A = jnp.where((cur_len - self.begin_index) >= 1 , __UpperCamelCase , __UpperCamelCase ) A = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __UpperCamelCase , ) A = jnp.where((cur_len - self.begin_index) < 2 , __UpperCamelCase , __UpperCamelCase ) A = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __UpperCamelCase , __UpperCamelCase , ) return jnp.where( __UpperCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __UpperCamelCase , ) A = jax.vmap(__UpperCamelCase )(__UpperCamelCase , __UpperCamelCase ) A = jnp.where(cur_len == self.begin_index , __UpperCamelCase , __UpperCamelCase ) A = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __UpperCamelCase , ) A = self.timestamp_begin + self.max_initial_timestamp_index A = jnp.where( __UpperCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __UpperCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp A = jax.nn.log_softmax(__UpperCamelCase , axis=-1 ) def handle_cumulative_probs(__UpperCamelCase :Dict , __UpperCamelCase :Optional[int] ): A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __UpperCamelCase , ) A = jax.vmap(__UpperCamelCase )(__UpperCamelCase , __UpperCamelCase ) return scores
292
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def A__ ( UpperCamelCase ): A = [False] * len(UpperCamelCase ) A = [-1] * len(UpperCamelCase ) def dfs(UpperCamelCase , UpperCamelCase ): A = True A = c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase , 1 - c ) for i in range(len(UpperCamelCase ) ): if not visited[i]: dfs(UpperCamelCase , 0 ) for i in range(len(UpperCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _snake_case : str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
292
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[str] = 'upernet' def __init__( self : Tuple , __lowerCAmelCase : int=None , __lowerCAmelCase : Tuple=512 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Tuple=[1, 2, 3, 6] , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=0.4 , __lowerCAmelCase : Union[str, Any]=384 , __lowerCAmelCase : Optional[int]=256 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[int]=255 , **__lowerCAmelCase : Union[str, Any] , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = backbone_config.get("""model_type""" ) _UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase = config_class.from_dict(__lowerCAmelCase ) _UpperCAmelCase = backbone_config _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_range _UpperCAmelCase = pool_scales _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_in_channels _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = loss_ignore_index def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.backbone_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
30
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = emb.weight.shape _a : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _a : int = emb.weight.data return lin_layer def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = torch.load(__lowerCamelCase , map_location="""cpu""" ) _a : Optional[int] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _a : Union[str, Any] = mam_aaa["model"] remove_ignore_keys_(__lowerCamelCase ) _a : Dict = state_dict["encoder.embed_tokens.weight"].shape[0] _a : Union[str, Any] = MaMaaaConfig( vocab_size=__lowerCamelCase , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _a : str = state_dict["decoder.embed_tokens.weight"] _a : Any = MaMaaaForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) _a : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case = parser.parse_args() _snake_case = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
294
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A_ : '''simple docstring''' pass
61
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = ["pixel_values"] def __init__(self : Union[str, Any] , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = True , **snake_case_ : Optional[int] , ): super().__init__(**snake_case_ ) __a : Any = size if size is not None else {'''shortest_edge''': 2_2_4} __a : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __a : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __a : Optional[Any] = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='''crop_size''' ) __a : Tuple = do_resize __a : Any = size __a : List[Any] = resample __a : Tuple = do_center_crop __a : List[Any] = crop_size __a : List[Any] = do_rescale __a : str = rescale_factor __a : List[Any] = do_normalize __a : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __a : str = do_convert_rgb def lowerCAmelCase (self : List[str] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): __a : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __a : Optional[int] = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : int , ): __a : Union[str, Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : int , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Dict , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : bool = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case_ : List[str] , ): __a : List[Any] = do_resize if do_resize is not None else self.do_resize __a : Any = size if size is not None else self.size __a : Optional[Any] = get_size_dict(snake_case_ , param_name='''size''' , default_to_square=snake_case_ ) __a : Dict = resample if resample is not None else self.resample __a : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Dict = crop_size if crop_size is not None else self.crop_size __a : Any = get_size_dict(snake_case_ , param_name='''crop_size''' , default_to_square=snake_case_ ) __a : Any = do_rescale if do_rescale is not None else self.do_rescale __a : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Any = do_normalize if do_normalize is not None else self.do_normalize __a : int = image_mean if image_mean is not None else self.image_mean __a : Tuple = image_std if image_std is not None else self.image_std __a : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : List[Any] = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : Optional[Any] = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. __a : List[str] = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __a : str = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __a : str = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __a : Optional[Any] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __a : Dict = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __a : List[str] = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __a : str = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
90
from math import pi, sqrt def __UpperCamelCase ( lowerCAmelCase__ : float ): if num <= 0: raise ValueError('''math domain error''' ) if num > 1_71.5: raise OverflowError('''math range error''' ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCamelCase ( ): assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase__ =1.0 while num: lowercase__ =float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
90
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
0
'''simple docstring''' class lowercase__ : def __init__( self : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Dict = None _UpperCamelCase : List[Any] = None _UpperCamelCase : int = graph self._normalize_graph(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : List[str] = len(lowerCamelCase__ ) _UpperCamelCase : Tuple = None def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' if sources is int: _UpperCamelCase : Optional[int] = [sources] if sinks is int: _UpperCamelCase : Union[str, Any] = [sinks] if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: return _UpperCamelCase : List[str] = sources[0] _UpperCamelCase : str = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCamelCase__ ) > 1 or len(lowerCamelCase__ ) > 1: _UpperCamelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCamelCase : Tuple = len(self.graph ) + 1 for room in self.graph: room.insert(0 ,0 ) self.graph.insert(0 ,[0] * size ) for i in sources: _UpperCamelCase : List[Any] = max_input_flow _UpperCamelCase : Tuple = 0 _UpperCamelCase : int = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCamelCase : Optional[int] = max_input_flow _UpperCamelCase : Optional[int] = size - 1 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : str = algorithm(self ) class lowercase__ : def __init__( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = flow_network _UpperCamelCase : List[str] = flow_network.verticesCount _UpperCamelCase : List[str] = flow_network.sourceIndex _UpperCamelCase : Any = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCamelCase : List[Any] = flow_network.graph _UpperCamelCase : Any = False def UpperCamelCase_ ( self : str ): '''simple docstring''' if not self.executed: self._algorithm() _UpperCamelCase : Any = True def UpperCamelCase_ ( self : Any ): '''simple docstring''' pass class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase__ ) # use this to save your result _UpperCamelCase : Tuple = -1 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase__ ( lowercase ): def __init__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCamelCase : Optional[Any] = [0] * self.verticies_count _UpperCamelCase : List[str] = [0] * self.verticies_count def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCamelCase : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCamelCase : int = 0 while i < len(lowerCamelCase__ ): _UpperCamelCase : List[Any] = vertices_list[i] _UpperCamelCase : str = self.heights[vertex_index] self.process_vertex(lowerCamelCase__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 ,vertices_list.pop(lowerCamelCase__ ) ) _UpperCamelCase : Dict = 0 else: i += 1 _UpperCamelCase : Optional[Any] = sum(self.preflow[self.source_index] ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCamelCase__ ,lowerCamelCase__ ) self.relabel(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = min( self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCamelCase : List[Any] = self.heights[to_index] if min_height is not None: _UpperCamelCase : Any = min_height + 1 if __name__ == "__main__": snake_case_ : List[str] = [0] snake_case_ : int = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] snake_case_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network snake_case_ : List[Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate snake_case_ : Tuple = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
236
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ : Union[str, Any] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } snake_case_ : Any = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def A__ ( ): _UpperCamelCase : str = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _UpperCamelCase : Any = bs[:] _UpperCamelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase_ ) cs.append(2**8 + n ) n += 1 _UpperCamelCase : Any = [chr(UpperCAmelCase_ ) for n in cs] return dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Tuple = set() _UpperCamelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase : Any = char return pairs class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]="replace" ,lowerCamelCase__ : str="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Any="<s>" ,lowerCamelCase__ : Tuple="<unk>" ,lowerCamelCase__ : List[str]="<pad>" ,lowerCamelCase__ : Optional[Any]="<mask>" ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : List[str] ,): '''simple docstring''' _UpperCamelCase : Dict = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else bos_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token _UpperCamelCase : Optional[int] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else sep_token _UpperCamelCase : Tuple = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cls_token _UpperCamelCase : Union[str, Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token _UpperCamelCase : List[str] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,) with open(lowerCamelCase__ ,encoding='utf-8' ) as vocab_handle: _UpperCamelCase : List[str] = json.load(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Optional[Any] = errors # how to handle errors in decoding _UpperCamelCase : Tuple = bytes_to_unicode() _UpperCamelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ ,encoding='utf-8' ) as merges_handle: _UpperCamelCase : Dict = merges_handle.read().split('\n' )[1:-1] _UpperCamelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _UpperCamelCase : Dict = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) _UpperCamelCase : Tuple = {} _UpperCamelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCamelCase : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self : str ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ): '''simple docstring''' if token in self.cache: return self.cache[token] _UpperCamelCase : Dict = tuple(lowerCamelCase__ ) _UpperCamelCase : List[str] = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: _UpperCamelCase : List[str] = min(lowerCamelCase__ ,key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase : int = bigram _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Dict = 0 while i < len(lowerCamelCase__ ): try: _UpperCamelCase : int = word.index(lowerCamelCase__ ,lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCamelCase : Dict = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase : int = tuple(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = new_word if len(lowerCamelCase__ ) == 1: break else: _UpperCamelCase : Any = get_pairs(lowerCamelCase__ ) _UpperCamelCase : int = ' '.join(lowerCamelCase__ ) _UpperCamelCase : List[Any] = word return word def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : int = [] for token in re.findall(self.pat ,lowerCamelCase__ ): _UpperCamelCase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : List[Any] ): '''simple docstring''' return self.encoder.get(lowerCamelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : int ): '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Dict = ''.join(lowerCamelCase__ ) _UpperCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : List[Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCamelCase : Union[str, Any] = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase__ ,ensure_ascii=lowerCamelCase__ ) + '\n' ) _UpperCamelCase : Optional[Any] = 0 with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _UpperCamelCase : int = token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] _UpperCamelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Tuple = [self.sep_token_id] _UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): _UpperCamelCase : List[str] = ' ' + text return (text, kwargs)
236
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : int = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "trocr" A_ = ["past_key_values"] A_ = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __a=5_0265 , __a=1024 , __a=12 , __a=16 , __a=4096 , __a="gelu" , __a=512 , __a=0.1 , __a=0.0 , __a=0.0 , __a=2 , __a=0.02 , __a=0.0 , __a=True , __a=False , __a=True , __a=True , __a=1 , __a=0 , __a=2 , **__a , ): '''simple docstring''' __a : Union[str, Any] = vocab_size __a : Dict = d_model __a : Optional[Any] = decoder_layers __a : Tuple = decoder_attention_heads __a : int = decoder_ffn_dim __a : Union[str, Any] = activation_function __a : List[str] = max_position_embeddings __a : List[Any] = dropout __a : Union[str, Any] = attention_dropout __a : Optional[int] = activation_dropout __a : Optional[Any] = init_std __a : List[Any] = decoder_layerdrop __a : int = use_cache __a : List[Any] = scale_embedding __a : Any = use_learned_position_embeddings __a : List[str] = layernorm_embedding super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
27
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
356
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=10 , A_=3 , A_=2 , A_=2 , A_=2 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=0.9 , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =num_channels __UpperCamelCase =patch_size __UpperCamelCase =tubelet_size __UpperCamelCase =num_frames __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =mask_ratio __UpperCamelCase =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __UpperCamelCase =(image_size // patch_size) ** 2 __UpperCamelCase =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __UpperCamelCase =int(mask_ratio * self.seq_length ) def _a ( self ) -> int: __UpperCamelCase =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Tuple: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ ) -> str: __UpperCamelCase =VideoMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase =model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =VideoMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __UpperCamelCase =torch.ones((self.num_masks,) ) __UpperCamelCase =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __UpperCamelCase =mask.expand(self.batch_size , -1 ).bool() __UpperCamelCase =model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # model only returns predictions for masked patches __UpperCamelCase =mask.sum().item() __UpperCamelCase =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self ) -> Any: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : str = False UpperCAmelCase__ : int = False def _a ( self ) -> Optional[int]: __UpperCamelCase =VideoMAEModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _a ( self , A_ , A_ , A_=False ) -> str: __UpperCamelCase =copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __UpperCamelCase =torch.ones((self.model_tester.num_masks,) ) __UpperCamelCase =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __UpperCamelCase =mask.expand(self.model_tester.batch_size , -1 ).bool() __UpperCamelCase =bool_masked_pos.to(SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in [ *get_values(SCREAMING_SNAKE_CASE_ ), ]: __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def _a ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def _a ( self ) -> Union[str, Any]: pass def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) @slow def _a ( self ) -> Optional[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =VideoMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[Any]: if not self.has_attentions: pass else: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =True for model_class in self.all_model_classes: __UpperCamelCase =self.model_tester.seq_length - self.model_tester.num_masks __UpperCamelCase =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =True __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase =outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase =True __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase =outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __UpperCamelCase =len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase =outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self ) -> List[str]: def check_hidden_states_output(A_ , A_ , A_ ): __UpperCamelCase =model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase =outputs.hidden_states __UpperCamelCase =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =self.model_tester.seq_length - self.model_tester.num_masks __UpperCamelCase =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase =True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self ) -> List[Any]: pass def _UpperCAmelCase ( ): __UpperCamelCase =hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __UpperCamelCase =np.load(snake_case__ ) return list(snake_case__ ) @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[int]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self ) -> int: __UpperCamelCase =VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_video() __UpperCamelCase =image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __UpperCamelCase =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =torch.tensor([0.3669, -0.0688, -0.2421] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def _a ( self ) -> Dict: __UpperCamelCase =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_video() __UpperCamelCase =image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # add boolean mask, indicating which patches to mask __UpperCamelCase =hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __UpperCamelCase =torch.Size([1, 1408, 1536] ) __UpperCamelCase =torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=SCREAMING_SNAKE_CASE_ ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __UpperCamelCase =torch.tensor([0.5142] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __UpperCamelCase =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=SCREAMING_SNAKE_CASE_ ).to( SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase =torch.tensor(torch.tensor([0.6469] ) , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
62
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a = logging.get_logger(__name__) # General docstring __a = 'RegNetConfig' # Base docstring __a = 'facebook/regnet-y-040' __a = [1, 1_0_8_8, 7, 7] # Image classification docstring __a = 'facebook/regnet-y-040' __a = 'tabby, tabby cat' __a = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , **SCREAMING_SNAKE_CASE_ : Any , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , strides=SCREAMING_SNAKE_CASE_ , padding='''VALID''' , groups=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' , ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) lowercase_ = ACTaFN[activation] if activation is not None else tf.identity def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = self.convolution(self.padding(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = self.normalization(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : str ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_channels lowercase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: lowercase_ = shape_list(SCREAMING_SNAKE_CASE_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 2, 3, 1) ) lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , strides=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) lowercase_ = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) for layer_module in self.attention: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_state * pooled return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.2''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(SCREAMING_SNAKE_CASE_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.3''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase_ = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''layers.0''' ), *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ , name=f'''stages.{i+1}''' ) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> TFBaseModelOutputWithNoAttention: lowercase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) lowercase_ = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) @keras_serializable class lowercase__( tf.keras.layers.Layer ): """simple docstring""" a :str = RegNetConfig def __init__( self : str , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config lowercase_ = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE_ , name='''embedder''' ) lowercase_ = TFRegNetEncoder(SCREAMING_SNAKE_CASE_ , name='''encoder''' ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) @unpack_inputs def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = encoder_outputs[0] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) # Change to NCHW output format have uniformity in the modules lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ = tuple([tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = RegNetConfig a :Any = 'regnet' a :List[str] = 'pixel_values' @property def _lowercase ( self : List[str] ) -> str: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} __a = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __a = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( pixel_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_labels lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) # classification head lowercase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier[0](SCREAMING_SNAKE_CASE_ ) lowercase_ = self.classifier[1](SCREAMING_SNAKE_CASE_ ) lowercase_ = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
30
0
_snake_case = tuple[float, float, float] _snake_case = tuple[float, float, float] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = end_pointa[0] - end_pointa[0] _lowerCAmelCase : str = end_pointa[1] - end_pointa[1] _lowerCAmelCase : Optional[int] = end_pointa[2] - end_pointa[2] return (x, y, z) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowerCAmelCase : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowerCAmelCase : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return tuple(round(_UpperCAmelCase , _UpperCAmelCase ) for x in vector ) == (0, 0, 0) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : Any = create_vector(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[Any] = create_vector(_UpperCAmelCase , _UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase )
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase_ ( UpperCamelCase__ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray ) -> np.ndarray: """simple docstring""" __lowerCamelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(UpperCamelCase__ , UpperCamelCase__ ) # Predict target for test data __lowerCamelCase = xgb.predict(UpperCamelCase__ ) __lowerCamelCase = predictions.reshape(len(UpperCamelCase__ ) , 1 ) return predictions def lowerCamelCase_ ( ) -> None: """simple docstring""" __lowerCamelCase = fetch_california_housing() __lowerCamelCase , __lowerCamelCase = data_handling(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_test_split( UpperCamelCase__ , UpperCamelCase__ , test_size=0.25 , random_state=1 ) __lowerCamelCase = xgboost(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) print(F"""Mean Square Error : {mean_squared_error(UpperCamelCase__ , UpperCamelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
90
from math import sqrt def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( UpperCamelCase__ : int = 1_0001 ) -> int: """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
90
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCamelCase_ ( a_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BarthezTokenizer SCREAMING_SNAKE_CASE_ = BarthezTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().setUp() a = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=__lowerCamelCase ) a = tokenizer def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = '''<pad>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) ,10_11_22 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,10_11_22 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [0, 57, 30_18, 7_03_07, 91, 2] a = self.tokenizer( __lowerCamelCase ,max_length=len(__lowerCamelCase ) ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) a = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = {'''input_ids''': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''moussaKam/mbarthez''' ,revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' ,sequences=__lowerCamelCase ,)
358
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( lowerCAmelCase): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( _lowerCAmelCase: ArgumentParser ): raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self: Tuple ): raise NotImplementedError()
236
import torch def UpperCAmelCase__ ( ): if torch.cuda.is_available(): lowercase :Optional[int] = torch.cuda.device_count() else: lowercase :Dict = 0 print(F"Successfully ran on {num_gpus} GPUs" ) if __name__ == "__main__": main()
236
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
1
'''simple docstring''' UpperCamelCase_ = """\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n""" UpperCamelCase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
309
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE_ = len(__lowerCamelCase ) if (len(__lowerCamelCase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ), '''Stack'''.center(__lowerCamelCase ), '''Postfix'''.center(__lowerCamelCase ), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCamelCase ) == 0: stack.append(__lowerCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCamelCase ) # push x to stack print( x.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format while len(__lowerCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), (''''''.join(__lowerCamelCase )).ljust(__lowerCamelCase ), sep=''' | ''', ) # Output in tabular format return "".join(__lowerCamelCase ) # return Postfix as str def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCamelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE_ = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE_ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__lowerCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __UpperCAmelCase = input("\nEnter an Infix Equation = ") # Input an Infix equation __UpperCAmelCase = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
299
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ ={ """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" def a_ ( _lowercase , _lowercase ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _UpperCamelCase : Optional[int] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowercase ) ) return round(_lowercase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
1
'''simple docstring''' from __future__ import annotations class _A : def __init__( self : str , __magic_name__ : Optional[Any]=None ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = data __snake_case : int = None def __repr__( self : Any ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = [] __snake_case : List[str] = self while temp: string_rep.append(f'''{temp.data}''' ) __snake_case : int = temp.next return "->".join(__magic_name__ ) def _a ( _lowerCamelCase ) -> str: """simple docstring""" if not elements_list: raise Exception("""The Elements List is empty""" ) __snake_case : List[Any] = Node(elements_list[0] ) for i in range(1 , len(_lowerCamelCase ) ): __snake_case : List[Any] = Node(elements_list[i] ) __snake_case : Union[str, Any] = current.next return head def _a ( _lowerCamelCase ) -> None: """simple docstring""" if head_node is not None and isinstance(_lowerCamelCase , _lowerCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def _a ( ) -> Any: """simple docstring""" from doctest import testmod testmod() __snake_case : Dict = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(_lowerCamelCase ) print("""Elements in Reverse:""" ) print_reverse(_lowerCamelCase ) if __name__ == "__main__": main()
13
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class _a ( lowerCAmelCase__ ): _lowercase : List[Any] = '''efficientformer''' def __init__( self: Union[str, Any] , UpperCamelCase_: List[str] = [3, 2, 6, 4] , UpperCamelCase_: Optional[Any] = [48, 96, 224, 448] , UpperCamelCase_: Any = [True, True, True, True] , UpperCamelCase_: Dict = 448 , UpperCamelCase_: List[str] = 32 , UpperCamelCase_: List[str] = 4 , UpperCamelCase_: Dict = 7 , UpperCamelCase_: str = 5 , UpperCamelCase_: List[Any] = 8 , UpperCamelCase_: Any = 4 , UpperCamelCase_: Tuple = 0.0 , UpperCamelCase_: Dict = 16 , UpperCamelCase_: List[Any] = 3 , UpperCamelCase_: Dict = 3 , UpperCamelCase_: Optional[int] = 3 , UpperCamelCase_: List[Any] = 2 , UpperCamelCase_: Optional[Any] = 1 , UpperCamelCase_: Optional[Any] = 0.0 , UpperCamelCase_: List[str] = 1 , UpperCamelCase_: int = True , UpperCamelCase_: List[Any] = True , UpperCamelCase_: Union[str, Any] = 1E-5 , UpperCamelCase_: Tuple = "gelu" , UpperCamelCase_: Optional[Any] = 0.02 , UpperCamelCase_: Any = 1E-1_2 , UpperCamelCase_: Union[str, Any] = 224 , UpperCamelCase_: int = 1E-0_5 , **UpperCamelCase_: List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = hidden_sizes lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = num_channels lowercase__ = depths lowercase__ = mlp_expansion_ratio lowercase__ = downsamples lowercase__ = dim lowercase__ = key_dim lowercase__ = attention_ratio lowercase__ = resolution lowercase__ = pool_size lowercase__ = downsample_patch_size lowercase__ = downsample_stride lowercase__ = downsample_pad lowercase__ = drop_path_rate lowercase__ = num_metaad_blocks lowercase__ = distillation lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = image_size lowercase__ = batch_norm_eps
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mctct" def __init__( self , snake_case__=8065 , snake_case__=1536 , snake_case__=36 , snake_case__=6144 , snake_case__=4 , snake_case__=384 , snake_case__=920 , snake_case__=1E-5 , snake_case__=0.3 , snake_case__="relu" , snake_case__=0.02 , snake_case__=0.3 , snake_case__=0.3 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=1 , snake_case__=0.3 , snake_case__=1 , snake_case__=(7,) , snake_case__=(3,) , snake_case__=80 , snake_case__=1 , snake_case__=None , snake_case__="sum" , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = attention_head_dim _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Optional[Any] = layerdrop _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = pad_token_id _lowerCAmelCase : Optional[Any] = bos_token_id _lowerCAmelCase : Dict = eos_token_id _lowerCAmelCase : Optional[int] = conv_glu_dim _lowerCAmelCase : List[str] = conv_dropout _lowerCAmelCase : Tuple = num_conv_layers _lowerCAmelCase : Optional[Any] = input_feat_per_channel _lowerCAmelCase : Union[str, Any] = input_channels _lowerCAmelCase : Optional[int] = conv_channels _lowerCAmelCase : Optional[int] = ctc_loss_reduction _lowerCAmelCase : Any = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase : Union[str, Any] = list(snake_case__ ) _lowerCAmelCase : Dict = list(snake_case__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : List[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ['''BeitFeatureExtractor'''] _lowerCAmelCase : Union[str, Any] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
300
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
1
import numpy as np def UpperCamelCase ( __lowerCamelCase : np.array ): return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( __lowerCamelCase : np.array ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : List[str] =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = state_dict.pop(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = val def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __SCREAMING_SNAKE_CASE : Dict = value else: __SCREAMING_SNAKE_CASE : Optional[Any] = value return new_state_dict def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''''' if is_panoptic: __SCREAMING_SNAKE_CASE : Any = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:256] __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE : str = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE : str = in_proj_bias[-256:] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __SCREAMING_SNAKE_CASE : int = '''resnet101''' if "dc5" in model_name: __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : Tuple = '''panoptic''' in model_name if is_panoptic: __SCREAMING_SNAKE_CASE : List[str] = 250 else: __SCREAMING_SNAKE_CASE : List[str] = 91 __SCREAMING_SNAKE_CASE : Any = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : List[Any] = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Any = idalabel __SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in idalabel.items()} # load image processor __SCREAMING_SNAKE_CASE : Optional[int] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ConditionalDetrImageProcessor(format=_lowerCAmelCase ) # prepare image __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() __SCREAMING_SNAKE_CASE : Tuple = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[int] = encoding['''pixel_values'''] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , _lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __SCREAMING_SNAKE_CASE : Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __SCREAMING_SNAKE_CASE : Any = '''conditional_detr.''' + src rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = rename_backbone_keys(_lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase , is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE : Union[str, Any] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __SCREAMING_SNAKE_CASE : int = state_dict.pop(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __SCREAMING_SNAKE_CASE : int = state_dict.pop(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Tuple = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=_lowerCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __SCREAMING_SNAKE_CASE : int = conditional_detr(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __lowerCAmelCase : int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
9
class _lowercase : '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = arr.split("," ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = [int(self.array[0] )] * len(self.array ) UpperCamelCase_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCAmelCase : Tuple =input("""please input some numbers:""") UpperCAmelCase : Optional[int] =SubArray(whole_array) UpperCAmelCase : List[Any] =array.solve_sub_array() print(("""the results is:""", re))
128
0
def __UpperCAmelCase ( __a : int ,__a : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __UpperCAmelCase ( ) -> None: """simple docstring""" assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
15
from math import ceil def __UpperCAmelCase ( __a : int = 1_001 ) -> int: """simple docstring""" _a : Dict = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): _a : int = 2 * i + 1 _a : str = 2 * i _a : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
15
1
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None): SCREAMING_SNAKE_CASE_: str = data SCREAMING_SNAKE_CASE_: Optional[int] = None def __repr__( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: int = self while temp: string_rep.append(F"{temp.data}") SCREAMING_SNAKE_CASE_: Union[str, Any] = temp.next return "->".join(lowerCAmelCase__) def A_ ( _UpperCAmelCase ): if not elements_list: raise Exception("The Elements List is empty" ) SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[i] ) SCREAMING_SNAKE_CASE_: Any = current.next return head def A_ ( _UpperCAmelCase ): if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def A_ ( ): from doctest import testmod testmod() SCREAMING_SNAKE_CASE_: Optional[Any] = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_UpperCAmelCase ) print("Elements in Reverse:" ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
'''simple docstring''' from math import ceil def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : int ): _A : str = list(range(0 ,lowerCamelCase ) ) _A : Union[str, Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _A : str = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase ) # Missing blocks _A : int = [i for i in blocks if i not in device_map_blocks] _A : Union[str, Any] = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCamelCase ) ) if len(lowerCamelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCamelCase ) ) if len(lowerCamelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCamelCase ) ) def lowerCAmelCase__ ( lowerCamelCase : Optional[Any] ,lowerCamelCase : Any ): _A : Dict = list(range(lowerCamelCase ) ) _A : Optional[int] = int(ceil(n_layers / len(lowerCamelCase ) ) ) _A : str = [layers[i : i + n_blocks] for i in range(0 ,lowerCamelCase ,lowerCamelCase )] return dict(zip(lowerCamelCase ,lowerCamelCase ) )
227
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A : int = 2 class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE : int="<pad>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Tuple="<unk>" , SCREAMING_SNAKE_CASE : List[Any]=None , ): _A , _A , _A , _A : Any = bos, unk, pad, eos _A : Optional[Any] = [] _A : Optional[Any] = [] _A : Optional[int] = {} _A : Dict = self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = self.add_symbol(SCREAMING_SNAKE_CASE) _A : str = self.add_symbol(SCREAMING_SNAKE_CASE) _A : Any = self.add_symbol(SCREAMING_SNAKE_CASE) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE) _A : List[str] = len(self.symbols) def __eq__( self : int , SCREAMING_SNAKE_CASE : Optional[Any]): return self.indices == other.indices def __getitem__( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : Union[str, Any]): return len(self.symbols) def __contains__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]): return sym in self.indices @classmethod def A ( cls : Dict , SCREAMING_SNAKE_CASE : Optional[Any]): _A : Any = cls() d.add_from_file(SCREAMING_SNAKE_CASE) return d def A ( self : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=1 , SCREAMING_SNAKE_CASE : int=False): if word in self.indices and not overwrite: _A : str = self.indices[word] _A : List[str] = self.count[idx] + n return idx else: _A : Optional[Any] = len(self.symbols) _A : Union[str, Any] = idx self.symbols.append(SCREAMING_SNAKE_CASE) self.count.append(SCREAMING_SNAKE_CASE) return idx def A ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int]): return 0 def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any]): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): try: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8') as fd: self.add_from_file(SCREAMING_SNAKE_CASE) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE)) return _A : Union[str, Any] = f.readlines() _A : Any = self._load_meta(SCREAMING_SNAKE_CASE) for line in lines[indices_start_line:]: try: _A , _A : List[str] = line.rstrip().rsplit(' ' , 1) if field == "#fairseq:overwrite": _A : int = True _A , _A : List[str] = line.rsplit(' ' , 1) else: _A : Union[str, Any] = False _A : List[str] = int(SCREAMING_SNAKE_CASE) _A : Optional[Any] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE)) self.add_symbol(SCREAMING_SNAKE_CASE , n=SCREAMING_SNAKE_CASE , overwrite=SCREAMING_SNAKE_CASE) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'') def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _A : Union[str, Any] = dict((re.sub(R'@@$' ,'' ,lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' ,'</w>' ,lowerCamelCase ), v) for k, v in d.items() ) _A : Optional[Any] = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] _A : str = d[k] # restore return da def lowerCAmelCase__ ( lowerCamelCase : List[str] ,lowerCamelCase : List[str] ): # prep if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models _A : Dict = os.path.join(lowerCamelCase ,'checkpoint.pt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) _A : int = torch.load(lowerCamelCase ,map_location='cpu' ) _A : Dict = chkpt['cfg']['model'] # dicts _A : Any = os.path.join(lowerCamelCase ,'dict.txt' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) _A : Any = Dictionary.load(lowerCamelCase ) _A : Optional[int] = rewrite_dict_keys(src_dict.indices ) _A : List[Any] = len(lowerCamelCase ) _A : str = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # merges_file (bpecodes) _A : Optional[int] = os.path.join(lowerCamelCase ,'bpecodes' ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) _A : Dict = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCamelCase ,lowerCamelCase ) # model config _A : str = os.path.join(lowerCamelCase ,'config.json' ) _A : int = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # tokenizer config _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) _A : Any = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase ,ensure_ascii=lowerCamelCase ,indent=lowerCamelCase ) ) # model _A : List[Any] = chkpt['model'] # remove unneeded keys _A : int = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase ,lowerCamelCase ) _A : Any = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _A : str = model_state_dict.pop(lowerCamelCase ) else: _A : Dict = model_state_dict.pop(lowerCamelCase ) _A : Any = BioGptConfig.from_pretrained(lowerCamelCase ) _A : Union[str, Any] = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save _A : Union[str, Any] = os.path.join(lowerCamelCase ,lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase ,lowerCamelCase ) print('Conversion is done!' ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
227
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ : str = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[int] = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
"""simple docstring""" UpperCAmelCase__ : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase__ : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
25
1
def __lowercase ( a__ ) -> list: if len(a__ ) <= 1: return [tuple(a__ )] __SCREAMING_SNAKE_CASE = [] def generate(a__ , a__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , a__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = arr[k - 1], arr[i] else: # k is odd __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = arr[k - 1], arr[0] generate(k - 1 , a__ ) generate(len(a__ ) , a__ ) return res if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ : List[str] =[int(item) for item in user_input.split(''',''')] print(heaps(arr))
118
lowerCAmelCase__ : Optional[int] =9.80_665 def __lowercase ( a__ , a__ , a__ = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
118
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''deberta-v2''' def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[Any]=12_81_00 , lowerCamelCase_ : Optional[int]=15_36 , lowerCamelCase_ : Union[str, Any]=24 , lowerCamelCase_ : int=24 , lowerCamelCase_ : Dict=61_44 , lowerCamelCase_ : List[Any]="gelu" , lowerCamelCase_ : Optional[Any]=0.1 , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : str=0 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : List[Any]=1e-7 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=-1 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : List[str]="gelu" , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = relative_attention SCREAMING_SNAKE_CASE : List[str] = max_relative_positions SCREAMING_SNAKE_CASE : str = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = position_biased_input # Backwards compatibility if type(UpperCAmelCase_ ) == str: SCREAMING_SNAKE_CASE : Any = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE : Tuple = pos_att_type SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = pooler_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = pooler_hidden_act class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return 12 def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional["TensorType"] = None , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : int = 40 , lowerCamelCase_ : "PreTrainedTokenizerBase" = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
323
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Any): _A : int = logging.get_logger() # the current default level is logging.WARNING _A : List[str] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity()) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any]): _A : List[str] = logging.get_verbosity() _A : Optional[Any] = logging.get_logger('transformers.models.bart.tokenization_bart') _A : List[Any] = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: logger.warning(SCREAMING_SNAKE_CASE) self.assertEqual(cl.out , msg + '\n') # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: logger.warning(SCREAMING_SNAKE_CASE) self.assertEqual(cl.out , '') # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: logger.warning(SCREAMING_SNAKE_CASE) self.assertEqual(cl.out , msg + '\n') # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE) @mockenv(TRANSFORMERS_VERBOSITY='error') def A ( self : Tuple): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _A : Dict = logging.get_logger('transformers.models.bart.tokenization_bart') _A : str = os.getenv('TRANSFORMERS_VERBOSITY' , SCREAMING_SNAKE_CASE) _A : Optional[int] = logging.log_levels[env_level_str] _A : Optional[int] = logging.get_verbosity() self.assertEqual( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level _A : List[Any] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error') def A ( self : List[Any]): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _A : int = logging.logging.getLogger() with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart') self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out) # no need to restore as nothing was changed def A ( self : Optional[int]): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _A : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart') _A : Optional[Any] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1'): # nothing should be logged as env var disables this method with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE) self.assertEqual(cl.out , '') with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=''): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(SCREAMING_SNAKE_CASE) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE) self.assertEqual(cl.out , msg + '\n') def lowerCAmelCase__ ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
355
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : List[str] ): _A : Dict = multiprocessing.Manager() _A : List[Any] = manager.list() _A : Dict = multiprocessing.Process(target=lowerCamelCase ,args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase__ ( lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[Any] ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _A : Any = shutil.rmtree _A : Optional[int] = os.rmdir _A : str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _A : str = {} with swallow_io(): with time_limit(lowerCamelCase ): exec(lowerCamelCase ,lowerCamelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. _A : Optional[int] = rmtree _A : Optional[Any] = rmdir _A : Dict = chdir @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : int ): def signal_handler(lowerCamelCase : str ,lowerCamelCase : Any ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL ,lowerCamelCase ) signal.signal(signal.SIGALRM ,lowerCamelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL ,0 ) @contextlib.contextmanager def lowerCAmelCase__ ( ): _A : Any = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCamelCase ): with contextlib.redirect_stderr(lowerCamelCase ): with redirect_stdin(lowerCamelCase ): yield @contextlib.contextmanager def lowerCAmelCase__ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCamelCase ): yield dirname class __lowerCamelCase ( a_ ): """simple docstring""" pass class __lowerCamelCase ( io.StringIO ): """simple docstring""" def A ( self : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[Any]): raise OSError def A ( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int]): raise OSError def A ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Tuple): return False class __lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" a = "stdin" @contextlib.contextmanager def lowerCAmelCase__ ( lowerCamelCase : Tuple ): if root == ".": yield return _A : Any = os.getcwd() os.chdir(lowerCamelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : List[Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS ,(maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA ,(maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK ,(maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _A : List[Any] = None _A : Dict = None import os _A : Union[str, Any] = '1' _A : int = None _A : Optional[int] = None _A : int = None _A : Any = None _A : Optional[int] = None _A : Union[str, Any] = None _A : List[Any] = None _A : int = None _A : List[Any] = None _A : Tuple = None _A : Any = None _A : Tuple = None _A : Optional[int] = None _A : Optional[Any] = None _A : str = None _A : Dict = None _A : List[str] = None _A : Union[str, Any] = None _A : Union[str, Any] = None _A : str = None _A : str = None _A : str = None _A : Any = None _A : Union[str, Any] = None _A : str = None _A : List[str] = None _A : Union[str, Any] = None import shutil _A : int = None _A : Any = None _A : List[Any] = None import subprocess _A : Optional[Any] = None # type: ignore _A : List[Any] = None import sys _A : Any = None _A : Tuple = None _A : str = None _A : Tuple = None _A : List[str] = None
227
0
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
15
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
1
from manim import * class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase : Optional[int] = Rectangle(height=0.25 , width=0.25 ) UpperCamelCase : Any = [mem.copy() for i in range(6 )] UpperCamelCase : List[str] = [mem.copy() for i in range(6 )] UpperCamelCase : List[str] = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : int = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : List[Any] = VGroup(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : Dict = Text('''CPU''' , font_size=24 ) UpperCamelCase : str = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = [mem.copy() for i in range(4 )] UpperCamelCase : Union[str, Any] = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : int = Text('''GPU''' , font_size=24 ) UpperCamelCase : str = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [mem.copy() for i in range(6 )] UpperCamelCase : List[Any] = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : Dict = Text('''Model''' , font_size=24 ) UpperCamelCase : Any = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = [] UpperCamelCase : List[str] = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : str = fill.copy().set_fill(__SCREAMING_SNAKE_CASE , opacity=0.8 ) target.move_to(__SCREAMING_SNAKE_CASE ) model_arr.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__SCREAMING_SNAKE_CASE , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__SCREAMING_SNAKE_CASE ) self.add(*__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [meta_mem.copy() for i in range(6 )] UpperCamelCase : List[str] = [meta_mem.copy() for i in range(6 )] UpperCamelCase : Any = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : Optional[int] = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : Dict = VGroup(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase : str = Text('''Disk''' , font_size=24 ) UpperCamelCase : Dict = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) disk.move_to([-4, -1.25, 0] ) self.add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase : List[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = Square(0.3 ) input.set_fill(__SCREAMING_SNAKE_CASE , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __SCREAMING_SNAKE_CASE , buff=0.5 ) self.play(Write(__SCREAMING_SNAKE_CASE ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__SCREAMING_SNAKE_CASE , buff=0.02 ) self.play(MoveToTarget(__SCREAMING_SNAKE_CASE ) ) self.play(FadeOut(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[Any] = Arrow(start=__SCREAMING_SNAKE_CASE , end=__SCREAMING_SNAKE_CASE , color=__SCREAMING_SNAKE_CASE , buff=0.5 ) a.next_to(model_arr[0].get_left() , __SCREAMING_SNAKE_CASE , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCamelCase : int = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE , run_time=3 ) ) UpperCamelCase : Union[str, Any] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[0] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(model_cpu_arr[0] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCamelCase : Union[str, Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __SCREAMING_SNAKE_CASE , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) UpperCamelCase : int = AnimationGroup( FadeOut(__SCREAMING_SNAKE_CASE , run_time=0.5 ) , MoveToTarget(__SCREAMING_SNAKE_CASE , run_time=0.5 ) , FadeIn(__SCREAMING_SNAKE_CASE , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__SCREAMING_SNAKE_CASE ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCamelCase : Tuple = 0.7 self.play( Circumscribe(model_arr[i] , **__SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i] , **__SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i + 1] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[i + 1] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[-1] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCamelCase : str = a_c UpperCamelCase : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__SCREAMING_SNAKE_CASE ) , FadeOut(__SCREAMING_SNAKE_CASE , run_time=0.5 ) , ) UpperCamelCase : List[str] = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE , run_time=3 ) , MoveToTarget(__SCREAMING_SNAKE_CASE ) ) self.wait()
315
def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : Any = set() # Replace all the whitespace in our sentence UpperCamelCase : Union[str, Any] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 2_6 def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCamelCase : List[Any] = True elif char.isupper(): UpperCamelCase : List[Any] = True return all(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def a ( ): """simple docstring""" from timeit import timeit UpperCamelCase : int = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
315
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _lowercase: Dict = None _lowercase: Optional[int] = logging.get_logger(__name__) _lowercase: Any = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowercase: List[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _lowercase: Any = { "camembert-base": 512, } _lowercase: List[Any] = "▁" class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = CamembertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) a = vocab_file a = False if not self.vocab_file else True def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
227
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase: Union[str, Any] = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Dict = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: int = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _lowercase: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
227
1
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_UpperCamelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCamelCase__ = QuantumRegister(_UpperCamelCase , "qr" ) UpperCamelCase__ = ClassicalRegister(_UpperCamelCase , "cr" ) UpperCamelCase__ = QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = number_of_qubits for i in range(_UpperCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCamelCase , _UpperCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCamelCase , _UpperCamelCase ) # simulate with 10000 shots UpperCamelCase__ = Aer.get_backend("qasm_simulator" ) UpperCamelCase__ = execute(_UpperCamelCase , _UpperCamelCase , shots=1_00_00 ) return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = k_size // 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] SCREAMING_SNAKE_CASE_ = 1 / (2 * pi * sigma) * exp(-(square(__UpperCamelCase ) + square(__UpperCamelCase )) / (2 * square(__UpperCamelCase )) ) return g def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[0], image.shape[1] # dst image height and width SCREAMING_SNAKE_CASE_ = height - k_size + 1 SCREAMING_SNAKE_CASE_ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows SCREAMING_SNAKE_CASE_ = zeros((dst_height * dst_width, k_size * k_size) ) SCREAMING_SNAKE_CASE_ = 0 for i, j in product(range(__UpperCamelCase ) , range(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = ravel(image[i : i + k_size, j : j + k_size] ) SCREAMING_SNAKE_CASE_ = window row += 1 # turn the kernel into shape(k*k, 1) SCREAMING_SNAKE_CASE_ = gen_gaussian_kernel(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = ravel(__UpperCamelCase ) # reshape and get the dst image SCREAMING_SNAKE_CASE_ = dot(__UpperCamelCase , __UpperCamelCase ).reshape(__UpperCamelCase , __UpperCamelCase ).astype(__UpperCamelCase ) return dst if __name__ == "__main__": # read original image A : Tuple = imread(r"../image_data/lena.jpg") # turn image in gray scale value A : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A : Tuple = gaussian_filter(gray, 3, sigma=1) A : Optional[int] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
118
from __future__ import annotations class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : str ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = text, pattern SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = len(__magic_name__ ), len(__magic_name__ ) def __A ( self : List[str] , __magic_name__ : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : Dict , __magic_name__ : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : Tuple ) -> list[int]: # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE_ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE_ = self.mismatch_in_text(__magic_name__ ) if mismatch_index == -1: positions.append(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : Dict = "ABAABA" A : Union[str, Any] = "AB" A : str = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
118
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = '''\ Text data. Second line of data.''' lowerCAmelCase__ = '''file''' @pytest.fixture(scope="session" ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCamelCase = bytes(_SCREAMING_SNAKE_CASE , "utf-8" ) with zstd.open(_SCREAMING_SNAKE_CASE , "wb" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCamelCase = input_paths[compression_format] UpperCamelCase = tmp_path / "cache" UpperCamelCase = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) UpperCamelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = "custom_cache" UpperCamelCase = "custom_extracted_dir" UpperCamelCase = tmp_path / "custom_extracted_path" if default_extracted: UpperCamelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase = xz_file UpperCamelCase = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path UpperCamelCase = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path UpperCamelCase = "./__missing_file__.txt" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = get_from_cache(F"tmp://{tmpfs_file}" ) with open(_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get("https://huggingface.co" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get("ftp://huggingface.co" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get("s3://huggingface.co" , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head("s3://huggingface.co" )
371
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) UpperCamelCase = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "README.md" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_351_563, "num_examples": 10_000, }, { "name": "validation", "num_bytes": 238_418, "num_examples": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["default"] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["default"] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
244
0
from __future__ import annotations lowerCAmelCase_ = list[list[int]] # assigning initial values to the grid lowerCAmelCase_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCAmelCase_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if location := find_empty_location(SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = digit if sudoku(SCREAMING_SNAKE_CASE__ ) is not None: return grid snake_case_ = 0 return None def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE__ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') lowerCAmelCase_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
8
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self , lowerCamelCase_ = 1 , lowerCamelCase_ = None , lowerCamelCase_ = 50 , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , **lowerCamelCase_ , ): """simple docstring""" a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase_ , ) a = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output a = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 a = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample a = (image / 2 + 0.5).clamp(0 , 1 ) a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase_ ), "This is a local test"
227
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __snake_case : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase__ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) lowerCAmelCase__ = bs[:] lowerCAmelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char return pairs class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="replace" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding='utf-8' ) as vocab_handle: lowerCAmelCase__ = json.load(_UpperCamelCase ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ = errors # how to handle errors in decoding lowerCAmelCase__ = bytes_to_unicode() lowerCAmelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding='utf-8' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('\n' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) lowerCAmelCase__ = {} lowerCAmelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = get_pairs(_UpperCamelCase ) if not pairs: return token while True: lowerCAmelCase__ = min(_UpperCamelCase , key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(_UpperCamelCase ): try: lowerCAmelCase__ = word.index(_UpperCamelCase , _UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(_UpperCamelCase ) lowerCAmelCase__ = new_word if len(_UpperCamelCase ) == 1: break else: lowerCAmelCase__ = get_pairs(_UpperCamelCase ) lowerCAmelCase__ = ' '.join(_UpperCamelCase ) lowerCAmelCase__ = word return word def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] for token in re.findall(self.pat , _UpperCamelCase ): lowerCAmelCase__ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(' ' ) ) return bpe_tokens def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return self.decoder.get(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ''.join(_UpperCamelCase ) lowerCAmelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase ) + '\n' ) lowerCAmelCase__ = 0 with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) lowerCAmelCase__ = token_index writer.write(' '.join(_UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=False , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ = ' ' + text return (text, kwargs) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = PaddingStrategy.DO_NOT_PAD , _UpperCamelCase = None , _UpperCamelCase = None , ): """simple docstring""" lowerCAmelCase__ = super()._pad( encoded_inputs=_UpperCamelCase , max_length=_UpperCamelCase , padding_strategy=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCamelCase ) if needs_to_be_padded: lowerCAmelCase__ = len(_UpperCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
359
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __snake_case : Tuple = """sshleifer/mar_enro_6_3_student""" class __SCREAMING_SNAKE_CASE ( __lowercase): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCamelCase , ) lowerCAmelCase__ = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" MarianMTModel.from_pretrained(_UpperCamelCase ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase__ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase__ = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase__ = ['finetune.py'] + bash_script.split() + args with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationModule.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class __SCREAMING_SNAKE_CASE ( __lowercase): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = F"{self.test_file_dir_str}/test_data/wmt_en_ro" lowerCAmelCase__ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase__ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCAmelCase__ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCAmelCase__ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCAmelCase__ = bash_script.replace(_UpperCamelCase , str(_UpperCamelCase ) ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = bash_script.replace('--fp16' , '' ) lowerCAmelCase__ = 6 lowerCAmelCase__ = ( ['distillation.py'] + bash_script.split() + [ F"--output_dir={output_dir}", '--gpus=1', '--learning_rate=1e-3', F"--num_train_epochs={epochs}", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(_UpperCamelCase , 'argv' , _UpperCamelCase ): lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = pl.Trainer.add_argparse_args(_UpperCamelCase ) lowerCAmelCase__ = SummarizationDistiller.add_model_specific_args(_UpperCamelCase , os.getcwd() ) lowerCAmelCase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase__ = distill_main(_UpperCamelCase ) # Check metrics lowerCAmelCase__ = load_json(model.metrics_save_path ) lowerCAmelCase__ = metrics['val'][0] lowerCAmelCase__ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , _UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase__ = os.listdir(_UpperCamelCase ) lowerCAmelCase__ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCAmelCase__ = os.path.join(args.output_dir , _UpperCamelCase ) lowerCAmelCase__ = torch.load(_UpperCamelCase , map_location='cpu' ) lowerCAmelCase__ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase__ = {os.path.basename(_UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
122
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' a = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' a = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=False ): if rouge_types is None: _A = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] _A = rouge_scorer.RougeScorer(rouge_types=_UpperCAmelCase , use_stemmer=_UpperCAmelCase ) if use_aggregator: _A = scoring.BootstrapAggregator() else: _A = [] for ref, pred in zip(_UpperCAmelCase , _UpperCAmelCase ): _A = scorer.score(_UpperCAmelCase , _UpperCAmelCase ) if use_aggregator: aggregator.add_scores(_UpperCAmelCase ) else: scores.append(_UpperCAmelCase ) if use_aggregator: _A = aggregator.aggregate() else: _A = {} for key in scores[0]: _A = [score[key] for score in scores] return result
315
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
1
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : List[Any] = 2**power _UpperCamelCase : Tuple = str(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = list(UpperCAmelCase_ ) _UpperCamelCase : Tuple = 0 for i in list_num: sum_of_num += int(UpperCAmelCase_ ) return sum_of_num if __name__ == "__main__": snake_case_ : Optional[Any] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) snake_case_ : Any = solution(power) print('Sum of the digits is: ', result)
236
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : List[str] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase__ ( lowercase ): lowercase__ = """gptj""" lowercase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any ,lowerCamelCase__ : Optional[Any]=50400 ,lowerCamelCase__ : Tuple=2048 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : int=28 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : List[Any]="gelu_new" ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Tuple=1E-5 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=50256 ,lowerCamelCase__ : Any=50256 ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Optional[Any] = n_positions _UpperCamelCase : Union[str, Any] = n_embd _UpperCamelCase : Any = n_layer _UpperCamelCase : Optional[int] = n_head _UpperCamelCase : List[str] = n_inner _UpperCamelCase : List[Any] = rotary_dim _UpperCamelCase : int = activation_function _UpperCamelCase : Dict = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Union[str, Any] = attn_pdrop _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,tie_word_embeddings=lowerCamelCase__ ,**lowerCamelCase__ ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : str = "default" ,lowerCamelCase__ : List[PatchingSpec] = None ,lowerCamelCase__ : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase__ ,task=lowerCamelCase__ ,patching_specs=lowerCamelCase__ ,use_past=lowerCamelCase__ ) if not getattr(self._config ,'pad_token_id' ,lowerCamelCase__ ): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ ,direction='inputs' ) _UpperCamelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Any = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[TensorType] = None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = super(lowerCamelCase__ ,self ).generate_dummy_inputs( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,seq_length=lowerCamelCase__ ,is_pair=lowerCamelCase__ ,framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCamelCase , _UpperCamelCase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : Optional[int] = seqlen + 2 _UpperCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Optional[Any] = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] _UpperCamelCase : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : Any = ordered_inputs['attention_mask'].dtype _UpperCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ ,lowerCamelCase__ ,dtype=lowerCamelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 13
236
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = "luke" def __init__( self : Optional[int] , A : Tuple=50267 , A : Optional[Any]=500000 , A : Dict=768 , A : List[Any]=256 , A : List[Any]=12 , A : List[Any]=12 , A : List[Any]=3072 , A : int="gelu" , A : Optional[int]=0.1 , A : List[Any]=0.1 , A : Dict=512 , A : Dict=2 , A : Optional[int]=0.02 , A : List[str]=1E-12 , A : List[str]=True , A : Dict=None , A : List[Any]=1 , A : Optional[int]=0 , A : Any=2 , **A : Tuple , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Optional[Any] = entity_vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Optional[Any] = entity_emb_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Union[str, Any] = use_entity_aware_attention _UpperCAmelCase : int = classifier_dropout
31
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() _UpperCAmelCase : Optional[int] = nn.ModuleList(A ) def _A ( self : Dict , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : torch.Tensor , A : List[torch.tensor] , A : List[float] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[Dict[str, Any]] = None , A : bool = False , A : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): _UpperCAmelCase , _UpperCAmelCase : str = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: _UpperCAmelCase , _UpperCAmelCase : List[Any] = down_samples, mid_sample else: _UpperCAmelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _A ( self : List[str] , A : Union[str, os.PathLike] , A : bool = True , A : Callable = None , A : bool = False , A : Optional[str] = None , ): _UpperCAmelCase : str = 0 _UpperCAmelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 _UpperCAmelCase : Tuple = model_path_to_save + F"""_{idx}""" @classmethod def _A ( cls : int , A : Optional[Union[str, os.PathLike]] , **A : Tuple ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _UpperCAmelCase : int = pretrained_model_path while os.path.isdir(A ): _UpperCAmelCase : List[str] = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 _UpperCAmelCase : Dict = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(A )} controlnets loaded from {pretrained_model_path}.""" ) if len(A ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(A )
31
1
def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> str: return "".join(chr(ord(__UpperCAmelCase ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
247
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> str: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCamelCase__ : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase__ : str = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids, __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCamelCase__ : str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [[1, 2, 3], [1, 2, 4]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = dc.update(1 ) UpperCamelCase__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = dc.update(2 ) UpperCamelCase__ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = dc.update(3 ) UpperCamelCase__ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
247
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class UpperCamelCase ( __lowerCamelCase , unittest.TestCase ): UpperCAmelCase : Optional[int] = RoFormerTokenizer UpperCAmelCase : List[Any] = RoFormerTokenizerFast UpperCAmelCase : Dict = True UpperCAmelCase : str = True def _lowercase (self : List[Any]) -> List[Any]: super().setUp() def _lowercase (self : Tuple , **_A : Dict) -> Union[str, Any]: return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **SCREAMING_SNAKE_CASE_) def _lowercase (self : List[str] , **_A : List[Any]) -> Tuple: return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **SCREAMING_SNAKE_CASE_) def _lowercase (self : Dict) -> Any: __snake_case : Optional[int] = '永和服装饰品有限公司,今天天气非常好' __snake_case : int = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _lowercase (self : int) -> str: __snake_case : Any = self.get_tokenizer() __snake_case , __snake_case : Optional[int] = self.get_chinese_input_output_texts() __snake_case : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split()) __snake_case : int = tokens + [tokenizer.unk_token] __snake_case : Optional[int] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def _lowercase (self : Dict) -> Tuple: __snake_case : str = self.get_rust_tokenizer() __snake_case , __snake_case : List[str] = self.get_chinese_input_output_texts() __snake_case : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split()) __snake_case : List[Any] = tokens + [tokenizer.unk_token] __snake_case : List[Any] = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , SCREAMING_SNAKE_CASE_) def _lowercase (self : Union[str, Any]) -> str: pass def _lowercase (self : int) -> Tuple: pass def _lowercase (self : Union[str, Any]) -> List[str]: pass
172
lowerCamelCase_ = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''']) lowerCamelCase_ = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCamelCase_ = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''image''', '''mask_image''']) lowerCamelCase_ = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCamelCase_ = frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''class_labels''']) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset(['''batch_size''']) lowerCamelCase_ = frozenset([]) lowerCamelCase_ = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCamelCase_ = frozenset(['''prompt''', '''negative_prompt''']) lowerCamelCase_ = frozenset(['''input_tokens''']) lowerCamelCase_ = frozenset(['''input_tokens'''])
244
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''LayoutLMv2ImageProcessor''' lowerCAmelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[int] = kwargs.pop('''feature_extractor''' ) lowercase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase_ : Union[str, Any] = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase_ : Optional[int] = features['''words'''] lowercase_ : Dict = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # add pixel values lowercase_ : List[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase_ : Dict = self.get_overflowing_images(__SCREAMING_SNAKE_CASE , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase_ : int = images return encoded_inputs def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F''' {len(__SCREAMING_SNAKE_CASE )} and {len(__SCREAMING_SNAKE_CASE )}''' ) return images_with_overflow def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _snake_case ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def _snake_case ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _snake_case ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , ) return self.image_processor
354
'''simple docstring''' import logging import os from .state import PartialState class lowerCAmelCase__ ( logging.LoggerAdapter ): @staticmethod def _snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) lowercase_ : Tuple = kwargs.pop('''main_process_only''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = kwargs.pop('''in_order''' , __SCREAMING_SNAKE_CASE ) if self.isEnabledFor(__SCREAMING_SNAKE_CASE ): if self._should_log(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : Optional[Any] = self.process(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.logger.log(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) elif in_order: lowercase_ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowercase_ , lowercase_ : Optional[int] = self.process(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.logger.log(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str = None ): """simple docstring""" if log_level is None: lowercase_ : Any = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = logging.getLogger(__SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__SCREAMING_SNAKE_CASE , {} )
264
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = "▁" _lowerCamelCase : Union[str, Any] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _lowerCamelCase : str = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _lowerCamelCase : List[Any] = { "facebook/s2t-small-librispeech-asr": 1_0_2_4, } _lowerCamelCase : int = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _lowerCamelCase : Optional[int] = {"mustc": MUSTC_LANGS} class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = MAX_MODEL_INPUT_SIZES UpperCamelCase = ["""input_ids""", """attention_mask"""] UpperCamelCase = [] def __init__( self : Optional[Any], __A : Optional[Any], __A : Optional[Any], __A : Dict="<s>", __A : Tuple="</s>", __A : Dict="<pad>", __A : int="<unk>", __A : List[str]=False, __A : Tuple=False, __A : Dict=None, __A : Dict=None, __A : Dict = None, **__A : str, ): UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase, eos_token=__UpperCamelCase, unk_token=__UpperCamelCase, pad_token=__UpperCamelCase, do_upper_case=__UpperCamelCase, do_lower_case=__UpperCamelCase, tgt_lang=__UpperCamelCase, lang_codes=__UpperCamelCase, sp_model_kwargs=self.sp_model_kwargs, **__UpperCamelCase, ) UpperCAmelCase : Any = do_upper_case UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : List[Any] = load_json(__UpperCamelCase ) UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} UpperCAmelCase : int = spm_file UpperCAmelCase : int = load_spm(__UpperCamelCase, self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase : List[str] = lang_codes UpperCAmelCase : List[Any] = LANGUAGES[lang_codes] UpperCAmelCase : List[Any] = [F'''<lang:{lang}>''' for lang in self.langs] UpperCAmelCase : Any = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} UpperCAmelCase : Any = self.lang_tokens UpperCAmelCase : List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase : int = {} @property def __magic_name__ ( self : List[Any] ): return len(self.encoder ) @property def __magic_name__ ( self : Optional[Any] ): return self._tgt_lang @tgt_lang.setter def __magic_name__ ( self : str, __A : List[str] ): UpperCAmelCase : List[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCamelCase ) def __magic_name__ ( self : int, __A : Tuple ): UpperCAmelCase : List[str] = self.lang_code_to_id[tgt_lang] UpperCAmelCase : int = [lang_code_id] def __magic_name__ ( self : Union[str, Any], __A : int ): return self.sp_model.encode(__UpperCamelCase, out_type=__UpperCamelCase ) def __magic_name__ ( self : str, __A : Dict ): return self.encoder.get(__UpperCamelCase, self.encoder[self.unk_token] ) def __magic_name__ ( self : Optional[int], __A : Any ): return self.decoder.get(__UpperCamelCase, self.unk_token ) def __magic_name__ ( self : int, __A : List[Any] ): UpperCAmelCase : Tuple = [] UpperCAmelCase : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase : Optional[int] = self.sp_model.decode(__UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(__UpperCamelCase ) UpperCAmelCase : Optional[int] = self.sp_model.decode(__UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __magic_name__ ( self : Optional[Any], __A : int, __A : Dict=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Optional[Any], __A : Dict, __A : Tuple = None, __A : str = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase, token_ids_a=__UpperCamelCase, already_has_special_tokens=__UpperCamelCase ) UpperCAmelCase : str = [1] * len(self.prefix_tokens ) UpperCAmelCase : Union[str, Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def __magic_name__ ( self : Tuple ): UpperCAmelCase : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): UpperCAmelCase : Dict = self.__dict__.copy() UpperCAmelCase : Optional[Any] = None return state def __setstate__( self : Any, __A : int ): UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): UpperCAmelCase : Tuple = {} UpperCAmelCase : Dict = load_spm(self.spm_file, self.sp_model_kwargs ) def __magic_name__ ( self : List[str], __A : Tuple, __A : str = None ): UpperCAmelCase : List[Any] = Path(__UpperCamelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' UpperCAmelCase : Any = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder, __UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, __UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCamelCase, '''wb''' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (str(__UpperCamelCase ), str(__UpperCamelCase )) def a__ ( UpperCAmelCase : str , UpperCAmelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: UpperCAmelCase : str = sentencepiece.SentencePieceProcessor(**a__ ) spm.Load(str(a__ ) ) return spm def a__ ( UpperCAmelCase : str ) -> Union[Dict, List]: with open(a__ , '''r''' ) as f: return json.load(a__ ) def a__ ( UpperCAmelCase : List[str] , UpperCAmelCase : str ) -> None: with open(a__ , '''w''' ) as f: json.dump(a__ , a__ , indent=2 )
336
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( a__ : float , a__ : float , a__ : int ) -> float: UpperCamelCase_ = x UpperCamelCase_ = y for step in range(a__ ): # noqa: B007 UpperCamelCase_ = a * a - b * b + x UpperCamelCase_ = 2 * a * b + y UpperCamelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( a__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a__ , 1 , 1 ) ) def lowerCamelCase__ ( a__ : int = 800 , a__ : int = 600 , a__ : float = -0.6 , a__ : float = 0 , a__ : float = 3.2 , a__ : int = 50 , a__ : bool = True , ) -> Image.Image: UpperCamelCase_ = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase_ = img.load() # loop through the image-coordinates for image_x in range(a__ ): for image_y in range(a__ ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase_ = figure_width / image_width * image_height UpperCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase_ = get_distance(a__ , a__ , a__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase_ = get_color_coded_rgb(a__ ) else: UpperCamelCase_ = get_black_and_white_rgb(a__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
122
0
from __future__ import annotations import bisect def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> int: if hi < 0: a = len(a ) while lo < hi: a = lo + (hi - lo) // 2 if sorted_collection[mid] < item: a = mid + 1 else: a = mid return lo def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> int: if hi < 0: a = len(a ) while lo < hi: a = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: a = mid + 1 else: a = mid return lo def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> None: sorted_collection.insert(bisect_left(a , a , a , a ) , a ) def _a ( a :list[int] , a :int , a :int = 0 , a :int = -1 ) -> None: sorted_collection.insert(bisect_right(a , a , a , a ) , a ) def _a ( a :list[int] , a :int ) -> int | None: a = 0 a = len(a ) - 1 while left <= right: a = left + (right - left) // 2 a = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: a = midpoint - 1 else: a = midpoint + 1 return None def _a ( a :list[int] , a :int ) -> int | None: a = bisect.bisect_left(a , a ) if index != len(a ) and sorted_collection[index] == item: return index return None def _a ( a :list[int] , a :int , a :int , a :int ) -> int | None: if right < left: return None a = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a , a , a , midpoint - 1 ) else: return binary_search_by_recursion(a , a , midpoint + 1 , a ) if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by comma:\n").strip() UpperCAmelCase__ = sorted(int(item) for item in user_input.split(",")) UpperCAmelCase__ = int(input("Enter a single number to be found in the list:\n")) UpperCAmelCase__ = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __lowerCAmelCase : def __init__( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: int=32 , _lowerCAmelCase: Any=16 , _lowerCAmelCase: int=3 , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Any=4 , _lowerCAmelCase: Optional[Any]=[0, 1, 2, 3] , _lowerCAmelCase: int=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Tuple=3 , _lowerCAmelCase: int=[1, 3_84, 24, 24] , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[str]=None , ): lowercase :Any = parent lowercase :Optional[Any] = batch_size lowercase :Tuple = image_size lowercase :str = patch_size lowercase :Optional[Any] = num_channels lowercase :Any = is_training lowercase :Optional[Any] = use_labels lowercase :int = hidden_size lowercase :Union[str, Any] = num_hidden_layers lowercase :str = backbone_out_indices lowercase :List[Any] = num_attention_heads lowercase :Union[str, Any] = intermediate_size lowercase :List[str] = hidden_act lowercase :str = hidden_dropout_prob lowercase :List[Any] = attention_probs_dropout_prob lowercase :int = initializer_range lowercase :Dict = num_labels lowercase :int = backbone_featmap_shape lowercase :Any = scope lowercase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase :Optional[Any] = (image_size // patch_size) ** 2 lowercase :List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :List[str] = None if self.use_labels: lowercase :int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase :List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :List[Any] = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Dict ): lowercase :str = DPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :Any = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Dict , _lowerCAmelCase: int ): lowercase :List[str] = self.num_labels lowercase :Optional[int] = DPTForDepthEstimation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :int = model(_lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Dict , _lowerCAmelCase: str ): lowercase :Tuple = self.num_labels lowercase :List[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :str = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Optional[int] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :int = config_and_inputs lowercase :Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _a = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: int ): lowercase :List[str] = DPTModelTester(self ) lowercase :List[Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self: str ): pass def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase , lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :str = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase , lowercase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[Any] = model_class(_lowerCAmelCase ) lowercase :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Union[str, Any] = [*signature.parameters.keys()] lowercase :Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase :List[str] = True if model_class in get_values(_lowerCAmelCase ): continue lowercase :str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase :Tuple = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase :Union[str, Any] = model(**_lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self: int ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :str = False lowercase :Optional[Any] = True if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase :str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase :Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase :Dict = model(**_lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self: Any ): lowercase , lowercase :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase :List[Any] = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase :Optional[int] = model_class(config=_lowerCAmelCase ) # Skip the check for the backbone lowercase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase :Tuple = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self: Dict ): pass @slow def SCREAMING_SNAKE_CASE ( self: List[str] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase :Tuple = DPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Any ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase , lowercase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Dict = "add" with self.assertRaises(_lowerCAmelCase ): lowercase :Optional[int] = DPTForDepthEstimation(_lowerCAmelCase ) def UpperCAmelCase__ ( ): lowercase :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :List[str] = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) lowercase :str = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(_lowerCAmelCase ) lowercase :Tuple = prepare_img() lowercase :Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :List[Any] = model(**_lowerCAmelCase ) lowercase :Union[str, Any] = outputs.predicted_depth # verify the predicted depth lowercase :List[str] = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _lowerCAmelCase ) lowercase :int = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _lowerCAmelCase , atol=1e-4 ) )
236
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''ernie_m''' _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: List[Any] , _lowerCAmelCase: int = 25_00_02 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 30_72 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: int = 5_14 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 1e-0_5 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: List[str]=0.0 , **_lowerCAmelCase: Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Tuple = vocab_size lowercase :List[str] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Any = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Dict = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Any = layer_norm_eps lowercase :Union[str, Any] = classifier_dropout lowercase :int = is_decoder lowercase :List[str] = act_dropout
236
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase : Union[str, Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } lowerCamelCase : int = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = BartTokenizer def __init__( self : int , A_ : int=None , A_ : str=None , A_ : Union[str, Any]=None , A_ : Any="replace" , A_ : Dict="<s>" , A_ : List[Any]="</s>" , A_ : List[Any]="</s>" , A_ : Optional[int]="<s>" , A_ : Optional[Any]="<unk>" , A_ : str="<pad>" , A_ : Tuple="<mask>" , A_ : int=False , A_ : str=True , **A_ : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , A_ ) != add_prefix_space: lowerCamelCase_ = getattr(A_ , pre_tok_state.pop('type' ) ) lowerCamelCase_ = add_prefix_space lowerCamelCase_ = pre_tok_class(**A_ ) lowerCamelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase_ = 'post_processor' lowerCamelCase_ = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: lowerCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase_ = tuple(state['sep'] ) if "cls" in state: lowerCamelCase_ = tuple(state['cls'] ) lowerCamelCase_ = False if state.get('add_prefix_space' , A_ ) != add_prefix_space: lowerCamelCase_ = add_prefix_space lowerCamelCase_ = True if state.get('trim_offsets' , A_ ) != trim_offsets: lowerCamelCase_ = trim_offsets lowerCamelCase_ = True if changes_to_apply: lowerCamelCase_ = getattr(A_ , state.pop('type' ) ) lowerCamelCase_ = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def a__ ( self : Optional[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self : Union[str, Any] , A_ : Any ) -> int: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value lowerCamelCase_ = value def a__ ( self : List[str] , *A_ : str , **A_ : Any ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*A_ , **A_ ) def a__ ( self : Union[str, Any] , *A_ : Optional[int] , **A_ : Any ) -> BatchEncoding: """simple docstring""" lowerCamelCase_ = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*A_ , **A_ ) def a__ ( self : str , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def a__ ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Any=None ) -> str: """simple docstring""" lowerCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
208
import math def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = 0 lowerCamelCase_ = 0 while num > 0: lowerCamelCase_ = num % 8 lowerCamelCase_ = octal + (remainder * math.floor(math.pow(10 , lowercase ) )) counter += 1 lowerCamelCase_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(lowercase )}""" def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_16 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
208
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: A__ = [[0 for _ in range(lowercase_ )] for _ in range(m + 1 )] for i in range(m + 1 ): A__ = 1 for n in range(m + 1 ): for k in range(1 , lowercase_ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
247
"""simple docstring""" import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( ) -> Tuple: from torch.utils.cpp_extension import load A__ = Path(lowercase_ ).resolve().parent.parent.parent / "kernels" / "deformable_detr" A__ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , lowercase_ , with_cuda=lowercase_ , extra_include_paths=[str(lowercase_ )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
247
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): __lowercase = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: __lowercase = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = (images / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase :Any = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __UpperCamelCase :Any = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if images.ndim == 3: __UpperCamelCase :int = images[None, ...] __UpperCamelCase :List[str] = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __UpperCamelCase :List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: __UpperCamelCase :Dict = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
105
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __lowercase = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase=False , __lowercase=False , __lowercase=6.0 , __lowercase=None , __lowercase=False , __lowercase=False , __lowercase=None , __lowercase="fp4" , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :List[str] = load_in_abit __UpperCamelCase :Union[str, Any] = load_in_abit __UpperCamelCase :str = llm_inta_threshold __UpperCamelCase :List[str] = llm_inta_skip_modules __UpperCamelCase :Any = llm_inta_enable_fpaa_cpu_offload __UpperCamelCase :List[Any] = llm_inta_has_fpaa_weight __UpperCamelCase :str = bnb_abit_quant_type __UpperCamelCase :Optional[int] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __UpperCamelCase :Tuple = torch.floataa elif isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = getattr(__lowercase , __lowercase) elif isinstance(__lowercase , torch.dtype): __UpperCamelCase :int = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''') self.post_init() def UpperCamelCase__ ( self) -> Union[str, Any]: if not isinstance(self.llm_inta_threshold , __lowercase): raise ValueError('''llm_int8_threshold must be a float''') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __lowercase): raise ValueError('''llm_int8_skip_modules must be a list of strings''') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __lowercase): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''') if not isinstance(self.llm_inta_has_fpaa_weight , __lowercase): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''') if not isinstance(self.bnb_abit_quant_type , __lowercase): raise ValueError('''bnb_4bit_quant_type must be a string''') if not isinstance(self.bnb_abit_use_double_quant , __lowercase): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''') if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''')) >= version.parse( '''0.39.0'''): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''') def UpperCamelCase__ ( self) -> Any: return self.load_in_abit or self.load_in_abit def UpperCamelCase__ ( self) -> List[Any]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase__ ( cls , __lowercase , __lowercase , **__lowercase) -> List[str]: __UpperCamelCase :Optional[int] = cls(**__lowercase) __UpperCamelCase :Optional[Any] = [] for key, value in kwargs.items(): if hasattr(__lowercase , __lowercase): setattr(__lowercase , __lowercase , __lowercase) to_remove.append(__lowercase) for key in to_remove: kwargs.pop(__lowercase , __lowercase) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: with open(__lowercase , '''w''' , encoding='''utf-8''') as writer: __UpperCamelCase :Optional[int] = self.to_dict() __UpperCamelCase :Optional[int] = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + '''\n''' writer.write(__lowercase) def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Optional[Any] = copy.deepcopy(self.__dict__) __UpperCamelCase :Optional[int] = str(output['''bnb_4bit_compute_dtype''']).split('''.''')[1] return output def __repr__( self) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCamelCase__ ( self , __lowercase = True) -> str: if use_diff is True: __UpperCamelCase :Union[str, Any] = self.to_diff_dict() else: __UpperCamelCase :Dict = self.to_dict() return json.dumps(__lowercase , indent=2 , sort_keys=__lowercase) + "\n" def UpperCamelCase__ ( self) -> Dict[str, Any]: __UpperCamelCase :Union[str, Any] = self.to_dict() # get the default config dict __UpperCamelCase :Optional[Any] = BitsAndBytesConfig().to_dict() __UpperCamelCase :str = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __UpperCamelCase :str = value return serializable_config_dict
105
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" assert isinstance(_a , _a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Tuple = tmp_path / '''cache''' __magic_name__ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : Optional[int] = JsonDatasetReader(_a , cache_dir=_a , keep_in_memory=_a ).read() _check_json_dataset(_a , _a ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Optional[Any] = tmp_path / '''cache''' __magic_name__ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ : Optional[int] = features.copy() if features else default_expected_features __magic_name__ : str = ( Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Optional[Any] = JsonDatasetReader(_a , features=_a , cache_dir=_a ).read() _check_json_dataset(_a , _a ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = tmp_path / '''cache''' __magic_name__ : Tuple = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __magic_name__ : str = features.copy() if features else default_expected_features __magic_name__ : Dict = ( Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Any = JsonDatasetReader(_a , features=_a , cache_dir=_a ).read() assert isinstance(_a , _a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" __magic_name__ : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __magic_name__ : List[str] = features.copy() __magic_name__ : str = ( Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : int = tmp_path / '''cache''' __magic_name__ : Optional[int] = JsonDatasetReader(_a , features=_a , cache_dir=_a ).read() assert isinstance(_a , _a ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Optional[int] = tmp_path / '''cache''' __magic_name__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ : Optional[int] = JsonDatasetReader(_a , cache_dir=_a , split=_a ).read() _check_json_dataset(_a , _a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int ): """simple docstring""" if issubclass(_a , _a ): __magic_name__ : Optional[int] = jsonl_path elif issubclass(_a , _a ): __magic_name__ : Optional[Any] = [jsonl_path] __magic_name__ : int = tmp_path / '''cache''' __magic_name__ : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ : Tuple = JsonDatasetReader(_a , cache_dir=_a ).read() _check_json_dataset(_a , _a ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=("train",) ): """simple docstring""" assert isinstance(_a , _a ) for split in splits: __magic_name__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : List[str] = tmp_path / '''cache''' __magic_name__ : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=_a , keep_in_memory=_a ).read() _check_json_datasetdict(_a , _a ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Union[str, Any] = tmp_path / '''cache''' __magic_name__ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ : List[Any] = features.copy() if features else default_expected_features __magic_name__ : Dict = ( Features({feature: Value(_a ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : str = JsonDatasetReader({'train': jsonl_path} , features=_a , cache_dir=_a ).read() _check_json_datasetdict(_a , _a ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : List[Any] ): """simple docstring""" if split: __magic_name__ : List[str] = {split: jsonl_path} else: __magic_name__ : List[str] = '''train''' __magic_name__ : Optional[int] = {'''train''': jsonl_path, '''test''': jsonl_path} __magic_name__ : List[Any] = tmp_path / '''cache''' __magic_name__ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __magic_name__ : int = JsonDatasetReader(_a , cache_dir=_a ).read() _check_json_datasetdict(_a , _a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" return json.load(_a ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" return [json.loads(_a ) for line in buffer] class _lowerCamelCase : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def __lowerCAmelCase ( self : List[str] , _A : Any , _A : List[Any] , _A : Optional[int] ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) __magic_name__ : List[str] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def __lowerCAmelCase ( self : str , _A : Dict , _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Dict ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) __magic_name__ : str = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def __lowerCAmelCase ( self : str , _A : Tuple , _A : Optional[Any] , _A : Union[str, Any] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) __magic_name__ : Optional[Any] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def __lowerCAmelCase ( self : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : List[Any] , _A : List[str] , _A : str ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) __magic_name__ : str = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def __lowerCAmelCase ( self : str , _A : Optional[Any] ) -> int: with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def __lowerCAmelCase ( self : Optional[Any] , _A : int , _A : List[str] , _A : Tuple , _A : Union[str, Any] , _A : Optional[int] ) -> int: __magic_name__ : Any = tmp_path_factory.mktemp('data' ) / F'test.json.{extension}' __magic_name__ : Tuple = str(shared_datadir / F'test_file.json.{extension}' ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , 'rb' , compression='infer' ) as f: __magic_name__ : Optional[Any] = f.read() with fsspec.open(lowercase_ , 'rb' , compression='infer' ) as f: __magic_name__ : Optional[Any] = f.read() assert exported_content == original_content
331
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : str = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase = random.Random() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None )-> Dict: """simple docstring""" if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=4_00 , _UpperCAmelCase=20_00 , _UpperCAmelCase=24 , _UpperCAmelCase=24 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1_60_00 , _UpperCAmelCase=True , _UpperCAmelCase=True , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = num_mel_bins snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize def UpperCamelCase__ ( self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: snake_case_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ): snake_case_ = SpeechaTextFeatureExtractionTester(self ) def UpperCamelCase__ ( self , _UpperCAmelCase ): self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size snake_case_ = feature_extractor(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input snake_case_ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features snake_case_ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test batched snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_features snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case_ = np.asarray(_UpperCAmelCase ) snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_features snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 16, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ = feature_extractor( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase ) snake_case_ = inputs.input_features snake_case_ = inputs.attention_mask snake_case_ = [np.sum(_UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case_ = [None, 16, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ = feature_extractor( _UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='''np''' , return_attention_mask=_UpperCAmelCase ) snake_case_ = inputs.input_features snake_case_ = inputs.attention_mask snake_case_ = [np.sum(_UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feature_extractor( _UpperCAmelCase , padding='''max_length''' , max_length=4 , truncation=_UpperCAmelCase , return_tensors='''np''' , return_attention_mask=_UpperCAmelCase , ) snake_case_ = inputs.input_features snake_case_ = inputs.attention_mask snake_case_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feature_extractor( _UpperCAmelCase , padding='''longest''' , max_length=4 , truncation=_UpperCAmelCase , return_tensors='''np''' , return_attention_mask=_UpperCAmelCase , ) snake_case_ = inputs.input_features snake_case_ = inputs.attention_mask snake_case_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feature_extractor( _UpperCAmelCase , padding='''longest''' , max_length=16 , truncation=_UpperCAmelCase , return_tensors='''np''' , return_attention_mask=_UpperCAmelCase , ) snake_case_ = inputs.input_features snake_case_ = inputs.attention_mask snake_case_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def UpperCamelCase__ ( self ): import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_00 , 32 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , _UpperCAmelCase ): from datasets import load_dataset snake_case_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech snake_case_ = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ): # fmt: off snake_case_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _UpperCAmelCase , atol=1E-4 ) )
267
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInpaintPipeline __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) snake_case_ = CLIPTextModel(_UpperCAmelCase ) snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) snake_case_ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCAmelCase ) else: snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) snake_case_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ = sd_pipe(**_UpperCAmelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase__ ( self ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) snake_case_ = '''stabilityai/stable-diffusion-2-inpainting''' snake_case_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder='''scheduler''' ) snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
267
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = ShapEImgaImgPipeline _a = ["image"] _a = ["image"] _a = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> Optional[int]: return 32 @property def a__ ( self ) -> Tuple: return 32 @property def a__ ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> Optional[int]: return 8 @property def a__ ( self ) -> List[Any]: torch.manual_seed(0 ) _A : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A : List[Any] = CLIPVisionModel(_a ) return model @property def a__ ( self ) -> Dict: _A : int = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : str = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _A : Optional[int] = PriorTransformer(**_a ) return model @property def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : List[str] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _A : int = ShapERenderer(**_a ) return model def a__ ( self ) -> int: _A : Optional[Any] = self.dummy_prior _A : Tuple = self.dummy_image_encoder _A : str = self.dummy_image_processor _A : Any = self.dummy_renderer _A : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) _A : Union[str, Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def a__ ( self , _a , _a=0 ) -> int: _A : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): _A : List[Any] = torch.manual_seed(_a ) else: _A : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _A : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def a__ ( self ) -> Tuple: _A : List[Any] = """cpu""" _A : List[str] = self.get_dummy_components() _A : str = self.pipeline_class(**_a ) _A : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = pipe(**self.get_dummy_inputs(_a ) ) _A : Tuple = output.images[0] _A : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Tuple: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self ) -> Tuple: _A : List[str] = torch_device == """cpu""" _A : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def a__ ( self ) -> Tuple: _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : int = 1 _A : List[str] = 2 _A : str = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: _A : str = batch_size * [inputs[key]] _A : Union[str, Any] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Dict: _A : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) _A : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) _A : List[Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) _A : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device=_a ).manual_seed(0 ) _A : Optional[Any] = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
26
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
1
'''simple docstring''' from __future__ import annotations A__ : Optional[int] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class snake_case__ : def __init__( self : Tuple , __a : dict[str, list[str]] , __a : str ) -> None: '''simple docstring''' __snake_case : Optional[Any] = graph # mapping node to its parent in resulting breadth first tree __snake_case : dict[str, str | None] = {} __snake_case : Optional[int] = source_vertex def A_ ( self : Tuple ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = {self.source_vertex} __snake_case : Any = None __snake_case : Union[str, Any] = [self.source_vertex] # first in first out queue while queue: __snake_case : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__a ) __snake_case : Tuple = vertex queue.append(__a ) def A_ ( self : Optional[int] , __a : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __snake_case : str = self.parent.get(__a ) if target_vertex_parent is None: __snake_case : Dict = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__a ) return self.shortest_path(__a ) + f'''->{target_vertex}''' if __name__ == "__main__": A__ : Any = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
0
'''simple docstring''' from __future__ import annotations A__ : str = '''Muhammad Umer Farooq''' A__ : int = '''MIT''' A__ : Optional[int] = '''1.0.0''' A__ : List[Any] = '''Muhammad Umer Farooq''' A__ : Optional[Any] = '''[email protected]''' A__ : Optional[Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , __a : str ) -> None: '''simple docstring''' super().__init__() __snake_case : list[str] = [] __snake_case : Dict = domain def A_ ( self : Dict , __a : str , __a : list[tuple[str, str | None]] ) -> None: '''simple docstring''' # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case : Optional[Any] = parse.urljoin(self.domain , __a ) self.urls.append(__a ) def a_ ( _UpperCAmelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCAmelCase ).split('.' )[-2:] ) def a_ ( _UpperCAmelCase : str ) -> str: return parse.urlparse(_UpperCAmelCase ).netloc def a_ ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]: __snake_case : List[Any] = get_domain_name(_UpperCAmelCase ) # Initialize the parser __snake_case : Tuple = Parser(_UpperCAmelCase ) try: # Open URL __snake_case : Any = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case : Dict = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case : List[Any] = requests.get(_UpperCAmelCase ) # Get the valid email. __snake_case : Optional[Any] = re.findall('[a-zA-Z0-9]+@' + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": A__ : Tuple = emails_from_url('''https://github.com''') print(F"""{len(emails)} emails found:""") print('''\n'''.join(sorted(emails)))
0
1
'''simple docstring''' import logging from transformers import PretrainedConfig _UpperCamelCase = logging.getLogger(__name__) _UpperCamelCase = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ="""bertabs""" def __init__( self : int , _a : Union[str, Any]=3_0522 , _a : int=512 , _a : Optional[int]=6 , _a : Union[str, Any]=512 , _a : Any=8 , _a : Optional[Any]=512 , _a : List[str]=0.2 , _a : str=6 , _a : Union[str, Any]=768 , _a : Optional[int]=8 , _a : Dict=2048 , _a : Dict=0.2 , **_a : str , ) -> List[str]: super().__init__(**_a ) __lowerCamelCase : int = vocab_size __lowerCamelCase : Any = max_pos __lowerCamelCase : Dict = enc_layers __lowerCamelCase : Any = enc_hidden_size __lowerCamelCase : Optional[int] = enc_heads __lowerCamelCase : List[str] = enc_ff_size __lowerCamelCase : Tuple = enc_dropout __lowerCamelCase : Tuple = dec_layers __lowerCamelCase : Any = dec_hidden_size __lowerCamelCase : str = dec_heads __lowerCamelCase : Tuple = dec_ff_size __lowerCamelCase : List[str] = dec_dropout
208
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } _UpperCamelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off _UpperCamelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =["""input_ids""", """attention_mask"""] a_ =MBartTokenizer a_ =[] a_ =[] def __init__( self : Optional[Any] , _a : Optional[int]=None , _a : Any=None , _a : Any="<s>" , _a : Optional[Any]="</s>" , _a : List[str]="</s>" , _a : List[Any]="<s>" , _a : Union[str, Any]="<unk>" , _a : str="<pad>" , _a : Any="<mask>" , _a : Optional[Any]=None , _a : str=None , _a : Tuple=None , **_a : Dict , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , **_a , ) __lowerCamelCase : Optional[Any] = vocab_file __lowerCamelCase : List[str] = False if not self.vocab_file else True __lowerCamelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __lowerCamelCase : Optional[Any] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowerCamelCase : Optional[Any] = src_lang if src_lang is not None else 'en_XX' __lowerCamelCase : int = self.convert_tokens_to_ids(self._src_lang ) __lowerCamelCase : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self : List[Any] ) -> str: return self._src_lang @src_lang.setter def _lowercase ( self : Union[str, Any] , _a : str ) -> None: __lowerCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self : List[Any] , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self : int , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase : Optional[int] = [self.sep_token_id] __lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , _a : Optional[Any] , _a : str , _a : Optional[str] , _a : Optional[str] , **_a : Optional[int] ) -> Any: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowerCamelCase : Optional[Any] = src_lang __lowerCamelCase : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) __lowerCamelCase : Tuple = self.convert_tokens_to_ids(_a ) __lowerCamelCase : Optional[Any] = tgt_lang_id return inputs def _lowercase ( self : Any , _a : List[str] , _a : str = "en_XX" , _a : Optional[List[str]] = None , _a : str = "ro_RO" , **_a : Tuple , ) -> BatchEncoding: __lowerCamelCase : List[Any] = src_lang __lowerCamelCase : str = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowercase ( self : List[Any] ) -> Any: return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self : Dict ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self : Tuple , _a : List[str] ) -> None: __lowerCamelCase : Tuple = self.convert_tokens_to_ids(_a ) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code] __lowerCamelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : Optional[Any] , _a : str ) -> None: __lowerCamelCase : Union[str, Any] = self.convert_tokens_to_ids(_a ) __lowerCamelCase : int = [] __lowerCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code] __lowerCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : Any , _a : str , _a : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return __lowerCamelCase : List[str] = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
208
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _snake_case = False class a__ ( unittest.TestCase ): def _lowerCamelCase ( self , _UpperCamelCase=32 ): """simple docstring""" set_seed(0 ) _lowercase : List[str] = UNetaDModel(sample_size=_UpperCamelCase , in_channels=3 , out_channels=3 ) _lowercase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _lowercase : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=_UpperCamelCase , ) _lowercase : Any = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=_UpperCamelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _lowercase : List[Any] = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_UpperCamelCase ) for _ in range(4 )] _lowercase : List[Any] = [torch.randn((4, 3, 32, 32) ).to(_UpperCamelCase ) for _ in range(4 )] _lowercase : Any = [torch.randint(0 , 1000 , (4,) ).long().to(_UpperCamelCase ) for _ in range(4 )] # train with a DDPM scheduler _lowercase : Union[str, Any] = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCamelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : Any = model(_UpperCamelCase , timesteps[i] ).sample _lowercase : int = torch.nn.functional.mse_loss(_UpperCamelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _lowercase : Any = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCamelCase ) for i in range(4 ): optimizer.zero_grad() _lowercase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowercase : List[str] = model(_UpperCamelCase , timesteps[i] ).sample _lowercase : int = torch.nn.functional.mse_loss(_UpperCamelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-5 ) )
360
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = '▁' _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _snake_case = { 'google/pegasus-xsum': 512, } _snake_case = logging.get_logger(__name__) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=103 , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCamelCase )}, but is''' f''' {type(_UpperCamelCase )}''' ) _lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCamelCase ) , self.offset - 1 ) ] if len(set(_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _lowercase : List[str] = additional_special_tokens_extended else: _lowercase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : Union[str, Any] = mask_token_sent _lowercase : str = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) # add special tokens to encoder dict _lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowercase : Optional[Any] = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : List[Any] = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _lowercase : int = self.sp_model.piece_to_id(_UpperCamelCase ) return sp_id + self.offset def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _lowercase : Any = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : Optional[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token _lowercase : Tuple = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCamelCase=False ): """simple docstring""" return 1 def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
199
0