code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 25_00_04 _A = 25_00_20 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MBartaaTokenizer SCREAMING_SNAKE_CASE = MBartaaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Any = MBartaaTokenizer(_lowerCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = """<s>""" UpperCAmelCase__ : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_lowerCamelCase ) , 1054 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = MBartaaTokenizer(_lowerCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) UpperCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : str = {"""input_ids""": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def _a (self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Tuple = tempfile.mkdtemp() UpperCAmelCase__ : List[Any] = tokenizer_r.save_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Optional[Any] = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : int = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : int = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Dict = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : Tuple = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Tuple = tempfile.mkdtemp() UpperCAmelCase__ : List[Any] = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[Any] = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'facebook/mbart-large-50-one-to-many-mmt' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _a (cls ): """simple docstring""" UpperCAmelCase__ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase__ : List[Any] = 1 return cls def _a (self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250038 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCamelCase ) def _a (self ): """simple docstring""" self.assertIn(_lowerCamelCase , self.tokenizer.all_special_ids ) UpperCAmelCase__ : Any = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase__ : Dict = self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = 10 UpperCAmelCase__ : Optional[Any] = self.tokenizer(_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[0] , _lowerCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250053, 250001] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = tempfile.mkdtemp() UpperCAmelCase__ : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) UpperCAmelCase__ : int = MBartaaTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCamelCase ) @require_torch def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowerCamelCase , return_tensors="""pt""" ) UpperCAmelCase__ : Dict = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.tokenizer(self.src_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase__ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase__ : str = targets["""input_ids"""] UpperCAmelCase__ : Tuple = shift_tokens_right(_lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { # en_XX, A, test, EOS """input_ids""": [[250004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
171
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = XLNetTokenizer SCREAMING_SNAKE_CASE = XLNetTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = """<s>""" UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_lowerCamelCase ) , 1006 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) UpperCAmelCase__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : int = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = {"""input_ids""": [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
171
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=False ): try: _lowercase : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowercase : Tuple = default else: # KEY is set, convert it to True or False. try: _lowercase : Optional[int] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value UpperCAmelCase: Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False) UpperCAmelCase: Dict = parse_flag_from_env("""RUN_REMOTE""", default=False) UpperCAmelCase: Tuple = parse_flag_from_env("""RUN_LOCAL""", default=True) UpperCAmelCase: Tuple = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression UpperCAmelCase: Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") UpperCAmelCase: List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") UpperCAmelCase: Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio UpperCAmelCase: Union[str, Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam UpperCAmelCase: str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility UpperCAmelCase: Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows UpperCAmelCase: Optional[int] = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import faiss # noqa except ImportError: _lowercase : List[Any] = unittest.skip("""test requires faiss""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import regex # noqa except ImportError: _lowercase : int = unittest.skip("""test requires regex""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import elasticsearch # noqa except ImportError: _lowercase : int = unittest.skip("""test requires elasticsearch""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import sqlalchemy # noqa except ImportError: _lowercase : Dict = unittest.skip("""test requires sqlalchemy""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not config.TORCH_AVAILABLE: _lowercase : Optional[int] = unittest.skip("""test requires PyTorch""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not config.TF_AVAILABLE: _lowercase : Any = unittest.skip("""test requires TensorFlow""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not config.JAX_AVAILABLE: _lowercase : str = unittest.skip("""test requires JAX""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not config.PIL_AVAILABLE: _lowercase : str = unittest.skip("""test requires Pillow""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__UpperCAmelCase ) else: return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__UpperCAmelCase ) else: return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCAmelCase ) else: return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): def _require_spacy_model(__UpperCAmelCase ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip("""test requires spacy""" )(__UpperCAmelCase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__UpperCAmelCase ) else: return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__UpperCAmelCase ) else: return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not _run_slow_tests or _run_slow_tests == 0: _lowercase : Any = unittest.skip("""test is slow""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not _run_local_tests or _run_local_tests == 0: _lowercase : Optional[int] = unittest.skip("""test is local""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not _run_packaged_tests or _run_packaged_tests == 0: _lowercase : List[Any] = unittest.skip("""test is packaged""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not _run_remote_tests or _run_remote_tests == 0: _lowercase : Optional[Any] = unittest.skip("""test requires remote""" )(__UpperCAmelCase ) return test_case def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith("""test""" ): for decorator in decorators: _lowercase : Optional[int] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class UpperCamelCase ( snake_case ): """simple docstring""" pass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 @contextmanager def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase=1E-1_6 ): _lowercase : List[str] = requests.Session().request def timeout_request(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): # Change the url to an invalid url so that the connection hangs _lowercase : str = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _lowercase : Dict = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _lowercase : Optional[Any] = url _lowercase : Dict = e.args[0] _lowercase : Optional[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),) _lowercase : Union[str, Any] = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , __UpperCAmelCase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): _lowercase : Optional[int] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def __SCREAMING_SNAKE_CASE ( ): import gc gc.collect() _lowercase : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __SCREAMING_SNAKE_CASE ( ): import gc gc.collect() _lowercase : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): return deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith("""500""" ) or str(__UpperCAmelCase ).startswith("""502""" ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = returncode _lowercase : int = stdout _lowercase : Tuple = stderr async def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): while True: _lowercase : Tuple = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=False ): if echo: print("""\nRunning: """ , """ """.join(__UpperCAmelCase ) ) _lowercase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowercase : str = [] _lowercase : str = [] def tee(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" ): _lowercase : List[Any] = line.decode("""utf-8""" ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label="""stderr:""" ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=180 , __UpperCAmelCase=False , __UpperCAmelCase=True ): _lowercase : List[Any] = asyncio.get_event_loop() _lowercase : int = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) _lowercase : str = """ """.join(__UpperCAmelCase ) if result.returncode > 0: _lowercase : Optional[int] = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def __SCREAMING_SNAKE_CASE ( ): _lowercase : List[str] = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _lowercase : Any = re.sub(R"""^gw""" , """""" , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : int = 29500 _lowercase : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
336
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
1
'''simple docstring''' from statistics import mean import numpy as np def _lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : int ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE =0 # Number of processes finished _SCREAMING_SNAKE_CASE =0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _SCREAMING_SNAKE_CASE =[0] * no_of_process # List to include calculation results _SCREAMING_SNAKE_CASE =[0] * no_of_process # Sort by arrival time. _SCREAMING_SNAKE_CASE =[burst_time[i] for i in np.argsort(_UpperCamelCase )] _SCREAMING_SNAKE_CASE =[process_name[i] for i in np.argsort(_UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: _SCREAMING_SNAKE_CASE =0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _SCREAMING_SNAKE_CASE =arrival_time[i] _SCREAMING_SNAKE_CASE =0 # Index showing the location of the process being performed _SCREAMING_SNAKE_CASE =0 # Saves the current response ratio. _SCREAMING_SNAKE_CASE =0 for i in range(0 , _UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _SCREAMING_SNAKE_CASE =(burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _SCREAMING_SNAKE_CASE =temp _SCREAMING_SNAKE_CASE =i # Calculate the turn around time _SCREAMING_SNAKE_CASE =current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _SCREAMING_SNAKE_CASE =1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _lowerCAmelCase ( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : int ) -> list: """simple docstring""" _SCREAMING_SNAKE_CASE =[0] * no_of_process for i in range(0 , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase : Dict = 5 lowerCamelCase : Optional[int] = ["A", "B", "C", "D", "E"] lowerCamelCase : Tuple = [1, 2, 3, 4, 5] lowerCamelCase : str = [1, 2, 3, 4, 5] lowerCamelCase : Tuple = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
47
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Any = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _lowerCamelCase ( a_ ): UpperCAmelCase_ = "unispeech-sat" def __init__(self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=0 , __a=1 , __a=2 , __a=5_04 , **__a , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(lowercase_ ) UpperCamelCase = list(lowercase_ ) UpperCamelCase = list(lowercase_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(lowercase_ ) UpperCamelCase = list(lowercase_ ) UpperCamelCase = list(lowercase_ ) UpperCamelCase = xvector_output_dim @property def snake_case_ (self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
358
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCamelCase : def __init__(self ) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def snake_case_ (self ) -> list[float]: UpperCamelCase = len(self.first_signal ) UpperCamelCase = len(self.second_signal ) UpperCamelCase = max(__a , __a ) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(__a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__a ): UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(__a ) for j, item in enumerate(__a ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(__a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
244
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''data2vec-vision''' def __init__( self : Any , UpperCamelCase_ : Any=7_6_8 , UpperCamelCase_ : Tuple=1_2 , UpperCamelCase_ : Any=1_2 , UpperCamelCase_ : List[str]=3_0_7_2 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : str=1E-12 , UpperCamelCase_ : Dict=2_2_4 , UpperCamelCase_ : List[str]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Any=True , UpperCamelCase_ : str=[3, 5, 7, 1_1] , UpperCamelCase_ : Dict=[1, 2, 3, 6] , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Any=0.4 , UpperCamelCase_ : str=2_5_6 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : str=2_5_5 , **UpperCamelCase_ : Optional[Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : str = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = layer_norm_eps lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : List[Any] = use_mask_token lowerCAmelCase : List[str] = use_absolute_position_embeddings lowerCAmelCase : Optional[int] = use_relative_position_bias lowerCAmelCase : List[str] = use_shared_relative_position_bias lowerCAmelCase : Tuple = layer_scale_init_value lowerCAmelCase : int = drop_path_rate lowerCAmelCase : int = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase : Optional[int] = out_indices lowerCAmelCase : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase : Tuple = use_auxiliary_head lowerCAmelCase : Optional[Any] = auxiliary_loss_weight lowerCAmelCase : List[Any] = auxiliary_channels lowerCAmelCase : Dict = auxiliary_num_convs lowerCAmelCase : List[str] = auxiliary_concat_input lowerCAmelCase : int = semantic_loss_ignore_index class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : str ): return 1E-4
60
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[Any] = 0 while number > 0: lowercase__ : str = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCamelCase ( UpperCAmelCase = 100 ): lowercase__ : Optional[int] = factorial(UpperCAmelCase ) lowercase__ : Dict = split_and_add(UpperCAmelCase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
198
0
'''simple docstring''' import argparse import datetime def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> str: """simple docstring""" a : Tuple = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } a : List[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case ) < 11: raise ValueError('Must be 10 characters long' ) # Get month a : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) a : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day a : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator a : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year a : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation a : str = datetime.date(int(snake_case ) , int(snake_case ) , int(snake_case ) ) # Start math if m <= 2: a : Any = y - 1 a : str = m + 12 # maths var a : int = int(str(snake_case )[:2] ) a : int = int(str(snake_case )[2:] ) a : int = int(2.6 * m - 5.39 ) a : int = int(c / 4 ) a : int = int(k / 4 ) a : int = int(d + k ) a : int = int(t + u + v + x ) a : int = int(z - (2 * c) ) a : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response a : str = F"""Your date {date_input}, is a {days[str(snake_case )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Any = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) UpperCamelCase : List[Any] = parser.parse_args() zeller(args.date_input)
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(_UpperCAmelCase, _UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> list[list[list[float] | float]]: '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( 'Wrong input data\'s dimensions... ' f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(_UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( 'Wrong input data\'s shape... ' f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(_UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Any = ( 'Input data have different datatype... ' f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(_UpperCAmelCase ) lowerCAmelCase : int = [] for value in value_array: lowerCAmelCase : Tuple = euclidean(_UpperCAmelCase, dataset[0] ) lowerCAmelCase : Tuple = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Dict = euclidean(_UpperCAmelCase, _UpperCAmelCase ) if dist > temp_dist: lowerCAmelCase : Tuple = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' return np.dot(_UpperCAmelCase, _UpperCAmelCase ) / (norm(_UpperCAmelCase ) * norm(_UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
138
__A : dict[tuple[int, int, int], int] = {} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase : Dict = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase : int = _calculate(days - 1, _UpperCAmelCase, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase : List[Any] = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase : Optional[Any] = _calculate(days - 1, _UpperCAmelCase, 0 ) lowerCAmelCase : int = state_late + state_absent + state_ontime lowerCAmelCase : Any = prizestrings return prizestrings def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase, absent=0, late=0 ) if __name__ == "__main__": print(solution())
138
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[int] = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionLatentUpscalePipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase = frozenset([] ) __lowercase = True @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 1 _snake_case = 4 _snake_case = (16, 16) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _snake_case = EulerDiscreteScheduler(prediction_type='sample' ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _snake_case = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 2 _snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case = getattr(lowerCAmelCase_ , scheduler_enum.name ) _snake_case = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _snake_case = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='latent' ).images _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
160
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : Any, __A : Any, __A : Optional[Any]=7, __A : Optional[Any]=3, __A : Optional[Any]=1_8, __A : Tuple=3_0, __A : Optional[Any]=4_0_0, __A : Any=True, __A : List[Any]=None, __A : Tuple=True, __A : Tuple=None, __A : Optional[int]=True, __A : Any=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], __A : int=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], __A : List[Any]=True, ): UpperCAmelCase : List[Any] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCAmelCase : Any = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCAmelCase : int = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : str = min_resolution UpperCAmelCase : str = max_resolution UpperCAmelCase : List[str] = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Dict = do_center_crop UpperCAmelCase : Tuple = crop_size UpperCAmelCase : Dict = do_normalize UpperCAmelCase : List[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std UpperCAmelCase : List[Any] = do_convert_rgb def __magic_name__ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __magic_name__ ( self : List[Any], __A : Dict=False, __A : Optional[Any]=False, __A : List[str]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase : Any = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uinta ) ) else: UpperCAmelCase : List[str] = [] for i in range(self.batch_size ): UpperCAmelCase , UpperCAmelCase : int = np.random.choice(np.arange(self.min_resolution, self.max_resolution ), 2 ) image_inputs.append(np.random.randint(2_5_5, size=(self.num_channels, width, height), dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase : Tuple = [Image.fromarray(np.moveaxis(__A, 0, -1 ) ) for x in image_inputs] if torchify: UpperCAmelCase : Optional[Any] = [torch.from_numpy(__A ) for x in image_inputs] return image_inputs @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : int ): UpperCAmelCase : str = ChineseCLIPImageProcessingTester(self, do_center_crop=__A ) @property def __magic_name__ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size, {'''height''': 1_8, '''width''': 1_8} ) UpperCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size, {'''height''': 8_4, '''width''': 8_4} ) def __magic_name__ ( self : Union[str, Any] ): pass def __magic_name__ ( self : Optional[Any] ): # Initialize image_processing UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : List[Any] = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : List[Any] ): # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : int = self.image_processor_tester.prepare_inputs(equal_resolution=__A, numpify=__A ) for image in image_inputs: self.assertIsInstance(__A, np.ndarray ) # Test not batched input UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Union[str, Any] = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) def __magic_name__ ( self : Dict ): # Initialize image_processing UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__A, torchify=__A ) for image in image_inputs: self.assertIsInstance(__A, torch.Tensor ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : str = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) @require_torch @require_vision class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Any = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=__A ) UpperCAmelCase : List[str] = 3 @property def __magic_name__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A, '''do_resize''' ) ) self.assertTrue(hasattr(__A, '''size''' ) ) self.assertTrue(hasattr(__A, '''do_center_crop''' ) ) self.assertTrue(hasattr(__A, '''center_crop''' ) ) self.assertTrue(hasattr(__A, '''do_normalize''' ) ) self.assertTrue(hasattr(__A, '''image_mean''' ) ) self.assertTrue(hasattr(__A, '''image_std''' ) ) self.assertTrue(hasattr(__A, '''do_convert_rgb''' ) ) def __magic_name__ ( self : Optional[int] ): pass def __magic_name__ ( self : Any ): # Initialize image_processing UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A, Image.Image ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), ) # Test batched UpperCAmelCase : Dict = image_processing(__A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ), )
336
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """summarization""" __lowerCAmelCase = ["""loss"""] __lowerCAmelCase = ROUGE_KEYS __lowerCAmelCase = """rouge2""" def __init__( self : Tuple , lowerCamelCase_ : Dict , **lowerCamelCase_ : Any ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase_ , num_labels=lowerCamelCase_ , mode=self.mode , **lowerCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCamelCase = Path(self.output_dir ) / """metrics.json""" UpperCamelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase = 0 UpperCamelCase = defaultdict(lowerCamelCase_ ) UpperCamelCase = self.config.model_type UpperCamelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCamelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCamelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCamelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase = get_git_info()["""repo_sha"""] UpperCamelCase = hparams.num_workers UpperCamelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase_ ): UpperCamelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase = self.decoder_start_token_id UpperCamelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCamelCase = False UpperCamelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase = self.hparams.eval_max_gen_length else: UpperCamelCase = self.model.config.max_length UpperCamelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Dict[str, torch.Tensor] ): """simple docstring""" UpperCamelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCamelCase = True return readable_batch def lowerCamelCase_ ( self : int , lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ): """simple docstring""" return self.model(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[int] ): """simple docstring""" UpperCamelCase = self.tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return lmap(str.strip , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : dict ): """simple docstring""" UpperCamelCase = self.tokenizer.pad_token_id UpperCamelCase , UpperCamelCase = batch["""input_ids"""], batch["""attention_mask"""] UpperCamelCase = batch["""labels"""] if isinstance(self.model , lowerCamelCase_ ): UpperCamelCase = self.model._shift_right(lowerCamelCase_ ) else: UpperCamelCase = shift_tokens_right(lowerCamelCase_ , lowerCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase = decoder_input_ids self.save_readable_batch(lowerCamelCase_ ) UpperCamelCase = self(lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , use_cache=lowerCamelCase_ ) UpperCamelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase = nn.CrossEntropyLoss(ignore_index=lowerCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase = nn.functional.log_softmax(lowerCamelCase_ , dim=-1 ) UpperCamelCase , UpperCamelCase = label_smoothed_nll_loss( lowerCamelCase_ , lowerCamelCase_ , self.hparams.label_smoothing , ignore_index=lowerCamelCase_ ) return (loss,) @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return self.tokenizer.pad_token_id def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = self._step(lowerCamelCase_ ) UpperCamelCase = dict(zip(self.loss_names , lowerCamelCase_ ) ) # tokens per batch UpperCamelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCamelCase = batch["""input_ids"""].shape[0] UpperCamelCase = batch["""input_ids"""].eq(self.pad ).sum() UpperCamelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple ): """simple docstring""" return self._generative_step(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any]="val" ): """simple docstring""" self.step_count += 1 UpperCamelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase = losses["""loss"""] UpperCamelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCamelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase = torch.tensor(lowerCamelCase_ ).type_as(lowerCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase_ ) UpperCamelCase = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCamelCase = self.step_count self.metrics[prefix].append(lowerCamelCase_ ) # callback writes this to self.metrics_save_path UpperCamelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] ): """simple docstring""" return calculate_rouge(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : dict ): """simple docstring""" UpperCamelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCamelCase = self.ids_to_clean_text(lowerCamelCase_ ) UpperCamelCase = self.ids_to_clean_text(batch["""labels"""] ) UpperCamelCase = self._step(lowerCamelCase_ ) UpperCamelCase = dict(zip(self.loss_names , lowerCamelCase_ ) ) UpperCamelCase = self.calc_generative_metrics(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = np.mean(lmap(lowerCamelCase_ , lowerCamelCase_ ) ) base_metrics.update(gen_time=lowerCamelCase_ , gen_len=lowerCamelCase_ , preds=lowerCamelCase_ , target=lowerCamelCase_ , **lowerCamelCase_ ) return base_metrics def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple ): """simple docstring""" return self._generative_step(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): """simple docstring""" return self.validation_epoch_end(lowerCamelCase_ , prefix="""test""" ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.n_obs[type_path] UpperCamelCase = self.target_lens[type_path] UpperCamelCase = self.dataset_class( self.tokenizer , type_path=lowerCamelCase_ , n_obs=lowerCamelCase_ , max_target_length=lowerCamelCase_ , **self.dataset_kwargs , ) return dataset def lowerCamelCase_ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): """simple docstring""" UpperCamelCase = self.get_dataset(lowerCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase = dataset.make_sortish_sampler(lowerCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase_ ) return dataloader def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def lowerCamelCase_ ( self : int ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCamelCase_ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCamelCase_ , lowerCamelCase_ ) add_generic_args(lowerCamelCase_ , lowerCamelCase_ ) parser.add_argument( """--max_source_length""" , default=1024 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCamelCase_ , default=lowerCamelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCamelCase_ , default=500 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCamelCase_ , default="""summarization""" , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCamelCase_ , default=0.0 , required=lowerCamelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCamelCase_ , default=1 , required=lowerCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """translation""" __lowerCAmelCase = ["""loss"""] __lowerCAmelCase = ["""bleu"""] __lowerCAmelCase = """bleu""" def __init__( self : Any , lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" super().__init__(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = hparams.src_lang UpperCamelCase = hparams.tgt_lang def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ): """simple docstring""" return calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase_ ) check_output_dir(UpperCamelCase_ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCamelCase = SummarizationModule(UpperCamelCase_ ) else: UpperCamelCase = TranslationModule(UpperCamelCase_ ) UpperCamelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCamelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase = os.environ.get("""WANDB_PROJECT""" , UpperCamelCase_ ) UpperCamelCase = WandbLogger(name=model.output_dir.name , project=UpperCamelCase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCamelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCamelCase = False UpperCamelCase = args.val_metric == """loss""" UpperCamelCase = generic_train( UpperCamelCase_ , UpperCamelCase_ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase_ ) , early_stopping_callback=UpperCamelCase_ , logger=UpperCamelCase_ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCamelCase = """""" UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=UpperCamelCase_ ) ) if checkpoints: UpperCamelCase = checkpoints[-1] UpperCamelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
165
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] A__ = [] def generate(SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: list ): A__ = [0] * n res.append(tuple(SCREAMING_SNAKE_CASE_ ) ) A__ = 0 while i < n: if c[i] < i: if i % 2 == 0: A__ , A__ = arr[i], arr[0] else: A__ , A__ = arr[i], arr[c[i]] res.append(tuple(SCREAMING_SNAKE_CASE_ ) ) c[i] += 1 A__ = 0 else: A__ = 0 i += 1 generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": lowerCAmelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
68
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def UpperCAmelCase_ (self ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """this is a test""" UpperCamelCase__ = """this is a test""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = """<pad>""" UpperCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 3_00_01 ) def UpperCAmelCase_ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = """ \tHeLLo!how \n Are yoU? """ UpperCamelCase__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , split_by_punct=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = """This is a test""" UpperCamelCase__ = [13, 1, 43_98, 25, 21, 12_89] UpperCamelCase__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCamelCase__ = """I was born in 92000, and this is falsé.""" UpperCamelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] UpperCamelCase__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCamelCase__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaVaTokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE_ , ) @slow def UpperCAmelCase_ (self ): # fmt: off UpperCamelCase__ = {"""input_ids""": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
244
0
"""simple docstring""" import numpy as np _lowerCAmelCase : Optional[int] = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class UpperCAmelCase_ : def __init__( self : Union[str, Any] ): _UpperCAmelCase : Any = np.array(A ) def snake_case_ ( self : Optional[Any] , A : str ): _UpperCAmelCase : str = np.where(letter == self.SQUARE ) _UpperCAmelCase : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case_ ( self : List[Any] , A : int , A : int ): _UpperCAmelCase : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case_ ( self : Dict , A : str ): _UpperCAmelCase : int = message.lower() _UpperCAmelCase : str = message.replace(" " , "" ) _UpperCAmelCase : Dict = message.replace("j" , "i" ) _UpperCAmelCase : List[Any] = np.empty((2, len(A )) ) for letter_index in range(len(A ) ): _UpperCAmelCase : Optional[Any] = self.letter_to_numbers(message[letter_index] ) _UpperCAmelCase : List[str] = numbers[0] _UpperCAmelCase : List[Any] = numbers[1] _UpperCAmelCase : int = first_step.reshape(2 * len(A ) ) _UpperCAmelCase : Optional[int] = "" for numbers_index in range(len(A ) ): _UpperCAmelCase : Dict = int(second_step[numbers_index * 2] ) _UpperCAmelCase : Dict = int(second_step[(numbers_index * 2) + 1] ) _UpperCAmelCase : List[Any] = self.numbers_to_letter(A , A ) _UpperCAmelCase : str = encoded_message + letter return encoded_message def snake_case_ ( self : Optional[int] , A : str ): _UpperCAmelCase : Union[str, Any] = message.lower() message.replace(" " , "" ) _UpperCAmelCase : List[str] = np.empty(2 * len(A ) ) for letter_index in range(len(A ) ): _UpperCAmelCase : List[Any] = self.letter_to_numbers(message[letter_index] ) _UpperCAmelCase : List[str] = numbers[0] _UpperCAmelCase : str = numbers[1] _UpperCAmelCase : int = first_step.reshape((2, len(A )) ) _UpperCAmelCase : Optional[int] = "" for numbers_index in range(len(A ) ): _UpperCAmelCase : Optional[Any] = int(second_step[0, numbers_index] ) _UpperCAmelCase : Optional[Any] = int(second_step[1, numbers_index] ) _UpperCAmelCase : Tuple = self.numbers_to_letter(A , A ) _UpperCAmelCase : Tuple = decoded_message + letter return decoded_message
365
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : List[str] __SCREAMING_SNAKE_CASE : Optional[List[str]] @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : Optional[List[int]] = None __SCREAMING_SNAKE_CASE : Optional[List[int]] = None class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'train' __SCREAMING_SNAKE_CASE : Tuple = 'dev' __SCREAMING_SNAKE_CASE : Optional[int] = 'test' class UpperCAmelCase_ : @staticmethod def snake_case_ ( A : Union[str, Any] , A : Union[Split, str] ): raise NotImplementedError @staticmethod def snake_case_ ( A : str ): raise NotImplementedError @staticmethod def snake_case_ ( A : List[InputExample] , A : List[str] , A : int , A : PreTrainedTokenizer , A : Optional[int]=False , A : List[str]="[CLS]" , A : List[Any]=1 , A : str="[SEP]" , A : int=False , A : int=False , A : Any=0 , A : List[str]=0 , A : Dict=-1_0_0 , A : str=0 , A : Optional[Any]=True , ): _UpperCAmelCase : Dict = {label: i for i, label in enumerate(A )} _UpperCAmelCase : str = [] for ex_index, example in enumerate(A ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , A , len(A ) ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] for word, label in zip(example.words , example.labels ): _UpperCAmelCase : str = tokenizer.tokenize(A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A ) > 0: tokens.extend(A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add() if len(A ) > max_seq_length - special_tokens_count: _UpperCAmelCase : List[Any] = tokens[: (max_seq_length - special_tokens_count)] _UpperCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _UpperCAmelCase : Dict = [sequence_a_segment_id] * len(A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _UpperCAmelCase : str = [cls_token] + tokens _UpperCAmelCase : Dict = [pad_token_label_id] + label_ids _UpperCAmelCase : Any = [cls_token_segment_id] + segment_ids _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _UpperCAmelCase : List[Any] = [1 if mask_padding_with_zero else 0] * len(A ) # Zero-pad up to the sequence length. _UpperCAmelCase : List[str] = max_seq_length - len(A ) if pad_on_left: _UpperCAmelCase : str = ([pad_token] * padding_length) + input_ids _UpperCAmelCase : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _UpperCAmelCase : Any = ([pad_token_segment_id] * padding_length) + segment_ids _UpperCAmelCase : Dict = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(A ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(A ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(A ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(A ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : Dict = None features.append( InputFeatures( input_ids=A , attention_mask=A , token_type_ids=A , label_ids=A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = nn.CrossEntropyLoss().ignore_index def __init__( self : Dict , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : List[str]=False , A : Split = Split.train , ): # Load data features from cache or dataset file _UpperCAmelCase : int = os.path.join( A , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : List[str] = cached_features_file + ".lock" with FileLock(A ): if os.path.exists(A ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) _UpperCAmelCase : Tuple = torch.load(A ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) _UpperCAmelCase : List[str] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[Any] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , A ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : List[str] , A : Optional[Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = -1_0_0 def __init__( self : Tuple , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : Optional[Any]=False , A : Split = Split.train , ): _UpperCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[str] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : List[str] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case_ ( self : str ): _UpperCAmelCase : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ): return len(self.features ) def __getitem__( self : int , A : int ): return self.features[i]
202
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Any ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __A ( __snake_case ): a__ : Tuple = "dpr" def __init__(self : List[str] , __a : Tuple=30522 , __a : Union[str, Any]=768 , __a : Any=12 , __a : Optional[Any]=12 , __a : Optional[Any]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.1 , __a : str=512 , __a : Optional[int]=2 , __a : int=0.02 , __a : List[Any]=1E-12 , __a : Tuple=0 , __a : Dict="absolute" , __a : int = 0 , **__a : List[str] , ): super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = projection_dim UpperCAmelCase_ = position_embedding_type
1
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
def __A ( _lowercase = 60_08_51_47_51_43 ): '''simple docstring''' try: _A = int(_lowercase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) _A = 2 _A = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _A = i while n % i == 0: _A = n // i i += 1 return int(_lowercase ) if __name__ == "__main__": print(f'{solution() = }')
75
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __A ( _lowercase ): '''simple docstring''' if "://" in dataset_path: _A = dataset_path.split('''://''' )[1] return dataset_path def __A ( _lowercase ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def __A ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _A = None _A = None _A = threading.Lock()
75
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : int = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
83
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A = logging.get_logger('''transformers.models.encodec''') A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A = [] A = [] def __A ( a_ :Optional[int] , a_ :str , a_ :Optional[Any] , a_ :Optional[Any] , a_ :Tuple) -> str: for attribute in key.split('''.'''): __a : Union[str, Any] = getattr(a_ , a_) if weight_type is not None: __a : Optional[Any] = getattr(a_ , a_).shape else: __a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""") if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : Optional[int] = value elif weight_type == "bias": __a : List[str] = value elif weight_type == "running_mean": __a : List[str] = value elif weight_type == "running_var": __a : List[Any] = value elif weight_type == "num_batches_tracked": __a : List[Any] = value elif weight_type == "weight_ih_l0": __a : Optional[int] = value elif weight_type == "weight_hh_l0": __a : Any = value elif weight_type == "bias_ih_l0": __a : Union[str, Any] = value elif weight_type == "bias_hh_l0": __a : Optional[Any] = value elif weight_type == "weight_ih_l1": __a : Dict = value elif weight_type == "weight_hh_l1": __a : str = value elif weight_type == "bias_ih_l1": __a : Union[str, Any] = value elif weight_type == "bias_hh_l1": __a : Union[str, Any] = value else: __a : str = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""") def __A ( a_ :Dict , a_ :Any) -> Tuple: for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: __a , __a : Union[str, Any] = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( a_ :Optional[Any] , a_ :Tuple , a_ :List[str]) -> Any: __a : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": __a : int = MAPPING_24K elif model_name == "encodec_48khz": __a : List[str] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""") for name, value in orig_dict.items(): if should_ignore(a_ , a_): logger.info(F"""{name} was ignored""") continue __a : Tuple = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a : Optional[Any] = key.split('''.*.''') if prefix in name and suffix in name: __a : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue __a : List[str] = True if "*" in mapped_key: __a : Optional[Any] = name.split(a_)[0].split('''.''')[-2] __a : str = mapped_key.replace('''*''' , a_) if "weight_g" in name: __a : Optional[Any] = '''weight_g''' elif "weight_v" in name: __a : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: __a : Tuple = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a : List[str] = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a : int = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a : Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a : List[str] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a : List[str] = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a : str = '''bias_hh_l1''' elif "bias" in name: __a : Union[str, Any] = '''bias''' elif "weight" in name: __a : Any = '''weight''' elif "running_mean" in name: __a : List[Any] = '''running_mean''' elif "running_var" in name: __a : int = '''running_var''' elif "num_batches_tracked" in name: __a : int = '''num_batches_tracked''' else: __a : List[str] = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") @torch.no_grad() def __A ( a_ :Dict , a_ :Optional[int] , a_ :Union[str, Any] , a_ :Any=None , a_ :Tuple=None , ) -> List[Any]: if config_path is not None: __a : List[str] = EncodecConfig.from_pretrained(a_) else: __a : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a : List[Any] = [8, 5, 4, 4] __a : int = [2.2] __a : int = 64 __a : List[Any] = 3_20_00 __a : Union[str, Any] = 20_48 __a : Optional[int] = False __a : str = False __a : Dict = False elif model_name == "encodec_48khz": __a : Any = [8, 5, 4, 2] __a : Dict = [3.0, 6.0, 1_2.0, 2_4.0] __a : List[Any] = 4_80_00 __a : Dict = 2 __a : int = False __a : List[str] = '''time_group_norm''' __a : str = True __a : Dict = 1.0 __a : Optional[Any] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""") __a : Union[str, Any] = EncodecModel(a_) __a : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a_) __a : List[Any] = torch.load(a_) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a : Optional[Any] = original_checkpoint['''best_state'''] recursively_load_weights(a_ , a_ , a_) model.save_pretrained(a_) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(a_) model.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
160
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Tuple = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> Any: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): SCREAMING_SNAKE_CASE__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """sgugger/tiny-distilbert-classification""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase , [config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , """env.csv""" ) , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__UpperCAmelCase : str ): self.assertTrue(hasattr(__UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , """log.txt""" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , eager_mode=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = TensorFlowBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """log.txt""" ) ).exists() )
165
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : List[str] = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["YolosFeatureExtractor"] A_ : Optional[int] = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase=0.0 , lowercase = None , lowercase = "geglu" , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = "layer_norm" , lowercase = False , ) -> Optional[Any]: super().__init__() __UpperCamelCase = only_cross_attention __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __UpperCamelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __UpperCamelCase = AdaLayerNorm(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: __UpperCamelCase = AdaLayerNormZero(lowercase , lowercase ) else: __UpperCamelCase = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) __UpperCamelCase = Attention( query_dim=lowercase , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __UpperCamelCase = ( AdaLayerNorm(lowercase , lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(lowercase , elementwise_affine=lowercase ) ) __UpperCamelCase = Attention( query_dim=lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowercase , dim_head=lowercase , dropout=lowercase , bias=lowercase , upcast_attention=lowercase , ) # is self-attn if encoder_hidden_states is none else: __UpperCamelCase = None __UpperCamelCase = None # 3. Feed-forward __UpperCamelCase = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) __UpperCamelCase = FeedForward(lowercase , dropout=lowercase , activation_fn=lowercase , final_dropout=lowercase ) # let chunk size default to None __UpperCamelCase = None __UpperCamelCase = 0 def __lowerCamelCase ( self , lowercase , lowercase ) -> Tuple: # Sets chunk feed-forward __UpperCamelCase = chunk_size __UpperCamelCase = dim def __lowerCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> Optional[int]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __UpperCamelCase = self.norma(lowercase , lowercase ) elif self.use_ada_layer_norm_zero: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.norma( lowercase , lowercase , lowercase , hidden_dtype=hidden_states.dtype ) else: __UpperCamelCase = self.norma(lowercase ) __UpperCamelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __UpperCamelCase = self.attna( lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowercase , **lowercase , ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_msa.unsqueeze(1 ) * attn_output __UpperCamelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __UpperCamelCase = ( self.norma(lowercase , lowercase ) if self.use_ada_layer_norm else self.norma(lowercase ) ) __UpperCamelCase = self.attna( lowercase , encoder_hidden_states=lowercase , attention_mask=lowercase , **lowercase , ) __UpperCamelCase = attn_output + hidden_states # 3. Feed-forward __UpperCamelCase = self.norma(lowercase ) if self.use_ada_layer_norm_zero: __UpperCamelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) __UpperCamelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __UpperCamelCase = torch.cat( [self.ff(lowercase ) for hid_slice in norm_hidden_states.chunk(lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __UpperCamelCase = self.ff(lowercase ) if self.use_ada_layer_norm_zero: __UpperCamelCase = gate_mlp.unsqueeze(1 ) * ff_output __UpperCamelCase = ff_output + hidden_states return hidden_states class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase = None , lowercase = 4 , lowercase = 0.0 , lowercase = "geglu" , lowercase = False , ) -> int: super().__init__() __UpperCamelCase = int(dim * mult ) __UpperCamelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __UpperCamelCase = GELU(lowercase , lowercase ) if activation_fn == "gelu-approximate": __UpperCamelCase = GELU(lowercase , lowercase , approximate="""tanh""" ) elif activation_fn == "geglu": __UpperCamelCase = GEGLU(lowercase , lowercase ) elif activation_fn == "geglu-approximate": __UpperCamelCase = ApproximateGELU(lowercase , lowercase ) __UpperCamelCase = nn.ModuleList([] ) # project in self.net.append(lowercase ) # project dropout self.net.append(nn.Dropout(lowercase ) ) # project out self.net.append(nn.Linear(lowercase , lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowercase ) ) def __lowerCamelCase ( self , lowercase ) -> Tuple: for module in self.net: __UpperCamelCase = module(lowercase ) return hidden_states class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase = "none" ) -> Optional[int]: super().__init__() __UpperCamelCase = nn.Linear(lowercase , lowercase ) __UpperCamelCase = approximate def __lowerCamelCase ( self , lowercase ) -> Tuple: if gate.device.type != "mps": return F.gelu(lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __lowerCamelCase ( self , lowercase ) -> str: __UpperCamelCase = self.proj(lowercase ) __UpperCamelCase = self.gelu(lowercase ) return hidden_states class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase ) -> List[str]: super().__init__() __UpperCamelCase = nn.Linear(lowercase , dim_out * 2 ) def __lowerCamelCase ( self , lowercase ) -> Union[str, Any]: if gate.device.type != "mps": return F.gelu(lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowerCamelCase ( self , lowercase ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase = self.proj(lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowercase ) class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase ) -> Union[str, Any]: super().__init__() __UpperCamelCase = nn.Linear(lowercase , lowercase ) def __lowerCamelCase ( self , lowercase ) -> List[str]: __UpperCamelCase = self.proj(lowercase ) return x * torch.sigmoid(1.702 * x ) class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase ) -> str: super().__init__() __UpperCamelCase = nn.Embedding(lowercase , lowercase ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(lowercase , embedding_dim * 2 ) __UpperCamelCase = nn.LayerNorm(lowercase , elementwise_affine=lowercase ) def __lowerCamelCase ( self , lowercase , lowercase ) -> List[Any]: __UpperCamelCase = self.linear(self.silu(self.emb(lowercase ) ) ) __UpperCamelCase , __UpperCamelCase = torch.chunk(lowercase , 2 ) __UpperCamelCase = self.norm(lowercase ) * (1 + scale) + shift return x class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase ) -> Tuple: super().__init__() __UpperCamelCase = CombinedTimestepLabelEmbeddings(lowercase , lowercase ) __UpperCamelCase = nn.SiLU() __UpperCamelCase = nn.Linear(lowercase , 6 * embedding_dim , bias=lowercase ) __UpperCamelCase = nn.LayerNorm(lowercase , elementwise_affine=lowercase , eps=1E-6 ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=None ) -> Union[str, Any]: __UpperCamelCase = self.linear(self.silu(self.emb(lowercase , lowercase , hidden_dtype=lowercase ) ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = emb.chunk(6 , dim=1 ) __UpperCamelCase = self.norm(lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class UpperCAmelCase__ ( nn.Module): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = 1E-5 ) -> Any: super().__init__() __UpperCamelCase = num_groups __UpperCamelCase = eps if act_fn is None: __UpperCamelCase = None else: __UpperCamelCase = get_activation(lowercase ) __UpperCamelCase = nn.Linear(lowercase , out_dim * 2 ) def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: if self.act: __UpperCamelCase = self.act(lowercase ) __UpperCamelCase = self.linear(lowercase ) __UpperCamelCase = emb[:, :, None, None] __UpperCamelCase , __UpperCamelCase = emb.chunk(2 , dim=1 ) __UpperCamelCase = F.group_norm(lowercase , self.num_groups , eps=self.eps ) __UpperCamelCase = x * (1 + scale) + shift return x
354
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase=0.01 , lowercase=1_0_0_0 ) -> List[Any]: __UpperCamelCase = p_stop __UpperCamelCase = max_length def __iter__( self ) -> Dict: __UpperCamelCase = 0 __UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 __UpperCamelCase = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self , lowercase , lowercase , lowercase=False , lowercase=True ) -> List[str]: __UpperCamelCase = [ BatchSamplerShard(lowercase , 2 , lowercase , split_batches=lowercase , even_batches=lowercase ) for i in range(2 ) ] __UpperCamelCase = [list(lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase ) for shard in batch_sampler_shards] , [len(lowercase ) for e in expected] ) self.assertListEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) # Check the shards when the dataset is very small. __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) __UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = [[], []] self.check_batch_sampler_shards(lowercase , lowercase , split_batches=lowercase , even_batches=lowercase ) def __lowerCamelCase ( self ) -> str: __UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] __UpperCamelCase = [BatchSamplerShard(lowercase , 2 , lowercase , even_batches=lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=False , lowercase=2 , lowercase=False ) -> List[str]: random.seed(lowercase ) __UpperCamelCase = list(lowercase ) __UpperCamelCase = [ IterableDatasetShard( lowercase , batch_size=lowercase , drop_last=lowercase , num_processes=lowercase , process_index=lowercase , split_batches=lowercase , ) for i in range(lowercase ) ] __UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase ) iterable_dataset_lists.append(list(lowercase ) ) __UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase ) , len(lowercase ) ) self.assertTrue(len(lowercase ) % shard_batch_size == 0 ) __UpperCamelCase = [] for idx in range(0 , len(lowercase ) , lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase ) < len(lowercase ): reference += reference self.assertListEqual(lowercase , reference[: len(lowercase )] ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = 4_2 __UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) # Edge case with a very small dataset __UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) self.check_iterable_dataset_shards(lowercase , lowercase , batch_size=4 , drop_last=lowercase , split_batches=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=lowercase ) __UpperCamelCase = SkipBatchSampler(lowercase , 2 ) self.assertListEqual(list(lowercase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = DataLoader(list(range(1_6 ) ) , batch_size=4 ) __UpperCamelCase = skip_first_batches(lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowerCamelCase ( self ) -> Tuple: Accelerator() __UpperCamelCase = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
243
0
"""simple docstring""" class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: __lowercase : Optional[Any] = name __lowercase : List[str] = value __lowercase : List[str] = weight def __repr__( self ) -> Optional[Any]: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _lowerCamelCase ( self ) -> List[str]: return self.value def _lowerCamelCase ( self ) -> Tuple: return self.name def _lowerCamelCase ( self ) -> Tuple: return self.weight def _lowerCamelCase ( self ) -> Tuple: return self.value / self.weight def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[int] = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) __lowercase : Dict = [] __lowercase : Optional[int] = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
249
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Tuple: lowercase : Union[str, Any] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None ) -> Tuple: if conf_path is None: lowercase : List[Any] = "./model_checkpoints/vqgan_only.yaml" lowercase : Tuple = load_config(__snake_case , display=__snake_case ) lowercase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: lowercase : List[str] = "./model_checkpoints/vqgan_only.pt" lowercase : Optional[int] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowercase : str = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def __magic_name__ ( __snake_case : Tuple , __snake_case : Union[str, Any] ) -> int: lowercase , lowercase , lowercase : List[Any] = model.encode(__snake_case ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowercase : str = model.decode(__snake_case ) return xrec def __magic_name__ ( __snake_case : Dict , __snake_case : Optional[int]=False ) -> int: lowercase , lowercase : Union[str, Any] = string.rsplit("." , 1 ) if reload: lowercase : Any = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def __magic_name__ ( __snake_case : str ) -> List[str]: if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __magic_name__ ( __snake_case : Any , __snake_case : int , __snake_case : List[Any]=True , __snake_case : Dict=True ) -> str: lowercase : Optional[int] = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__ ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: # load the specified checkpoint if ckpt: lowercase : Dict = torch.load(__snake_case , map_location="cpu" ) lowercase : List[Any] = pl_sd["global_step"] print(f"""loaded model from global step {global_step}.""" ) else: lowercase : int = {"state_dict": None} lowercase : Optional[Any] = None lowercase : List[Any] = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
202
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowerCamelCase ( lowercase : Optional[Any] ) -> Optional[Any]: return x + 2 class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[str] ): _a = "x = 3" _a = {} _a = evaluate(__a , {} , state=__a ) assert result == 3 self.assertDictEqual(__a , {"x": 3} ) _a = "x = y" _a = {"y": 5} _a = evaluate(__a , {} , state=__a ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__a , {"x": 5, "y": 5} ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = "y = add_two(x)" _a = {"x": 3} _a = evaluate(__a , {"add_two": add_two} , state=__a ) assert result == 5 self.assertDictEqual(__a , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: _a = evaluate(__a , {} , state=__a ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase__ ( self : Tuple ): _a = "x = 3" _a = {} _a = evaluate(__a , {} , state=__a ) assert result == 3 self.assertDictEqual(__a , {"x": 3} ) def UpperCamelCase__ ( self : Dict ): _a = "test_dict = {'x': x, 'y': add_two(x)}" _a = {"x": 3} _a = evaluate(__a , {"add_two": add_two} , state=__a ) self.assertDictEqual(__a , {"x": 3, "y": 5} ) self.assertDictEqual(__a , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = "x = 3\ny = 5" _a = {} _a = evaluate(__a , {} , state=__a ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__a , {"x": 3, "y": 5} ) def UpperCamelCase__ ( self : Optional[int] ): _a = "text = f'This is x: {x}.'" _a = {"x": 3} _a = evaluate(__a , {} , state=__a ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__a , {"x": 3, "text": "This is x: 3."} ) def UpperCamelCase__ ( self : Optional[Any] ): _a = "if x <= 3:\n y = 2\nelse:\n y = 5" _a = {"x": 3} _a = evaluate(__a , {} , state=__a ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__a , {"x": 3, "y": 2} ) _a = {"x": 8} _a = evaluate(__a , {} , state=__a ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__a , {"x": 8, "y": 5} ) def UpperCamelCase__ ( self : Any ): _a = "test_list = [x, add_two(x)]" _a = {"x": 3} _a = evaluate(__a , {"add_two": add_two} , state=__a ) self.assertListEqual(__a , [3, 5] ) self.assertDictEqual(__a , {"x": 3, "test_list": [3, 5]} ) def UpperCamelCase__ ( self : str ): _a = "y = x" _a = {"x": 3} _a = evaluate(__a , {} , state=__a ) assert result == 3 self.assertDictEqual(__a , {"x": 3, "y": 3} ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = "test_list = [x, add_two(x)]\ntest_list[1]" _a = {"x": 3} _a = evaluate(__a , {"add_two": add_two} , state=__a ) assert result == 5 self.assertDictEqual(__a , {"x": 3, "test_list": [3, 5]} ) _a = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" _a = {"x": 3} _a = evaluate(__a , {"add_two": add_two} , state=__a ) assert result == 5 self.assertDictEqual(__a , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase__ ( self : Any ): _a = "x = 0\nfor i in range(3):\n x = i" _a = {} _a = evaluate(__a , {"range": range} , state=__a ) assert result == 2 self.assertDictEqual(__a , {"x": 2, "i": 2} )
346
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): lowerCAmelCase_ : str = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase_ : Union[str, Any] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]: _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = numpy_to_pil(lowercase ) return images def _lowerCamelCase ( lowercase : int ) -> List[Any]: if images.ndim == 3: _a = images[None, ...] _a = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _a = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: _a = [Image.fromarray(lowercase ) for image in images] return pil_images
346
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def a_ ( __snake_case : dict , __snake_case : str , __snake_case : set , __snake_case : set , __snake_case : dict , __snake_case : dict , __snake_case : PriorityQueue , __snake_case : dict , __snake_case : float | int , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase_ =cst_fwd.get(__snake_case , np.inf ) lowerCamelCase_ =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase_ =new_cost_f lowerCamelCase_ =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase_ =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a_ ( __snake_case : str , __snake_case : str , __snake_case : dict , __snake_case : dict ) -> int: """simple docstring""" lowerCamelCase_ =-1 lowerCamelCase_ =set() lowerCamelCase_ =set() lowerCamelCase_ ={source: 0} lowerCamelCase_ ={destination: 0} lowerCamelCase_ ={source: None} lowerCamelCase_ ={destination: None} lowerCamelCase_ =PriorityQueue() lowerCamelCase_ =PriorityQueue() lowerCamelCase_ =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase_, lowerCamelCase_ =queue_forward.get() visited_forward.add(__snake_case ) lowerCamelCase_, lowerCamelCase_ =queue_backward.get() visited_backward.add(__snake_case ) lowerCamelCase_ =pass_and_relaxation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) lowerCamelCase_ =pass_and_relaxation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase_ =shortest_distance return shortest_path_distance a_ : Optional[int] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } a_ : List[Any] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor a_ : Union[str, Any] = random.Random() def a_ ( __snake_case : int , __snake_case : int=1.0 , __snake_case : Tuple=None , __snake_case : Union[str, Any]=None ) -> str: """simple docstring""" if rng is None: lowerCamelCase_ =global_rng lowerCamelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase, lowerCAmelCase=7, lowerCAmelCase=400, lowerCAmelCase=2_000, lowerCAmelCase=24, lowerCAmelCase=24, lowerCAmelCase=0.0, lowerCAmelCase=16_000, lowerCAmelCase=True, lowerCAmelCase=True, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =min_seq_length lowerCamelCase_ =max_seq_length lowerCamelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ =feature_size lowerCamelCase_ =num_mel_bins lowerCamelCase_ =padding_value lowerCamelCase_ =sampling_rate lowerCamelCase_ =return_attention_mask lowerCamelCase_ =do_normalize def lowercase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self, lowerCAmelCase=False, lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: lowerCamelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Any =SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =[np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ =feature_extractor(lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase_ =feature_extractor(speech_inputs[0], return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(np_speech_inputs[0], return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test batched lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ =np.asarray(lowerCAmelCase ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase, lowerCAmelCase ): self.assertTrue(np.allclose(lowerCAmelCase, lowerCAmelCase, atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding=lowerCAmelCase, max_length=lowerCAmelCase, return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase_ =[None, 16, None] for max_length, padding in zip(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =feature_extractor( lowerCAmelCase, max_length=lowerCAmelCase, padding=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =[np.sum(lowerCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''max_length''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=4, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) lowerCamelCase_ =[floats_list((1, x) )[0] for x in range(800, 1_400, 200 )] lowerCamelCase_ =feature_extractor( lowerCAmelCase, padding='''longest''', max_length=16, truncation=lowerCAmelCase, return_tensors='''np''', return_attention_mask=lowerCAmelCase, ) lowerCamelCase_ =inputs.input_features lowerCamelCase_ =inputs.attention_mask lowerCamelCase_ =np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =np.random.rand(100, 32 ).astype(np.floataa ) lowerCamelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase_ =feature_extractor.pad([{'''input_features''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" from datasets import load_dataset lowerCamelCase_ =load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech lowerCamelCase_ =ds.sort('''id''' ).select(range(lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on lowerCamelCase_ =self._load_datasamples(1 ) lowerCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ =feature_extractor(lowerCAmelCase, return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], lowerCAmelCase, atol=1e-4 ) )
75
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :int = 'token-classification' def __init__( self , A_ ): '''simple docstring''' if type(A_ ) == dict: UpperCamelCase : Dict = Namespace(**A_ ) UpperCamelCase : int = import_module("tasks" ) try: UpperCamelCase : Dict = getattr(A_ , hparams.task_type ) UpperCamelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) UpperCamelCase : Union[str, Any] = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase : List[Any] = CrossEntropyLoss().ignore_index super().__init__(A_ , len(self.labels ) , self.mode ) def __UpperCamelCase( self , **A_ ): '''simple docstring''' return self.model(**A_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase : List[str] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase : List[str] = self(**A_ ) UpperCamelCase : List[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase : Union[str, Any] = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , A_ ) UpperCamelCase : int = torch.load(A_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCamelCase : Tuple = self.token_classification_task.read_examples_from_file(args.data_dir , A_ ) UpperCamelCase : Union[str, Any] = self.token_classification_task.convert_examples_to_features( A_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , A_ ) torch.save(A_ , A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = False ): '''simple docstring''' UpperCamelCase : Optional[int] = self._feature_file(A_ ) logger.info("Loading features from cached file %s" , A_ ) UpperCamelCase : Tuple = torch.load(A_ ) UpperCamelCase : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase : Optional[Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' """Compute validation""" "" UpperCamelCase : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase : Any = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase : Any = self(**A_ ) UpperCamelCase , UpperCamelCase : str = outputs[:2] UpperCamelCase : Optional[int] = logits.detach().cpu().numpy() UpperCamelCase : List[str] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = torch.stack([x["val_loss"] for x in outputs] ).mean() UpperCamelCase : Dict = np.concatenate([x["pred"] for x in outputs] , axis=0 ) UpperCamelCase : Any = np.argmax(A_ , axis=2 ) UpperCamelCase : Tuple = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCamelCase : List[Any] = dict(enumerate(self.labels ) ) UpperCamelCase : int = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase : Optional[Any] = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(A_ , A_ ), "precision": precision_score(A_ , A_ ), "recall": recall_score(A_ , A_ ), "f1": fa_score(A_ , A_ ), } UpperCamelCase : int = dict(results.items() ) UpperCamelCase : Optional[Any] = results return ret, preds_list, out_label_list def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = self._eval_end(A_ ) UpperCamelCase : Tuple = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = self._eval_end(A_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( "--task_type" , default="NER" , type=A_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=A_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=A_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=A_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase : List[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase : int = parser.parse_args() __lowerCamelCase : List[Any] = NERTransformer(args) __lowerCamelCase : List[Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __lowerCamelCase : Optional[int] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
140
class A__ : # Public class to implement a graph def __init__( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = row UpperCamelCase : Any = col UpperCamelCase : Optional[Any] = graph def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def __UpperCamelCase( self ): # And finally, count all islands. '''simple docstring''' UpperCamelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
140
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Union[str, Any] = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : Optional[int] = num_choices _lowerCAmelCase : Optional[Any] = scope def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : Any = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Any = LlamaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model(a__ , attention_mask=a__ ) _lowerCAmelCase : str = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = LlamaModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Optional[Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) _lowerCAmelCase : Any = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Tuple = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) _lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase : Tuple = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )["""hidden_states"""][0] _lowerCAmelCase : Optional[Any] = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )["""hidden_states"""][0] # select random slice _lowerCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCamelCase : Dict = (LlamaForCausalLM,) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Dict = False def __A ( self ): _lowerCAmelCase : Dict = LlamaModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : List[str] = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = 3 _lowerCAmelCase : Union[str, Any] = input_dict["""input_ids"""] _lowerCAmelCase : str = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase : List[Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = 3 _lowerCAmelCase : str = """single_label_classification""" _lowerCAmelCase : Optional[int] = input_dict["""input_ids"""] _lowerCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : int = """multi_label_classification""" _lowerCAmelCase : Tuple = input_dict["""input_ids"""] _lowerCAmelCase : Dict = input_ids.ne(1 ).to(a__ ) _lowerCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , a__ ): _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase : List[str] = LlamaModel(a__ ) original_model.to(a__ ) original_model.eval() _lowerCAmelCase : List[str] = original_model(a__ ).last_hidden_state _lowerCAmelCase : Optional[Any] = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase : Tuple = {"""type""": scaling_type, """factor""": 1_0.0} _lowerCAmelCase : Optional[Any] = LlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() _lowerCAmelCase : Any = scaled_model(a__ ).last_hidden_state _lowerCAmelCase : Optional[Any] = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) @require_torch class __A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowerCAmelCase : Optional[int] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCAmelCase : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ): _lowerCAmelCase : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _lowerCAmelCase : Tuple = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 _lowerCAmelCase : Optional[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowerCAmelCase : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ): _lowerCAmelCase : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _lowerCAmelCase : str = model(torch.tensor(a__ ) ) _lowerCAmelCase : Tuple = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # fmt: off _lowerCAmelCase : Union[str, Any] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ): _lowerCAmelCase : List[str] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _lowerCAmelCase : str = """Simply put, the theory of relativity states that """ _lowerCAmelCase : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _lowerCAmelCase : Optional[Any] = tokenizer.encode(a__ , return_tensors="""pt""" ) _lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=a__ ) # greedy generation outputs _lowerCAmelCase : Optional[int] = model.generate(a__ , max_new_tokens=64 , top_p=a__ , temperature=1 , do_sample=a__ ) _lowerCAmelCase : Dict = tokenizer.decode(generated_ids[0] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ )
44
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase_ = 0 UpperCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase_ = tuple[int, int] class a_ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): _lowerCAmelCase : Optional[int] = pos_x _lowerCAmelCase : List[str] = pos_y _lowerCAmelCase : Tuple = (pos_y, pos_x) _lowerCAmelCase : List[Any] = goal_x _lowerCAmelCase : int = goal_y _lowerCAmelCase : Union[str, Any] = g_cost _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = self.calculate_heuristic() _lowerCAmelCase : Optional[int] = self.g_cost + self.h_cost def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.pos_x - self.goal_x _lowerCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case_ ) + abs(snake_case_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , snake_case_ ): return self.f_cost < other.f_cost class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case_ ) _lowerCAmelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , snake_case_ ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : List[str] = False def __UpperCamelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Optional[int] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case_ ) self.closed_nodes.append(snake_case_ ) _lowerCAmelCase : Optional[int] = self.get_successors(snake_case_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case_ ) else: self.open_nodes.append(snake_case_ ) return [self.start.pos] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = [] for action in delta: _lowerCAmelCase : Union[str, Any] = parent.pos_x + action[1] _lowerCAmelCase : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case_ , snake_case_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case_ , ) ) return successors def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = node _lowerCAmelCase : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : int = AStar(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = False def __UpperCamelCase ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _lowerCAmelCase : Tuple = self.fwd_astar.open_nodes.pop(0 ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case_ , snake_case_ ) self.fwd_astar.closed_nodes.append(snake_case_ ) self.bwd_astar.closed_nodes.append(snake_case_ ) _lowerCAmelCase : List[str] = current_bwd_node _lowerCAmelCase : Dict = current_fwd_node _lowerCAmelCase : Any = { self.fwd_astar: self.fwd_astar.get_successors(snake_case_ ), self.bwd_astar: self.bwd_astar.get_successors(snake_case_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case_ ) else: # retrieve the best current path _lowerCAmelCase : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case_ ) else: astar.open_nodes.append(snake_case_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase : int = self.fwd_astar.retrace_path(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(snake_case_ ) bwd_path.pop() bwd_path.reverse() _lowerCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase_ = (0, 0) UpperCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase_ = time.time() UpperCamelCase_ = AStar(init, goal) UpperCamelCase_ = a_star.search() UpperCamelCase_ = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') UpperCamelCase_ = time.time() UpperCamelCase_ = BidirectionalAStar(init, goal) UpperCamelCase_ = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
309
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case__ : Any = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Tuple ): return 1_2 @property def lowerCamelCase__ ( self : str ): return 1_2 @property def lowerCamelCase__ ( self : Optional[Any] ): return 3_2 @property def lowerCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase : List[str] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCamelCase__ ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCamelCase_ ) @property def lowerCamelCase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : Dict = 1_2 lowerCAmelCase : Optional[Any] = 1_2 lowerCAmelCase : Optional[Any] = { '''attention_bias''': True, '''cross_attention_dim''': 3_2, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 3_2, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } lowerCAmelCase : List[str] = TransformeraDModel(**UpperCamelCase_ ) return model def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = '''cpu''' lowerCAmelCase : List[str] = self.dummy_vqvae lowerCAmelCase : Any = self.dummy_text_encoder lowerCAmelCase : Tuple = self.dummy_tokenizer lowerCAmelCase : Optional[Any] = self.dummy_transformer lowerCAmelCase : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase : List[str] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowerCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[Any] = '''teddy bear playing in the pool''' lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : List[str] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowerCAmelCase : int = output.images lowerCAmelCase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Union[str, Any] = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowerCAmelCase : Dict = image[0, -3:, -3:, -1] lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) lowerCAmelCase : Optional[int] = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = '''cpu''' lowerCAmelCase : Tuple = self.dummy_vqvae lowerCAmelCase : Any = self.dummy_text_encoder lowerCAmelCase : int = self.dummy_tokenizer lowerCAmelCase : Dict = self.dummy_transformer lowerCAmelCase : List[Any] = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCAmelCase : Tuple = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowerCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''teddy bear playing in the pool''' lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Dict = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : List[Any] = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) lowerCAmelCase : Any = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) lowerCAmelCase : Any = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) lowerCAmelCase : Optional[Any] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Optional[int] = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , ) lowerCAmelCase : int = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
314
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
1
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a__ ( SCREAMING_SNAKE_CASE : Dataset , SCREAMING_SNAKE_CASE : Dict[str, str] ): '''simple docstring''' lowerCAmelCase : Dict = args.log_outputs lowerCAmelCase : List[str] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric lowerCAmelCase : int = load_metric("wer" ) lowerCAmelCase : str = load_metric("cer" ) # compute metrics lowerCAmelCase : List[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) lowerCAmelCase : str = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results lowerCAmelCase : List[str] = f"""WER: {wer_result}\nCER: {cer_result}""" print(SCREAMING_SNAKE_CASE ) with open(f"""{dataset_id}_eval_results.txt""" , "w" ) as f: f.write(SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase : Optional[Any] = f"""log_{dataset_id}_predictions.txt""" lowerCAmelCase : Tuple = f"""log_{dataset_id}_targets.txt""" with open(SCREAMING_SNAKE_CASE , "w" ) as p, open(SCREAMING_SNAKE_CASE , "w" ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): p.write(f"""{i}""" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"""{i}""" + "\n" ) t.write(batch["target"] + "\n" ) result.map(SCREAMING_SNAKE_CASE , with_indices=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase : List[str] = re.sub(SCREAMING_SNAKE_CASE , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase : Dict = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: lowerCAmelCase : List[str] = " ".join(text.split(SCREAMING_SNAKE_CASE ) ) return text def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Any = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase : Dict = feature_extractor.sampling_rate # resample audio lowerCAmelCase : Any = dataset.cast_column("audio" , Audio(sampling_rate=SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: lowerCAmelCase : int = 0 if torch.cuda.is_available() else -1 lowerCAmelCase : Union[str, Any] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE : Optional[int] ): lowerCAmelCase : Union[str, Any] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase : List[Any] = prediction["text"] lowerCAmelCase : int = normalize_text(batch["sentence"] ) return batch # run inference on all examples lowerCAmelCase : List[str] = dataset.map(SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) lowerCAmelCase__ = parser.parse_args() main(args)
108
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = set() # Replace all the whitespace in our sentence a_ = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase ) == 26 def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" a_ = [False] * 26 for char in input_str: if char.islower(): a_ = True elif char.isupper(): a_ = True return all(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ) ->bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase ( ) ->None: """simple docstring""" from timeit import timeit a_ = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=UpperCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
243
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [] def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Dict: self.events.append("""on_init_end""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> List[str]: self.events.append("""on_train_begin""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> str: self.events.append("""on_train_end""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> List[Any]: self.events.append("""on_epoch_begin""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> List[Any]: self.events.append("""on_epoch_end""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Optional[int]: self.events.append("""on_step_begin""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Optional[Any]: self.events.append("""on_step_end""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> List[Any]: self.events.append("""on_evaluate""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> Dict: self.events.append("""on_predict""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> int: self.events.append("""on_save""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> List[str]: self.events.append("""on_log""" ) def __snake_case ( self , A_ , A_ , A_ , **A_ ) -> int: self.events.append("""on_prediction_step""" ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[Any]: lowerCAmelCase = tempfile.mkdtemp() def __snake_case ( self ) -> Union[str, Any]: shutil.rmtree(self.output_dir ) def __snake_case ( self , A_=0 , A_=0 , A_=64 , A_=64 , A_=None , A_=False , **A_ ) -> List[str]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowerCAmelCase = RegressionDataset(length=A_ ) lowerCAmelCase = RegressionDataset(length=A_ ) lowerCAmelCase = RegressionModelConfig(a=A_ , b=A_ ) lowerCAmelCase = RegressionPreTrainedModel(A_ ) lowerCAmelCase = TrainingArguments(self.output_dir , disable_tqdm=A_ , report_to=[] , **A_ ) return Trainer( A_ , A_ , train_dataset=A_ , eval_dataset=A_ , callbacks=A_ , ) def __snake_case ( self , A_ , A_ ) -> Optional[int]: self.assertEqual(len(A_ ) , len(A_ ) ) # Order doesn't matter lowerCAmelCase = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) lowerCAmelCase = sorted(A_ , key=lambda A_ : cb.__name__ if isinstance(A_ , A_ ) else cb.__class__.__name__ ) for cba, cba in zip(A_ , A_ ): if isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(A_ , A_ ) elif isinstance(A_ , A_ ) and not isinstance(A_ , A_ ): self.assertEqual(A_ , cba.__class__ ) elif not isinstance(A_ , A_ ) and isinstance(A_ , A_ ): self.assertEqual(cba.__class__ , A_ ) else: self.assertEqual(A_ , A_ ) def __snake_case ( self , A_ ) -> List[str]: lowerCAmelCase = ["""on_init_end""", """on_train_begin"""] lowerCAmelCase = 0 lowerCAmelCase = len(trainer.get_eval_dataloader() ) lowerCAmelCase = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append("""on_epoch_begin""" ) for _ in range(A_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""" ) expected_events.append("""on_epoch_end""" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.get_trainer() lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # Callbacks passed at init are added to the default callbacks lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCAmelCase = self.get_trainer(disable_tqdm=A_ ) lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCAmelCase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.pop_callback(A_ ) self.assertEqual(cb.__class__ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) # We can also add, pop, or remove by instance lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.callback_handler.callbacks[0] trainer.remove_callback(A_ ) expected_callbacks.remove(A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) lowerCAmelCase = self.get_trainer() lowerCAmelCase = trainer.callback_handler.callbacks[0] lowerCAmelCase = trainer.pop_callback(A_ ) self.assertEqual(A_ , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) trainer.add_callback(A_ ) expected_callbacks.insert(0 , A_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , A_ ) def __snake_case ( self ) -> Optional[int]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=A_ ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # Independent log/save/eval lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) lowerCAmelCase = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # A bit of everything lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowerCAmelCase = trainer.callback_handler.callbacks[-2].events self.assertEqual(A_ , self.get_expected_events(A_ ) ) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock: lowerCAmelCase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(A_ ) in warn_mock.call_args[0][0]
187
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"] UpperCAmelCase : Tuple = "BlipImageProcessor" UpperCAmelCase : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , A_ , A_ ) -> Dict: lowerCAmelCase = False super().__init__(A_ , A_ ) lowerCAmelCase = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase = self.tokenizer lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values lowerCAmelCase = self.image_processor(A_ , return_tensors=A_ ) if text is not None: lowerCAmelCase = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __snake_case ( self , *A_ , **A_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A_ , **A_ ) def __snake_case ( self , *A_ , **A_ ) -> Tuple: return self.tokenizer.decode(*A_ , **A_ ) @property def __snake_case ( self ) -> str: lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
187
1
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return x + 2 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = """x = 3""" UpperCAmelCase__ = {} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) UpperCAmelCase__ = """x = y""" UpperCAmelCase__ = {"""y""": 5} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = """y = add_two(x)""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = """x = 3""" UpperCAmelCase__ = {} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = """x = 3\ny = 5""" UpperCAmelCase__ = {} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = """text = f'This is x: {x}.'""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = """if x <= 3:\n y = 2\nelse:\n y = 5""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} ) UpperCAmelCase__ = {"""x""": 8} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = """test_list = [x, add_two(x)]""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [3, 5] ) self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = """y = x""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase ) assert result == 3 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = """test_list = [x, add_two(x)]\ntest_list[1]""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} ) UpperCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" UpperCAmelCase__ = {"""x""": 3} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase ) assert result == 5 self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = """x = 0\nfor i in range(3):\n x = i""" UpperCAmelCase__ = {} UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase ) assert result == 2 self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """vivit""" def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias super().__init__(**_UpperCAmelCase )
346
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : Tuple ,**lowercase_ : Tuple ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Tuple ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Optional[Any] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : Dict ,**lowercase_ : Dict ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : Union[str, Any] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : List[Any] ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : str ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Dict ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Optional[int] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : Any ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : str ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Dict ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : List[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : List[str] ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : Tuple ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : List[str] ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Optional[Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : Union[str, Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : List[Any] ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Union[str, Any] ,*lowercase_ : Dict ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Tuple ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple ,*lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Dict ,*lowercase_ : List[str] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Any ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : int ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[str] ,*lowercase_ : Dict ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : int ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : int ,*lowercase_ : Any ,**lowercase_ : Tuple ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple ,*lowercase_ : Optional[int] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Tuple ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) def __SCREAMING_SNAKE_CASE ( *A_ , **A_ ): requires_backends(A_ , ['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : int ,*lowercase_ : List[str] ,**lowercase_ : Optional[int] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Optional[int] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : int ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : List[Any] ,**lowercase_ : Tuple ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : str ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Optional[Any] ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Any ,*lowercase_ : Union[str, Any] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Optional[Any] ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : List[Any] ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Any ,*lowercase_ : Tuple ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Tuple ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[str] ,*lowercase_ : Tuple ,**lowercase_ : Union[str, Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Optional[int] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : List[str] ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[str] ,*lowercase_ : Dict ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : int ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : Optional[Any] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : List[str] ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : int ,**lowercase_ : List[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Any ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : str ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : Tuple ,**lowercase_ : List[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : Optional[int] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Optional[Any] ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : str ,**lowercase_ : int ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : int ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : int ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Union[str, Any] ,*lowercase_ : Optional[int] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Optional[Any] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : str ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[str] ,*lowercase_ : Optional[Any] ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : int ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : Dict ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : List[Any] ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Any ,*lowercase_ : Any ,**lowercase_ : Union[str, Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Tuple ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : List[str] ,**lowercase_ : Optional[int] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Dict ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : List[str] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : Optional[Any] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Optional[Any] ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Any ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[str] ,*lowercase_ : List[Any] ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Optional[Any] ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : int ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : Union[str, Any] ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Tuple ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple ,*lowercase_ : Union[str, Any] ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : int ,*lowercase_ : int ,**lowercase_ : Tuple ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : List[Any] ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Tuple ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : List[str] ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : List[str] ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Any ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : str ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : List[Any] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Any ,*lowercase_ : List[Any] ,**lowercase_ : Tuple ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Dict ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : Optional[Any] ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : int ,**lowercase_ : Optional[int] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : List[Any] ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : Any ,**lowercase_ : Tuple ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : str ,*lowercase_ : List[str] ,**lowercase_ : Union[str, Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : List[str] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Any ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Union[str, Any] ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Optional[int] ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Union[str, Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Dict ,**lowercase_ : str ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : List[Any] ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[int] ,*lowercase_ : List[str] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : Dict ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Union[str, Any] ,*lowercase_ : Tuple ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Dict ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Dict ,*lowercase_ : Optional[Any] ,**lowercase_ : List[str] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Optional[Any] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : List[str] ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : int ,*lowercase_ : Optional[int] ,**lowercase_ : Any ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : int ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : Dict ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[int] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Tuple ,*lowercase_ : Optional[Any] ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : str ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : int ,*lowercase_ : str ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : int ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : int ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[Any] ,*lowercase_ : Any ,**lowercase_ : Dict ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Union[str, Any] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Tuple ,**lowercase_ : List[str] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Optional[int] ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Union[str, Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : List[Any] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Optional[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Optional[int] ,**lowercase_ : int ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Optional[Any] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : str ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : str ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Union[str, Any] ,*lowercase_ : Dict ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Dict ,*lowercase_ : Union[str, Any] ,**lowercase_ : int ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowercase_ : Dict ,**lowercase_ : Dict ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Dict ,*lowercase_ : Union[str, Any] ,**lowercase_ : Any ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Tuple ,*lowercase_ : List[str] ,**lowercase_ : str ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Any ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : Optional[Any] ,*lowercase_ : Tuple ,**lowercase_ : Optional[Any] ): requires_backends(cls ,['''torch'''] ) class SCREAMING_SNAKE_CASE ( metaclass=a_ ): """simple docstring""" lowercase__ = ["torch"] def __init__( self : Optional[int] ,*lowercase_ : Dict ,**lowercase_ : List[Any] ): requires_backends(self ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[str] ,*lowercase_ : Tuple ,**lowercase_ : List[Any] ): requires_backends(cls ,['''torch'''] ) @classmethod def __lowerCAmelCase ( cls : List[Any] ,*lowercase_ : Any ,**lowercase_ : Optional[int] ): requires_backends(cls ,['''torch'''] )
74
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): if not isinstance(A_ , A_ ): lowerCAmelCase__ : int = f'Input value of [number={number}] must be an integer' raise TypeError(A_ ) if number < 0: return False lowerCAmelCase__ : List[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
74
1
from __future__ import annotations def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : Union[str, Any] = str(__lowercase ) return len(__lowercase ) == 9 and set(__lowercase ) == set('123456789' ) def UpperCamelCase ( ): '''simple docstring''' for base_num in range(99_99 ,49_99 ,-1 ): A_ : Optional[int] = 10_00_02 * base_num if is_9_pandigital(__lowercase ): return candidate for base_num in range(3_33 ,99 ,-1 ): A_ : int = 1_00_20_03 * base_num if is_9_pandigital(__lowercase ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
140
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _UpperCAmelCase = """scheduler_config.json""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 1_0 lowerCamelCase_ = 1_1 lowerCamelCase_ = 1_2 lowerCamelCase_ = 1_3 lowerCamelCase_ = 1_4 @dataclass class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = 42 class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def lowerCAmelCase_ ( cls , lowercase = None , lowercase = None , lowercase=False , **lowercase , ): """simple docstring""" A_ , A_ , A_ : int = cls.load_config( pretrained_model_name_or_path=lowercase , subfolder=lowercase , return_unused_kwargs=lowercase , return_commit_hash=lowercase , **lowercase , ) return cls.from_config(lowercase , return_unused_kwargs=lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , **lowercase ): """simple docstring""" self.save_config(save_directory=lowercase , push_to_hub=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) A_ : Any = importlib.import_module(__name__.split('.' )[0] ) A_ : Tuple = [ getattr(lowercase , lowercase ) for c in compatible_classes_str if hasattr(lowercase , lowercase ) ] return compatible_classes
140
1
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase__ : Union[str, Any] =['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def a__ ( A__, A__ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def a__ ( A__ ): config.addinivalue_line('markers', 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCamelCase_ ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = tmp_path_factory.getbasetemp() / """cache""" SCREAMING_SNAKE_CASE_ : int = test_hf_cache_home / """datasets""" SCREAMING_SNAKE_CASE_ : Optional[int] = test_hf_cache_home / """metrics""" SCREAMING_SNAKE_CASE_ : Optional[Any] = test_hf_cache_home / """modules""" monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE', str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE', str(lowerCamelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE', str(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : str = test_hf_datasets_cache / """downloads""" monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH', str(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowerCamelCase_ ) ) @pytest.fixture(autouse=lowerCamelCase_, scope='session' ) def a__ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase_ ) def a__ ( A__ ): monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS', lowerCamelCase_ ) @pytest.fixture def a__ ( A__ ): monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING', lowerCamelCase_ )
358
from __future__ import annotations def a__ ( A__ ): return len(set(A__ ) ) == len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
162
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _SCREAMING_SNAKE_CASE : Any = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } _SCREAMING_SNAKE_CASE : List[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' _SCREAMING_SNAKE_CASE : List[str] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCAmelCase_ ( _A ): '''simple docstring''' return x[0] def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_letter_count(_A ) SCREAMING_SNAKE_CASE__ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_A ) SCREAMING_SNAKE_CASE__ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_A ) SCREAMING_SNAKE_CASE__ = ''''''.join(freq_to_letter[freq] ) SCREAMING_SNAKE_CASE__ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_A , reverse=_A ) SCREAMING_SNAKE_CASE__ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_frequency_order(_A ) SCREAMING_SNAKE_CASE__ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> float: '''simple docstring''' snake_case_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: snake_case_ = 1 - (matter_density + radiation_density + dark_energy) snake_case_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
34
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : List[str] = 'mobilenet_v1' def __init__( self , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=1.0 , lowerCamelCase=8 , lowerCamelCase="relu6" , lowerCamelCase=True , lowerCamelCase=0.999 , lowerCamelCase=0.02 , lowerCamelCase=0.001 , **lowerCamelCase , ) -> List[str]: super().__init__(**lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = depth_multiplier snake_case_ = min_depth snake_case_ = hidden_act snake_case_ = tf_padding snake_case_ = classifier_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : str = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> float: return 1e-4
34
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) snake_case_ = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=32 , ) snake_case_ = CLIPTextModel(__lowercase ) snake_case_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__lowercase ) snake_case_ = CLIPTextModelWithProjection(__lowercase ) snake_case_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__lowercase ) snake_case_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case__ ( self : List[Any] , __lowercase : Any , __lowercase : Union[str, Any]=0 ): """simple docstring""" snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) snake_case_ = image / 2 + 0.5 if str(__lowercase ).startswith("mps" ): snake_case_ = torch.manual_seed(__lowercase ) else: snake_case_ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionXLImgaImgPipeline(**__lowercase ) snake_case_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = sd_pipe(**__lowercase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self : Any ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case__ ( self : Optional[int] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case__ ( self : Dict ): """simple docstring""" pass def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionXLImgaImgPipeline(**__lowercase ) snake_case_ = sd_pipe.to(__lowercase ) snake_case_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = 3 * ["this is a negative prompt"] snake_case_ = negative_prompt snake_case_ = 3 * [inputs["prompt"]] snake_case_ = sd_pipe(**__lowercase ) snake_case_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = 3 * ["this is a negative prompt"] snake_case_ = 3 * [inputs.pop("prompt" )] ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) snake_case_ = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) snake_case_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Tuple , __lowercase : Tuple , __lowercase : List[Any]="cpu" , __lowercase : Optional[int]=torch.floataa , __lowercase : Dict=0 ): """simple docstring""" snake_case_ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case_ = np.random.RandomState(__lowercase ).standard_normal((1, 4, 64, 64) ) snake_case_ = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) snake_case_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case_ = self.get_inputs(__lowercase ) snake_case_ = pipe(**__lowercase ).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) snake_case_ = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
187
def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) if n == 0: return 0 snake_case_ = float("-inf" ) for i in range(1 , n + 1 ): snake_case_ = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) snake_case_ = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: snake_case_ = float("-inf" ) for i in range(1 , n + 1 ): snake_case_ = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) snake_case_ = max_revenue return max_rev[n] def lowerCamelCase__ ( _A , _A ): '''simple docstring''' _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. snake_case_ = [float("-inf" ) for _ in range(n + 1 )] snake_case_ = 0 for i in range(1 , n + 1 ): snake_case_ = max_rev[i] for j in range(1 , i + 1 ): snake_case_ = max(_A , prices[j - 1] + max_rev[i - j] ) snake_case_ = max_revenue_i return max_rev[n] def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if n < 0: snake_case_ = f"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_A ) if n > len(_A ): snake_case_ = ( "Each integral piece of rod must have a corresponding price. " f"Got n = {n} but length of prices = {len(_A )}" ) raise ValueError(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [6, 10, 12, 15, 20, 23] snake_case_ = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. snake_case_ = 36 snake_case_ = top_down_cut_rod(_A , _A ) snake_case_ = bottom_up_cut_rod(_A , _A ) snake_case_ = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
187
1
from __future__ import annotations import math def snake_case( __magic_name__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case( __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : Tuple = str(SCREAMING_SNAKE_CASE_ ) lowercase : Optional[int] = [n] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def snake_case( __magic_name__ ) -> bool: '''simple docstring''' if len(str(SCREAMING_SNAKE_CASE_ ) ) > 3: if not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[-3:] ) ) or not is_prime(int(str(SCREAMING_SNAKE_CASE_ )[:3] ) ): return False return True def snake_case( __magic_name__ = 11 ) -> list[int]: '''simple docstring''' lowercase : Union[str, Any] = [] lowercase : str = 13 while len(SCREAMING_SNAKE_CASE_ ) != count: if validate(SCREAMING_SNAKE_CASE_ ): lowercase : Any = list_truncated_nums(SCREAMING_SNAKE_CASE_ ) if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): list_truncated_primes.append(SCREAMING_SNAKE_CASE_ ) num += 2 return list_truncated_primes def snake_case( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
366
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase_ = '\\n Text data.\n Second line of data.' lowerCAmelCase_ = 'file' @pytest.fixture(scope='''session''' ) def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : Any = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase : List[Any] = bytes(__magic_name__ , '''utf-8''' ) with zstd.open(__magic_name__ , '''wb''' ) as f: f.write(__magic_name__ ) return path @pytest.fixture def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __magic_name__ ) , '''w''' ) as f: f.write(__magic_name__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : Optional[int] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase : int = input_paths[compression_format] lowercase : Any = tmp_path / '''cache''' lowercase : int = DownloadConfig(cache_dir=__magic_name__ , extract_compressed_file=__magic_name__ ) lowercase : Optional[Any] = cached_path(__magic_name__ , download_config=__magic_name__ ) with open(__magic_name__ ) as f: lowercase : Optional[int] = f.read() with open(__magic_name__ ) as f: lowercase : str = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : Dict = '''custom_cache''' lowercase : Union[str, Any] = '''custom_extracted_dir''' lowercase : str = tmp_path / '''custom_extracted_path''' if default_extracted: lowercase : Tuple = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __magic_name__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__magic_name__ ) ) lowercase : int = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase : List[str] = xz_file lowercase : Any = ( DownloadConfig(extract_compressed_file=__magic_name__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__magic_name__ ) ) lowercase : Optional[int] = cached_path(__magic_name__ , download_config=__magic_name__ ) assert Path(__magic_name__ ).parent.parts[-2:] == expected def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : Any = str(Path(__magic_name__ ).resolve() ) assert cached_path(__magic_name__ ) == text_file # relative path lowercase : Union[str, Any] = str(Path(__magic_name__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__magic_name__ ) == text_file def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) # relative path lowercase : Optional[int] = '''./__missing_file__.txt''' with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : List[str] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__magic_name__ ) as f: lowercase : List[Any] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( ) -> List[Any]: '''simple docstring''' with pytest.raises(__magic_name__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): http_get('''https://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): ftp_get('''ftp://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : str = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): fsspec_get('''s3://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): fsspec_head('''s3://huggingface.co''' )
116
0
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } _lowercase = { '''facebook/blenderbot_small-90M''': 5_12, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = VOCAB_FILES_NAMES _lowerCamelCase: List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: List[str] = BlenderbotSmallTokenizer def __init__( self : Dict ,A_ : Optional[Any]=None ,A_ : List[Any]=None ,A_ : List[Any]="<|endoftext|>" ,A_ : int="<|endoftext|>" ,A_ : Optional[Any]="<|endoftext|>" ,A_ : Optional[int]=False ,A_ : Dict=True ,**A_ : Optional[int] ,) -> int: super().__init__( ByteLevelBPETokenizer( vocab=A_ ,merges=A_ ,add_prefix_space=A_ ,trim_offsets=A_ ,) ,bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,**A_ ,) A = add_prefix_space def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[Any] ,A_ : Union[str, Any]=None ) -> Tuple: A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
74
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a) class UpperCAmelCase_ ( a): lowerCamelCase__ = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) lowerCamelCase__ = Features({'audio': Audio()}) lowerCamelCase__ = Features({'labels': ClassLabel}) lowerCamelCase__ = "audio" lowerCamelCase__ = "labels" def snake_case__ ( self, __a): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], __a): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") _lowerCAmelCase : List[Any] = copy.deepcopy(self) _lowerCAmelCase : int = self.label_schema.copy() _lowerCAmelCase : List[str] = features[self.label_column] _lowerCAmelCase : Tuple = label_schema return task_template @property def snake_case__ ( self): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
300
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): @property def snake_case__ ( self): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ort.SessionOptions() _lowerCAmelCase : int = False return options def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _lowerCAmelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default _lowerCAmelCase : Optional[int] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__a, feature_extractor=__a, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__a) _lowerCAmelCase : Any = "A red cat sitting on a park bench" _lowerCAmelCase : Optional[Any] = np.random.RandomState(0) _lowerCAmelCase : Any = pipe( prompt=__a, image=__a, mask_image=__a, strength=0.75, guidance_scale=7.5, num_inference_steps=15, generator=__a, output_type="np", ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
300
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> bool: """simple docstring""" _lowercase =len(__snake_case ) + 1 _lowercase =len(__snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowercase =[[0 for i in range(__snake_case )] for j in range(__snake_case )] # since string of zero length match pattern of zero length _lowercase =1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __snake_case ): _lowercase =0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __snake_case ): _lowercase =dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowercase =dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowercase =1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowercase =dp[i - 1][j] else: _lowercase =0 else: _lowercase =0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase__ = '''aab''' UpperCAmelCase__ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
5
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> List[str]: '''simple docstring''' super().__init__() A_ = pad_token_id A_ = max_length A_ = vocab A_ = merges A_ = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = [""" """.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] A_ = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return cls(**UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Dict: '''simple docstring''' A_ = self.tf_tokenizer(UpperCamelCase__ ) A_ = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length A_ = max_length if max_length is not None else self.max_length if max_length is not None: A_ , A_ = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
162
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase = TypeVar("""_T""") class lowercase__ ( Generic[_T] ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Iterable[_T] | None = None ) -> None: '''simple docstring''' UpperCAmelCase_ = list(iterable or [] ) UpperCAmelCase_ = [] def __len__( self : Optional[int] ) -> int: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : _T ) -> None: '''simple docstring''' self._stacka.append(_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> _T: '''simple docstring''' UpperCAmelCase_ = self._stacka.pop UpperCAmelCase_ = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
241
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a ( __a ): __a : Optional[Any] = (DEISMultistepScheduler,) __a : Any = (("""num_inference_steps""", 25),) def A ( self : Any , **lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase ) return config def A ( self : Union[str, Any] , lowercase : Optional[Any]=0 , **lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : int ): '''simple docstring''' pass def A ( self : str , lowercase : Any=0 , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Any , lowercase : List[str]=None , **lowercase : List[Any] ): '''simple docstring''' if scheduler is None: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = self.full_loop(scheduler=lowercase ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Dict ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type='''deis''' , solver_order=lowercase , solver_type=lowercase , ) def A ( self : Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Tuple ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) UpperCAmelCase = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : int ): '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : List[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa
34
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( __a ): __a : str = ["""vqvae"""] def __init__( self : str , lowercase : AutoencoderKL , lowercase : UNetaDConditionModel , lowercase : Mel , lowercase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase , mel=lowercase , vqvae=lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase ) else 1_000 @torch.no_grad() def __call__( self : Optional[Any] , lowercase : int = 1 , lowercase : str = None , lowercase : np.ndarray = None , lowercase : int = 0 , lowercase : int = 0 , lowercase : int = None , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : float = 0 , lowercase : torch.Generator = None , lowercase : float = 0 , lowercase : torch.Tensor = None , lowercase : torch.Tensor = None , lowercase : Tuple=True , ): '''simple docstring''' UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase , device=self.device , ) UpperCAmelCase = noise UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase , lowercase ) UpperCAmelCase = self.mel.audio_slice_to_image(lowercase ) UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) UpperCAmelCase = (input_image / 255) * 2 - 1 UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(lowercase , 0 ) ).latent_dist.sample( generator=lowercase )[0] UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , self.scheduler.timesteps[start_step - 1] ) UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCAmelCase = int(mask_start_secs * pixels_per_second ) UpperCAmelCase = int(mask_end_secs * pixels_per_second ) UpperCAmelCase = self.scheduler.add_noise(lowercase , lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase ): UpperCAmelCase = self.unet(lowercase , lowercase , lowercase )['''sample'''] else: UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] if isinstance(self.scheduler , lowercase ): UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , eta=lowercase , generator=lowercase , )['''prev_sample'''] else: UpperCAmelCase = self.scheduler.step( model_output=lowercase , timestep=lowercase , sample=lowercase , generator=lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images UpperCAmelCase = self.vqvae.decode(lowercase )['''sample'''] UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCAmelCase = (images * 255).round().astype('''uint8''' ) UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) UpperCAmelCase = [self.mel.image_to_audio(lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase ) ) @torch.no_grad() def A ( self : Dict , lowercase : List[Image.Image] , lowercase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase ) self.scheduler.set_timesteps(lowercase ) UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) UpperCAmelCase = (sample / 255) * 2 - 1 UpperCAmelCase = torch.Tensor(lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCAmelCase = self.scheduler.alphas_cumprod[t] UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = self.unet(lowercase , lowercase )['''sample'''] UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A ( lowercase : torch.Tensor , lowercase : torch.Tensor , lowercase : float ): '''simple docstring''' UpperCAmelCase = acos(torch.dot(torch.flatten(lowercase ) , torch.flatten(lowercase ) ) / torch.norm(lowercase ) / torch.norm(lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase ) + sin(alpha * theta ) * xa / sin(lowercase )
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> list: snake_case_ = length or len(_SCREAMING_SNAKE_CASE ) snake_case_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ = list_data[i + 1], list_data[i] snake_case_ = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=[1, 1, 2] , __a=1 , __a=32 , __a=4 , __a=8 , __a=37 , __a="gelu_new" , __a=0.1 , __a=0.1 , __a=0.0 , __a=5_12 , __a=3 , __a=0.0_2 , __a=3 , __a=4 , __a=None , __a=False , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = block_sizes __lowerCAmelCase = num_decoder_layers __lowerCAmelCase = d_model __lowerCAmelCase = n_head __lowerCAmelCase = d_head __lowerCAmelCase = d_inner __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = 2 __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = initializer_std # Used in the tests to check the size of the first attention layer __lowerCAmelCase = n_head # Used in the tests to check the size of the first hidden state __lowerCAmelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowerCAmelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowerCAmelCase = self.num_hidden_layers + 2 def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowerCAmelCase = False __lowerCAmelCase = TFFunnelBaseModel(config=__a ) __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForPreTraining(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForMaskedLM(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForSequenceClassification(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFFunnelForMultipleChoice(config=__a ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFFunnelForTokenClassification(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a , __a , ): __lowerCAmelCase = TFFunnelForQuestionAnswering(config=__a ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Tuple =( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[Any] =False __UpperCAmelCase : List[str] =False def snake_case ( self ): __lowerCAmelCase = TFFunnelModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @require_tf class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[str] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : Tuple =False __UpperCAmelCase : Any =False def snake_case ( self ): __lowerCAmelCase = TFFunnelModelTester(self , base=__a ) __lowerCAmelCase = ConfigTester(self , config_class=__a ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a )
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = "camembert" def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : List[Any] = vocab_size A : Dict = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : List[str] = hidden_act A : Tuple = intermediate_size A : Tuple = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = initializer_range A : str = layer_norm_eps A : Tuple = position_embedding_type A : str = use_cache A : Any = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
116
0
"""simple docstring""" def __lowercase ( _a ): snake_case_ : int = len(_a ) for i in range(_a ): for j in range(i + 1 , _a ): if numbers[j] < numbers[i]: snake_case_ : Tuple = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
358
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ : int = logging.get_logger('''transformers.models.encodec''') lowercase__ : Optional[int] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase__ : Tuple = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase__ : List[str] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase__ : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase__ : int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase__ : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ : int = [] lowercase__ : Dict = [] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[Any] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Union[str, Any] = getattr(_a , _a ).shape else: snake_case_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : List[Any] = value elif weight_type == "weight_v": snake_case_ : List[Any] = value elif weight_type == "bias": snake_case_ : Optional[Any] = value elif weight_type == "running_mean": snake_case_ : str = value elif weight_type == "running_var": snake_case_ : List[Any] = value elif weight_type == "num_batches_tracked": snake_case_ : Tuple = value elif weight_type == "weight_ih_l0": snake_case_ : Dict = value elif weight_type == "weight_hh_l0": snake_case_ : str = value elif weight_type == "bias_ih_l0": snake_case_ : str = value elif weight_type == "bias_hh_l0": snake_case_ : Dict = value elif weight_type == "weight_ih_l1": snake_case_ : Optional[int] = value elif weight_type == "weight_hh_l1": snake_case_ : Dict = value elif weight_type == "bias_ih_l1": snake_case_ : List[str] = value elif weight_type == "bias_hh_l1": snake_case_ : Optional[int] = value else: snake_case_ : Dict = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __lowercase ( _a , _a ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_, snake_case_ : Tuple = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowercase ( _a , _a , _a ): snake_case_ : str = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ : Any = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ : int = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_a , _a ): logger.info(f"{name} was ignored" ) continue snake_case_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_, snake_case_ : List[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: snake_case_ : Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue snake_case_ : str = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : str = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : int = '''weight_g''' elif "weight_v" in name: snake_case_ : List[str] = '''weight_v''' elif "weight_ih_l0" in name: snake_case_ : List[Any] = '''weight_ih_l0''' elif "weight_hh_l0" in name: snake_case_ : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: snake_case_ : Any = '''bias_ih_l0''' elif "bias_hh_l0" in name: snake_case_ : Dict = '''bias_hh_l0''' elif "weight_ih_l1" in name: snake_case_ : str = '''weight_ih_l1''' elif "weight_hh_l1" in name: snake_case_ : List[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: snake_case_ : List[Any] = '''bias_ih_l1''' elif "bias_hh_l1" in name: snake_case_ : List[Any] = '''bias_hh_l1''' elif "bias" in name: snake_case_ : Optional[int] = '''bias''' elif "weight" in name: snake_case_ : str = '''weight''' elif "running_mean" in name: snake_case_ : Optional[int] = '''running_mean''' elif "running_var" in name: snake_case_ : int = '''running_var''' elif "num_batches_tracked" in name: snake_case_ : Optional[int] = '''num_batches_tracked''' else: snake_case_ : Optional[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def __lowercase ( _a , _a , _a , _a=None , _a=None , ): if config_path is not None: snake_case_ : Optional[int] = EncodecConfig.from_pretrained(_a ) else: snake_case_ : str = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ : Union[str, Any] = [8, 5, 4, 4] snake_case_ : Optional[int] = [2.2] snake_case_ : Any = 64 snake_case_ : Dict = 32_000 snake_case_ : int = 2_048 snake_case_ : int = False snake_case_ : Optional[int] = False snake_case_ : Optional[int] = False elif model_name == "encodec_48khz": snake_case_ : List[str] = [8, 5, 4, 2] snake_case_ : List[Any] = [3.0, 6.0, 12.0, 24.0] snake_case_ : Any = 48_000 snake_case_ : List[str] = 2 snake_case_ : int = False snake_case_ : str = '''time_group_norm''' snake_case_ : int = True snake_case_ : List[str] = 1.0 snake_case_ : Tuple = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) snake_case_ : Any = EncodecModel(_a ) snake_case_ : str = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_a ) snake_case_ : Optional[Any] = torch.load(_a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ : Union[str, Any] = original_checkpoint['''best_state'''] recursively_load_weights(_a , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
155
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 42 @flax_register_to_config class __magic_name__ ( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = 32 __UpperCamelCase = 4 __UpperCamelCase = 4 __UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __UpperCamelCase = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __UpperCamelCase = False __UpperCamelCase = (3_20, 6_40, 12_80, 12_80) __UpperCamelCase = 2 __UpperCamelCase = 8 __UpperCamelCase = None __UpperCamelCase = 12_80 __UpperCamelCase = 0.0 __UpperCamelCase = False __UpperCamelCase = jnp.floataa __UpperCamelCase = True __UpperCamelCase = 0 __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :str , snake_case :jax.random.KeyArray ): '''simple docstring''' A_ : int = (1, self.in_channels, self.sample_size, self.sample_size) A_ : Union[str, Any] = jnp.zeros(snake_case , dtype=jnp.floataa ) A_ : List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) A_ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ , A_ : List[Any] = jax.random.split(snake_case ) A_ : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case , snake_case , snake_case , snake_case )["params"] def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Any = self.block_out_channels A_ : Any = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ : str = self.num_attention_heads or self.attention_head_dim # input A_ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ : int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ : int = FlaxTimestepEmbedding(snake_case , dtype=self.dtype ) A_ : int = self.only_cross_attention if isinstance(snake_case , snake_case ): A_ : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case , snake_case ): A_ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down A_ : Optional[int] = [] A_ : Any = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): A_ : str = output_channel A_ : Optional[int] = block_out_channels[i] A_ : str = i == len(snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A_ : List[str] = FlaxDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case ) A_ : Dict = down_blocks # mid A_ : List[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up A_ : Union[str, Any] = [] A_ : Union[str, Any] = list(reversed(snake_case ) ) A_ : Any = list(reversed(snake_case ) ) A_ : Any = list(reversed(snake_case ) ) A_ : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): A_ : Tuple = output_channel A_ : Tuple = reversed_block_out_channels[i] A_ : List[str] = reversed_block_out_channels[min(i + 1 , len(snake_case ) - 1 )] A_ : int = i == len(snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": A_ : str = FlaxCrossAttnUpBlockaD( in_channels=snake_case , out_channels=snake_case , prev_output_channel=snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: A_ : Optional[Any] = FlaxUpBlockaD( in_channels=snake_case , out_channels=snake_case , prev_output_channel=snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case ) A_ : Union[str, Any] = output_channel A_ : Optional[int] = up_blocks # out A_ : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) A_ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Optional[Any] , snake_case :List[str] , snake_case :str , snake_case :Optional[int] , snake_case :Any=None , snake_case :List[str]=None , snake_case :bool = True , snake_case :bool = False , ): '''simple docstring''' if not isinstance(snake_case , jnp.ndarray ): A_ : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) A_ : List[str] = jnp.expand_dims(snake_case , 0 ) A_ : Union[str, Any] = self.time_proj(snake_case ) A_ : str = self.time_embedding(snake_case ) # 2. pre-process A_ : Any = jnp.transpose(snake_case , (0, 2, 3, 1) ) A_ : Dict = self.conv_in(snake_case ) # 3. down A_ : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case , snake_case ): A_ , A_ : Optional[Any] = down_block(snake_case , snake_case , snake_case , deterministic=not train ) else: A_ , A_ : str = down_block(snake_case , snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: A_ : Optional[int] = () for down_block_res_sample, down_block_additional_residual in zip( snake_case , snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) A_ : List[Any] = new_down_block_res_samples # 4. mid A_ : Union[str, Any] = self.mid_block(snake_case , snake_case , snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: A_ : Optional[int] = down_block_res_samples[-(self.layers_per_block + 1) :] A_ : str = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case , snake_case ): A_ : Optional[int] = up_block( snake_case , temb=snake_case , encoder_hidden_states=snake_case , res_hidden_states_tuple=snake_case , deterministic=not train , ) else: A_ : Optional[Any] = up_block(snake_case , temb=snake_case , res_hidden_states_tuple=snake_case , deterministic=not train ) # 6. post-process A_ : str = self.conv_norm_out(snake_case ) A_ : Tuple = nn.silu(snake_case ) A_ : Optional[int] = self.conv_out(snake_case ) A_ : int = jnp.transpose(snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case )
300
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self :List[Any] , snake_case :int , snake_case :int , snake_case :Optional[int] = None , snake_case :int = 50_257 , snake_case :int = 1_024 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :Optional[int] = None , snake_case :str = "gelu_new" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :float = 1e-5 , snake_case :float = 0.02 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = False , snake_case :bool = False , ): '''simple docstring''' super().__init__() A_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) A_ : List[Any] = prefix_inner_dim A_ : Union[str, Any] = prefix_hidden_dim A_ : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) A_ : List[Any] = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) A_ : Optional[Any] = GPTaLMHeadModel(snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :torch.Tensor , snake_case :torch.Tensor , snake_case :Optional[torch.Tensor] = None , snake_case :Optional[torch.Tensor] = None , ): '''simple docstring''' A_ : Any = self.transformer.transformer.wte(snake_case ) A_ : str = self.encode_prefix(snake_case ) A_ : Union[str, Any] = self.decode_prefix(snake_case ) A_ : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A_ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A_ : int = torch.cat((dummy_token, input_ids) , dim=1 ) A_ : Union[str, Any] = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE ( self :str , snake_case :int , snake_case :torch.device ): '''simple docstring''' return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :int ): '''simple docstring''' return self.encode_prefix(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Dict , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Any = torch.split(snake_case , 1 , dim=0 ) A_ : Optional[int] = [] A_ : Union[str, Any] = [] for feature in features: A_ : Tuple = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now A_ , A_ : Dict = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A_ : int = torch.stack(snake_case ) A_ : int = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :int=None , snake_case :str=None , snake_case :int=None , snake_case :int = 5 , snake_case :int = 67 , snake_case :float = 1.0 , snake_case :Optional[int] = None , ): '''simple docstring''' A_ : Optional[Any] = eos_token_id A_ : List[Any] = None A_ : List[Any] = None A_ : str = torch.ones(snake_case , device=snake_case , dtype=torch.int ) A_ : Any = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: A_ : Any = input_embeds else: A_ : Optional[Any] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): A_ : Optional[Any] = self.transformer(inputs_embeds=snake_case ) A_ : str = outputs.logits A_ : int = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A_ : List[str] = logits.softmax(-1 ).log() if scores is None: A_ , A_ : Union[str, Any] = logits.topk(snake_case , -1 ) A_ : Tuple = generated.expand(snake_case , *generated.shape[1:] ) A_ , A_ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A_ : Union[str, Any] = next_tokens else: A_ : List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) A_ : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: A_ : List[str] = -float(np.inf ) A_ : List[Any] = 0 A_ : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A_ : Optional[Any] = scores_sum / seq_lengths[:, None] A_ , A_ : List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) A_ : str = next_tokens // scores_sum.shape[1] A_ : Union[str, Any] = seq_lengths[next_tokens_source] A_ : Optional[int] = next_tokens % scores_sum.shape[1] A_ : Tuple = next_tokens.unsqueeze(1 ) A_ : Tuple = tokens[next_tokens_source] A_ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) A_ : Dict = generated[next_tokens_source] A_ : Union[str, Any] = scores_sum_average * seq_lengths A_ : Optional[int] = is_stopped[next_tokens_source] A_ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A_ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) A_ : Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break A_ : int = scores / seq_lengths A_ : str = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length A_ : Dict = [tokens[i] for i in order] A_ : int = torch.stack(snake_case , dim=0 ) A_ : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
300
1
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
114
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : List[str] = random.Random() def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None ) -> Any: """simple docstring""" if rng is None: _SCREAMING_SNAKE_CASE =global_rng _SCREAMING_SNAKE_CASE =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Dict=7 , _a : List[Any]=400 , _a : List[str]=2000 , _a : Optional[Any]=10 , _a : Dict=160 , _a : Tuple=8 , _a : Any=0.0 , _a : Optional[Any]=4000 , _a : List[Any]=False , _a : Dict=True , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =min_seq_length _SCREAMING_SNAKE_CASE =max_seq_length _SCREAMING_SNAKE_CASE =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =return_attention_mask _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =feature_size _SCREAMING_SNAKE_CASE =chunk_length _SCREAMING_SNAKE_CASE =hop_length def A ( self : Any ) -> Optional[Any]: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[Any] , _a : Any=False , _a : Union[str, Any]=False ) -> Optional[Any]: '''simple docstring''' def _flatten(_a : Union[str, Any] ): return list(itertools.chain(*_a ) ) if equal_length: _SCREAMING_SNAKE_CASE =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _SCREAMING_SNAKE_CASE =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( A__ , unittest.TestCase ): A__ = WhisperFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =WhisperFeatureExtractionTester(self ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE =os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) _SCREAMING_SNAKE_CASE =self.feature_extraction_class.from_json_file(_a ) _SCREAMING_SNAKE_CASE =feat_extract_first.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_second.to_dict() _SCREAMING_SNAKE_CASE =feat_extract_first.mel_filters _SCREAMING_SNAKE_CASE =feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _SCREAMING_SNAKE_CASE =feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _SCREAMING_SNAKE_CASE =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in (800, 800, 800)] _SCREAMING_SNAKE_CASE =np.asarray(_a ) _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _SCREAMING_SNAKE_CASE =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs] _SCREAMING_SNAKE_CASE =[x[: feature_extractor.n_samples] for x in speech_inputs] _SCREAMING_SNAKE_CASE =[np.asarray(_a ) for speech_input in speech_inputs_truncated] _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' import torch _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =np.random.rand(100 , 32 ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _SCREAMING_SNAKE_CASE =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Tuple , _a : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _SCREAMING_SNAKE_CASE =ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _SCREAMING_SNAKE_CASE =self._load_datasamples(1 ) _SCREAMING_SNAKE_CASE =WhisperFeatureExtractor() _SCREAMING_SNAKE_CASE =feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def A ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _SCREAMING_SNAKE_CASE =self._load_datasamples(1 )[0] _SCREAMING_SNAKE_CASE =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _SCREAMING_SNAKE_CASE =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
114
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int ): if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Any , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : int , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Dict = size if size is not None else {"shortest_edge": 2_24} snake_case : Optional[Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case : str = get_size_dict(snake_case__ , param_name="crop_size" ) snake_case : Any = do_resize snake_case : Optional[Any] = size snake_case : Tuple = do_center_crop snake_case : Dict = crop_size snake_case : Tuple = resample snake_case : Dict = do_rescale snake_case : Any = rescale_factor snake_case : Optional[int] = do_normalize snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' snake_case : Optional[int] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" in size: snake_case : Union[str, Any] = get_resize_output_image_size(snake_case__ , size["shortest_edge"] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: snake_case : Optional[int] = (size["height"], size["width"]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Any , ) -> np.ndarray: '''simple docstring''' snake_case : Optional[Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ) -> List[str]: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : List[Any] = to_numpy_array(snake_case__ ) if do_resize: snake_case : int = self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) if do_center_crop: snake_case : List[str] = self.center_crop(snake_case__ , size=snake_case__ ) if do_rescale: snake_case : int = self.rescale(image=snake_case__ , scale=snake_case__ ) if do_normalize: snake_case : Union[str, Any] = self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) snake_case : List[str] = to_channel_dimension_format(snake_case__ , snake_case__ ) return image def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case : Union[str, Any] = resample if resample is not None else self.resample snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : Tuple = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Any = get_size_dict(snake_case__ , default_to_square=snake_case__ ) snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size snake_case : List[Any] = get_size_dict(snake_case__ , param_name="crop_size" ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) snake_case : Tuple = make_batched(snake_case__ ) snake_case : Optional[Any] = [ [ self._preprocess_image( image=snake_case__ , do_resize=snake_case__ , size=snake_case__ , resample=snake_case__ , do_center_crop=snake_case__ , crop_size=snake_case__ , do_rescale=snake_case__ , rescale_factor=snake_case__ , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , data_format=snake_case__ , ) for img in video ] for video in videos ] snake_case : List[str] = {"pixel_values": videos} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
59
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
241
0
import os __snake_case : List[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def _UpperCamelCase ( UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 while index < len(UpperCamelCase_ ) - 1: lowerCAmelCase__ = SYMBOLS[numerals[index]] lowerCAmelCase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _UpperCamelCase ( UpperCamelCase_ : int ) -> str: """simple docstring""" lowerCAmelCase__ = '' lowerCAmelCase__ = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase__ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _UpperCamelCase ( UpperCamelCase_ : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = 0 with open(os.path.dirname(UpperCamelCase_ ) + roman_numerals_filename ) as filea: lowerCAmelCase__ = filea.readlines() for line in lines: lowerCAmelCase__ = line.strip() lowerCAmelCase__ = parse_roman_numerals(UpperCamelCase_ ) lowerCAmelCase__ = generate_roman_numerals(UpperCamelCase_ ) savings += len(UpperCamelCase_ ) - len(UpperCamelCase_ ) return savings if __name__ == "__main__": print(f'{solution() = }')
368
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = 3 lowerCAmelCase__ = (32, 32) lowerCAmelCase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCAmelCase__ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_cond_unet_upscale lowerCAmelCase__ = DDPMScheduler() lowerCAmelCase__ = DDIMScheduler(prediction_type='v_prediction' ) lowerCAmelCase__ = self.dummy_vae lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCAmelCase__ = unet.half() lowerCAmelCase__ = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ = StableDiffusionUpscalePipeline( unet=_UpperCamelCase , low_res_scheduler=_UpperCamelCase , scheduler=_UpperCamelCase , vae=_UpperCamelCase , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , max_noise_level=3_50 , ) lowerCAmelCase__ = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = sd_pipe( [prompt] , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type='np' , ).images lowerCAmelCase__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowerCAmelCase__ = 'stabilityai/stable-diffusion-x4-upscaler' lowerCAmelCase__ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = 'a cat sitting on a park bench' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , output_type='np' , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
122
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCAmelCase : '''simple docstring''' _A : List[Any] = PegasusConfig _A : int = {} _A : Dict = '''gelu''' def __init__( self : int , __a : List[str] , __a : str=13 , __a : List[str]=7 , __a : Optional[Any]=True , __a : Any=False , __a : Optional[Any]=99 , __a : Optional[int]=32 , __a : int=2 , __a : int=4 , __a : Tuple=37 , __a : Union[str, Any]=0.1 , __a : List[str]=0.1 , __a : Optional[Any]=40 , __a : str=2 , __a : Tuple=1 , __a : Union[str, Any]=0 , ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = parent __lowercase : List[Any] = batch_size __lowercase : Dict = seq_length __lowercase : int = is_training __lowercase : Optional[int] = use_labels __lowercase : str = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : str = intermediate_size __lowercase : List[str] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : Optional[Any] = eos_token_id __lowercase : Dict = pad_token_id __lowercase : Optional[Any] = bos_token_id def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase : Any = prepare_pegasus_inputs_dict(__a , __a , __a ) return config, inputs_dict def lowerCAmelCase ( self : Dict , __a : str , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = TFPegasusModel(config=__a ).get_decoder() __lowercase : int = inputs_dict["""input_ids"""] __lowercase : List[Any] = input_ids[:1, :] __lowercase : int = inputs_dict["""attention_mask"""][:1, :] __lowercase : List[Any] = inputs_dict["""head_mask"""] __lowercase : List[str] = 1 # first forward pass __lowercase : List[str] = model(__a , attention_mask=__a , head_mask=__a , use_cache=__a ) __lowercase , __lowercase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase : List[str] = model(__a , attention_mask=__a )[0] __lowercase : Union[str, Any] = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx] __lowercase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , ): if attention_mask is None: __lowercase : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Any = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _A : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _A : int = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _A : List[str] = True _A : int = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = TFPegasusModelTester(self ) __lowercase : List[str] = ConfigTester(self , config_class=__a ) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _A : Optional[int] = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _A : List[Any] = '''google/pegasus-xsum''' @cached_property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase ( self : Dict , **__a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.translate_src_text(**__a ) assert self.expected_text == generated_words def lowerCAmelCase ( self : Optional[Any] , **__a : Tuple ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.tokenizer(self.src_text , **__a , padding=__a , return_tensors="""tf""" ) __lowercase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__a , ) __lowercase : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__a ) return generated_words @slow def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
233
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : Any = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : List[str] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
233
1
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : Dict = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowercase : str = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _lowercase : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase : Any = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowercase : List[Any] = "allenai" def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : Optional[Any] =dict((re.sub(R'''@@$''' , '''''' , __lowerCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , __lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : Tuple ='''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : str =d[k] # restore return da def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): """simple docstring""" # prep assert os.path.exists(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Union[str, Any] =basename(__lowerCamelCase ) lowerCamelCase__ : str =dirname(__lowerCamelCase ) lowerCamelCase__ : Dict =fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : Union[str, Any] =cls.hub_models() lowerCamelCase__ : Optional[Any] ={'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} lowerCamelCase__ : Any ='''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Optional[int] =hub_utils.from_pretrained( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , archive_map=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any =vars(chkpt['''args''']['''model'''] ) lowerCamelCase__ : int =args['''source_lang'''] lowerCamelCase__ : Optional[Any] =args['''target_lang'''] lowerCamelCase__ : Dict =dirname(__lowerCamelCase ) lowerCamelCase__ : str =basename(__lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] =os.path.join(__lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : int =os.path.join(__lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict =Dictionary.load(__lowerCamelCase ) lowerCamelCase__ : List[str] =rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : Optional[int] =len(__lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''vocab-src.json''' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] =True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int =False break lowerCamelCase__ : Any =Dictionary.load(__lowerCamelCase ) lowerCamelCase__ : Tuple =rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : str =len(__lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(__lowerCamelCase , '''vocab-tgt.json''' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : Union[str, Any] =os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Tuple =os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): break with open(__lowerCamelCase , encoding='''utf-8''' ) as fin: lowerCamelCase__ : Optional[Any] =fin.read() lowerCamelCase__ : List[Any] =re.sub(R''' \d+$''' , '''''' , __lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fout: fout.write(__lowerCamelCase ) # model config lowerCamelCase__ : List[Any] =os.path.join(__lowerCamelCase , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' lowerCamelCase__ : str ={ '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with lowerCamelCase__ : Optional[int] =5 lowerCamelCase__ : List[str] =False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : Optional[int] =best_score_hparams[model_dir]['''length_penalty'''] else: lowerCamelCase__ : Union[str, Any] =1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Any =os.path.join(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : int ={ '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1024, '''do_lower_case''': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # model lowerCamelCase__ : int =chkpt['''models'''][0] lowerCamelCase__ : Union[str, Any] =model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : Union[str, Any] =OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : str =[ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict =FSMTConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : int =FSMTForConditionalGeneration(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) # save lowerCamelCase__ : Optional[int] =os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCamelCase , __lowerCamelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : str = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
272
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _lowercase : int = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = CLIPConfig _a = ['CLIPEncoderLayer'] def __init__( self : int, lowerCamelCase : CLIPConfig )-> List[Any]: super().__init__(lowerCamelCase ) lowerCamelCase__ : Dict =CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase__ : Dict =nn.Linear(config.vision_config.projection_dim, 1 ) lowerCamelCase__ : Union[str, Any] =nn.Linear(config.vision_config.projection_dim, 1 ) @torch.no_grad() def snake_case ( self : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : List[Any]=0.5, lowerCamelCase : Optional[Any]=0.5 )-> Optional[int]: lowerCamelCase__ : Dict =self.vision_model(lowerCamelCase )[0] lowerCamelCase__ : List[Any] =self.p_head(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =nsfw_detected.flatten() lowerCamelCase__ : Any =nsfw_detected > p_threshold lowerCamelCase__ : Optional[Any] =nsfw_detected.tolist() if any(lowerCamelCase ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(lowerCamelCase ): if nsfw_detected_: lowerCamelCase__ : Tuple =np.zeros(images[idx].shape ) lowerCamelCase__ : str =self.w_head(lowerCamelCase ) lowerCamelCase__ : List[str] =watermark_detected.flatten() lowerCamelCase__ : Optional[Any] =watermark_detected > w_threshold lowerCamelCase__ : int =watermark_detected.tolist() if any(lowerCamelCase ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(lowerCamelCase ): if watermark_detected_: lowerCamelCase__ : Optional[int] =np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
272
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 10 , __lowercase : int = 1000 , __lowercase : bool = True ) -> int: '''simple docstring''' assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : int , __lowercase : int ) -> None: '''simple docstring''' assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(__lowercase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) _UpperCAmelCase = lower _UpperCAmelCase = higher _UpperCAmelCase = [] while True: _UpperCAmelCase = get_avg(snake_case__ , snake_case__ ) last_numbers.append(snake_case__ ) if answer(snake_case__ ) == "low": _UpperCAmelCase = number elif answer(snake_case__ ) == "high": _UpperCAmelCase = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def UpperCAmelCase_ ( ) -> None: '''simple docstring''' _UpperCAmelCase = int(input("Enter lower value : " ).strip() ) _UpperCAmelCase = int(input("Enter high value : " ).strip() ) _UpperCAmelCase = int(input("Enter value to guess : " ).strip() ) guess_the_number(snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": main()
22
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a = Features({'audio': Audio()} ) _a = Features({'labels': ClassLabel} ) _a = "audio" _a = "labels" def __lowercase ( self : List[str] , lowerCAmelCase : Optional[int] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __lowercase ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
155
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[int]: _a = path_or_paths _a = split if split or isinstance(__UpperCAmelCase , __UpperCAmelCase ) else '''train''' _a = features _a = cache_dir _a = keep_in_memory _a = streaming _a = num_proc _a = kwargs @abstractmethod def _UpperCAmelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]: _a = features _a = cache_dir _a = keep_in_memory _a = streaming _a = num_proc _a = kwargs @abstractmethod def _UpperCAmelCase ( self ) -> Union[Dataset, IterableDataset]: pass
366
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Dict: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _UpperCAmelCase ( self ) -> str: _a = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) _a = '''A painting of a squirrel eating a burger''' _a = torch.manual_seed(0 ) _a = sd_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=__UpperCAmelCase , ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
0
import numpy as np def lowerCamelCase__ ( __lowerCamelCase : np.ndarray ): return 1 / (1 + np.exp(-vector )) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray ): return vector * sigmoid(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
114
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = "src/diffusers" a : str = "." # This is to make sure the diffusers module imported is the one in the repo. a : Tuple = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a : List[str] = spec.loader.load_module() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __lowerCamelCase ) is not None def lowerCamelCase__ ( __lowerCamelCase : Any ): __UpperCAmelCase : Optional[int] = object_name.split(""".""" ) __UpperCAmelCase : List[Any] = 0 # First let's find the module where our object lives. __UpperCAmelCase : Optional[Any] = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase , f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() # Now let's find the class / func in the code! __UpperCAmelCase : List[str] = """""" __UpperCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCAmelCase : List[str] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index] , __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Dict = lines[start_index:line_index] return "".join(__lowerCamelCase ) a : Any = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a : Optional[int] = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") a : Dict = re.compile(r"<FILL\s+[^>]*>") def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = code.split("""\n""" ) __UpperCAmelCase : str = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCamelCase__ ( __lowerCamelCase : List[str] ): __UpperCAmelCase : Tuple = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: __UpperCAmelCase : Optional[Any] = f"""class Bla:\n{code}""" __UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__lowerCamelCase ) __UpperCAmelCase : Dict = black.format_str(__lowerCamelCase , mode=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Any = style_docstrings_in_code(__lowerCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=False ): with open(__lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): __UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = search.groups() __UpperCAmelCase : Any = find_code_in_diffusers(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = get_indent(__lowerCamelCase ) __UpperCAmelCase : Tuple = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCAmelCase : Any = theoretical_indent __UpperCAmelCase : Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCAmelCase : int = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break __UpperCAmelCase : List[Any] = lines[line_index] __UpperCAmelCase : str = _should_continue(__lowerCamelCase , __lowerCamelCase ) and re.search(f"""^{indent}# End copy""" , __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCAmelCase : Optional[int] = lines[start_index:line_index] __UpperCAmelCase : int = """""".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCAmelCase : Tuple = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__lowerCamelCase ) is None] __UpperCAmelCase : List[Any] = """\n""".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: __UpperCAmelCase : List[str] = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __UpperCAmelCase : Any = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = pattern.groups() __UpperCAmelCase : List[str] = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if option.strip() == "all-casing": __UpperCAmelCase : List[Any] = re.sub(obja.lower() , obja.lower() , __lowerCamelCase ) __UpperCAmelCase : int = re.sub(obja.upper() , obja.upper() , __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __UpperCAmelCase : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCAmelCase : int = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCAmelCase : Union[str, Any] = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ ( __lowerCamelCase : bool = False ): __UpperCAmelCase : Tuple = glob.glob(os.path.join(__lowerCamelCase , """**/*.py""" ) , recursive=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for filename in all_files: __UpperCAmelCase : str = is_copy_consistent(__lowerCamelCase , __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: __UpperCAmelCase : Union[str, Any] = """\n""".join(__lowerCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
114
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase = get_logger() UpperCAmelCase = None class __magic_name__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : List[Any] , snake_case__ : Dict=None , snake_case__ : Union[str, Any]=None , **snake_case__ : Dict ): '''simple docstring''' super().__init__(features=snake_case__ ) import jax from jaxlib.xla_client import Device if isinstance(snake_case__ , snake_case__ ): raise ValueError( f"""Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) lowercase :Union[str, Any] = device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase :Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) lowercase :Dict = str(jax.devices()[0] ) lowercase :Dict = jnp_array_kwargs @staticmethod def __snake_case ( ): '''simple docstring''' import jax return {str(snake_case__ ): device for device in jax.devices()} def __snake_case ( self : Any , snake_case__ : Optional[int] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__ , snake_case__ ) and column: if all( isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(snake_case__ , axis=0 ) return column def __snake_case ( self : str , snake_case__ : Dict ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ): return value elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase :Union[str, Any] = {} if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase :List[Any] = {'''dtype''': jnp.intaa} else: lowercase :Optional[int] = {'''dtype''': jnp.intaa} elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase :Optional[int] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case__ , PIL.Image.Image ): lowercase :Union[str, Any] = np.asarray(snake_case__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase :int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __snake_case ( self : Any , snake_case__ : List[str] ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(snake_case__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(snake_case__ , '''__array__''' ) and not isinstance(snake_case__ , jax.Array ): lowercase :Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) elif isinstance(snake_case__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] ) return self._tensorize(snake_case__ ) def __snake_case ( self : Optional[int] , snake_case__ : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ ) def __snake_case ( self : Optional[Any] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :Optional[Any] = self.numpy_arrow_extractor().extract_row(snake_case__ ) lowercase :List[str] = self.python_features_decoder.decode_row(snake_case__ ) return self.recursive_tensorize(snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :Optional[Any] = self.numpy_arrow_extractor().extract_column(snake_case__ ) lowercase :int = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] ) lowercase :Dict = self.recursive_tensorize(snake_case__ ) lowercase :List[Any] = self._consolidate(snake_case__ ) return column def __snake_case ( self : List[str] , snake_case__ : pa.Table ): '''simple docstring''' lowercase :Union[str, Any] = self.numpy_arrow_extractor().extract_batch(snake_case__ ) lowercase :Optional[Any] = self.python_features_decoder.decode_batch(snake_case__ ) lowercase :str = self.recursive_tensorize(snake_case__ ) for column_name in batch: lowercase :Tuple = self._consolidate(batch[column_name] ) return batch
172
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = len(a__ ) + 1 lowerCAmelCase__ : str = len(a__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase__ : Tuple = [[0 for i in range(a__ )] for j in range(a__ )] # since string of zero length match pattern of zero length lowerCAmelCase__ : List[str] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , a__ ): lowerCAmelCase__ : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , a__ ): lowerCAmelCase__ : Tuple = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , a__ ): for j in range(1 , a__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase__ : str = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase__ : Dict = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase__ : Any = dp[i - 1][j] else: lowerCAmelCase__ : int = 0 else: lowerCAmelCase__ : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCAmelCase = '''aab''' _lowerCAmelCase = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
37
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _A = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) UpperCamelCase_ = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCamelCase_ = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) UpperCamelCase_ = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = zero_shot_classifier.model.config UpperCamelCase_ = config.labelaid UpperCamelCase_ = zero_shot_classifier.entailment_id UpperCamelCase_ = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) UpperCamelCase_ = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) UpperCamelCase_ = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) UpperCamelCase_ = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_0_0 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) UpperCamelCase_ = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) UpperCamelCase_ = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
122
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
366
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: UpperCAmelCase_ = [] if isinstance(__UpperCamelCase , __UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Tuple[int, ...] ) -> Tuple[int, ...]: UpperCAmelCase_ = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Optional[Sequence[bool]] = None , __UpperCamelCase : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__UpperCamelCase : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(__UpperCamelCase ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(__UpperCamelCase , __UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase , __UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase , s + 1 ) ) else: break UpperCAmelCase_ = tuple(__UpperCamelCase ) UpperCAmelCase_ = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : torch.Tensor , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> torch.Tensor: UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(__UpperCamelCase , __UpperCamelCase ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , __UpperCamelCase ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Callable , __UpperCamelCase : Dict[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool = False , __UpperCamelCase : Any = None , __UpperCamelCase : bool = False , ) -> Any: if not (len(__UpperCamelCase ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] UpperCAmelCase_ = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , __UpperCamelCase ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=__UpperCamelCase , flat_end=min(__UpperCamelCase , i + chunk_size ) , no_batch_dims=len(__UpperCamelCase ) , ) UpperCAmelCase_ = tensor_tree_map(__UpperCamelCase , __UpperCamelCase ) # Run the layer on the chunk UpperCAmelCase_ = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase , __UpperCamelCase ): def assign(__UpperCamelCase : dict , __UpperCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): assign(__UpperCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(__UpperCamelCase , __UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): for xa, xa in zip(__UpperCamelCase , __UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(__UpperCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCamelCase ) return out class a : '''simple docstring''' def __init__( self : List[Any] , __snake_case : int = 5_12 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCamelCase_ ( self : List[Any] , __snake_case : Callable , __snake_case : tuple , __snake_case : int ): logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__snake_case : int ) -> bool: try: with torch.no_grad(): fn(*__snake_case , chunk_size=__snake_case ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__snake_case ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase_ ( self : int , __snake_case : Iterable , __snake_case : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__snake_case , __snake_case ): assert type(__snake_case ) == type(__snake_case ) if isinstance(__snake_case , (list, tuple) ): consistent &= self._compare_arg_caches(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] consistent &= self._compare_arg_caches(__snake_case , __snake_case ) else: consistent &= aa == aa return consistent def lowerCamelCase_ ( self : str , __snake_case : Callable , __snake_case : tuple , __snake_case : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __snake_case : a.shape if isinstance(__snake_case , torch.Tensor ) else a , __snake_case , __snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__snake_case ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __snake_case ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __snake_case , __snake_case , __snake_case , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
177
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __lowercase = logging.get_logger(__name__) class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase): """simple docstring""" super().__init__() lowerCAmelCase = nn.ModuleList(__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = True , ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase , self.nets)): lowerCAmelCase , lowerCAmelCase = controlnet( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # merge samples if i == 0: lowerCAmelCase , lowerCAmelCase = down_samples, mid_sample else: lowerCAmelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase , __lowerCAmelCase) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase , is_main_process=__lowerCAmelCase , save_function=__lowerCAmelCase , safe_serialization=__lowerCAmelCase , variant=__lowerCAmelCase , ) idx += 1 lowerCAmelCase = model_path_to_save + f"_{idx}" @classmethod def a_ ( cls , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase = pretrained_model_path while os.path.isdir(__lowerCAmelCase): lowerCAmelCase = ControlNetModel.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) controlnets.append(__lowerCAmelCase) idx += 1 lowerCAmelCase = pretrained_model_path + f"_{idx}" logger.info(f"{len(__lowerCAmelCase)} controlnets loaded from {pretrained_model_path}.") if len(__lowerCAmelCase) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(__lowerCAmelCase)}. Expected at least {pretrained_model_path + '_0'}.") return cls(__lowerCAmelCase)
272
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowercase = logging.get_logger(__name__) __lowercase = '''T5Config''' class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''mt5''' UpperCAmelCase_ : Tuple = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = '''mt5''' UpperCAmelCase_ : int = MTaConfig class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''mt5''' UpperCAmelCase_ : Union[str, Any] = MTaConfig
272
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=2 , __magic_name__ : List[Any]=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=2 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : int=True , __magic_name__ : List[Any]=99 , __magic_name__ : List[Any]=36 , __magic_name__ : List[Any]=2 , __magic_name__ : str=4 , __magic_name__ : int=37 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : List[str]=6 , __magic_name__ : Dict=6 , __magic_name__ : Optional[Any]=3 , __magic_name__ : str=4 , __magic_name__ : Union[str, Any]=None , __magic_name__ : Union[str, Any]=10_00 , ) -> int: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Tuple = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = image_size __snake_case : Tuple = patch_size __snake_case : str = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Optional[int] = coordinate_size __snake_case : List[Any] = shape_size __snake_case : Tuple = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[Any] = scope __snake_case : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : List[str] = text_seq_length __snake_case : str = (image_size // patch_size) ** 2 + 1 __snake_case : Optional[Any] = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __snake_case : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Union[str, Any] = bbox[i, j, 3] __snake_case : Union[str, Any] = bbox[i, j, 1] __snake_case : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[Any] = bbox[i, j, 2] __snake_case : Tuple = bbox[i, j, 0] __snake_case : Optional[Any] = tmp_coordinate __snake_case : Dict = tf.constant(__magic_name__ ) __snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : str = None __snake_case : List[Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = TFLayoutLMvaModel(config=__magic_name__ ) # text + image __snake_case : Optional[int] = model(__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) __snake_case : List[str] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , training=__magic_name__ , ) __snake_case : Optional[int] = model(__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : Union[str, Any] = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Optional[Any] = model({"""pixel_values""": pixel_values} , training=__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : str ) -> Any: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[int] = TFLayoutLMvaForSequenceClassification(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple ) -> List[str]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : str = TFLayoutLMvaForTokenClassification(config=__magic_name__ ) __snake_case : Tuple = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[int] = 2 __snake_case : Dict = TFLayoutLMvaForQuestionAnswering(config=__magic_name__ ) __snake_case : List[Any] = model( __magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , training=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Dict = config_and_inputs __snake_case : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase__: Union[str, Any] = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase__: Dict = False lowercase__: int = False lowercase__: Dict = False def lowercase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" return True def lowercase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=False ) -> dict: """simple docstring""" __snake_case : Any = copy.deepcopy(__magic_name__ ) if model_class in get_values(__magic_name__ ): __snake_case : Union[str, Any] = { k: tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__magic_name__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__magic_name__ ): __snake_case : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : str = TFLayoutLMvaModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) if getattr(__magic_name__ , """hf_compute_loss""" , __magic_name__ ): # The number of elements in the loss should be the same as the number of elements in the label __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__magic_name__ )[0] ] __snake_case : List[str] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __snake_case : Any = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = prepared_for_class.pop("""input_ids""" ) __snake_case : Union[str, Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __snake_case : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: __snake_case : str = prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __snake_case : Dict = -1_00 __snake_case : str = tf.convert_to_tensor(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ , **__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __snake_case : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Tuple = model(__magic_name__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __snake_case : str = self._prepare_for_class(inputs_dict.copy() , __magic_name__ , return_labels=__magic_name__ ) # Get keys that were added with the _prepare_for_class function __snake_case : Tuple = prepared_for_class.keys() - inputs_dict.keys() __snake_case : Optional[Any] = inspect.signature(model.call ).parameters __snake_case : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __snake_case : Union[str, Any] = {0: """input_ids"""} for label_key in label_keys: __snake_case : int = signature_names.index(__magic_name__ ) __snake_case : Optional[int] = label_key __snake_case : Optional[int] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __snake_case : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __snake_case : List[str] = prepared_for_class[value] __snake_case : str = tuple(__magic_name__ ) # Send to model __snake_case : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Tuple = type self.model_tester.create_and_check_model(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @slow def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = TFLayoutLMvaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Optional[Any]: """simple docstring""" __snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__magic_name__ ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) __snake_case : str = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__magic_name__ , return_tensors="""tf""" ).pixel_values __snake_case : Tuple = tf.constant([[1, 2]] ) __snake_case : Tuple = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __snake_case : List[Any] = model(input_ids=__magic_name__ , bbox=__magic_name__ , pixel_values=__magic_name__ , training=__magic_name__ ) # verify the logits __snake_case : List[str] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) __snake_case : Tuple = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1E-4 ) )
13
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a=False , a=False , a=False ) -> Optional[int]: __A : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _SCREAMING_SNAKE_CASE ( a , a ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): __A : str = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) __A : str = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A : List[Any] = in_proj_weight[ : config.hidden_size, : ] __A : Tuple = in_proj_bias[: config.hidden_size] __A : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : int = in_proj_weight[ -config.hidden_size :, : ] __A : Union[str, Any] = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: __A : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Any: __A : Tuple = dct.pop(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = val @torch.no_grad() def _SCREAMING_SNAKE_CASE ( a , a ) -> Tuple: __A : int = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=_SCREAMING_SNAKE_CASE ) __A : Tuple = False __A : List[Any] = False __A : Optional[int] = False __A : Dict = False if "vqa" in checkpoint_url: __A : str = True __A : Dict = 31_29 __A : Optional[int] = 'huggingface/label-files' __A : int = 'vqa2-id2label.json' __A : Tuple = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __A : List[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __A : Union[str, Any] = idalabel __A : List[str] = {v: k for k, v in idalabel.items()} __A : Optional[Any] = ViltForQuestionAnswering(_SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: __A : int = True __A : Optional[int] = 2 __A : Union[str, Any] = {0: 'False', 1: 'True'} __A : int = {v: k for k, v in config.idalabel.items()} __A : Union[str, Any] = 3 __A : str = ViltForImagesAndTextClassification(_SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: __A : Union[str, Any] = True __A : int = ViltForImageAndTextRetrieval(_SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: __A : Optional[int] = True __A : int = ViltForMaskedLM(_SCREAMING_SNAKE_CASE ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys __A : Dict = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] __A : Optional[Any] = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: __A : Union[str, Any] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: __A , __A : str = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Define processor __A : Optional[Any] = ViltImageProcessor(size=3_84 ) __A : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) __A : List[Any] = ViltProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: __A : Dict = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) __A : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) __A : Tuple = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) __A : List[Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) __A : Optional[Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) __A : Optional[int] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __A : Optional[int] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_SCREAMING_SNAKE_CASE ).raw ) if mlm_model: __A : List[str] = 'a bunch of [MASK] laying on a [MASK].' else: __A : Optional[Any] = 'How many cats are there?' __A : Optional[Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' ) __A : str = model(**_SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: __A : Tuple = torch.Size([1, 11, 3_05_22] ) __A : Dict = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) # verify masked token prediction equals "cats" __A : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __A : Dict = torch.Size([1, 31_29] ) __A : int = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) # verify vqa prediction equals "2" __A : List[str] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __A : Optional[Any] = torch.Size([1, 2] ) __A : Dict = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
280
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return x.sum() def a__ ( _SCREAMING_SNAKE_CASE ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _lowerCamelCase : UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 class _lowerCamelCase ( _lowercase ): def snake_case_ (self ) -> Optional[int]: UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": [1, 2], "b": [3, 4]} UpperCamelCase = {"a": {"1": 1}, "b": 2} UpperCamelCase = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"a": 2, "b": 3} UpperCamelCase = {"a": [2, 3], "b": [4, 5]} UpperCamelCase = {"a": {"1": 2}, "b": 3} UpperCamelCase = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) self.assertEqual(map_nested(__a , __a ) , __a ) UpperCamelCase = 2 self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) self.assertEqual(map_nested(__a , __a , num_proc=__a ) , __a ) UpperCamelCase = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase = {"a": 2, "b": 0, "c": 2} UpperCamelCase = { "a": np.eye(2 ).astype(__a ), "b": np.zeros(3 ).astype(__a ), "c": np.ones(2 ).astype(__a ), } self.assertEqual(map_nested(__a , __a , map_numpy=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__a , __a , map_numpy=__a , num_proc=__a ) , __a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__a , __a , map_numpy=__a , num_proc=__a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__a ): # can't pickle a local lambda map_nested(lambda __a : x + 1 , __a , num_proc=__a ) def snake_case_ (self ) -> Tuple: UpperCamelCase = {"a": 1, "b": 2} UpperCamelCase = {"a": 3, "b": 4} UpperCamelCase = {"a": 5, "b": 6} UpperCamelCase = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__a , __a , __a ) ) , __a ) def snake_case_ (self ) -> Dict: class _lowerCamelCase : UpperCAmelCase_ = "bar" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__a , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(_SCREAMING_SNAKE_CASE )} UpperCamelCase = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCamelCase ( _lowercase ): @require_tf def snake_case_ (self ) -> str: import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(__a ).numpy() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case_ (self ) -> Tuple: import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(__a ).detach().numpy() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=__a ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case_ (self ) -> Tuple: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(__a , __a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def a__ ( ): """simple docstring""" UpperCamelCase = A(x=1 , y="foobar" ) UpperCamelCase = {"x": 1, "y": "foobar"} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output UpperCamelCase = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return text.split() def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def a__ ( ): """simple docstring""" with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
153
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00_00_00 , __lowerCAmelCase = 10 ) -> int: '''simple docstring''' lowercase_ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowercase_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowercase_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int = 4_00_00_00 ) -> int: '''simple docstring''' __snake_case : Any = [] __snake_case , __snake_case : Any = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCAmelCase_ ) __snake_case , __snake_case : int = b, a + b return sum(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
172
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __magic_name__ ( __a : dict ): '''simple docstring''' return (data["data"], data["target"]) def __magic_name__ ( __a : np.ndarray , __a : np.ndarray , __a : np.ndarray ): '''simple docstring''' UpperCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__a , __a ) # Predict target for test data UpperCamelCase__ = xgb.predict(__a ) UpperCamelCase__ = predictions.reshape(len(__a ) , 1 ) return predictions def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = fetch_california_housing() UpperCamelCase__ , UpperCamelCase__ = data_handling(__a ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split( __a , __a , test_size=0.25 , random_state=1 ) UpperCamelCase__ = xgboost(__a , __a , __a ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__a , __a )}" ) print(f"Mean Square Error : {mean_squared_error(__a , __a )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
178
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __magic_name__ ( __a : Any ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __magic_name__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase__ = [1, 2, 3] with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=2 ) with pytest.raises(__a ): with parallel_backend("""unsupported backend""" ): map_nested(__a , __a , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [1, 2] UpperCamelCase__ = {"""a""": 1, """b""": 2} UpperCamelCase__ = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase__ = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase__ = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase__ = [2, 3] UpperCamelCase__ = {"""a""": 2, """b""": 3} UpperCamelCase__ = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase__ = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase__ = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa assert map_nested(__a , __a , num_proc=__a ) == expected_map_nested_sa
178
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : int = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__: str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase__: Optional[Any] = parent lowercase__: List[Any] = batch_size lowercase__: Tuple = num_channels lowercase__: Optional[Any] = min_resolution lowercase__: Dict = max_resolution lowercase__: Optional[int] = do_resize lowercase__: Any = size lowercase__: Optional[Any] = do_normalize lowercase__: Union[str, Any] = image_mean lowercase__: Tuple = image_std lowercase__: str = do_rescale lowercase__: Any = rescale_factor lowercase__: List[Any] = do_pad def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if not batched: lowercase__: Optional[Any] = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): lowercase__, lowercase__: Dict = image.size else: lowercase__, lowercase__: Optional[Any] = image.shape[1], image.shape[2] if w < h: lowercase__: List[str] = int(self.size['''shortest_edge'''] * h / w ) lowercase__: Union[str, Any] = self.size['''shortest_edge'''] elif w > h: lowercase__: int = self.size['''shortest_edge'''] lowercase__: int = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__: Union[str, Any] = self.size['''shortest_edge'''] lowercase__: Union[str, Any] = self.size['''shortest_edge'''] else: lowercase__: Optional[int] = [] for image in image_inputs: lowercase__, lowercase__: int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__: Union[str, Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] lowercase__: Dict = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = YolosImageProcessor if is_vision_available() else None def _snake_case ( self ): lowercase__: int = YolosImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _snake_case ( self ): lowercase__: Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) lowercase__: Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__: int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: Optional[int] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__, lowercase__: Any = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) lowercase__: int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__: List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: int = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processings lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__: Optional[Any] = self.image_processing_class(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_rescale=_UpperCAmelCase ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase__: List[str] = image_processing_a.pad(_UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = image_processing_a(_UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _snake_case ( self ): # prepare image and target lowercase__: Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__: Any = json.loads(f.read() ) lowercase__: Dict = {'''image_id''': 39769, '''annotations''': target} # encode them lowercase__: Dict = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase__: Any = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: Tuple = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) ) @slow def _snake_case ( self ): # prepare image, target and masks_path lowercase__: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__: str = json.loads(f.read() ) lowercase__: List[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} lowercase__: Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__: Union[str, Any] = YolosImageProcessor(format='''coco_panoptic''' ) lowercase__: Optional[Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: str = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify masks lowercase__: Union[str, Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _UpperCAmelCase ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) )
177
0
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" def count_of_possible_combinations(__UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __UpperCamelCase , __UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase_ : List[Any] = sum( count_of_possible_combinations_with_dp_array(target - item , __UpperCamelCase ) for item in array ) lowerCAmelCase_ : Tuple = answer return answer lowerCAmelCase_ : Tuple = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: """simple docstring""" lowerCAmelCase_ : List[Any] = [0] * (target + 1) lowerCAmelCase_ : List[Any] = 1 for i in range(1 , target + 1 ): for j in range(__UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = 3 lowercase__ = 5 lowercase__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
371
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Any = """dandelin/vilt-b32-finetuned-vqa""" a_ : List[str] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) a_ : Dict = """image_qa""" a_ : Tuple = AutoProcessor a_ : Optional[int] = AutoModelForVisualQuestionAnswering a_ : Tuple = ["""image""", """text"""] a_ : Optional[int] = ["""text"""] def __init__( self : Dict , *a_ : List[Any] , **a_ : Tuple ): requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : "Image" , a_ : str ): return self.pre_processor(a_ , a_ , return_tensors="pt" ) def lowerCamelCase ( self : List[Any] , a_ : Optional[int] ): with torch.no_grad(): return self.model(**a_ ).logits def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): lowerCAmelCase_ : List[str] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
161
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE_: Optional[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_: Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: SCREAMING_SNAKE_CASE_: List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE_: Optional[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_: int = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_: Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_: Optional[int] = value else: SCREAMING_SNAKE_CASE_: List[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] SCREAMING_SNAKE_CASE_: int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_: Tuple = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_: Optional[int] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_: Any = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_: Dict = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE_: List[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_: Any = name.split(_UpperCAmelCase )[0].split("." )[-2] SCREAMING_SNAKE_CASE_: Tuple = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_: Tuple = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_: Optional[int] = "weight_v" elif "weight" in name: SCREAMING_SNAKE_CASE_: Optional[int] = "weight" elif "bias" in name: SCREAMING_SNAKE_CASE_: Any = "bias" else: SCREAMING_SNAKE_CASE_: Tuple = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_: List[Any] = name.split("." ) SCREAMING_SNAKE_CASE_: int = int(items[0] ) SCREAMING_SNAKE_CASE_: str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE_: Tuple = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_: Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE_: int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_: Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = SEWConfig() if is_finetuned: SCREAMING_SNAKE_CASE_: str = model.wav_encoder.wav_model.cfg else: SCREAMING_SNAKE_CASE_: Union[str, Any] = model.cfg SCREAMING_SNAKE_CASE_: int = fs_config.conv_bias SCREAMING_SNAKE_CASE_: List[str] = eval(fs_config.conv_feature_layers ) SCREAMING_SNAKE_CASE_: int = [x[0] for x in conv_layers] SCREAMING_SNAKE_CASE_: str = [x[1] for x in conv_layers] SCREAMING_SNAKE_CASE_: Union[str, Any] = [x[2] for x in conv_layers] SCREAMING_SNAKE_CASE_: int = "gelu" SCREAMING_SNAKE_CASE_: Dict = "layer" if fs_config.extractor_mode == "layer_norm" else "group" SCREAMING_SNAKE_CASE_: Union[str, Any] = 0.0 SCREAMING_SNAKE_CASE_: Optional[int] = fs_config.activation_fn.name SCREAMING_SNAKE_CASE_: Tuple = fs_config.encoder_embed_dim SCREAMING_SNAKE_CASE_: List[str] = 0.0_2 SCREAMING_SNAKE_CASE_: List[Any] = fs_config.encoder_ffn_embed_dim SCREAMING_SNAKE_CASE_: List[str] = 1e-5 SCREAMING_SNAKE_CASE_: Tuple = fs_config.encoder_layerdrop SCREAMING_SNAKE_CASE_: Dict = fs_config.encoder_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] = fs_config.conv_pos_groups SCREAMING_SNAKE_CASE_: Any = fs_config.conv_pos SCREAMING_SNAKE_CASE_: Tuple = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = fs_config.encoder_layers SCREAMING_SNAKE_CASE_: List[str] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: SCREAMING_SNAKE_CASE_: Any = model.cfg SCREAMING_SNAKE_CASE_: Tuple = fs_config.final_dropout SCREAMING_SNAKE_CASE_: List[str] = fs_config.layerdrop SCREAMING_SNAKE_CASE_: Union[str, Any] = fs_config.activation_dropout SCREAMING_SNAKE_CASE_: str = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 SCREAMING_SNAKE_CASE_: Dict = fs_config.attention_dropout SCREAMING_SNAKE_CASE_: int = fs_config.dropout_input SCREAMING_SNAKE_CASE_: Optional[int] = fs_config.dropout SCREAMING_SNAKE_CASE_: Optional[int] = fs_config.mask_channel_length SCREAMING_SNAKE_CASE_: List[Any] = fs_config.mask_channel_prob SCREAMING_SNAKE_CASE_: str = fs_config.mask_length SCREAMING_SNAKE_CASE_: Any = fs_config.mask_prob SCREAMING_SNAKE_CASE_: List[str] = "Wav2Vec2FeatureExtractor" SCREAMING_SNAKE_CASE_: Optional[int] = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True ): if is_finetuned: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: SCREAMING_SNAKE_CASE_: int = SEWConfig.from_pretrained(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: int = convert_config(model[0] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = model[0].eval() SCREAMING_SNAKE_CASE_: str = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE_: Any = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE_: Optional[int] = target_dict.pad_index SCREAMING_SNAKE_CASE_: Any = target_dict.bos_index SCREAMING_SNAKE_CASE_: Any = target_dict.pad_index SCREAMING_SNAKE_CASE_: str = target_dict.bos_index SCREAMING_SNAKE_CASE_: Union[str, Any] = target_dict.eos_index SCREAMING_SNAKE_CASE_: str = len(target_dict.symbols ) SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , "vocab.json" ) if not os.path.isdir(_UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: Dict = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = SEWForCTC(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: Tuple = SEWModel(_UpperCAmelCase ) feature_extractor.save_pretrained(_UpperCAmelCase ) recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCAmelCase : Any = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
59
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A__ ( a__ ): def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'width_multiplier' ) ) class A__ : def __init__( self : List[str] , a : List[str] , a : List[Any]=13 , a : Union[str, Any]=64 , a : Optional[int]=2 , a : str=3 , a : Optional[Any]="swish" , a : List[str]=3 , a : int=32 , a : Tuple=0.1 , a : Tuple=0.0_2 , a : Optional[Any]=True , a : Any=True , a : Union[str, Any]=10 , a : Optional[Any]=None , a : Dict=0.2_5 , a : Dict=0.0 , a : Tuple=0.0 , ): '''simple docstring''' lowerCAmelCase__ : int = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : int = make_divisible(512 * width_multiplier , divisor=8 ) lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : int = conv_kernel_size lowerCAmelCase__ : List[str] = output_stride lowerCAmelCase__ : List[str] = classifier_dropout_prob lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Any = scope lowerCAmelCase__ : Union[str, Any] = width_multiplier lowerCAmelCase__ : str = ffn_dropout lowerCAmelCase__ : Optional[int] = attn_dropout def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : int ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCamelCase ( self : List[Any] , a : int , a : Union[str, Any] , a : Dict , a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = MobileViTVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : List[Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Optional[int] , a : Tuple , a : int , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : str = MobileViTVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Any , a : List[Any] , a : int , a : Union[str, Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.num_labels lowerCAmelCase__ : Dict = MobileViTVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase__ : int = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ : List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ : Dict = config_and_inputs lowerCAmelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( a__ , a__ , unittest.TestCase ): lowercase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = MobileViTVaModelTester(self ) lowerCAmelCase__ : str = MobileViTVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(_lowerCamelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : str = [*signature.parameters.keys()] lowerCAmelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a : Optional[Any] , a : List[Any] , a : Optional[Any] ): lowerCAmelCase__ : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCAmelCase__ : List[str] = outputs.hidden_states lowerCAmelCase__ : List[Any] = 5 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ : str = 2 for i in range(len(_lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = MobileViTVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( _lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.default_image_processor lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_lowerCamelCase ) # verify the logits lowerCAmelCase__ : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) lowerCAmelCase__ : List[str] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCAmelCase__ : Optional[Any] = model.to(_lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCAmelCase__ : Any = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[str] = model(**_lowerCamelCase ) lowerCAmelCase__ : Any = outputs.logits # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCAmelCase__ : Optional[int] = model.to(_lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : int = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Dict = model(**_lowerCamelCase ) lowerCAmelCase__ : List[Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(50, 60)] ) lowerCAmelCase__ : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) lowerCAmelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) lowerCAmelCase__ : str = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
212
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Optional[int] , a__ : Any , a__ : Any , a__ : Any , a__ : List[str] = None , ): super().__init__() self.register_modules(transformer=__a , vae=__a , scheduler=__a ) # create a imagenet -> id dictionary for easier use __magic_name__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __magic_name__ = int(__a ) __magic_name__ = dict(sorted(self.labels.items() ) ) def snake_case__ ( self : int , a__ : Optional[int] ): if not isinstance(__a , __a ): __magic_name__ = list(__a ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , a__ : List[Any] , a__ : Any = 4.0 , a__ : Optional[Any] = None , a__ : Any = 50 , a__ : str = "pil" , a__ : List[str] = True , ): __magic_name__ = len(__a ) __magic_name__ = self.transformer.config.sample_size __magic_name__ = self.transformer.config.in_channels __magic_name__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__a , device=self.device , dtype=self.transformer.dtype , ) __magic_name__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __magic_name__ = torch.tensor(__a , device=self.device ).reshape(-1 ) __magic_name__ = torch.tensor([1000] * batch_size , device=self.device ) __magic_name__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __magic_name__ = latent_model_input[: len(__a ) // 2] __magic_name__ = torch.cat([half, half] , dim=0 ) __magic_name__ = self.scheduler.scale_model_input(__a , __a ) __magic_name__ = t if not torch.is_tensor(__a ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __magic_name__ = latent_model_input.device.type == '''mps''' if isinstance(__a , __a ): __magic_name__ = torch.floataa if is_mps else torch.floataa else: __magic_name__ = torch.intaa if is_mps else torch.intaa __magic_name__ = torch.tensor([timesteps] , dtype=__a , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __magic_name__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __magic_name__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __magic_name__ = self.transformer( __a , timestep=__a , class_labels=__a ).sample # perform guidance if guidance_scale > 1: __magic_name__ , __magic_name__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __magic_name__ , __magic_name__ = torch.split(__a , len(__a ) // 2 , dim=0 ) __magic_name__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __magic_name__ = torch.cat([half_eps, half_eps] , dim=0 ) __magic_name__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __magic_name__ , __magic_name__ = torch.split(__a , __a , dim=1 ) else: __magic_name__ = noise_pred # compute previous image: x_t -> x_t-1 __magic_name__ = self.scheduler.step(__a , __a , __a ).prev_sample if guidance_scale > 1: __magic_name__ , __magic_name__ = latent_model_input.chunk(2 , dim=0 ) else: __magic_name__ = latent_model_input __magic_name__ = 1 / self.vae.config.scaling_factor * latents __magic_name__ = self.vae.decode(__a ).sample __magic_name__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ = self.numpy_to_pil(__a ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__a )
361
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a__ : int , ): __magic_name__ = parent __magic_name__ = 13 __magic_name__ = 7 __magic_name__ = 30 __magic_name__ = self.seq_length + self.mem_len __magic_name__ = 15 __magic_name__ = True __magic_name__ = True __magic_name__ = 99 __magic_name__ = [10, 50, 80] __magic_name__ = 32 __magic_name__ = 32 __magic_name__ = 4 __magic_name__ = 8 __magic_name__ = 128 __magic_name__ = 2 __magic_name__ = 2 __magic_name__ = None __magic_name__ = 1 __magic_name__ = 0 __magic_name__ = 3 __magic_name__ = self.vocab_size - 1 __magic_name__ = 0.01 def snake_case__ ( self : Union[str, Any] ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case__ ( self : str ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case__ ( self : Union[str, Any] , a__ : Tuple , a__ : Any , a__ : Union[str, Any] , a__ : int ): __magic_name__ = TFTransfoXLModel(a__ ) __magic_name__ , __magic_name__ = model(a__ ).to_tuple() __magic_name__ = {'''input_ids''': input_ids_a, '''mems''': mems_a} __magic_name__ , __magic_name__ = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case__ ( self : List[Any] , a__ : int , a__ : List[str] , a__ : List[str] , a__ : Dict ): __magic_name__ = TFTransfoXLLMHeadModel(a__ ) __magic_name__ , __magic_name__ = model(a__ ).to_tuple() __magic_name__ = {'''input_ids''': input_ids_a, '''labels''': lm_labels} __magic_name__ , __magic_name__ = model(a__ ).to_tuple() __magic_name__ , __magic_name__ = model([input_ids_a, mems_a] ).to_tuple() __magic_name__ = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} __magic_name__ , __magic_name__ = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case__ ( self : List[Any] , a__ : str , a__ : Optional[int] , a__ : Dict , a__ : List[Any] ): __magic_name__ = TFTransfoXLForSequenceClassification(a__ ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] ): __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[int] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE :Optional[Any] = () if is_tf_available() else () __SCREAMING_SNAKE_CASE :Any = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __SCREAMING_SNAKE_CASE :List[str] = False __SCREAMING_SNAKE_CASE :str = False __SCREAMING_SNAKE_CASE :str = False __SCREAMING_SNAKE_CASE :List[Any] = False def snake_case__ ( self : int , a__ : int , a__ : List[str] , a__ : Any , a__ : Optional[Any] , a__ : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case__ ( self : int ): __magic_name__ = TFTransfoXLModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , d_embed=37 ) def snake_case__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case__ ( self : int ): self.model_tester.set_seed() __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def snake_case__ ( self : Optional[int] ): self.model_tester.set_seed() __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def snake_case__ ( self : Any ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __magic_name__ = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) __magic_name__ = model.get_bias() assert name is None else: __magic_name__ = model.get_output_embeddings() assert x is None __magic_name__ = model.get_bias() assert name is None def snake_case__ ( self : Dict ): # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case__ ( self : List[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def snake_case__ ( self : Any ): pass @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def snake_case__ ( self : int ): __magic_name__ = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off __magic_name__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __magic_name__ = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __magic_name__ = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
98
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = OmegaConf.load(a_) snake_case_ = torch.load(a_ , map_location='cpu')['model'] snake_case_ = list(state_dict.keys()) # extract state_dict for VQVAE snake_case_ = {} snake_case_ = 'first_stage_model.' for key in keys: if key.startswith(a_): snake_case_ = state_dict[key] # extract state_dict for UNetLDM snake_case_ = {} snake_case_ = 'model.diffusion_model.' for key in keys: if key.startswith(a_): snake_case_ = state_dict[key] snake_case_ = config.model.params.first_stage_config.params snake_case_ = config.model.params.unet_config.params snake_case_ = VQModel(**a_).eval() vqvae.load_state_dict(a_) snake_case_ = UNetLDMModel(**a_).eval() unet.load_state_dict(a_) snake_case_ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=a_ , ) snake_case_ = LDMPipeline(a_ , a_ , a_) pipeline.save_pretrained(a_) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) lowercase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
178
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowercase = logging.getLogger(__name__) @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''whether to use adafactor'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field(default=snake_case_ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default=snake_case_ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) lowerCAmelCase = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
178
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = [] lowerCamelCase_ = [] for i in range(self.num_layers ): lowerCamelCase_ = self.in_channels if i == 0 else self.out_channels lowerCamelCase_ = FlaxResnetBlockaD( in_channels=lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) lowerCamelCase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) lowerCamelCase_ = resnets lowerCamelCase_ = attentions if self.add_downsample: lowerCamelCase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> int: lowerCamelCase_ = () for resnet, attn in zip(self.resnets , self.attentions ): lowerCamelCase_ = resnet(lowercase , lowercase , deterministic=lowercase ) lowerCamelCase_ = attn(lowercase , lowercase , deterministic=lowercase ) output_states += (hidden_states,) if self.add_downsample: lowerCamelCase_ = self.downsamplers_a(lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = [] for i in range(self.num_layers ): lowerCamelCase_ = self.in_channels if i == 0 else self.out_channels lowerCamelCase_ = FlaxResnetBlockaD( in_channels=lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) lowerCamelCase_ = resnets if self.add_downsample: lowerCamelCase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase=True ) -> str: lowerCamelCase_ = () for resnet in self.resnets: lowerCamelCase_ = resnet(lowercase , lowercase , deterministic=lowercase ) output_states += (hidden_states,) if self.add_downsample: lowerCamelCase_ = self.downsamplers_a(lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = [] lowerCamelCase_ = [] for i in range(self.num_layers ): lowerCamelCase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCamelCase_ = self.prev_output_channel if i == 0 else self.out_channels lowerCamelCase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) lowerCamelCase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) lowerCamelCase_ = resnets lowerCamelCase_ = attentions if self.add_upsample: lowerCamelCase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase , lowercase=True ) -> Optional[Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowerCamelCase_ = res_hidden_states_tuple[-1] lowerCamelCase_ = res_hidden_states_tuple[:-1] lowerCamelCase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCamelCase_ = resnet(lowercase , lowercase , deterministic=lowercase ) lowerCamelCase_ = attn(lowercase , lowercase , deterministic=lowercase ) if self.add_upsample: lowerCamelCase_ = self.upsamplers_a(lowercase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = [] for i in range(self.num_layers ): lowerCamelCase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowerCamelCase_ = self.prev_output_channel if i == 0 else self.out_channels lowerCamelCase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) lowerCamelCase_ = resnets if self.add_upsample: lowerCamelCase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> Dict: for resnet in self.resnets: # pop res hidden states lowerCamelCase_ = res_hidden_states_tuple[-1] lowerCamelCase_ = res_hidden_states_tuple[:-1] lowerCamelCase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowerCamelCase_ = resnet(lowercase , lowercase , deterministic=lowercase ) if self.add_upsample: lowerCamelCase_ = self.upsamplers_a(lowercase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Dict: # there is always at least one resnet lowerCamelCase_ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowerCamelCase_ = [] for _ in range(self.num_layers ): lowerCamelCase_ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) lowerCamelCase_ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) lowerCamelCase_ = resnets lowerCamelCase_ = attentions def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> Union[str, Any]: lowerCamelCase_ = self.resnets[0](lowercase , lowercase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowerCamelCase_ = attn(lowercase , lowercase , deterministic=lowercase ) lowerCamelCase_ = resnet(lowercase , lowercase , deterministic=lowercase ) return hidden_states
47
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A =pd.read_csv('''sample_data.csv''', header=None) __A =df.shape[:1][0] # If you're using some other dataset input the target column __A =df.iloc[:, 1:2] __A =actual_data.values.reshape(len_data, 1) __A =MinMaxScaler().fit_transform(actual_data) __A =1_0 __A =5 __A =2_0 __A =len_data - periods * look_back __A =actual_data[:division] __A =actual_data[division - look_back :] __A, __A =[], [] __A, __A =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A =np.array(train_x) __A =np.array(test_x) __A =np.array([list(i.ravel()) for i in train_y]) __A =np.array([list(i.ravel()) for i in test_y]) __A =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __A =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) __A =model.predict(x_test)
47
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , ): UpperCamelCase__ = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = apply_ocr def UpperCAmelCase_ (self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ (self ): UpperCamelCase__ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ (self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , """do_resize""" ) ) self.assertTrue(hasattr(_A , """size""" ) ) self.assertTrue(hasattr(_A , """apply_ocr""" ) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched UpperCamelCase__ = image_processing(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase__ = image_processing(_A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase__ = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) UpperCamelCase__ = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) UpperCamelCase__ = image_processing(_A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase__ = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 UpperCamelCase__ = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False UpperCamelCase__ = LayoutLMvaImageProcessor(apply_ocr=_A ) UpperCamelCase__ = image_processing(_A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
244
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : str = KandinskyImgaImgPipeline UpperCAmelCase__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] UpperCAmelCase__ : Union[str, Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] UpperCAmelCase__ : Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCAmelCase__ : Any = False @property def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[int] ) -> str: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self :Optional[Any] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def lowercase_ ( self :Tuple ) -> Tuple: '''simple docstring''' __A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __A = MultilingualCLIP(_A ) __A = text_encoder.eval() return text_encoder @property def lowercase_ ( self :Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __A = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __A = DDIMScheduler(**_A ) __A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self :Dict , _A :Union[str, Any] , _A :Optional[int]=0 ) -> str: '''simple docstring''' __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) ) if str(_A ).startswith('mps' ): __A = torch.manual_seed(_A ) else: __A = torch.Generator(device=_A ).manual_seed(_A ) __A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase_ ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = 'cpu' __A = self.get_dummy_components() __A = self.pipeline_class(**_A ) __A = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A = pipe(**self.get_dummy_inputs(_A ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' __A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __A = 'A red cartoon frog, 4k' __A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) __A = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __A = torch.Generator(device='cpu' ).manual_seed(0 ) __A , __A = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __A = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
161
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _a (pl.LightningModule ): '''simple docstring''' def __init__( self , A__ ): super().__init__() A__ : str = model A__ : List[str] = 2 A__ : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ): pass def UpperCamelCase (lowercase_: str , lowercase_: str , lowercase_: str ) -> List[Any]: # load longformer model from model identifier A__ : Dict = LongformerModel.from_pretrained(lowercase_ ) A__ : str = LightningModel(lowercase_ ) A__ : Tuple = torch.load(lowercase_ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model A__ : int = LongformerForQuestionAnswering.from_pretrained(lowercase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
371
import requests A_ : List[Any] = 'YOUR API KEY' def UpperCamelCase (lowercase_: str , lowercase_: str = giphy_api_key ) -> list: A__ : Dict = """+""".join(query.split() ) A__ : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A__ : Any = requests.get(lowercase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
141
0
def UpperCamelCase ( __lowerCamelCase : int = 1000 ): snake_case : List[Any] = 2**power snake_case : Any = 0 while n: snake_case , snake_case : Tuple = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
59
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) _lowercase : List[str] = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCamelCase__ :int = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :Union[str, Any] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCamelCase__ :Optional[int] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :Union[str, Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :Dict = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Union[str, Any] = model(UpperCamelCase_ )['''last_hidden_state'''].detach() self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1e-3 ) )
97
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a_ ( lowerCamelCase ): return np.dot(lowerCamelCase , lowerCamelCase ) class snake_case : """simple docstring""" def __init__( self : int ,*, lowerCamelCase__ : float = np.inf ,lowerCamelCase__ : str = "linear" ,lowerCamelCase__ : float = 0.0 ,): UpperCAmelCase__ = regularization UpperCAmelCase__ = gamma if kernel == "linear": UpperCAmelCase__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma ,(float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) UpperCAmelCase__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase__ = f'''Unknown kernel: {kernel}''' raise ValueError(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : ndarray ,lowerCamelCase__ : ndarray ): return np.dot(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : ndarray ,lowerCamelCase__ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : list[ndarray] ,lowerCamelCase__ : ndarray ): UpperCAmelCase__ = observations UpperCAmelCase__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase__) , ) = np.shape(lowerCamelCase__ ) def to_minimize(lowerCamelCase__ : ndarray ) -> float: UpperCAmelCase__ = 0 ((UpperCAmelCase__) , ) = np.shape(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(lowerCamelCase__ ) UpperCAmelCase__ = LinearConstraint(lowerCamelCase__ ,0 ,0 ) UpperCAmelCase__ = Bounds(0 ,self.regularization ) UpperCAmelCase__ = minimize( lowerCamelCase__ ,np.ones(lowerCamelCase__ ) ,bounds=lowerCamelCase__ ,constraints=[ly_contraint] ).x UpperCAmelCase__ = l_star # calculating mean offset of separation plane to points UpperCAmelCase__ = 0 for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) UpperCAmelCase__ = s / n def __lowerCAmelCase ( self : int ,lowerCamelCase__ : ndarray ): UpperCAmelCase__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,lowerCamelCase__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
98
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase__ = 25_60_47 lowerCamelCase__ = 25_61_45 @require_sentencepiece @require_tokenizers class __magic_name__ (a_ , unittest.TestCase ): lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = NllbTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = {} def __a ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __a ( self ) -> List[str]: lowerCAmelCase_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowerCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch def __a ( self ) -> Any: if not self.test_seqaseq: return lowerCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. lowerCAmelCase_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowerCAmelCase_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , tgt_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( lowercase_ , tgt_texts=lowercase_ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , lowercase_ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def __a ( self ) -> int: pass def __a ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = [AddedToken("<special>" , lstrip=lowercase_ )] lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) lowerCAmelCase_ = tokenizer_r.encode("Hey this is a <special> token" ) lowerCAmelCase_ = tokenizer_r.encode("<special>" , add_special_tokens=lowercase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) lowerCAmelCase_ = tokenizer_p.encode("Hey this is a <special> token" ) lowerCAmelCase_ = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = '''facebook/nllb-200-distilled-600M''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) lowerCAmelCase_ = 1 return cls def __a ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def __a ( self ) -> List[Any]: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase_ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on lowerCAmelCase_ = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def __a ( self ) -> int: lowerCAmelCase_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase_ ) lowerCAmelCase_ = 10 lowerCAmelCase_ = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def __a ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] ) def __a ( self ) -> Any: lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase_ = NllbTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def __a ( self ) -> str: lowerCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCAmelCase_ = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(lowercase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="pt" ) lowerCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="pt" ) lowerCAmelCase_ = targets['''input_ids'''] lowerCAmelCase_ = shift_tokens_right( lowercase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self ) -> Dict: lowerCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, } , ) @require_torch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) lowerCAmelCase_ = False lowerCAmelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
47
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCamelCase : List[Any] = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" lowerCamelCase : Optional[Any] = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" lowerCamelCase : int = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =en_sentvecs.shape[0] # mean centering _SCREAMING_SNAKE_CASE =en_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =in_sentvecs - np.mean(_UpperCamelCase , axis=0 ) _SCREAMING_SNAKE_CASE =cdist(_UpperCamelCase , _UpperCamelCase , 'cosine' ) _SCREAMING_SNAKE_CASE =np.array(range(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =sim.argsort(axis=1 )[:, :10] _SCREAMING_SNAKE_CASE =np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Any ) -> List[str]: '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def A ( self : List[str] , _a : Tuple , _a : Optional[int] ) -> int: '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_a , _a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_a , _a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
47
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = [] for part_id in partition_order: UpperCAmelCase_ : List[Any] = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Dict = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : Optional[Any] = Spark(_lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Dict = spark.range(10 ).repartition(2 ) UpperCAmelCase_ : str = [1, 0] UpperCAmelCase_ : List[str] = _generate_iterable_examples(_lowercase , _lowercase ) # Reverse the partitions. UpperCAmelCase_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , _lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase_ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Union[str, Any] = spark.range(10 ).repartition(1 ) UpperCAmelCase_ : Optional[int] = SparkExamplesIterable(_lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: UpperCAmelCase_ : int = lambda _lowercase : x.reverse() UpperCAmelCase_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [2, 1, 0] ) UpperCAmelCase_ : List[Any] = SparkExamplesIterable(_lowercase ).shuffle_data_sources(_lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase_ : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Optional[int] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase_ : List[str] = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase_ : List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase_ : int = SparkExamplesIterable(_lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowercase ): UpperCAmelCase_ : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : str = spark.range(100 ).repartition(1 ) UpperCAmelCase_ : List[str] = Spark(_lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
370
from ...processing_utils import ProcessorMixin class __a( _a ): """simple docstring""" lowerCAmelCase = '''SpeechT5FeatureExtractor''' lowerCAmelCase = '''SpeechT5Tokenizer''' def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : List[str] = kwargs.pop('''audio''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = kwargs.pop('''text''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''text_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = kwargs.pop('''audio_target''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = kwargs.pop('''sampling_rate''' ,_SCREAMING_SNAKE_CASE ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: UpperCAmelCase_ : Optional[Any] = self.feature_extractor(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif text is not None: UpperCAmelCase_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if audio_target is not None: UpperCAmelCase_ : List[Any] = self.feature_extractor(audio_target=_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = targets['''input_values'''] elif text_target is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = targets['''input_ids'''] else: UpperCAmelCase_ : Tuple = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Dict = labels UpperCAmelCase_ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Dict = kwargs.pop('''input_values''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''input_ids''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = kwargs.pop('''labels''' ,_SCREAMING_SNAKE_CASE ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: UpperCAmelCase_ : Tuple = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) elif input_ids is not None: UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and "input_ids" in labels[0]): UpperCAmelCase_ : Tuple = self.tokenizer.pad(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = targets['''input_ids'''] else: UpperCAmelCase_ : int = self.feature_extractor.feature_size UpperCAmelCase_ : List[str] = self.feature_extractor.num_mel_bins UpperCAmelCase_ : Optional[Any] = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = feature_size_hack UpperCAmelCase_ : List[Any] = targets['''input_values'''] else: UpperCAmelCase_ : Optional[int] = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Optional[int] = labels UpperCAmelCase_ : Union[str, Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
235
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = 'conditional_detr' _SCREAMING_SNAKE_CASE : List[str] = ['past_key_values'] _SCREAMING_SNAKE_CASE : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=3 , _UpperCamelCase=300 , _UpperCamelCase=6 , _UpperCamelCase=2048 , _UpperCamelCase=8 , _UpperCamelCase=6 , _UpperCamelCase=2048 , _UpperCamelCase=8 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=256 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1.0 , _UpperCamelCase=False , _UpperCamelCase="sine" , _UpperCamelCase="resnet50" , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=0.2_5 , **_UpperCamelCase , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowercase : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowercase , __lowercase ): _lowercase : Optional[int] = backbone_config.get("model_type" ) _lowercase : Optional[int] = CONFIG_MAPPING[backbone_model_type] _lowercase : int = config_class.from_dict(__lowercase ) _lowercase : Any = use_timm_backbone _lowercase : Union[str, Any] = backbone_config _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = num_queries _lowercase : int = d_model _lowercase : Optional[Any] = encoder_ffn_dim _lowercase : Dict = encoder_layers _lowercase : Tuple = encoder_attention_heads _lowercase : Any = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : Optional[Any] = decoder_attention_heads _lowercase : Dict = dropout _lowercase : List[Any] = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : Tuple = activation_function _lowercase : Tuple = init_std _lowercase : List[str] = init_xavier_std _lowercase : List[Any] = encoder_layerdrop _lowercase : Any = decoder_layerdrop _lowercase : Union[str, Any] = encoder_layers _lowercase : Any = auxiliary_loss _lowercase : List[str] = position_embedding_type _lowercase : str = backbone _lowercase : str = use_pretrained_backbone _lowercase : int = dilation # Hungarian matcher _lowercase : Dict = class_cost _lowercase : Tuple = bbox_cost _lowercase : List[str] = giou_cost # Loss coefficients _lowercase : str = mask_loss_coefficient _lowercase : int = dice_loss_coefficient _lowercase : Union[str, Any] = cls_loss_coefficient _lowercase : Union[str, Any] = bbox_loss_coefficient _lowercase : List[Any] = giou_loss_coefficient _lowercase : List[str] = focal_alpha super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def _lowerCamelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowerCamelCase ( self ): """simple docstring""" return self.d_model def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowercase : str = self.backbone_config.to_dict() _lowercase : Any = self.__class__.model_type return output class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _lowerCamelCase ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self ): """simple docstring""" return 1E-5 @property def _lowerCamelCase ( self ): """simple docstring""" return 12
250
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( A ): lowerCAmelCase_ = "data2vec-audio" def __init__( self : Tuple , __lowercase : Optional[int]=32 , __lowercase : List[str]=768 , __lowercase : List[str]=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Any="gelu" , __lowercase : Dict=0.1 , __lowercase : Any=0.1 , __lowercase : Tuple=0.1 , __lowercase : List[str]=0.0 , __lowercase : List[Any]=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=0.0_2 , __lowercase : Dict=1E-5 , __lowercase : Any="gelu" , __lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , __lowercase : str=(5, 2, 2, 2, 2, 2, 2) , __lowercase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase : Dict=False , __lowercase : int=16 , __lowercase : Any=19 , __lowercase : Tuple=5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Optional[int]=10 , __lowercase : int=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Tuple=10 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[int]="sum" , __lowercase : str=False , __lowercase : Union[str, Any]=False , __lowercase : Any=256 , __lowercase : str=(512, 512, 512, 512, 1500) , __lowercase : Union[str, Any]=(5, 3, 3, 1, 1) , __lowercase : List[Any]=(1, 2, 3, 1, 1) , __lowercase : Any=512 , __lowercase : int=0 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[int]=2 , __lowercase : Any=False , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=2 , __lowercase : Any=3 , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase =hidden_size __lowercase =feat_extract_activation __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =conv_bias __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =conv_pos_kernel_size __lowercase =len(self.conv_dim ) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =vocab_size __lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length __lowercase =mask_feature_min_masks # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =xvector_output_dim @property def snake_case ( self : Optional[Any] ): """simple docstring""" return math.prod(self.conv_stride )
141
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def _lowerCamelCase( a , a ): __a = iter(a ) while True: __a = tuple(itertools.islice(a , a ) ) if not chunk: return yield chunk def _lowerCamelCase( a ): __a = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) __a = "" if len(a ) < 2: return dirty for i in range(len(a ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(a ) & 1: clean += "X" return clean def _lowerCamelCase( a ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __a = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __a = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(a ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(a ) return table def _lowerCamelCase( a , a ): __a = generate_table(a ) __a = prepare_input(a ) __a = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a , 2 ): __a , __a = divmod(table.index(a ) , 5 ) __a , __a = divmod(table.index(a ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowerCamelCase( a , a ): __a = generate_table(a ) __a = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a , 2 ): __a , __a = divmod(table.index(a ) , 5 ) __a , __a = divmod(table.index(a ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
369
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__:List[Any] = None SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__:Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__:List[str] = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE__:str = """▁""" class snake_case__ ( snake_case_ ): _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Any = ["""input_ids""", """attention_mask"""] _snake_case : str = CamembertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = vocab_file __a = False if not self.vocab_file else True def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a = [self.cls_token_id] __a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , lowerCamelCase , lowerCamelCase = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , lowerCamelCase , lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __a = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
268
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def __magic_name__ ( *__A : Union[str, Any], **__A : Any ): pass @is_pipeline_test @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __magic_name__ ( self : int, __A : Optional[int], __A : str, __A : List[Any] ): UpperCAmelCase : Tuple = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase : int = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def __magic_name__ ( self : Any, __A : int, __A : Union[str, Any] ): UpperCAmelCase : List[str] = vqa_pipeline(__A, top_k=1 ) self.assertEqual( __A, [ [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], [{'''score''': ANY(__A ), '''answer''': ANY(__A )}], ], ) @require_torch def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : str = pipeline('''visual-question-answering''', model='''hf-internal-testing/tiny-vilt-random-vqa''' ) UpperCAmelCase : Tuple = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase : Any = '''How many cats are there?''' UpperCAmelCase : int = vqa_pipeline(image=__A, question='''How many cats are there?''', top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) UpperCAmelCase : Union[str, Any] = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( __A, [{'''score''': ANY(__A ), '''answer''': ANY(__A )}, {'''score''': ANY(__A ), '''answer''': ANY(__A )}] ) @slow @require_torch def __magic_name__ ( self : str ): UpperCAmelCase : Optional[int] = pipeline('''visual-question-answering''', model='''dandelin/vilt-b32-finetuned-vqa''' ) UpperCAmelCase : List[str] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase : Dict = '''How many cats are there?''' UpperCAmelCase : Optional[int] = vqa_pipeline(image=__A, question=__A, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) UpperCAmelCase : Optional[Any] = vqa_pipeline({'''image''': image, '''question''': question}, top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}] ) UpperCAmelCase : List[Any] = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}], top_k=2 ) self.assertEqual( nested_simplify(__A, decimals=4 ), [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2, ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def __magic_name__ ( self : Optional[int] ): pass
336
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = LayoutLMTokenizer UpperCamelCase = LayoutLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def __magic_name__ ( self : Any ): super().setUp() UpperCAmelCase : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__ ( self : Union[str, Any], **__A : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **__A ) def __magic_name__ ( self : Optional[int], __A : int ): UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : Optional[int] = '''unwanted, running''' return input_text, output_text def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__A, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ), [7, 4, 5, 1_0, 8, 9] ) def __magic_name__ ( self : Optional[int] ): pass
336
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A_ ( unittest.TestCase ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 ,SCREAMING_SNAKE_CASE__ : str=1_8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=3_0 ,SCREAMING_SNAKE_CASE__ : List[str]=4_0_0 ,SCREAMING_SNAKE_CASE__ : Any=True ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : str=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : List[str]=[0.5, 0.5, 0.5] ,SCREAMING_SNAKE_CASE__ : List[Any]=[0.5, 0.5, 0.5] ,): __lowerCamelCase : Any = size if size is not None else {'shortest_edge': 1_8} __lowerCamelCase : int = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : List[Any] = image_size __lowerCamelCase : List[Any] = min_resolution __lowerCamelCase : Any = max_resolution __lowerCamelCase : Optional[int] = do_resize __lowerCamelCase : Optional[int] = size __lowerCamelCase : List[Any] = do_center_crop __lowerCamelCase : Tuple = crop_size __lowerCamelCase : List[str] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : int = image_std def lowerCAmelCase ( self : List[str]): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : List[Any] = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : int): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self) @property def lowerCAmelCase ( self : int): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : List[str]): __lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'image_mean')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'image_std')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_normalize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_resize')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'do_center_crop')) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'size')) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size ,{'shortest_edge': 1_8}) self.assertEqual(image_processor.crop_size ,{'height': 1_8, 'width': 1_8}) __lowerCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4) self.assertEqual(image_processor.size ,{'shortest_edge': 4_2}) self.assertEqual(image_processor.crop_size ,{'height': 8_4, 'width': 8_4}) def lowerCAmelCase ( self : Any): pass def lowerCAmelCase ( self : List[str]): # Initialize image_processing __lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,Image.Image) # Test not batched input __lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched __lowerCamelCase : Optional[int] = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCAmelCase ( self : Dict): # Initialize image_processing __lowerCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,numpify=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) # Test not batched input __lowerCamelCase : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched __lowerCamelCase : Optional[int] = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def lowerCAmelCase ( self : str): # Initialize image_processing __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,torchify=SCREAMING_SNAKE_CASE__) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor) # Test not batched input __lowerCamelCase : List[str] = image_processing(image_inputs[0] ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched __lowerCamelCase : str = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
73
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE :int = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : int = PegasusTokenizerFast _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[str] = True def lowercase ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowercase ( self : Union[str, Any] , **snake_case_ : Union[str, Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : Any ): return ("This is a test", "This is a test") def lowercase ( self : Optional[int] ): _UpperCAmelCase = "</s>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(snake_case_ ) , 1_1_0_3 ) def lowercase ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def lowercase ( self : List[Any] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Tuple ): _UpperCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _UpperCAmelCase = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 _UpperCAmelCase = "To ensure a smooth flow of bank resolutions." _UpperCAmelCase = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] _UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase ( self : int ): _UpperCAmelCase = ["This is going to be way too long." * 1_5_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. @slow def lowercase ( self : Dict ): # fmt: off _UpperCAmelCase = {"input_ids": [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : List[str] = PegasusTokenizer _lowerCamelCase : List[Any] = PegasusTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = True def lowercase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = PegasusTokenizer(snake_case_ , offset=0 , mask_token_sent=snake_case_ , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Tuple ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowercase ( self : Optional[Any] , **snake_case_ : Dict ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowercase ( self : Union[str, Any] , snake_case_ : str ): return ("This is a test", "This is a test") def lowercase ( self : List[str] ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] _UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=snake_case_ , add_special_tokens=snake_case_ ).input_ids[0] self.assertListEqual(snake_case_ , snake_case_ ) @require_torch def lowercase ( self : Tuple ): _UpperCAmelCase = ["This is going to be way too long." * 1_0_0_0, "short example"] _UpperCAmelCase = ["not super long but more than 5 tokens", "tiny"] _UpperCAmelCase = self._large_tokenizer(snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) _UpperCAmelCase = self._large_tokenizer( text_target=snake_case_ , max_length=5 , padding=snake_case_ , truncation=snake_case_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(snake_case_ ) == 2 # input_ids, attention_mask. def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _UpperCAmelCase = self._large_tokenizer(snake_case_ ).input_ids self.assertListEqual( snake_case_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
22
0
from collections import defaultdict from math import gcd def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 1_500_000 ): A_ : defaultdict = defaultdict(SCREAMING_SNAKE_CASE ) A_ : str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE , 2 ): if gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > 1: continue A_ : Optional[Any] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE , limit + 1 , SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
65
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
1
from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(_a ) != 0: _UpperCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error _UpperCAmelCase = rows else: _UpperCAmelCase = [] def UpperCamelCase ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCamelCase ( self ): """simple docstring""" return len(self.rows ) @property def UpperCamelCase ( self ): """simple docstring""" return len(self.rows[0] ) @property def UpperCamelCase ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def UpperCamelCase ( self ): """simple docstring""" return self.order[0] == self.order[1] def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def UpperCamelCase ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCamelCase ( self ): """simple docstring""" return bool(self.determinant() ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def UpperCamelCase ( self ): """simple docstring""" return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCamelCase ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(_a ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(_a ) else: _UpperCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _UpperCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _UpperCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , UpperCAmelCase ): """simple docstring""" if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self , UpperCAmelCase ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self , UpperCAmelCase ): """simple docstring""" if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , UpperCAmelCase ): """simple docstring""" if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , UpperCAmelCase ): """simple docstring""" if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , UpperCAmelCase ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _UpperCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
39
def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations(__a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" def count_of_possible_combinations_with_dp_array( __a : int ,__a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _a : Union[str, Any] = sum( count_of_possible_combinations_with_dp_array(target - item ,__a ) for item in array ) _a : Optional[int] = answer return answer _a : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__a ,__a ) def __UpperCAmelCase ( __a : int ,__a : list[int] ,__a : int ) -> int: """simple docstring""" _a : str = [0] * (target + 1) _a : Optional[Any] = 1 for i in range(1 ,target + 1 ): for j in range(__a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a__ = 3 a__ = 5 a__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
235
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Any = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BartphoTokenizer a_ = False a_ = True def lowercase ( self : Tuple ) -> Optional[Any]: super().setUp() __lowerCAmelCase = ['▁This', '▁is', '▁a', '▁t', 'est'] __lowerCAmelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowerCAmelCase = {'unk_token': '<unk>'} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __lowerCAmelCase = BartphoTokenizer(lowerCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : int , **lowerCAmelCase_ : List[str] ) -> List[str]: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: __lowerCAmelCase = 'This is a là test' __lowerCAmelCase = 'This is a<unk><unk> test' return input_text, output_text def lowercase ( self : Dict ) -> int: __lowerCAmelCase = BartphoTokenizer(lowerCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) __lowerCAmelCase = 'This is a là test' __lowerCAmelCase = '▁This ▁is ▁a ▁l à ▁t est'.split() __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
363
from collections.abc import Sequence def a_ ( lowerCAmelCase_ : Sequence[float], lowerCAmelCase_ : bool = False ): if not arr: return 0 __lowerCAmelCase = 0 if allow_empty_subarrays else float('-inf' ) __lowerCAmelCase = 0.0 for num in arr: __lowerCAmelCase = max(0 if allow_empty_subarrays else num, curr_sum + num ) __lowerCAmelCase = max(lowerCAmelCase_, lowerCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _snake_case : Optional[Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
207
0
'''simple docstring''' import re from filelock import FileLock try: import nltk _UpperCAmelCase : str = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __magic_name__( lowerCamelCase): re.sub('''<n>''', '''''', A__) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__))
174
"""simple docstring""" import os def snake_case ( ): with open(os.path.dirname(A__ ) + "/grid.txt" ) as f: UpperCAmelCase_ : Any = [] # noqa: E741 for _ in range(20 ): l.append([int(A__ ) for x in f.readline().split()] ) UpperCAmelCase_ : Any = 0 # right for i in range(20 ): for j in range(17 ): UpperCAmelCase_ : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCAmelCase_ : Any = temp # down for i in range(17 ): for j in range(20 ): UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCAmelCase_ : Tuple = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCAmelCase_ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCAmelCase_ : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): UpperCAmelCase_ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCAmelCase_ : List[str] = temp return maximum if __name__ == "__main__": print(solution())
268
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _lowerCAmelCase ( __snake_case : ndarray ) -> float: return np.dot(__snake_case , __snake_case ) class SCREAMING_SNAKE_CASE : def __init__( self , *, _UpperCAmelCase = np.inf , _UpperCAmelCase = "linear" , _UpperCAmelCase = 0.0 , ): '''simple docstring''' __A : Union[str, Any] = regularization __A : Dict = gamma if kernel == "linear": __A : Tuple = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') __A : List[str] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __A : Dict = F'Unknown kernel: {kernel}' raise ValueError(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return np.dot(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = observations __A : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__A) ,) : Union[str, Any] = np.shape(_UpperCAmelCase) def to_minimize(_UpperCAmelCase) -> float: __A : int = 0 ((__A) ,) : Union[str, Any] = np.shape(_UpperCAmelCase) for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(_UpperCAmelCase) __A : List[str] = LinearConstraint(_UpperCAmelCase , 0 , 0) __A : Tuple = Bounds(0 , self.regularization) __A : Optional[int] = minimize( _UpperCAmelCase , np.ones(_UpperCAmelCase) , bounds=_UpperCAmelCase , constraints=[ly_contraint]).x __A : str = l_star # calculating mean offset of separation plane to points __A : Tuple = 0 for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) __A : Optional[int] = s / n def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _UpperCAmelCase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
190
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
1
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[[] for _ in range(__snake_case )] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__snake_case ) <= key: return input_string for position, character in enumerate(__snake_case ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__snake_case ) _lowercase =[''''''.join(__snake_case ) for row in temp_grid] _lowercase =''''''.join(__snake_case ) return output_string def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =[] _lowercase =key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string _lowercase =[[] for _ in range(__snake_case )] # generates template for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) _lowercase =0 for row in temp_grid: # fills in the characters _lowercase =input_string[counter : counter + len(__snake_case )] grid.append(list(__snake_case ) ) counter += len(__snake_case ) _lowercase ='''''' # reads as zigzag for position in range(len(__snake_case ) ): _lowercase =position % (lowest * 2) # puts it in bounds _lowercase =min(__snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase_ ( __snake_case ) -> dict[int, str]: """simple docstring""" _lowercase ={} for key_guess in range(1 , len(__snake_case ) ): # tries every key _lowercase =decrypt(__snake_case , __snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
5
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : Tuple , _lowercase : Dict=None , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : Tuple ): if tokenize_kwargs is None: __UpperCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCAmelCase = truncation __UpperCAmelCase = tokenize_kwargs __UpperCAmelCase = {} if return_tensors is not None: __UpperCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def a ( self : int , _lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def a ( self : List[str] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) return model_outputs def a ( self : int , _lowercase : Tuple , _lowercase : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): return super().__call__(*_lowercase , **_lowercase )
332
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float , ) ->Tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a : List[str] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['''PerceiverFeatureExtractor'''] a : str = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = 'align_text_model' def __init__(self : Dict , __UpperCAmelCase : List[str]=3_0_5_2_2 , __UpperCAmelCase : str=7_6_8 , __UpperCAmelCase : int=1_2 , __UpperCAmelCase : List[str]=1_2 , __UpperCAmelCase : Any=3_0_7_2 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=5_1_2 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : int=1E-12 , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : Optional[int]="absolute" , __UpperCAmelCase : str=True , **__UpperCAmelCase : List[Any] , ) -> Dict: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = pad_token_id @classmethod def lowercase_ (cls : Tuple , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : int ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = 'align_vision_model' def __init__(self : Any , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 6_0_0 , __UpperCAmelCase : float = 2.0 , __UpperCAmelCase : float = 3.1 , __UpperCAmelCase : int = 8 , __UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __UpperCAmelCase : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCAmelCase : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCAmelCase : List[int] = [] , __UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __UpperCAmelCase : float = 0.25 , __UpperCAmelCase : str = "swish" , __UpperCAmelCase : int = 2_5_6_0 , __UpperCAmelCase : str = "mean" , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 0.001 , __UpperCAmelCase : float = 0.99 , __UpperCAmelCase : float = 0.2 , **__UpperCAmelCase : List[Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = width_coefficient UpperCAmelCase__ = depth_coefficient UpperCAmelCase__ = depth_divisor UpperCAmelCase__ = kernel_sizes UpperCAmelCase__ = in_channels UpperCAmelCase__ = out_channels UpperCAmelCase__ = depthwise_padding UpperCAmelCase__ = strides UpperCAmelCase__ = num_block_repeats UpperCAmelCase__ = expand_ratios UpperCAmelCase__ = squeeze_expansion_ratio UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dim UpperCAmelCase__ = pooling_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = batch_norm_eps UpperCAmelCase__ = batch_norm_momentum UpperCAmelCase__ = drop_connect_rate UpperCAmelCase__ = sum(__UpperCAmelCase ) * 4 @classmethod def lowercase_ (cls : List[str] , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : Any = 'align' __UpperCAmelCase : str = True def __init__(self : str , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=6_4_0 , __UpperCAmelCase : int=1.0 , __UpperCAmelCase : List[str]=0.02 , **__UpperCAmelCase : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**__UpperCAmelCase ) if text_config is None: UpperCAmelCase__ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: UpperCAmelCase__ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) UpperCAmelCase__ = AlignTextConfig(**__UpperCAmelCase ) UpperCAmelCase__ = AlignVisionConfig(**__UpperCAmelCase ) UpperCAmelCase__ = projection_dim UpperCAmelCase__ = temperature_init_value UpperCAmelCase__ = initializer_range @classmethod def lowercase_ (cls : int , __UpperCAmelCase : AlignTextConfig , __UpperCAmelCase : AlignVisionConfig , **__UpperCAmelCase : int ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def lowercase_ (self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
65
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a__( unittest.TestCase ): lowercase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase_ ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Any ): a : Union[str, Any] = TextaTextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return generator, ["Something to write", "Something else"] def lowercase_ ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] ): a : List[str] = generator('Something there' ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) a : Optional[Any] = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], ] , ) a : int = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): generator(4 ) @require_torch def lowercase_ ( self : Optional[Any] ): a : Union[str, Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility a : Optional[int] = generator('Something there' , do_sample=__snake_case ) self.assertEqual(__snake_case , [{'generated_text': ''}] ) a : Union[str, Any] = 3 a : List[Any] = generator( 'Something there' , num_return_sequences=__snake_case , num_beams=__snake_case , ) a : Optional[Any] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(__snake_case , __snake_case ) a : Dict = generator('This is a test' , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) a : Tuple = generator.model.config.eos_token_id a : List[Any] = '<pad>' a : Optional[Any] = generator( ['This is a test', 'This is a second test'] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase_ ( self : Optional[int] ): a : str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility a : Dict = generator('Something there' , do_sample=__snake_case ) self.assertEqual(__snake_case , [{'generated_text': ''}] )
359
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase: Any = logging.get_logger(__name__) class a__( lowerCamelCase__ ): lowercase__ = ["""pixel_values"""] def __init__( self : List[str] , __snake_case : bool = True , __snake_case : int = 32 , __snake_case : Union[str, Any]=PILImageResampling.BILINEAR , __snake_case : bool = True , **__snake_case : List[Any] , ): a : Optional[Any] = do_resize a : Union[str, Any] = do_rescale a : Union[str, Any] = size_divisor a : List[Any] = resample super().__init__(**__snake_case ) def lowercase_ ( self : Optional[Any] , __snake_case : np.ndarray , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[ChannelDimension] = None , **__snake_case : Tuple ): a , a : Optional[int] = get_image_size(__snake_case ) # Rounds the height and width down to the closest multiple of size_divisor a : int = height // size_divisor * size_divisor a : int = width // size_divisor * size_divisor a : Any = resize(__snake_case , (new_h, new_w) , resample=__snake_case , data_format=__snake_case , **__snake_case ) return image def lowercase_ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : float , __snake_case : Optional[ChannelDimension] = None , **__snake_case : Optional[Any] ): return rescale(image=__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def lowercase_ ( self : List[str] , __snake_case : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __snake_case : Optional[bool] = None , __snake_case : Optional[int] = None , __snake_case : Dict=None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[TensorType, str]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : Any , ): a : List[str] = do_resize if do_resize is not None else self.do_resize a : Tuple = do_rescale if do_rescale is not None else self.do_rescale a : Optional[Any] = size_divisor if size_divisor is not None else self.size_divisor a : Union[str, Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) a : Tuple = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. a : str = [to_numpy_array(__snake_case ) for img in images] if do_resize: a : int = [self.resize(__snake_case , size_divisor=__snake_case , resample=__snake_case ) for image in images] if do_rescale: a : List[str] = [self.rescale(__snake_case , scale=1 / 2_55 ) for image in images] a : Any = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] a : Any = {'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
96
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :List[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :int = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Union[str, Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Tuple = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """""" lowercase__ = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : List[str], lowerCamelCase : Optional[DatasetInfo] = None, lowerCamelCase : Optional[str] = None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__(self, **lowerCamelCase ) lowercase__ = repo_info lowercase__ = token lowercase__ = None def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: lowercase__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase__ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowerCamelCase ): {'''name''': str(lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowercase__ ( self : Any, lowerCamelCase : str, lowerCamelCase : str = "rb", **lowerCamelCase : Any, ): '''simple docstring''' if not isinstance(self.repo_info, lowerCamelCase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) lowercase__ = hf_hub_url(self.repo_info.id, lowerCamelCase, revision=self.repo_info.sha ) return fsspec.open( lowerCamelCase, mode=lowerCamelCase, headers=get_authentication_headers_for_url(lowerCamelCase, use_auth_token=self.token ), client_kwargs={'''trust_env''': True}, ).open() def lowercase__ ( self : Dict, lowerCamelCase : Any, **lowerCamelCase : int ): '''simple docstring''' self._get_dirs() lowercase__ = self._strip_protocol(lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCamelCase ) def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[int]=False, **lowerCamelCase : str ): '''simple docstring''' self._get_dirs() lowercase__ = PurePosixPath(path.strip('''/''' ) ) lowercase__ = {} for p, f in self.dir_cache.items(): lowercase__ = PurePosixPath(p.strip('''/''' ) ) lowercase__ = p.parent if root == path: lowercase__ = f lowercase__ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
207
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ ) try: pickle.loads(pickle.dumps(lowerCAmelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
253
"""simple docstring""" from math import factorial lowerCamelCase_ = {str(d): factorial(d) for d in range(10)} def snake_case ( A__ ): return sum(DIGIT_FACTORIAL[d] for d in str(A__ ) ) def snake_case ( ): UpperCAmelCase_ : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,A__ ) if sum_of_digit_factorial(A__ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
253
1
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> int: if not isinstance(__snake_case , __snake_case ): __A : Tuple = f'Input value of [number={number}] must be an integer' raise TypeError(__snake_case ) if number < 1: __A : Dict = f'Input value of [number={number}] must be > 0' raise ValueError(__snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __A : int = int(math.log(number // 3 , 2 ) ) + 2 __A : str = [3, 5] __A : List[str] = 2 __A : List[str] = 3 for block in range(1 , __snake_case ): for _ in range(__snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowercase__ : Optional[Any] = 0 try: lowercase__ : Any = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
190
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Any = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ : str = TypeVar("T") class a__ ( Generic[T] ): def __init__( self , A = True ) -> None: '''simple docstring''' a = {} # dictionary of lists a = directed def lowerCAmelCase_ ( self , A , A ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) self.adj_list[destination_vertex].append(A ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A ) a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a = [destination_vertex] a = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a = [destination_vertex] a = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
180
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase_ = '''hf-internal-testing/tiny-random-bert''' lowerCAmelCase_ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCAmelCase_ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any ) ->List[Any]: snake_case_ = cached_file(_UpperCamelCase , _UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: snake_case_ = f.read() self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # File is cached at the same place the second time. snake_case_ = cached_file(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # Using a specific revision to test the full commit hash. snake_case_ = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Optional[int]: with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): snake_case_ = cached_file('''tiny-random-bert''' , _UpperCamelCase ) with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): snake_case_ = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): snake_case_ = cached_file(_UpperCamelCase , '''conf''' ) def snake_case__( self : Optional[int] ) ->int: with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): snake_case_ = cached_file(_UpperCamelCase , '''conf''' ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: snake_case_ = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , '''.no_exist''' , _UpperCamelCase , '''conf''' ) ) ) snake_case_ = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case_ = cached_file(_UpperCamelCase , '''conf''' , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case_ = mock.Mock() snake_case_ = 5_0_0 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case_ = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def snake_case__( self : Dict ) ->Optional[int]: self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) def snake_case__( self : Optional[int] ) ->str: # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCamelCase , revision='''ahaha''' ) snake_case_ = get_file_from_repo('''bert-base-cased''' , _UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case_ = json.loads(open(_UpperCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def snake_case__( self : Optional[Any] ) ->Any: with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = Path(_UpperCamelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCamelCase , '''a.txt''' ) , str(_UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCamelCase , '''b.txt''' ) )
8
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None ): '''simple docstring''' super().__init__() _A = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _A = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: _A = None _A = torch.nn.Parameter(__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Any , __UpperCAmelCase : VQModel , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : VQDiffusionScheduler , __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _A = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _A = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _A = self.learned_classifier_free_sampling_embeddings.embeddings _A = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: _A = [""] * batch_size _A = text_input_ids.shape[-1] _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _A = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = negative_prompt_embeds.shape[1] _A = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) _A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}''' ) _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCAmelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _A = (batch_size, self.transformer.num_latent_pixels) if latents is None: _A = self.transformer.num_vector_embeds - 1 _A = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) _A = self.scheduler.timesteps.to(self.device ) _A = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _A = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _A = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: _A , _A = model_output.chunk(2 ) _A = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) _A = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _A = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.vqvae.config.vq_embed_dim _A = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _A = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) _A = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : float ): '''simple docstring''' _A , _A = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) _A = torch.exp(__UpperCAmelCase ) _A = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _A = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) _A = torch.cat((all_true, keep_mask) , dim=1 ) _A = keep_mask[:, :-1, :] _A = keep_mask.gather(1 , indices.argsort(1 ) ) _A = log_p_x_0.clone() _A = -torch.inf # -inf = log(0) return rv
79
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Dict = torch.device('''cpu''') def __snake_case ( ) -> Optional[int]: A_ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def __snake_case ( _lowerCAmelCase : List[Any] ) -> List[str]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> str: A_ : List[str] = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : str ) -> int: A_ : Optional[int] = [] for k in state_dict.keys(): A_ : List[Any] = k if ".pwconv" in k: A_ : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: A_ : Tuple = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: A_ : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: A_ : Tuple = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: A_ : int = k_new.split("." ) if ls[2].isdigit(): A_ : Union[str, Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: A_ : Optional[Any] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : str ) -> int: A_ : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size A_ : Union[str, Any] = 1000 A_ : Tuple = "huggingface/label-files" A_ : int = "imagenet-1k-id2label.json" A_ : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) A_ : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Any = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": A_ : Optional[Any] = [3, 3, 6, 4] A_ : Tuple = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": A_ : Tuple = [3, 3, 9, 6] A_ : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": A_ : Optional[Any] = [4, 3, 10, 5] A_ : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": A_ : Optional[int] = [4, 4, 12, 6] A_ : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): A_ : List[Any] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase ) else: A_ : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) A_ : Any = checkpoint A_ : str = create_rename_keys(_lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model A_ : Optional[int] = SwiftFormerForImageClassification(_lowerCAmelCase ).eval() hf_model.load_state_dict(_lowerCAmelCase ) # prepare test inputs A_ : Optional[int] = prepare_img() A_ : Optional[int] = ViTImageProcessor.from_pretrained("preprocessor_config" ) A_ : str = processor(images=_lowerCAmelCase , return_tensors="pt" ) # compare outputs from both models A_ : Union[str, Any] = get_expected_output(_lowerCAmelCase ) A_ : Any = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _lowerCAmelCase , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _lowerCAmelCase : List[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
70
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger('''transformers.models.speecht5''') _lowerCAmelCase : int = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCAmelCase : str = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCAmelCase : int = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCAmelCase : Union[str, Any] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCAmelCase : Union[str, Any] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCAmelCase : int = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCAmelCase : Any = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCAmelCase : List[str] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCAmelCase : Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCAmelCase : Tuple = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCAmelCase : int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ) -> Optional[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : str = value elif weight_type == "bias": A_ : int = value elif weight_type == "running_mean": A_ : str = value elif weight_type == "running_var": A_ : Any = value elif weight_type == "num_batches_tracked": A_ : str = value else: A_ : int = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Union[str, Any]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_ , A_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: A_ : Tuple = [] if task == "s2t": A_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder A_ : str = MAPPING_S2T A_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": A_ : Optional[int] = None A_ : Dict = MAPPING_T2S A_ : Any = IGNORE_KEYS_T2S elif task == "s2s": A_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder A_ : Dict = MAPPING_S2S A_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase , _lowerCAmelCase ): logger.info(f"{name} was ignored" ) continue A_ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A_ , A_ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: A_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A_ : str = True if "*" in mapped_key: A_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : Union[str, Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Tuple = "bias" elif "weight" in name: A_ : List[Any] = "weight" elif "running_mean" in name: A_ : Union[str, Any] = "running_mean" elif "running_var" in name: A_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: A_ : List[Any] = "num_batches_tracked" else: A_ : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: A_ : int = full_name.split("conv_layers." )[-1] A_ : Optional[Any] = name.split("." ) A_ : List[Any] = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ) -> Optional[Any]: if config_path is not None: A_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: A_ : Optional[int] = SpeechTaConfig() if task == "s2t": A_ : Optional[Any] = config.max_text_positions A_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": A_ : str = 1876 A_ : List[str] = 600 A_ : List[str] = config.max_speech_positions A_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": A_ : Optional[int] = 1876 A_ : int = config.max_speech_positions A_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: A_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) A_ : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) A_ : int = SpeechTaFeatureExtractor() A_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : Union[str, Any] = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
70
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple, _snake_case : List[str]=0.0_1, _snake_case : List[Any]=1_0_0_0 ) ->str: snake_case__ : List[str] = p_stop snake_case__ : str = max_length def __iter__( self : Optional[int] ) ->Dict: snake_case__ : int = 0 snake_case__ : List[Any] = False while not stop and count < self.max_length: yield count count += 1 snake_case__ : Dict = random.random() < self.p_stop class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : Optional[Any]=False, _snake_case : Any=True ) ->Tuple: snake_case__ : List[Any] = [ BatchSamplerShard(_snake_case, 2, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) for i in range(2 ) ] snake_case__ : List[Any] = [list(_snake_case ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_snake_case ) for shard in batch_sampler_shards], [len(_snake_case ) for e in expected] ) self.assertListEqual(_snake_case, _snake_case ) def lowercase_ ( self : Tuple ) ->Tuple: # Check the shards when the dataset is a round multiple of total batch size. snake_case__ : List[str] = BatchSampler(range(2_4 ), batch_size=3, drop_last=_snake_case ) snake_case__ : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) snake_case__ : Union[str, Any] = BatchSampler(range(2_4 ), batch_size=3, drop_last=_snake_case ) # Expected shouldn't change self.check_batch_sampler_shards(_snake_case, _snake_case ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case__ : List[Any] = BatchSampler(range(2_1 ), batch_size=3, drop_last=_snake_case ) snake_case__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) snake_case__ : Optional[int] = BatchSampler(range(2_1 ), batch_size=3, drop_last=_snake_case ) snake_case__ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case__ : int = BatchSampler(range(2_2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) snake_case__ : List[str] = BatchSampler(range(2_2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case__ : Union[str, Any] = BatchSampler(range(2_0 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) snake_case__ : Optional[int] = BatchSampler(range(2_0 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case ) # Check the shards when the dataset is very small. snake_case__ : Union[str, Any] = BatchSampler(range(2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_snake_case, _snake_case ) snake_case__ : Optional[int] = BatchSampler(range(2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [[], []] self.check_batch_sampler_shards(_snake_case, _snake_case ) def lowercase_ ( self : Optional[Any] ) ->Optional[int]: # Check the shards when the dataset is a round multiple of batch size. snake_case__ : int = BatchSampler(range(2_4 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) snake_case__ : int = BatchSampler(range(2_4 ), batch_size=4, drop_last=_snake_case ) # Expected shouldn't change self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size. snake_case__ : Tuple = BatchSampler(range(2_2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) snake_case__ : int = BatchSampler(range(2_2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case__ : Optional[Any] = BatchSampler(range(2_1 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) snake_case__ : Tuple = BatchSampler(range(2_1 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) # Check the shards when the dataset is very small. snake_case__ : str = BatchSampler(range(2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Any = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) snake_case__ : str = BatchSampler(range(2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : List[str] = [[], []] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case ) def lowercase_ ( self : Tuple ) ->Tuple: # Check the shards when the dataset is a round multiple of total batch size. snake_case__ : Dict = BatchSampler(range(2_4 ), batch_size=3, drop_last=_snake_case ) snake_case__ : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) snake_case__ : Union[str, Any] = BatchSampler(range(2_4 ), batch_size=3, drop_last=_snake_case ) # Expected shouldn't change self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case__ : str = BatchSampler(range(2_1 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) snake_case__ : Any = BatchSampler(range(2_1 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case__ : List[str] = BatchSampler(range(2_2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) snake_case__ : Tuple = BatchSampler(range(2_2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case__ : Any = BatchSampler(range(2_0 ), batch_size=3, drop_last=_snake_case ) snake_case__ : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) snake_case__ : str = BatchSampler(range(2_0 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) # Check the shards when the dataset is very small. snake_case__ : Union[str, Any] = BatchSampler(range(2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) snake_case__ : int = BatchSampler(range(2 ), batch_size=3, drop_last=_snake_case ) snake_case__ : List[Any] = [[], []] self.check_batch_sampler_shards(_snake_case, _snake_case, even_batches=_snake_case ) def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. snake_case__ : List[Any] = BatchSampler(range(2_4 ), batch_size=4, drop_last=_snake_case ) snake_case__ : int = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) snake_case__ : List[Any] = BatchSampler(range(2_4 ), batch_size=4, drop_last=_snake_case ) # Expected shouldn't change self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size. snake_case__ : int = BatchSampler(range(2_2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) snake_case__ : List[Any] = BatchSampler(range(2_2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : int = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case__ : Any = BatchSampler(range(2_1 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) snake_case__ : List[Any] = BatchSampler(range(2_1 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) # Check the shards when the dataset is very small. snake_case__ : int = BatchSampler(range(2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : Any = [[[0, 1]], []] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) snake_case__ : List[str] = BatchSampler(range(2 ), batch_size=4, drop_last=_snake_case ) snake_case__ : List[Any] = [[], []] self.check_batch_sampler_shards(_snake_case, _snake_case, split_batches=_snake_case, even_batches=_snake_case ) def lowercase_ ( self : List[Any] ) ->int: snake_case__ : List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] snake_case__ : List[str] = [BatchSamplerShard(_snake_case, 2, _snake_case, even_batches=_snake_case ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ), 3 ) self.assertEqual(len(batch_sampler_shards[1] ), 2 ) self.assertListEqual(list(batch_sampler_shards[0] ), [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ), [[3, 4], [9, 1_0, 1_1]] ) def lowercase_ ( self : Union[str, Any], _snake_case : Tuple, _snake_case : List[Any], _snake_case : Optional[Any], _snake_case : List[Any]=False, _snake_case : List[Any]=2, _snake_case : Dict=False ) ->Optional[int]: random.seed(_snake_case ) snake_case__ : Tuple = list(_snake_case ) snake_case__ : Dict = [ IterableDatasetShard( _snake_case, batch_size=_snake_case, drop_last=_snake_case, num_processes=_snake_case, process_index=_snake_case, split_batches=_snake_case, ) for i in range(_snake_case ) ] snake_case__ : Optional[int] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_snake_case ) iterable_dataset_lists.append(list(_snake_case ) ) snake_case__ : int = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case__ : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_snake_case ), len(_snake_case ) ) self.assertTrue(len(_snake_case ) % shard_batch_size == 0 ) snake_case__ : List[Any] = [] for idx in range(0, len(_snake_case ), _snake_case ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_snake_case ) < len(_snake_case ): reference += reference self.assertListEqual(_snake_case, reference[: len(_snake_case )] ) def lowercase_ ( self : Tuple ) ->Union[str, Any]: snake_case__ : List[Any] = 4_2 snake_case__ : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) # Edge case with a very small dataset snake_case__ : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) self.check_iterable_dataset_shards(_snake_case, _snake_case, batch_size=4, drop_last=_snake_case, split_batches=_snake_case ) def lowercase_ ( self : str ) ->Optional[int]: snake_case__ : List[str] = BatchSampler(range(1_6 ), batch_size=4, drop_last=_snake_case ) snake_case__ : List[Any] = SkipBatchSampler(_snake_case, 2 ) self.assertListEqual(list(_snake_case ), [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowercase_ ( self : List[str] ) ->str: snake_case__ : Optional[Any] = SkipDataLoader(list(range(1_6 ) ), batch_size=4, skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: snake_case__ : Optional[Any] = DataLoader(list(range(1_6 ) ), batch_size=4 ) snake_case__ : Union[str, Any] = skip_first_batches(_snake_case, num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowercase_ ( self : Optional[int] ) ->Any: snake_case__ : List[Any] = DataLoaderShard(list(range(1_6 ) ), batch_size=4 ) for idx, _ in enumerate(_snake_case ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_snake_case ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) def lowercase_ ( self : Tuple ) ->Any: Accelerator() snake_case__ : List[str] = DataLoaderDispatcher(range(1_6 ), batch_size=4 ) for idx, _ in enumerate(_snake_case ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_snake_case ): self.assertEqual(dataloader.end_of_dataloader, idx == 3 )
277
"""simple docstring""" def _snake_case ( lowercase__ ): stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowerCamelCase, _lowerCamelCase : Optional[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowerCamelCase : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
96
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Any = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : List[str] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ : List[str] = TextStreamer(_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Dict = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Dict = -1 A_ : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Optional[int] = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : str = tokenizer.decode(greedy_ids[0] ) A_ : int = TextIteratorStreamer(_lowerCamelCase ) A_ : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[Any] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() A_ : List[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : int ): """simple docstring""" A_ : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : List[str] = -1 A_ : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : Tuple = model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase ) A_ : Tuple = greedy_ids[:, input_ids.shape[1] :] A_ : Tuple = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ : Any = TextStreamer(_lowerCamelCase , skip_prompt=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=10 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ : Any = cs.out[:-1] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) A_ : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_lowerCamelCase ) A_ : List[Any] = -1 A_ : Union[str, Any] = torch.ones((1, 5) , device=_lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ : List[Any] = TextStreamer(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) model.generate(_lowerCamelCase , max_new_tokens=1 , do_sample=_lowerCamelCase , streamer=_lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ : List[str] = cs.out[:-1] # Remove the final "\n" A_ : List[Any] = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) A_ : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_lowerCamelCase ) A_ : Union[str, Any] = -1 A_ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_lowerCamelCase ) A_ : List[str] = TextIteratorStreamer(_lowerCamelCase , timeout=0.0_01 ) A_ : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} A_ : List[str] = Thread(target=model.generate , kwargs=_lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_lowerCamelCase ): A_ : str = '''''' for new_text in streamer: streamer_text += new_text
353
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ = logging.get_logger(__name__) snake_case__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class UpperCamelCase_ (a__, a__ ): """simple docstring""" _lowerCAmelCase = 'swin' _lowerCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _lowerCamelCase : Optional[Any]=224 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : Tuple=96 , _lowerCamelCase : List[Any]=[2, 2, 6, 2] , _lowerCamelCase : List[str]=[3, 6, 12, 24] , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : Optional[int]=4.0 , _lowerCamelCase : List[str]=True , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=0.02 , _lowerCamelCase : Optional[Any]=1E-5 , _lowerCamelCase : Any=32 , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : Optional[int] = image_size A_ : Optional[int] = patch_size A_ : Optional[int] = num_channels A_ : Any = embed_dim A_ : List[Any] = depths A_ : Any = len(_lowerCamelCase ) A_ : List[Any] = num_heads A_ : Tuple = window_size A_ : Tuple = mlp_ratio A_ : Dict = qkv_bias A_ : List[str] = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : Any = drop_path_rate A_ : List[Any] = hidden_act A_ : Tuple = use_absolute_embeddings A_ : int = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : str = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) A_ : str = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ ,A_ : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names ) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = version.parse('1.11' ) @property def _a ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _a ( self : Union[str, Any] ): """simple docstring""" return 1E-4
4
0
from collections.abc import Iterable from typing import Any class _A : def __init__( self , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = value SCREAMING_SNAKE_CASE_ : Node | None = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"{self.value}": (self.left, self.right)} , indent=1 ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = root def __str__( self ): """simple docstring""" return str(self.root ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_SCREAMING_SNAKE_CASE ): # If it is the right children SCREAMING_SNAKE_CASE_ : Dict = new_children else: SCREAMING_SNAKE_CASE_ : List[str] = new_children else: SCREAMING_SNAKE_CASE_ : Dict = new_children def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase ( self ): """simple docstring""" return self.root is None def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Node(_SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE_ : List[Any] = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE_ : Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE_ : Any = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE_ : Any = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE_ : List[Any] = new_node break else: SCREAMING_SNAKE_CASE_ : List[str] = parent_node.right SCREAMING_SNAKE_CASE_ : Optional[Any] = parent_node def UpperCAmelCase ( self , *_SCREAMING_SNAKE_CASE ): """simple docstring""" for value in values: self.__insert(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE_ : int = node.left if value < node.value else node.right return node def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE_ : Any = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = node.right return node def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if node is None: SCREAMING_SNAKE_CASE_ : List[Any] = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = self.root while node.left is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.left return node def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.search(_SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_SCREAMING_SNAKE_CASE , node.left ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE_ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if node: self.inorder(_SCREAMING_SNAKE_CASE , node.left ) arr.append(node.value ) self.inorder(_SCREAMING_SNAKE_CASE , node.right ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : list[int] = [] self.inorder(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [] if curr_node is not None: SCREAMING_SNAKE_CASE_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) SCREAMING_SNAKE_CASE_ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(a ) # Prints all the elements of the list in order traversal print(a ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(a ) print(a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
253
import math def A_ ( a , a = 0 , a = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = end or len(a ) for i in range(a , a ): SCREAMING_SNAKE_CASE_ : List[Any] = i SCREAMING_SNAKE_CASE_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: SCREAMING_SNAKE_CASE_ : Tuple = array[temp_index - 1] temp_index -= 1 SCREAMING_SNAKE_CASE_ : str = temp_index_value return array def A_ ( a , a , a ): # Max Heap """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = index SCREAMING_SNAKE_CASE_ : str = 2 * index + 1 # Left Node SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: SCREAMING_SNAKE_CASE_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: SCREAMING_SNAKE_CASE_ : Any = right_index if largest != index: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[largest], array[index] heapify(a , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(a ) for i in range(n // 2 , -1 , -1 ): heapify(a , a , a ) for i in range(n - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[0], array[i] heapify(a , 0 , a ) return array def A_ ( a , a , a , a ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def A_ ( a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = low SCREAMING_SNAKE_CASE_ : Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = array[j], array[i] i += 1 def A_ ( a ): """simple docstring""" if len(a ) == 0: return array SCREAMING_SNAKE_CASE_ : Any = 2 * math.ceil(math.loga(len(a ) ) ) SCREAMING_SNAKE_CASE_ : int = 1_6 return intro_sort(a , 0 , len(a ) , a , a ) def A_ ( a , a , a , a , a ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a ) max_depth -= 1 SCREAMING_SNAKE_CASE_ : Optional[int] = median_of_a(a , a , start + ((end - start) // 2) + 1 , end - 1 ) SCREAMING_SNAKE_CASE_ : Dict = partition(a , a , a , a ) intro_sort(a , a , a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = p return insertion_sort(a , a , a ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] = input('Enter numbers separated by a comma : ').strip() lowerCAmelCase : Optional[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
253
1
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _A ( ): """simple docstring""" __lowercase =9 __lowercase =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowercase =kruskal(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCAmelCase ) == sorted(_lowerCAmelCase )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
48
0