code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase = '''src/diffusers''' lowerCAmelCase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase = spec.loader.load_module() def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[Any]: '''simple docstring''' return line.startswith(lowercase__ ) or len(lowercase__ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowercase__ ) is not None def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= object_name.split('.' ) __lowercase= 0 # First let's find the module where our object lives. __lowercase= parts[i] while i < len(lowercase__ ) and not os.path.isfile(os.path.join(lowercase__ , F'{module}.py' ) ): i += 1 if i < len(lowercase__ ): __lowercase= os.path.join(lowercase__ , parts[i] ) if i >= len(lowercase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowercase__ , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase= f.readlines() # Now let's find the class / func in the code! __lowercase= '' __lowercase= 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase__ ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __lowercase= line_index while line_index < len(lowercase__ ) and _should_continue(lines[line_index] , lowercase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase= lines[start_index:line_index] return "".join(lowercase__ ) lowerCAmelCase = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase = re.compile(R'''<FILL\s+[^>]*>''') def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= code.split('\n' ) __lowercase= 0 while idx < len(lowercase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase__ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= len(get_indent(lowercase__ ) ) > 0 if has_indent: __lowercase= F'class Bla:\n{code}' __lowercase= black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowercase__ ) __lowercase= black.format_str(lowercase__ , mode=lowercase__ ) __lowercase, __lowercase= style_docstrings_in_code(lowercase__ ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCamelCase( lowercase__ , lowercase__=False ) -> List[Any]: '''simple docstring''' with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase__ ): __lowercase= _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __lowercase, __lowercase, __lowercase= search.groups() __lowercase= find_code_in_diffusers(lowercase__ ) __lowercase= get_indent(lowercase__ ) __lowercase= line_index + 1 if indent == theoretical_indent else line_index + 2 __lowercase= theoretical_indent __lowercase= start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __lowercase= True while line_index < len(lowercase__ ) and should_continue: line_index += 1 if line_index >= len(lowercase__ ): break __lowercase= lines[line_index] __lowercase= _should_continue(lowercase__ , lowercase__ ) and re.search(F'^{indent}# End copy' , lowercase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase= lines[start_index:line_index] __lowercase= ''.join(lowercase__ ) # Remove any nested `Copied from` comments to avoid circular copies __lowercase= [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowercase__ ) is None] __lowercase= '\n'.join(lowercase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase__ ) > 0: __lowercase= replace_pattern.replace('with' , '' ).split(',' ) __lowercase= [_re_replace_pattern.search(lowercase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue __lowercase, __lowercase, __lowercase= pattern.groups() __lowercase= re.sub(lowercase__ , lowercase__ , lowercase__ ) if option.strip() == "all-casing": __lowercase= re.sub(obja.lower() , obja.lower() , lowercase__ ) __lowercase= re.sub(obja.upper() , obja.upper() , lowercase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __lowercase= blackify(lines[start_index - 1] + theoretical_code ) __lowercase= theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __lowercase= lines[:start_index] + [theoretical_code] + lines[line_index:] __lowercase= start_index + 1 if overwrite and len(lowercase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowercase__ ) return diffs def _lowerCamelCase( lowercase__ = False ) -> Optional[int]: '''simple docstring''' __lowercase= glob.glob(os.path.join(lowercase__ , '**/*.py' ) , recursive=lowercase__ ) __lowercase= [] for filename in all_files: __lowercase= is_copy_consistent(lowercase__ , lowercase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowercase__ ) > 0: __lowercase= '\n'.join(lowercase__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
295
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class A ( A_ ): UpperCamelCase_ : Dict =VOCAB_FILES_NAMES UpperCamelCase_ : Dict =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[str] =TaTokenizer UpperCamelCase_ : List[int] =[] def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="</s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase=1_0_0 , lowerCAmelCase=None , **lowerCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase= [f'<extra_id_{i}>' for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowercase= len(set(filter(lambda lowerCAmelCase : bool('extra_id_' in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= vocab_file __lowercase= False if not self.vocab_file else True __lowercase= extra_ids @staticmethod def _A (lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowercase= TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowerCAmelCase , ) return max_model_length def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase= os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowercase= token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _A (self ): return list( set(filter(lambda lowerCAmelCase : bool(re.search(r'<extra_id_\d+>' , lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _A (self ): return [self.convert_tokens_to_ids(lowerCAmelCase ) for token in self.get_sentinel_tokens()]
295
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True ): model.train() _lowercase : List[str] = model(__UpperCAmelCase ) _lowercase : int = F.mse_loss(__UpperCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=False ): set_seed(42 ) _lowercase : Union[str, Any] = RegressionModel() _lowercase : int = deepcopy(__UpperCAmelCase ) _lowercase : List[str] = RegressionDataset(length=80 ) _lowercase : Union[str, Any] = DataLoader(__UpperCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: _lowercase : Optional[int] = AdamW(params=model.parameters() , lr=1E-3 ) _lowercase : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) _lowercase : Optional[int] = LambdaLR(__UpperCAmelCase , lr_lambda=lambda __UpperCAmelCase : epoch**0.6_5 ) _lowercase : Optional[Any] = LambdaLR(__UpperCAmelCase , lr_lambda=lambda __UpperCAmelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: _lowercase : Any = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _lowercase : Tuple = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # Test when on a single CPU or GPU that the context manager does nothing _lowercase : str = get_training_setup(__UpperCAmelCase ) # Use a single batch _lowercase : Optional[int] = next(iter(__UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowercase : int = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: # Sync grads step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Dict = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # Test on distributed setup that context manager behaves properly _lowercase : Optional[int] = get_training_setup(__UpperCAmelCase ) # Use a single batch _lowercase : Dict = next(iter(__UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _lowercase : str = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: # Sync grads step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Any = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=False , __UpperCAmelCase=False ): _lowercase : Tuple = Accelerator( split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowercase : Any = get_training_setup(__UpperCAmelCase ) for iteration, batch in enumerate(__UpperCAmelCase ): _lowercase : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model _lowercase : Dict = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__UpperCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) _lowercase : Tuple = ddp_input[torch.randperm(len(__UpperCAmelCase ) )] GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=False , __UpperCAmelCase=False ): _lowercase : Union[str, Any] = Accelerator( split_batches=__UpperCAmelCase , dispatch_batches=__UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _lowercase : Union[str, Any] = get_training_setup(__UpperCAmelCase , __UpperCAmelCase ) for iteration, batch in enumerate(__UpperCAmelCase ): _lowercase : Any = batch.values() # Gather the distributed inputs and targs for the base model _lowercase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) _lowercase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__UpperCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__UpperCAmelCase ): step_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" _lowercase : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__UpperCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[Any] = Accelerator() _lowercase : int = RegressionDataset(length=80 ) _lowercase : Tuple = DataLoader(__UpperCAmelCase , batch_size=16 ) _lowercase : Optional[Any] = RegressionDataset(length=96 ) _lowercase : List[str] = DataLoader(__UpperCAmelCase , batch_size=16 ) _lowercase : Dict = accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCAmelCase ) if iteration < len(__UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCAmelCase ) if batch_num < len(__UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __SCREAMING_SNAKE_CASE ( ): _lowercase : str = Accelerator() _lowercase : Optional[Any] = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(__UpperCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(__UpperCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__UpperCAmelCase , __UpperCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """glpn""" def __init__( self :Dict , lowerCamelCase_ :Any=3 , lowerCamelCase_ :List[Any]=4 , lowerCamelCase_ :Optional[Any]=[2, 2, 2, 2] , lowerCamelCase_ :int=[8, 4, 2, 1] , lowerCamelCase_ :Dict=[32, 64, 160, 256] , lowerCamelCase_ :Dict=[7, 3, 3, 3] , lowerCamelCase_ :int=[4, 2, 2, 2] , lowerCamelCase_ :int=[1, 2, 5, 8] , lowerCamelCase_ :Union[str, Any]=[4, 4, 4, 4] , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :List[Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Union[str, Any]=0.02 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :Dict=1e-6 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :List[str]=10 , lowerCamelCase_ :int=-1 , **lowerCamelCase_ :List[Any] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Any =num_channels lowerCamelCase__ : str =num_encoder_blocks lowerCamelCase__ : Optional[int] =depths lowerCamelCase__ : Optional[int] =sr_ratios lowerCamelCase__ : int =hidden_sizes lowerCamelCase__ : Optional[Any] =patch_sizes lowerCamelCase__ : List[Any] =strides lowerCamelCase__ : Optional[Any] =mlp_ratios lowerCamelCase__ : int =num_attention_heads lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : Dict =attention_probs_dropout_prob lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : List[str] =drop_path_rate lowerCamelCase__ : List[Any] =layer_norm_eps lowerCamelCase__ : str =decoder_hidden_size lowerCamelCase__ : Union[str, Any] =max_depth lowerCamelCase__ : Dict =head_in_index
126
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""audio_values""", """audio_mask"""] def __init__( self :List[str] , lowerCamelCase_ :List[str]=2_048 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=[16, 16] , lowerCamelCase_ :str=128 , lowerCamelCase_ :Union[str, Any]=44_100 , lowerCamelCase_ :Optional[Any]=86 , lowerCamelCase_ :Dict=2_048 , lowerCamelCase_ :Union[str, Any]=0.0 , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : List[str] =spectrogram_length lowerCamelCase__ : Dict =num_channels lowerCamelCase__ : List[Any] =patch_size lowerCamelCase__ : Union[str, Any] =feature_size // self.patch_size[1] lowerCamelCase__ : int =n_fft lowerCamelCase__ : List[str] =sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : str =sampling_rate lowerCamelCase__ : int =padding_value lowerCamelCase__ : Dict =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCamelCase_ , norm='slaney' , mel_scale='slaney' , ).T def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :np.array ): """simple docstring""" lowerCamelCase__ : List[Any] =spectrogram( lowerCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowerCamelCase__ : Any =log_spec[:, :-1] lowerCamelCase__ : Tuple =log_spec - 20.0 lowerCamelCase__ : List[str] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self :Optional[Any] , lowerCamelCase_ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :Optional[bool] = True , lowerCamelCase_ :Optional[int] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Tuple , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCamelCase__ : Dict =isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowerCamelCase__ : Union[str, Any] =is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : Optional[Any] =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ): lowerCamelCase__ : Optional[Any] =np.asarray(lowerCamelCase_ , dtype=np.floataa ) elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Union[str, Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : List[str] =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : Any =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase_ ): lowerCamelCase__ : Dict =[np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Optional[Any] =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Any =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Union[str, Any] =np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : str =np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Dict =padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ : Union[str, Any] =audio_features[i] lowerCamelCase__ : Union[str, Any] =feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : int ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowerCamelCase__ : Tuple ={'audio_values': padded_audio_features} lowerCamelCase__ : Union[str, Any] =BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) return encoded_inputs
126
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCamelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def _a (self ): """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _a (self ): """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _a (self ): """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = torch.arange(self.height * self.width ) UpperCAmelCase__ : Union[str, Any] = torch.stack( [ pixel_indices % self.width, torch.div(_lowerCamelCase , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def _a (self ): """simple docstring""" UpperCAmelCase__ , *UpperCAmelCase__ : Any = self.shape UpperCAmelCase__ : Any = int(np.prod(_lowerCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = self.get_image_coords() UpperCAmelCase__ : Optional[int] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase__ : int = self.get_camera_rays(_lowerCamelCase ) UpperCAmelCase__ : Any = rays.view(_lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__ : str = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase__ : str = coords.view(_lowerCamelCase , -1 , 2 ) UpperCAmelCase__ : Optional[Any] = self.resolution() UpperCAmelCase__ : List[Any] = self.fov() UpperCAmelCase__ : Union[str, Any] = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase__ : List[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase__ : Tuple = fracs.view(_lowerCamelCase , -1 , 2 ) UpperCAmelCase__ : List[Any] = ( self.z.view(_lowerCamelCase , 1 , 3 ) + self.x.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase__ : Any = directions / directions.norm(dim=-1 , keepdim=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_lowerCamelCase , *_lowerCamelCase , 2 , 3 ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_lowerCamelCase , height=_lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def a__ ( lowerCAmelCase ) -> DifferentiableProjectiveCamera: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Any = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase__ : int = np.array([np.sin(lowerCAmelCase ), np.cos(lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase__ : List[Any] = -z * 4 UpperCAmelCase__ : Optional[int] = np.array([np.cos(lowerCAmelCase ), -np.sin(lowerCAmelCase ), 0.0] ) UpperCAmelCase__ : str = np.cross(lowerCAmelCase , lowerCAmelCase ) origins.append(lowerCAmelCase ) xs.append(lowerCAmelCase ) ys.append(lowerCAmelCase ) zs.append(lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase , axis=0 ) ).float() , width=lowerCAmelCase , height=lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase )) , )
166
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ): """simple docstring""" UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : str = scope UpperCAmelCase__ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 2 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[str] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.type_sequence_label_size UpperCAmelCase__ : List[str] = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : int = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Tuple = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): """simple docstring""" UpperCAmelCase__ : Optional[int] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a (self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : int = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Tuple = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase__ : List[str] = problem_type["""title"""] UpperCAmelCase__ : List[Any] = problem_type["""num_labels"""] UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase__ : Optional[int] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCAmelCase__ : str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _a (self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a (self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : int = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_lowerCamelCase ) # verify the logits UpperCAmelCase__ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Dict = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) UpperCAmelCase__ : Dict = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase__ : int = model(_lowerCamelCase )
166
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase__ : a__ : str = None def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Union[str, Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , "feat_extract.json" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE ) snake_case : Tuple = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Any = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE )
148
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __A = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCamelCase__ ( lowercase__ : Any ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase__ ) def UpperCamelCase__ ( lowercase__ : Optional[int] ): from transformers.testing_utils import pytest_terminal_summary_main snake_case : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(lowercase__ , id=lowercase__ )
148
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : str = "audio-spectrogram-transformer" def __init__(self : List[str] , snake_case__ : int=7_68 , snake_case__ : Optional[Any]=12 , snake_case__ : int=12 , snake_case__ : List[str]=30_72 , snake_case__ : str="gelu" , snake_case__ : List[str]=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Dict=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Optional[int]=16 , snake_case__ : int=True , snake_case__ : Dict=10 , snake_case__ : List[Any]=10 , snake_case__ : Dict=10_24 , snake_case__ : Tuple=1_28 , **snake_case__ : List[Any] , ) -> Any: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Optional[int] = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[int] = intermediate_size snake_case : Tuple = hidden_act snake_case : str = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : Dict = patch_size snake_case : Optional[Any] = qkv_bias snake_case : int = frequency_stride snake_case : str = time_stride snake_case : Optional[int] = max_length snake_case : Optional[int] = num_mel_bins
352
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case : Tuple = ksize + 1 snake_case : int = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCamelCase ): for x in range(__lowerCamelCase ): # distance from center snake_case : int = x - ksize // 2 snake_case : Union[str, Any] = y - ksize // 2 # degree to radiant snake_case : List[str] = theta / 180 * np.pi snake_case : List[Any] = np.cos(_theta ) snake_case : Dict = np.sin(_theta ) # get kernel x snake_case : Optional[int] = cos_theta * px + sin_theta * py # get kernel y snake_case : str = -sin_theta * px + cos_theta * py # fill kernel snake_case : Any = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase = out / out.max() * 2_55 __lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
10
0
class a : def __init__( self :Optional[Any] ,__lowercase :int ): snake_case__ : Optional[int] = size snake_case__ : str = [0] * size snake_case__ : List[Any] = [0] * size @staticmethod def __lowerCamelCase ( __lowercase :int ): return index | (index + 1) @staticmethod def __lowerCamelCase ( __lowercase :int ): return (index & (index + 1)) - 1 def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :int ): snake_case__ : Tuple = value while index < self.size: snake_case__ : Optional[Any] = self.get_prev(__lowercase ) + 1 if current_left_border == index: snake_case__ : Optional[Any] = value else: snake_case__ : Any = max(__lowercase ,__lowercase ,__lowercase ) snake_case__ : Any = self.get_next(__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :int ,__lowercase :int ): right -= 1 # Because of right is exclusive snake_case__ : Union[str, Any] = 0 while left <= right: snake_case__ : int = self.get_prev(__lowercase ) if left <= current_left: snake_case__ : Dict = max(__lowercase ,self.tree[right] ) snake_case__ : Optional[Any] = current_left else: snake_case__ : Dict = max(__lowercase ,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
230
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__ = logging.getLogger(__name__) @dataclass class a : __lowerCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase : bool = field(default=__lowerCamelCase , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a : __lowerCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) __lowerCAmelCase : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : bool = field( default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) snake_case__ : int = import_module('''tasks''' ) try: snake_case__ : Optional[int] = getattr(__lowerCAmelCase , model_args.task_type ) snake_case__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task snake_case__ : Optional[int] = token_classification_task.get_labels(data_args.labels ) snake_case__ : Dict[int, str] = dict(enumerate(__lowerCAmelCase ) ) snake_case__ : Optional[Any] = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , cache_dir=model_args.cache_dir , ) snake_case__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) snake_case__ : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case__ : Dict = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case__ : Optional[Any] = ( TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowerCAmelCase , __lowerCAmelCase ) -> Tuple[List[int], List[int]]: snake_case__ : Any = np.argmax(__lowerCAmelCase , axis=2 ) snake_case__ , snake_case__ : List[Any] = preds.shape snake_case__ : List[Any] = [[] for _ in range(__lowerCAmelCase )] snake_case__ : int = [[] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowerCAmelCase ) -> Dict: snake_case__ , snake_case__ : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), "precision": precision_score(__lowerCAmelCase , __lowerCAmelCase ), "recall": recall_score(__lowerCAmelCase , __lowerCAmelCase ), "f1": fa_score(__lowerCAmelCase , __lowerCAmelCase ), } # Data collator snake_case__ : Any = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case__ : Tuple = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Any = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ : Tuple = trainer.evaluate() snake_case__ : Optional[Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __lowerCAmelCase , __lowerCAmelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__lowerCAmelCase ) # Predict if training_args.do_predict: snake_case__ : Optional[Any] = TokenClassificationDataset( token_classification_task=__lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=__lowerCAmelCase , labels=__lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) snake_case__ , snake_case__ , snake_case__ : List[str] = trainer.predict(__lowerCAmelCase ) snake_case__ , snake_case__ : int = align_predictions(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[int] = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __lowerCAmelCase , __lowerCAmelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions snake_case__ : Any = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return results def _lowerCAmelCase ( __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
230
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :List[str] ) -> str: UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowercase_ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) UpperCAmelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> List[str]: UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowercase_ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) UpperCAmelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase = TextIteratorStreamer(lowercase_ ) UpperCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() UpperCAmelCase = '' for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> List[Any]: UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowercase_ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) UpperCAmelCase = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowercase_ , skip_prompt=lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase = AutoTokenizer.from_pretrained('distilgpt2' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowercase_ ) UpperCAmelCase = -1 UpperCAmelCase = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ ) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase = cs.out[:-1] # Remove the final "\n" UpperCAmelCase = tokenizer(lowercase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> str: UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowercase_ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) UpperCAmelCase = TextIteratorStreamer(lowercase_ , timeout=0.001 ) UpperCAmelCase = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_ ): UpperCAmelCase = '' for new_text in streamer: streamer_text += new_text
181
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( lowercase_ ): random.seed(lowercase_ ) np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # ^^ safe to call this function even if cuda is not available class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :Iterable[torch.nn.Parameter] , lowercase_ :float = 0.9999 , lowercase_ :float = 0.0 , lowercase_ :int = 0 , lowercase_ :bool = False , lowercase_ :Union[float, int] = 1.0 , lowercase_ :Union[float, int] = 2 / 3 , lowercase_ :Optional[Any] = None , lowercase_ :Dict[str, Any] = None , **lowercase_ :Dict , ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCAmelCase = True if kwargs.get('max_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['max_value'] if kwargs.get('min_value' , lowercase_ ) is not None: UpperCAmelCase = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) UpperCAmelCase = kwargs['min_value'] UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('device' , lowercase_ ) is not None: UpperCAmelCase = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs['device'] ) UpperCAmelCase = None UpperCAmelCase = decay UpperCAmelCase = min_decay UpperCAmelCase = update_after_step UpperCAmelCase = use_ema_warmup UpperCAmelCase = inv_gamma UpperCAmelCase = power UpperCAmelCase = 0 UpperCAmelCase = None # set in `step()` UpperCAmelCase = model_cls UpperCAmelCase = model_config @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :Union[str, Any] , lowercase_ :Any ) -> "EMAModel": UpperCAmelCase , UpperCAmelCase = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) UpperCAmelCase = model_cls.from_pretrained(lowercase_ ) UpperCAmelCase = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCAmelCase = self.model_cls.from_config(self.model_config ) UpperCAmelCase = self.state_dict() state_dict.pop('shadow_params' , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :int ) -> float: UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCAmelCase = (1 + step) / (10 + step) UpperCAmelCase = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay UpperCAmelCase = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(lowercase_ , torch.nn.Module ): UpperCAmelCase = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , lowercase_ , standard_warn=lowercase_ , ) UpperCAmelCase = parameters.parameters() UpperCAmelCase = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCAmelCase = self.get_decay(self.optimization_step ) UpperCAmelCase = decay UpperCAmelCase = 1 - decay UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCAmelCase = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple=None , lowercase_ :Union[str, Any]=None ) -> None: UpperCAmelCase = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def UpperCAmelCase__ ( self :Union[str, Any] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCAmelCase = None def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :dict ) -> None: UpperCAmelCase = copy.deepcopy(lowercase_ ) UpperCAmelCase = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCAmelCase = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError('Invalid min_decay' ) UpperCAmelCase = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError('Invalid optimization_step' ) UpperCAmelCase = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError('Invalid update_after_step' ) UpperCAmelCase = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCAmelCase = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCAmelCase = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) UpperCAmelCase = state_dict.get('shadow_params' , lowercase_ ) if shadow_params is not None: UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
181
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A : list[int] = [ord(letter) for letter in string.ascii_lowercase] A : set[int] = {ord(char) for char in VALID_CHARS} A : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _A : list[int] , _A : tuple[int, ...] ): """simple docstring""" lowerCamelCase__ : str = "" lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for keychar, cipherchar in zip(cycle(_A ) , _A ): lowerCamelCase__ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_A ) return decoded def lowercase_ ( _A : list[int] ): """simple docstring""" lowerCamelCase__ : list[str] = [] for key in product(_A , repeat=3 ): lowerCamelCase__ : int = try_key(_A , _A ) if encoded is not None: possibles.append(_A ) return possibles def lowercase_ ( _A : list[str] , _A : str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _A : str = "p059_cipher.txt" ): """simple docstring""" lowerCamelCase__ : list[int] lowerCamelCase__ : list[str] lowerCamelCase__ : str lowerCamelCase__ : str lowerCamelCase__ : str = Path(_A ).parent.joinpath(_A ).read_text(encoding="utf-8" ) lowerCamelCase__ : int = [int(_A ) for number in data.strip().split("," )] lowerCamelCase__ : Dict = filter_valid_chars(_A ) for common_word in COMMON_WORDS: lowerCamelCase__ : Tuple = filter_common_word(_A , _A ) if len(_A ) == 1: break lowerCamelCase__ : List[Any] = possibles[0] return sum(ord(_A ) for char in decoded_text ) if __name__ == "__main__": print(f'{solution() = }')
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( __snake_case : Union[str, Any] , __snake_case : Any ) -> List[str]: """simple docstring""" assert isinstance(__snake_case , __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def a_ ( __snake_case : Dict , __snake_case : Any , __snake_case : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =features.copy() if features else default_expected_features lowerCamelCase_ =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ =TextDatasetReader(__snake_case , features=__snake_case , cache_dir=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case , split=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def a_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if issubclass(__snake_case , __snake_case ): lowerCamelCase_ =text_path elif issubclass(__snake_case , __snake_case ): lowerCamelCase_ =[text_path] lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_text_dataset(__snake_case , __snake_case ) def a_ ( __snake_case : List[str] , __snake_case : int , __snake_case : str=("train",) ) -> Dict: """simple docstring""" assert isinstance(__snake_case , __snake_case ) for split in splits: lowerCamelCase_ =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def a_ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ =TextDatasetReader({'''train''': text_path} , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def a_ ( __snake_case : str , __snake_case : Dict , __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =features.copy() if features else default_expected_features lowerCamelCase_ =( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ =TextDatasetReader({'''train''': text_path} , features=__snake_case , cache_dir=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def a_ ( __snake_case : int , __snake_case : Dict , __snake_case : Any ) -> List[str]: """simple docstring""" if split: lowerCamelCase_ ={split: text_path} else: lowerCamelCase_ ='''train''' lowerCamelCase_ ={'''train''': text_path, '''test''': text_path} lowerCamelCase_ =tmp_path / '''cache''' lowerCamelCase_ ={'''text''': '''string'''} lowerCamelCase_ =TextDatasetReader(__snake_case , cache_dir=__snake_case ).read() _check_text_datasetdict(__snake_case , __snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
359
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : List[str] = logging.get_logger(__name__) a_ : Optional[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(lowerCamelCase__ )} ) lowercase : str =field( default=lowerCamelCase__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowercase : int =field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : int =field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowercase : int =field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowercase : int =field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowercase : float =field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowercase : int =field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowercase : int =field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[Any] ='train' lowercase : Any ='dev' class __UpperCamelCase ( lowerCamelCase__ ): lowercase : SquadDataTrainingArguments lowercase : List[SquadFeatures] lowercase : Split lowercase : bool def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = Split.train, lowerCAmelCase = False, lowerCAmelCase = None, lowerCAmelCase = "pt", ): """simple docstring""" lowerCamelCase_ =args lowerCamelCase_ =is_language_sensitive lowerCamelCase_ =SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase, lowerCAmelCase ): try: lowerCamelCase_ =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) lowerCamelCase_ =mode # Load data features from cache or dataset file lowerCamelCase_ ='''v2''' if args.version_2_with_negative else '''v1''' lowerCamelCase_ =os.path.join( cache_dir if cache_dir is not None else args.data_dir, f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ =cached_features_file + '''.lock''' with FileLock(lowerCAmelCase ): if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase_ =time.time() lowerCamelCase_ =torch.load(lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ =self.old_features['''features'''] lowerCamelCase_ =self.old_features.get('''dataset''', lowerCAmelCase ) lowerCamelCase_ =self.old_features.get('''examples''', lowerCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: lowerCamelCase_ =self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ =self.processor.get_train_examples(args.data_dir ) lowerCamelCase_, lowerCamelCase_ =squad_convert_examples_to_features( examples=self.examples, tokenizer=lowerCAmelCase, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowerCAmelCase, ) lowerCamelCase_ =time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples}, lowerCAmelCase, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.features[i] lowerCamelCase_ =torch.tensor(feature.input_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.attention_mask, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.token_type_ids, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.cls_index, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.p_mask, dtype=torch.float ) lowerCamelCase_ =torch.tensor(feature.is_impossible, dtype=torch.float ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ =torch.tensor(feature.start_position, dtype=torch.long ) lowerCamelCase_ =torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
6
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCamelCase = Lock() def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __lowercase =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __lowercase =min(_lowerCAmelCase , _lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __lowercase =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __lowercase =max(_lowerCAmelCase , _lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[] __lowercase =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __lowercase =Pipe() __lowercase =Pipe() process_array_.append( Process( target=_lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __lowercase =temp_rs __lowercase =temp_rr for i in range(1 , len(_lowerCAmelCase ) - 1 ): __lowercase =Pipe() __lowercase =Pipe() process_array_.append( Process( target=_lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __lowercase =temp_rs __lowercase =temp_rr process_array_.append( Process( target=_lowerCAmelCase , args=( len(_lowerCAmelCase ) - 1, arr[len(_lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowerCAmelCase ) ): __lowercase =result_pipe[p][0].recv() process_array_[p].join() return arr def _A ( ): """simple docstring""" __lowercase =list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_lowerCAmelCase ) __lowercase =odd_even_transposition(_lowerCAmelCase ) print('Sorted List\n' ) print(*_lowerCAmelCase ) if __name__ == "__main__": main()
166
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if (ksize % 2) == 0: __lowercase =ksize + 1 __lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): # distance from center __lowercase =x - ksize // 2 __lowercase =y - ksize // 2 # degree to radiant __lowercase =theta / 180 * np.pi __lowercase =np.cos(_theta ) __lowercase =np.sin(_theta ) # get kernel x __lowercase =cos_theta * px + sin_theta * py # get kernel y __lowercase =-sin_theta * px + cos_theta * py # fill kernel __lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase = out / out.max() * 255 lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
166
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE : Tuple = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def UpperCamelCase_( lowerCamelCase_ ): _lowercase : Union[str, Any] = EfficientNetConfig() _lowercase : Any = CONFIG_MAP[model_name]['hidden_dim'] _lowercase : Any = CONFIG_MAP[model_name]['width_coef'] _lowercase : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : Tuple = CONFIG_MAP[model_name]['dropout_rate'] _lowercase : Dict = CONFIG_MAP[model_name]['dw_padding'] _lowercase : str = 'huggingface/label-files' _lowercase : Optional[Any] = 'imagenet-1k-id2label.json' _lowercase : List[Any] = 1000 _lowercase : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : int = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_( ): _lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def UpperCamelCase_( lowerCamelCase_ ): _lowercase : Tuple = CONFIG_MAP[model_name]['image_size'] _lowercase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCamelCase_ , ) return preprocessor def UpperCamelCase_( lowerCamelCase_ ): _lowercase : Tuple = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _lowercase : Tuple = sorted(set(lowerCamelCase_ ) ) _lowercase : List[Any] = len(lowerCamelCase_ ) _lowercase : List[str] = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} _lowercase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _lowercase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _lowercase : Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: _lowercase : str = 'efficientnet.' + item[1] _lowercase : Optional[Any] = 'classifier.weight' _lowercase : List[str] = 'classifier.bias' return key_mapping def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for key, value in tf_params.items(): if "normalization" in key: continue _lowercase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _lowercase : Dict = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _lowercase : Tuple = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: _lowercase : List[str] = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Any = model_classes[model_name]( include_top=lowerCamelCase_ , weights='imagenet' , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation='softmax' , ) _lowercase : int = original_model.trainable_variables _lowercase : Dict = original_model.non_trainable_variables _lowercase : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _lowercase : int = param.numpy() _lowercase : int = list(tf_params.keys() ) # Load HuggingFace model _lowercase : int = get_efficientnet_config(lowerCamelCase_ ) _lowercase : List[str] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() _lowercase : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _lowercase : Optional[int] = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image _lowercase : Optional[Any] = convert_image_processor(lowerCamelCase_ ) _lowercase : Optional[Any] = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _lowercase : Any = hf_model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.logits.detach().numpy() # Original model inference _lowercase : List[Any] = False _lowercase : List[Any] = CONFIG_MAP[model_name]['image_size'] _lowercase : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _lowercase : Optional[Any] = image.img_to_array(lowerCamelCase_ ) _lowercase : Any = np.expand_dims(lowerCamelCase_ , axis=0 ) _lowercase : Optional[int] = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) _lowercase : str = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
359
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
84
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = [[1, 2, 4], [1, 2, 3, 4]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase_ ) ) with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase_ ): DisjunctiveConstraint(UpperCAmelCase_ ) # fails here def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = [[1, 2, 3], [1, 2, 4]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) A_ = dc.update(1 ) A_ = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) A_ = stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(3 ) A_ = stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] A_ = DisjunctiveConstraint(UpperCAmelCase_ ) A_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) A_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() A_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) A_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) A_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = LDMTextToImagePipeline a = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } a = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } a = TEXT_TO_IMAGE_BATCH_PARAMS a = False def A ( self : Optional[Any]): torch.manual_seed(0) _A : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _A : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _A : int = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0) _A : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : Tuple = CLIPTextModel(SCREAMING_SNAKE_CASE) _A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _A : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : int = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : int): _A : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _A : str = self.get_dummy_components() _A : Dict = LDMTextToImagePipeline(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : Dict = pipe(**SCREAMING_SNAKE_CASE).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _A : str = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str]): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=torch.floataa , SCREAMING_SNAKE_CASE : List[str]=0): _A : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE) _A : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE).standard_normal((1, 4, 32, 32)) _A : str = torch.from_numpy(SCREAMING_SNAKE_CASE).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE) _A : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : Union[str, Any]): _A : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256').to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : str = self.get_inputs(SCREAMING_SNAKE_CASE) _A : Any = pipe(**SCREAMING_SNAKE_CASE).images _A : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _A : Union[str, Any] = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878]) _A : int = np.abs(expected_slice - image_slice).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Dict): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any=torch.floataa , SCREAMING_SNAKE_CASE : Optional[Any]=0): _A : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE) _A : Optional[Any] = np.random.RandomState(SCREAMING_SNAKE_CASE).standard_normal((1, 4, 32, 32)) _A : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE) _A : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A ( self : Any): _A : int = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256').to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : Any = self.get_inputs(SCREAMING_SNAKE_CASE) _A : Dict = pipe(**SCREAMING_SNAKE_CASE).images[0] _A : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy') _A : Optional[int] = np.abs(expected_image - image).max() assert max_diff < 1e-3
350
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) a = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size for training."} ) a = field(default=2 , metadata={"help": "Batch size for evaluation."} ) a = field(default=0.1 , metadata={"help": "Value of weight decay."} ) a = field( default=1_0000 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) a = field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) a = field(default="cosine" , metadata={"help": "Learning rate."} ) a = field( default=750 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) a = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) a = field( default=a_ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) a = field(default=5_0000 , metadata={"help": "Maximum number of training steps."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Sequence lengths used for training."} ) a = field(default=1 , metadata={"help": "Training seed."} ) a = field( default=1024 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) a = field( default=a_ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) a = field(default=a_ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) a = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) a = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) a = field(default=1024 , metadata={"help": "Length of sequences to be evaluated."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) a = field( default=a_ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) a = field( default=a_ , metadata={"help": "Sample from the language model's output distribution."} ) a = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) a = field(default=256 , metadata={"help": "Maximum number of newly generated tokens."} ) a = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) a = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) a = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) a = field( default=200 , metadata={"help": "Number of completions to generate for each sample."} ) a = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) a = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) a = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) a = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default=a_ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) a = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) a = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) a = field( default=10_0000 , metadata={"help": "Number of files to save per JSON output file."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field( default=1000 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) a = field( default=100 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) a = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) a = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) a = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) a = field( default=a_ , metadata={"help": "If True, near-duplicate samples are removed."} ) a = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) a = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) a = field(default="content" , metadata={"help": "Column containing text data to process."} ) a = field(default=20_0000 , metadata={"help": "Number of examples to train tokenizer on."} ) a = field( default=3_2768 , metadata={"help": "Number of examples to train the tokenizer on."} ) a = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) a = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) a = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) a = field(default=a_ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowerCamelCase : """simple docstring""" a = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) a = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) a = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) a = field(default=a_ , metadata={"help": "Push saved tokenizer to the hub."} )
227
0
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: return (abs(source - target ) / target) < 0.0_1 @pytest.mark.integration def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : str = _TestCommandArgs(dataset=lowerCAmelCase__ , all_configs=lowerCAmelCase__ , save_infos=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = TestCommand(*lowerCAmelCase__ ) test_command.run() UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase__ , '''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DatasetInfosDict.from_directory(lowerCAmelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : str = getattr(dataset_infos['''default'''] , lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] , lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ , lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase__ = 1_00 ) -> int: UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Tuple = pre_numerator UpperCAmelCase__ : Tuple = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : str = cur_numerator UpperCAmelCase__ : List[str] = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
181
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : List[str]=False) -> List[Any]: '''simple docstring''' __lowercase = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""")) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""")) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""")) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""")) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""")) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""")) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""")) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""")) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""")) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""")) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ]) return rename_keys def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Tuple, UpperCamelCase_ : str=False) -> List[str]: '''simple docstring''' for i in range(config.num_hidden_layers): if base_model: __lowercase = "" else: __lowercase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""") __lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def _A ( UpperCamelCase_ : Tuple) -> Union[str, Any]: '''simple docstring''' __lowercase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : Optional[Any]) -> Dict: '''simple docstring''' __lowercase = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : str) -> int: '''simple docstring''' __lowercase = dct.pop(UpperCamelCase_) __lowercase = val def _A ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Any) -> Any: '''simple docstring''' __lowercase = ViTMSNConfig() __lowercase = 1000 __lowercase = "datasets/huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowercase = 384 __lowercase = 1536 __lowercase = 6 elif "l16" in checkpoint_url: __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = 0.1 elif "b4" in checkpoint_url: __lowercase = 4 elif "l7" in checkpoint_url: __lowercase = 7 __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = 0.1 __lowercase = ViTMSNModel(UpperCamelCase_) __lowercase = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location="cpu")["target_encoder"] __lowercase = ViTImageProcessor(size=config.image_size) remove_projection_head(UpperCamelCase_) __lowercase = create_rename_keys(UpperCamelCase_, base_model=UpperCamelCase_) for src, dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_) read_in_q_k_v(UpperCamelCase_, UpperCamelCase_, base_model=UpperCamelCase_) model.load_state_dict(UpperCamelCase_) model.eval() __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) __lowercase = ViTImageProcessor( size=config.image_size, image_mean=UpperCamelCase_, image_std=UpperCamelCase_) __lowercase = image_processor(images=UpperCamelCase_, return_tensors="pt") # forward pass torch.manual_seed(2) __lowercase = model(**UpperCamelCase_) __lowercase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowercase = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]]) elif "b16" in checkpoint_url: __lowercase = torch.tensor([[14.2_889, -18.9_045, 11.7_281]]) elif "l16" in checkpoint_url: __lowercase = torch.tensor([[41.5_028, -22.8_681, 45.6_475]]) elif "b4" in checkpoint_url: __lowercase = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]]) else: __lowercase = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], UpperCamelCase_, atol=1E-4) print(F"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(UpperCamelCase_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(UpperCamelCase_) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
365
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _A ( ) -> Dict: '''simple docstring''' __lowercase = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } __lowercase = Dataset.from_dict(UpperCamelCase_) return dataset class _lowerCAmelCase ( lowercase ): """simple docstring""" def _lowercase ( self : int ): __lowercase = get_dataset() __lowercase = make_duplicate_clusters(UpperCAmelCase__, 0.85 ) self.assertEqual(len(duplicate_clusters[0] ), 2 ) def _lowercase ( self : Any ): __lowercase = get_dataset() __lowercase ,__lowercase = deduplicate_dataset(UpperCAmelCase__ ) self.assertEqual(len(UpperCAmelCase__ ), 2 ) print(UpperCAmelCase__ ) self.assertEqual(duplicate_clusters[0][0]["copies"], 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"], UpperCAmelCase__ )
144
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( lowerCamelCase = 2_0_0_0_0_0_0 ): UpperCAmelCase__ = [0] UpperCAmelCase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase__ = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase__ = 0 # an estimate of b, using the quadratic formula UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the triangle number corresponding to b_floor UpperCAmelCase__ = 42 # the triangle number corresponding to b_ceil UpperCAmelCase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase__ = floor(lowerCamelCase ) UpperCAmelCase__ = ceil(lowerCamelCase ) UpperCAmelCase__ = triangle_numbers[b_floor] UpperCAmelCase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_first_guess * triangle_a UpperCAmelCase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_second_guess * triangle_a UpperCAmelCase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
98
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __a = (low + high) // 2 __a , __a , __a = max_subarray(a__ , a__ , a__ ) __a , __a , __a = max_subarray(a__ , mid + 1 , a__ ) __a , __a , __a = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> tuple[int, int, float]: __a , __a = float('''-inf''' ), -1 __a , __a = float('''-inf''' ), -1 __a = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __a = summ __a = i __a = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __a = summ __a = i return max_left, max_right, (left_sum + right_sum) def __lowerCAmelCase ( a__ ) -> float: __a = [randint(1 , a__ ) for _ in range(a__ )] __a = time.time() max_subarray(a__ , 0 , input_size - 1 ) __a = time.time() return end - start def __lowerCAmelCase ( ) -> None: __a = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __a = [time_max_subarray(a__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '''\t\t''' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
6
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : int = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : List[str] = StableDiffusionLatentUpscalePipeline _UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _UpperCamelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCamelCase : List[str] = frozenset([] ) _UpperCamelCase : Optional[int] = True @property def __a ( self : Dict ) -> List[str]: """simple docstring""" lowercase : Tuple = 1 lowercase : List[str] = 4 lowercase : List[str] = (16, 16) lowercase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_A ) return image def __a ( self : Dict ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_A , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_A , only_cross_attention=_A , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) lowercase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) lowercase : Optional[int] = EulerDiscreteScheduler(prediction_type='''sample''' ) lowercase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) lowercase : List[Any] = CLIPTextModel(_A ) lowercase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Optional[Any] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __a ( self : Optional[int] , _A : Any , _A : Dict=0 ) -> Any: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase : List[Any] = torch.manual_seed(_A ) else: lowercase : int = torch.Generator(device=_A ).manual_seed(_A ) lowercase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = '''cpu''' lowercase : Any = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = self.get_dummy_inputs(_A ) lowercase : str = pipe(**_A ).images lowercase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase : Union[str, Any] = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1E-3 ) def __a ( self : List[str] ) -> str: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __a ( self : Dict ) -> Optional[int]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __a ( self : int ) -> Tuple: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : Tuple ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __a ( self : Any ) -> List[str]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __a ( self : Dict ) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __a ( self : Optional[Any] ) -> Any: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Optional[int] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowercase : Dict = self.get_dummy_components() lowercase : int = self.pipeline_class(**_A ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = self.get_dummy_inputs(_A ) lowercase : Union[str, Any] = 2 lowercase : Optional[Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase : List[str] = getattr(_A , scheduler_enum.name ) lowercase : Any = scheduler_cls.from_config(pipe.scheduler.config ) lowercase : List[Any] = pipe(**_A )[0] outputs.append(_A ) assert check_same_shape(_A ) @require_torch_gpu @slow class _A ( unittest.TestCase ): def __a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Optional[Any] = torch.manual_seed(33 ) lowercase : int = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : Optional[Any] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowercase : Dict = pipe(_A , generator=_A , output_type='''latent''' ).images lowercase : int = upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] lowercase : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : List[str] = torch.manual_seed(33 ) lowercase : Any = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase : Tuple = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowercase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowercase : List[str] = upscaler( prompt=_A , image=_A , num_inference_steps=20 , guidance_scale=0 , generator=_A , output_type='''np''' , ).images[0] lowercase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
116
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
1
import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = multiprocessing.Manager() SCREAMING_SNAKE_CASE = manager.list() SCREAMING_SNAKE_CASE = multiprocessing.Process(target=lowercase__ , args=(check_program, result, timeout)) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append('timed out') return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE = shutil.rmtree SCREAMING_SNAKE_CASE = os.rmdir SCREAMING_SNAKE_CASE = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE = {} with swallow_io(): with time_limit(lowercase__): exec(lowercase__ , lowercase__) result.append('passed') except TimeoutException: result.append('timed out') except BaseException as e: result.append(F'''failed: {e}''') # Needed for cleaning up. SCREAMING_SNAKE_CASE = rmtree SCREAMING_SNAKE_CASE = rmdir SCREAMING_SNAKE_CASE = chdir @contextlib.contextmanager def lowerCamelCase__ (_UpperCAmelCase): def signal_handler(_UpperCAmelCase , _UpperCAmelCase): raise TimeoutException('Timed out!') signal.setitimer(signal.ITIMER_REAL , lowercase__) signal.signal(signal.SIGALRM , lowercase__) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0) @contextlib.contextmanager def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase__): with contextlib.redirect_stderr(lowercase__): with redirect_stdin(lowercase__): yield @contextlib.contextmanager def lowerCamelCase__ (): with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase__): yield dirname class _snake_case ( A__ ): pass class _snake_case ( io.StringIO ): def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[str]: raise OSError def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> Optional[int]: raise OSError def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: raise OSError def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> Dict: return False class _snake_case ( contextlib._RedirectStream ): # type: ignore _lowercase : Union[str, Any] = "stdin" @contextlib.contextmanager def lowerCamelCase__ (_UpperCAmelCase): if root == ".": yield return SCREAMING_SNAKE_CASE = os.getcwd() os.chdir(lowercase__) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase__) def lowerCamelCase__ (_UpperCAmelCase=None): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import os SCREAMING_SNAKE_CASE = """1""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import shutil SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import subprocess SCREAMING_SNAKE_CASE = None # type: ignore SCREAMING_SNAKE_CASE = None import sys SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None
137
"""simple docstring""" def _snake_case ( lowercase__ : list[int] ) -> list[list[int]]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = [] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): lowerCAmelCase_ :Optional[Any] = nums.pop(0 ) lowerCAmelCase_ :str = permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def _snake_case ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' def backtrack(lowercase__ : str ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] backtrack(start + 1 ) lowerCAmelCase_ , lowerCAmelCase_ :str = nums[i], nums[start] # backtrack lowerCAmelCase_ :int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
84
0
a : Dict = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on a : List[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowerCamelCase ( _lowercase ) -> Tuple: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowerCamelCase ( _lowercase ) -> int: return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowerCamelCase ( ) -> Any: UpperCAmelCase : List[str] = """Morse code here!""" print(snake_case_ ) UpperCAmelCase : List[str] = encrypt(snake_case_ ) print(snake_case_ ) UpperCAmelCase : Optional[Any] = decrypt(snake_case_ ) print(snake_case_ ) if __name__ == "__main__": main()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : List[str] = StableUnCLIPImgaImgPipeline UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase : Optional[Any] = frozenset([] ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =32 SCREAMING_SNAKE_CASE_: Tuple =embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE_: Optional[int] =CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase_ , projection_dim=lowerCamelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_: str =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[int] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase_ , layers_per_block=1 , upcast_attention=lowerCamelCase_ , use_linear_projection=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[int] =DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =AutoencoderKL() SCREAMING_SNAKE_CASE_: str ={ # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=True ) -> str: '''simple docstring''' if str(lowerCamelCase_ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE_: List[str] =torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_: List[str] =torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_: Any =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if pil_image: SCREAMING_SNAKE_CASE_: int =input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_: Tuple =input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_: List[str] =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_: Tuple =DiffusionPipeline.numpy_to_pil(lowerCamelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: str ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE_: List[str] =StableUnCLIPImgaImgPipeline(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_: Any =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_inputs(lowerCamelCase_ ) inputs.update({"""image_embeds""": None} ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(**lowerCamelCase_ ).images SCREAMING_SNAKE_CASE_: Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_: Any =np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase_ ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE_: str =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE_: str =StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: int =pipe(lowerCamelCase_ , """anime turle""" , generator=lowerCamelCase_ , output_type="""np""" ) SCREAMING_SNAKE_CASE_: List[Any] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE_: Tuple =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE_: int =StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =pipe(lowerCamelCase_ , """anime turle""" , generator=lowerCamelCase_ , output_type="""np""" ) SCREAMING_SNAKE_CASE_: List[Any] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_: Tuple =StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: int =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Optional[Any] =pipe( lowerCamelCase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE_: List[str] =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
173
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 42 __A = None def a( A : Optional[Any] , A : Any=0.999 , A : Dict="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = 1 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0001 , lowerCamelCase_ = 0.02 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = 0 , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = 1.0 , **lowerCamelCase_ , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase_ ) is not None: a = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase_ , standard_warn=lowerCamelCase_ ) a = kwargs["set_alpha_to_one"] if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a = 1.0 # setable values a = None a = torch.from_numpy(np.arange(0 , lowerCamelCase_ ).copy().astype(np.intaa ) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) a = num_inference_steps a = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round().copy().astype(np.intaa ) a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) self.timesteps += self.config.steps_offset def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.0 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , ): """simple docstring""" a = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a = self.alphas_cumprod[timestep] a = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a = model_output elif self.config.prediction_type == "sample": a = model_output a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
227
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ (self : Tuple): A = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") A = AutoTokenizer.from_pretrained("google/mt5-small") A = tokenizer("Hello there" , return_tensors="np").input_ids A = tokenizer("Hi I am" , return_tensors="np").input_ids A = shift_tokens_right(_a , model.config.pad_token_id , model.config.decoder_start_token_id) A = model(_a , decoder_input_ids=_a).logits A = optax.softmax_cross_entropy(_a , onehot(_a , logits.shape[-1])).mean() A = -(labels.shape[-1] * loss.item()) A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
369
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "speech_to_text_2" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__(self : Any , __SCREAMING_SNAKE_CASE : List[str]=1_0_0_0_0 , __SCREAMING_SNAKE_CASE : Dict=6 , __SCREAMING_SNAKE_CASE : Dict=2_0_4_8 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_5_6 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0_2 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : int=1_0_2_4 , **__SCREAMING_SNAKE_CASE : str , ): A = vocab_size A = d_model A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = decoder_layerdrop A = use_cache A = decoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
57
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification SCREAMING_SNAKE_CASE__ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co SCREAMING_SNAKE_CASE__ = 'main' # Default branch name SCREAMING_SNAKE_CASE__ = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) SCREAMING_SNAKE_CASE__ = 'aaaaaaa' # This commit does not exist, so we should 404. SCREAMING_SNAKE_CASE__ = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes SCREAMING_SNAKE_CASE__ = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def lowerCAmelCase__ ( ) -> str: """simple docstring""" print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCAmelCase__ ( ) -> List[str]: """simple docstring""" print('Bonjour!' ) yield print('Au revoir!' ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def snake_case ( self ): """simple docstring""" self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) self.assertEqual(find_labels(snake_case__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case__ ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) @require_tf def snake_case ( self ): """simple docstring""" self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) self.assertEqual(find_labels(snake_case__ ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(snake_case__ ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(snake_case__ ) , ['labels'] ) @require_flax def snake_case ( self ): """simple docstring""" self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" pass self.assertEqual(find_labels(snake_case__ ) , [] )
150
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A__ : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys A__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
0
'''simple docstring''' import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' SCREAMING_SNAKE_CASE__ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' SCREAMING_SNAKE_CASE__ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> List[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in predictions] ) UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in references] ) else: UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) if ignore_case: UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) if ignore_punctuation: UpperCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) if ignore_numbers: UpperCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = predictions == references return {"exact_match": np.mean(_SCREAMING_SNAKE_CASE ) * 100}
183
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCamelCase ( ) -> Any: """simple docstring""" A : int = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_lowerCAmelCase ) A : Union[str, Any] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_lowerCAmelCase ) env_command_parser(subparsers=_lowerCAmelCase ) launch_command_parser(subparsers=_lowerCAmelCase ) tpu_command_parser(subparsers=_lowerCAmelCase ) test_command_parser(subparsers=_lowerCAmelCase ) # Let's go A : Optional[Any] = parser.parse_args() if not hasattr(_lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(_lowerCAmelCase ) if __name__ == "__main__": main()
116
def __UpperCamelCase ( _lowerCAmelCase = 100_0000 ) -> int: """simple docstring""" A : str = limit + 1 A : Tuple = [0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): A : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a A : Optional[int] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
116
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__:Dict = namedtuple("""covid_data""", """cases deaths recovered""") def _lowerCamelCase( a = "https://www.worldometers.info/coronavirus/" ): __a = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(a ).content ).xpath(a ) ) SCREAMING_SNAKE_CASE__:Tuple = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
268
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : List[str] = """WhisperFeatureExtractor""" _snake_case : Any = """WhisperTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase="np" ): return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
268
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.dummy_uncond_unet lowerCamelCase_ = PNDMScheduler() lowerCamelCase_ = PNDMPipeline(unet=lowercase , scheduler=lowercase ) pndm.to(lowercase ) pndm.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pndm(generator=lowercase , num_inference_steps=20 , output_type="numpy" ).images lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pndm(generator=lowercase , num_inference_steps=20 , output_type="numpy" , return_dict=lowercase )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = "google/ddpm-cifar10-32" lowerCamelCase_ = UNetaDModel.from_pretrained(lowercase ) lowerCamelCase_ = PNDMScheduler() lowerCamelCase_ = PNDMPipeline(unet=lowercase , scheduler=lowercase ) pndm.to(lowercase ) pndm.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pndm(generator=lowercase , output_type="numpy" ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : str = (DDPMScheduler,) def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 1, 0] lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
338
0
from __future__ import annotations from typing import Any class UpperCamelCase_ ( _lowerCamelCase ): pass class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ ) -> None: _snake_case = data _snake_case = None def __iter__( self ) -> Optional[int]: _snake_case = self _snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase_ ) yield node.data _snake_case = node.next_node @property def lowerCAmelCase ( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ = Node(1) UpperCAmelCase_ = Node(2) UpperCAmelCase_ = Node(3) UpperCAmelCase_ = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) UpperCAmelCase_ = Node(5) UpperCAmelCase_ = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ = Node(1) print(root_node.has_loop) # False
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __A ( __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowerCamelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = StableDiffusionLatentUpscalePipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([]) UpperCamelCase__ = True @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 4 _UpperCAmelCase = (16, 16) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image def UpperCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCAmelCase , only_cross_attention=UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _UpperCAmelCase = EulerDiscreteScheduler(prediction_type='sample' ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(UpperCAmelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _UpperCAmelCase = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): """simple docstring""" if str(UpperCAmelCase ).startswith('mps' ): _UpperCAmelCase = torch.manual_seed(UpperCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase ) _UpperCAmelCase = pipe(**UpperCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCAmelCase = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**UpperCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(UpperCAmelCase ) _UpperCAmelCase = 2 _UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase = getattr(UpperCAmelCase , scheduler_enum.name ) _UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCAmelCase = pipe(**UpperCAmelCase )[0] outputs.append(UpperCAmelCase ) assert check_same_shape(UpperCAmelCase ) @require_torch_gpu @slow class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _UpperCAmelCase = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _UpperCAmelCase = pipe(UpperCAmelCase , generator=UpperCAmelCase , output_type='latent' ).images _UpperCAmelCase = upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _UpperCAmelCase = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _UpperCAmelCase = upscaler( prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase , output_type='np' , ).images[0] _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
39
"""simple docstring""" import numpy # List of input, output pairs A : Any = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) A : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) A : Union[str, Any] = [2, 4, 1, 5] A : int = len(train_data) A : Dict = 0.009 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=m ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def _lowerCamelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCAmelCase = 0.00_00_02 __lowerCAmelCase = 0 __lowerCAmelCase = 0 while True: j += 1 __lowerCAmelCase = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): __lowerCAmelCase = get_cost_derivative(i - 1 ) __lowerCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break __lowerCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ): '''simple docstring''' for i in range(len(_UpperCamelCase ) ): print(("Actual output value:", output(_UpperCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_UpperCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
57
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } a_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } a_ = '▁' class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = AlbertTokenizer def __init__( self : Tuple , snake_case : Any=None , snake_case : Any=None , snake_case : Optional[Any]=True , snake_case : Optional[Any]=True , snake_case : Any=False , snake_case : Any="[CLS]" , snake_case : int="[SEP]" , snake_case : Optional[int]="<unk>" , snake_case : List[str]="[SEP]" , snake_case : Tuple="<pad>" , snake_case : Optional[Any]="[CLS]" , snake_case : Any="[MASK]" , **snake_case : Any , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[Any] = ( AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case , normalized=snake_case ) if isinstance(snake_case , snake_case ) else mask_token ) super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , **snake_case , ) UpperCamelCase_ : Union[str, Any] = do_lower_case UpperCamelCase_ : Dict = remove_space UpperCamelCase_ : List[str] = keep_accents UpperCamelCase_ : Optional[Any] = vocab_file UpperCamelCase_ : Optional[Any] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = [self.sep_token_id] UpperCamelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = [self.sep_token_id] UpperCamelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : List[Any] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
50
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Dict=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): UpperCamelCase_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( snake_case_ ): def __init__( self : Tuple , snake_case : Optional[int] , snake_case : Optional[Any]=1_3 , snake_case : Optional[Any]=7 , snake_case : Any=True , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=9_9 , snake_case : int=3_2 , snake_case : str=3_2 , snake_case : str=2 , snake_case : List[Any]=4 , snake_case : Tuple=3_7 , snake_case : Any="gelu" , snake_case : str=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Optional[int]=1_6 , snake_case : List[Any]=2 , snake_case : Dict=0.02 , snake_case : List[str]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : List[str] = seq_length UpperCamelCase_ : List[Any] = is_training UpperCamelCase_ : Optional[Any] = use_input_mask UpperCamelCase_ : Tuple = use_token_type_ids UpperCamelCase_ : Optional[int] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : List[str] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Optional[int] = intermediate_size UpperCamelCase_ : int = hidden_act UpperCamelCase_ : List[str] = hidden_dropout_prob UpperCamelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Tuple = type_vocab_size UpperCamelCase_ : Optional[Any] = type_sequence_label_size UpperCamelCase_ : Any = initializer_range UpperCamelCase_ : Tuple = num_labels UpperCamelCase_ : Tuple = num_choices UpperCamelCase_ : Tuple = scope UpperCamelCase_ : Dict = embedding_size def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Optional[Any] = None if self.use_input_mask: UpperCamelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Tuple = None UpperCamelCase_ : Dict = None if self.use_labels: UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Union[str, Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = TFMobileBertModel(config=snake_case ) UpperCamelCase_ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Union[str, Any] = model(snake_case ) UpperCamelCase_ : Optional[Any] = [input_ids, input_mask] UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[str] = TFMobileBertForMaskedLM(config=snake_case ) UpperCamelCase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Any , snake_case : int , snake_case : int , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = TFMobileBertForNextSentencePrediction(config=snake_case ) UpperCamelCase_ : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : str , snake_case : str , snake_case : Any , snake_case : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = TFMobileBertForPreTraining(config=snake_case ) UpperCamelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Any = model(snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Dict , snake_case : List[str] , snake_case : str , snake_case : List[str] , snake_case : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = self.num_labels UpperCamelCase_ : Dict = TFMobileBertForSequenceClassification(config=snake_case ) UpperCamelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Any ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.num_choices UpperCamelCase_ : Dict = TFMobileBertForMultipleChoice(config=snake_case ) UpperCamelCase_ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : List[str] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Optional[int] , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : Optional[int] , snake_case : str , snake_case : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Any = self.num_labels UpperCamelCase_ : Optional[Any] = TFMobileBertForTokenClassification(config=snake_case ) UpperCamelCase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Tuple , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = TFMobileBertForQuestionAnswering(config=snake_case ) UpperCamelCase_ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : Union[str, Any] = config_and_inputs UpperCamelCase_ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase_ : str = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: UpperCamelCase_ : Optional[Any] = TFMobileBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) UpperCamelCase_ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase_ : List[str] = model(snake_case )[0] UpperCamelCase_ : Any = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , snake_case ) UpperCamelCase_ : Dict = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
50
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = True def UpperCamelCase ( self : Dict ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Tuple ) -> Any: lowerCamelCase_ = '[PAD]' lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1012 ) def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: lowerCamelCase_ = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def UpperCamelCase ( self : Dict ) -> Optional[int]: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def UpperCamelCase ( self : Any ) -> int: lowerCamelCase_ = 'Hello World!' lowerCamelCase_ = [35389, 6672, 49, 2] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def UpperCamelCase ( self : Optional[int] ) -> Tuple: # fmt: off lowerCamelCase_ = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
183
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Tuple = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class a__( lowerCamelCase__ ): lowercase__ = """speech_to_text_2""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Union[str, Any] , __snake_case : Optional[int]=1_00_00 , __snake_case : Optional[int]=6 , __snake_case : Optional[int]=20_48 , __snake_case : int=4 , __snake_case : List[str]=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Dict="relu" , __snake_case : int=2_56 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : int=0.02 , __snake_case : int=2 , __snake_case : Tuple=True , __snake_case : Optional[Any]=1 , __snake_case : Union[str, Any]=0 , __snake_case : str=2 , __snake_case : str=10_24 , **__snake_case : Dict , ): a : List[str] = vocab_size a : List[str] = d_model a : Any = decoder_ffn_dim a : str = decoder_layers a : Optional[int] = decoder_attention_heads a : Tuple = dropout a : List[Any] = attention_dropout a : List[Any] = activation_dropout a : Dict = activation_function a : int = init_std a : List[str] = decoder_layerdrop a : Optional[int] = use_cache a : Any = decoder_layers a : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True a : List[Any] = max_target_positions super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
96
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a__( lowerCamelCase__ ): lowercase__ = 42 @flax_register_to_config class a__( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = 32 lowercase__ = 4 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = False def lowercase_ ( self : List[Any] , __snake_case : jax.random.KeyArray ): # init input tensors a : Dict = (1, self.in_channels, self.sample_size, self.sample_size) a : str = jnp.zeros(__snake_case , dtype=jnp.floataa ) a : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) a : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a , a : Optional[int] = jax.random.split(__snake_case ) a : Any = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def lowercase_ ( self : Union[str, Any] ): a : int = self.block_out_channels a : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a : str = self.num_attention_heads or self.attention_head_dim # input a : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a : Optional[int] = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) a : Optional[Any] = self.only_cross_attention if isinstance(__snake_case , __snake_case ): a : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): a : str = (num_attention_heads,) * len(self.down_block_types ) # down a : int = [] a : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a : List[Any] = output_channel a : Dict = block_out_channels[i] a : Union[str, Any] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": a : Dict = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : List[str] = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) a : Dict = down_blocks # mid a : Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a : List[Any] = [] a : Dict = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a : Dict = output_channel a : Dict = reversed_block_out_channels[i] a : Dict = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] a : List[Any] = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": a : List[Any] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) a : Dict = output_channel a : int = up_blocks # out a : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Dict=None , __snake_case : Any=None , __snake_case : bool = True , __snake_case : bool = False , ): # 1. time if not isinstance(__snake_case , jnp.ndarray ): a : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: a : Tuple = timesteps.astype(dtype=jnp.floataa ) a : Optional[int] = jnp.expand_dims(__snake_case , 0 ) a : Optional[Any] = self.time_proj(__snake_case ) a : Optional[int] = self.time_embedding(__snake_case ) # 2. pre-process a : str = jnp.transpose(__snake_case , (0, 2, 3, 1) ) a : Optional[int] = self.conv_in(__snake_case ) # 3. down a : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): a , a : Any = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: a , a : Optional[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a : Tuple = new_down_block_res_samples # 4. mid a : int = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a : int = down_block_res_samples[-(self.layers_per_block + 1) :] a : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): a : Optional[int] = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: a : Optional[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process a : Any = self.conv_norm_out(__snake_case ) a : List[str] = nn.silu(__snake_case ) a : Optional[int] = self.conv_out(__snake_case ) a : Any = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
96
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = logging.get_logger() # the current default level is logging.WARNING A : Tuple = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Any = logging.get_verbosity() A : str = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : List[Any] = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(__SCREAMING_SNAKE_CASE ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var A : List[Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : str = os.getenv('''TRANSFORMERS_VERBOSITY''' , __SCREAMING_SNAKE_CASE ) A : Dict = logging.log_levels[env_level_str] A : int = logging.get_verbosity() self.assertEqual( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level A : List[Any] = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" transformers.utils.logging._reset_library_root_logger() A : Optional[int] = logging.logging.getLogger() with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __lowerCAmelCase ( self ) -> Any: """simple docstring""" transformers.utils.logging._reset_library_root_logger() A : Optional[Any] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) A : List[str] = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl: logger.warning_advice(__SCREAMING_SNAKE_CASE ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCAmelCase_ ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
3
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a__ ( a__ , a__=None , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = True while ask_again: __SCREAMING_SNAKE_CASE = input(a__ ) try: if default is not None and len(a__ ) == 0: return default return convert_value(a__ ) if convert_value is not None else result except Exception: if error_message is not None: print(a__ ) def a__ ( a__ , a__=[] , a__=None , a__=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE = BulletMenu(a__ , a__ ) __SCREAMING_SNAKE_CASE = menu.run(default_choice=a__ ) return convert_value(a__ ) if convert_value is not None else result def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def a__ ( a__ ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
267
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 10**-10 ): UpperCAmelCase_ = a while True: UpperCAmelCase_ = Decimal(lowerCAmelCase__ ) - ( Decimal(eval(lowerCAmelCase__ ) ) / Decimal(eval(str(diff(lowerCAmelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase__ ) ) < precision: # noqa: S307 return float(lowerCAmelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
241
"""simple docstring""" from maths.prime_check import is_prime def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase__ ) if is_prime(lowerCAmelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
241
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=3_3 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= EsmModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= EsmForMaskedLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= EsmForTokenClassification(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : List[Any] =False UpperCamelCase_ : int =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =() UpperCamelCase_ : int =( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Tuple =True def _A (self ): __lowercase= EsmModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase= type self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def _A (self ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= EsmModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs()[0] __lowercase= EsmEmbeddings(config=lowerCAmelCase ) __lowercase= torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) __lowercase= torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase= create_position_ids_from_input_ids(lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase , lowerCAmelCase ) ) ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs()[0] __lowercase= EsmEmbeddings(config=lowerCAmelCase ) __lowercase= torch.empty(2 , 4 , 3_0 ) __lowercase= [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase= torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase= embeddings.create_position_ids_from_inputs_embeds(lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase , lowerCAmelCase ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _A (self ): pass @unittest.skip('Esm does not support embedding resizing' ) def _A (self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @require_torch class A ( A_ ): @slow def _A (self ): with torch.no_grad(): __lowercase= EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() __lowercase= torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase= model(lowerCAmelCase )[0] __lowercase= 3_3 __lowercase= torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) __lowercase= torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def _A (self ): with torch.no_grad(): __lowercase= EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() __lowercase= torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __lowercase= model(lowerCAmelCase )[0] # compare the actual values for a slice. __lowercase= torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) )
295
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
1
"""simple docstring""" import sys def a__ ( lowerCAmelCase ) -> Optional[int]: UpperCAmelCase__ : Dict = len(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] UpperCAmelCase__ : int = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2 , lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase__ : Any = a + chain_length - 1 UpperCAmelCase__ : Optional[Any] = sys.maxsize for c in range(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase__ : Dict = cost UpperCAmelCase__ : Optional[Any] = c return matrix, sol def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> str: if i == j: print("""A""" + str(lowerCAmelCase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowerCAmelCase , lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase , optimal_solution[i][j] + 1 , lowerCAmelCase ) print(""")""" , end=""" """ ) def a__ ( ) -> Dict: UpperCAmelCase__ : Optional[Any] = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase__ : List[Any] = matrix_chain_order(lowerCAmelCase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
368
"""simple docstring""" def a__ ( lowerCAmelCase ) -> bool: if not isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Tuple = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 0: return False UpperCAmelCase__ : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
166
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase : Union[str, Any] = getLogger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 8 , _UpperCAmelCase = 1024 , _UpperCAmelCase="val" , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase="summarization" , _UpperCAmelCase=None , _UpperCAmelCase=1 , _UpperCAmelCase = None , _UpperCAmelCase="" , **_UpperCAmelCase , ) -> Dict: lowerCamelCase__ : List[str] = str(_UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=_UpperCAmelCase ) lowerCamelCase__ : str = Path(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(_UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase ).cuda() if fpaa: lowerCamelCase__ : List[str] = model.half() # determine if we need to increase num_beams use_task_specific_params(_UpperCAmelCase , _UpperCAmelCase ) # update config with task specific params lowerCamelCase__ : Optional[Any] = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCamelCase__ : List[str] = num_return_sequences lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCamelCase__ : Tuple = tokenizer.model_max_length if prefix is None: lowerCamelCase__ : List[str] = prefix or getattr(model.config , 'prefix' , '' ) or '' lowerCamelCase__ : List[str] = SeqaSeqDataset( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_target_length=1024 , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , prefix=_UpperCAmelCase , **_UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCamelCase__ : Optional[Any] = ds.make_sortish_sampler(_UpperCAmelCase , distributed=_UpperCAmelCase , add_extra_examples=_UpperCAmelCase , shuffle=_UpperCAmelCase ) lowerCamelCase__ : str = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn ) lowerCamelCase__ : Dict = [] for batch in tqdm(_UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=_UpperCAmelCase , num_beams=_UpperCAmelCase , **_UpperCAmelCase , ) lowerCamelCase__ : Dict = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) lowerCamelCase__ : Any = batch['ids'] if num_return_sequences > 1: lowerCamelCase__ : int = chunks(_UpperCAmelCase , _UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_UpperCAmelCase ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE ( ) -> Dict: lowerCamelCase__ : Dict = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=_UpperCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=_UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=_UpperCAmelCase , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument( '--type_path' , type=_UpperCAmelCase , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=_UpperCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_UpperCAmelCase , default=8 , required=_UpperCAmelCase , help='batch size' ) parser.add_argument( '--local_rank' , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=_UpperCAmelCase , default=600 , required=_UpperCAmelCase , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument('--tgt_lang' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( '--prefix' , type=_UpperCAmelCase , required=_UpperCAmelCase , default=_UpperCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) lowerCamelCase__ : int = time.time() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = parser.parse_known_args() lowerCamelCase__ : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(_UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) lowerCamelCase__ : Union[str, Any] = Path(args.save_dir + '_tmp' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) # this handles locking. lowerCamelCase__ : str = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCamelCase__ : Any = {} if args.src_lang is not None: lowerCamelCase__ : int = args.src_lang if args.tgt_lang is not None: lowerCamelCase__ : Union[str, Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = eval_data_dir( args.data_dir , _UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) if args.local_rank <= 0: lowerCamelCase__ : Optional[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=_UpperCAmelCase ) lowerCamelCase__ : List[str] = gather_results_from_each_node(_UpperCAmelCase , _UpperCAmelCase , args.sync_timeout ) lowerCamelCase__ : Dict = combine_partial_results(_UpperCAmelCase ) if args.num_return_sequences > 1: lowerCamelCase__ : Any = save_dir.joinpath('pseudolabel_results.json' ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(_UpperCAmelCase , _UpperCAmelCase ) return lowerCamelCase__ : Optional[int] = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(_UpperCAmelCase ) as f: lowerCamelCase__ : Optional[Any] = [x.rstrip() for x in f.readlines()][: len(_UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt lowerCamelCase__ : Tuple = 'translation' in args.task lowerCamelCase__ : List[str] = calculate_bleu if calc_bleu else calculate_rouge lowerCamelCase__ : List[Any] = 'bleu' if calc_bleu else 'rouge' lowerCamelCase__ : Dict = score_fn(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : Optional[int] = len(_UpperCAmelCase ) lowerCamelCase__ : str = time.time() - start_time lowerCamelCase__ : int = round(runtime / metrics['n_obs'] , 4 ) lowerCamelCase__ : List[str] = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCamelCase__ : int = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase ) print(_UpperCAmelCase ) write_txt_file(_UpperCAmelCase , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(_UpperCAmelCase , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List: lowerCamelCase__ : Union[str, Any] = [] for partial_result in partial_results: records.extend(_UpperCAmelCase ) lowerCamelCase__ : Tuple = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["id"] ) lowerCamelCase__ : Union[str, Any] = [x['pred'] for x in records] return preds def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files lowerCamelCase__ : Optional[Any] = time.time() logger.info('waiting for all nodes to finish' ) lowerCamelCase__ : List[str] = None while (time.time() - start_wait) < timeout: lowerCamelCase__ : Any = list(save_dir.glob('rank_*.json' ) ) if len(_UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved lowerCamelCase__ : Any = lmap(_UpperCAmelCase , _UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
50
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : str , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} lowerCAmelCase_ : int = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : Optional[Any] = do_resize lowerCAmelCase_ : str = size lowerCAmelCase_ : Dict = resample lowerCAmelCase_ : Optional[Any] = do_center_crop lowerCAmelCase_ : Optional[int] = crop_size lowerCAmelCase_ : Any = do_rescale lowerCAmelCase_ : Tuple = rescale_factor lowerCAmelCase_ : Any = do_normalize lowerCAmelCase_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PIL.Image.BICUBIC , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : int , ): lowerCAmelCase_ : Any = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase_ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Tuple , ): lowerCAmelCase_ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Any = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : Dict = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Optional[int] = size if size is not None else self.size lowerCAmelCase_ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : int = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCAmelCase_ : Any = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCAmelCase_ : Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowerCAmelCase_ : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : List[Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
366
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase__ : Optional[int] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
289
0
"""simple docstring""" import string import numpy def _snake_case ( lowercase__ , lowercase__ ): return b if a == 0 else greatest_common_divisor(b % a , lowercase__ ) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCamelCase__ = numpy.vectorize(lambda lowercase : x % 36 ) lowerCamelCase__ = numpy.vectorize(lowercase ) def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = self.modulus(lowercase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCamelCase : Dict = encrypt_key.shape[0] def A_ ( self , lowercase ): return self.key_string.index(lowercase ) def A_ ( self , lowercase ): return self.key_string[round(lowercase )] def A_ ( self ): _lowerCamelCase : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : List[Any] = len(self.key_string ) if greatest_common_divisor(lowercase , len(self.key_string ) ) != 1: _lowerCamelCase : List[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : int = [char for char in text.upper() if char in self.key_string] _lowerCamelCase : Optional[int] = chars[-1] while len(lowercase ) % self.break_key != 0: chars.append(lowercase ) return "".join(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Dict = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Dict = text[i : i + self.break_key] _lowerCamelCase : Any = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Optional[Any] = numpy.array([vec] ).T _lowerCamelCase : int = self.modulus(self.encrypt_key.dot(lowercase ) ).T.tolist()[ 0 ] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A_ ( self ): _lowerCamelCase : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCamelCase : Dict = det % len(self.key_string ) _lowerCamelCase : Tuple = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCamelCase : Optional[int] = i break _lowerCamelCase : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase ) ) def A_ ( self , lowercase ): _lowerCamelCase : Any = self.make_decrypt_key() _lowerCamelCase : List[Any] = self.process_text(text.upper() ) _lowerCamelCase : Any = '' for i in range(0 , len(lowercase ) - self.break_key + 1 , self.break_key ): _lowerCamelCase : Optional[Any] = text[i : i + self.break_key] _lowerCamelCase : Optional[Any] = [self.replace_letters(lowercase ) for char in batch] _lowerCamelCase : Union[str, Any] = numpy.array([vec] ).T _lowerCamelCase : List[Any] = self.modulus(decrypt_key.dot(lowercase ) ).T.tolist()[0] _lowerCamelCase : Tuple = ''.join( self.replace_digits(lowercase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _snake_case ( ): _lowerCamelCase : Optional[int] = int(input('Enter the order of the encryption key: ' ) ) _lowerCamelCase : str = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowercase__ ): _lowerCamelCase : str = [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) _lowerCamelCase : Optional[int] = HillCipher(numpy.array(lowercase__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowerCamelCase : str = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowerCamelCase : Dict = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": _lowerCamelCase : Any = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
96
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """ctrl""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=246534 , lowercase=256 , lowercase=1280 , lowercase=8192 , lowercase=48 , lowercase=16 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.02 , lowercase=True , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Optional[int] = n_embd _lowerCamelCase : str = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : Any = dff _lowerCamelCase : int = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = use_cache super().__init__(**lowercase )
96
1
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: a : Any = None try: import msvcrt except ImportError: a : Any = None try: import fcntl except ImportError: a : Any = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a : List[str] = OSError # Data # ------------------------------------------------ a : Optional[Any] = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] a : Optional[Any] = '''3.0.12''' a : List[Any] = None def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' global _logger a : Dict = _logger or logging.getLogger(__name__ ) return _logger class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ ) -> str: a : Tuple = lock_file return None def __str__( self ) -> Optional[int]: a : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> Tuple: a : Union[str, Any] = lock return None def __enter__( self ) -> Union[str, Any]: return self.lock def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: self.lock.release() return None class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> int: a : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long a : str = self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__ ) # The path to the lock file. a : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a : Union[str, Any] = None # The default timeout value. a : Union[str, Any] = timeout # We use this lock primarily for the lock counter. a : str = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a : str = 0 return None @property def __a ( self ) -> List[Any]: return self._lock_file @property def __a ( self ) -> Optional[int]: return self._timeout @timeout.setter def __a ( self , lowerCAmelCase__ ) -> int: a : Any = float(lowerCAmelCase__ ) return None def __a ( self ) -> Any: raise NotImplementedError() def __a ( self ) -> Union[str, Any]: raise NotImplementedError() @property def __a ( self ) -> List[Any]: return self._lock_file_fd is not None def __a ( self , lowerCAmelCase__=None , lowerCAmelCase__=0.05 ) -> Any: # Use the default timeout, if no timeout is provided. if timeout is None: a : Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a : Union[str, Any] = id(self ) a : int = self._lock_file a : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a : Optional[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __a ( self , lowerCAmelCase__=False ) -> Optional[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a : Union[str, Any] = id(self ) a : Dict = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() a : Optional[Any] = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ) -> List[Any]: self.acquire() return self def __exit__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: self.release() return None def __del__( self ) -> List[Any]: self.release(force=lowerCAmelCase__ ) return None def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : str = os.path.basename(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > max_length and max_length > 0: a : List[str] = os.path.dirname(lowerCAmelCase__ ) a : List[str] = str(hash(lowerCAmelCase__ ) ) a : List[str] = filename[: max_length - len(lowerCAmelCase__ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) else: return path class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> Optional[Any]: from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) a : Optional[int] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def __a ( self ) -> Dict: a : Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a : List[Any] = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCAmelCase__ ) else: a : Dict = fd return None def __a ( self ) -> str: a : Dict = self._lock_file_fd a : List[str] = None msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=-1 , lowerCAmelCase__=None ) -> str: a : int = os.statvfs(os.path.dirname(lowerCAmelCase__ ) ).f_namemax super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) def __a ( self ) -> Any: a : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC a : int = os.open(self._lock_file , lowerCAmelCase__ ) try: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCAmelCase__ ) else: a : List[str] = fd return None def __a ( self ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition a : Optional[int] = self._lock_file_fd a : int = None fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) os.close(lowerCAmelCase__ ) return None class __UpperCamelCase ( a__ ): def __a ( self ) -> Optional[Any]: a : Optional[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a : str = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: a : List[str] = fd return None def __a ( self ) -> List[str]: os.close(self._lock_file_fd ) a : Tuple = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a : Dict = None if msvcrt: a : Any = WindowsFileLock elif fcntl: a : List[Any] = UnixFileLock else: a : Optional[Any] = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
79
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[list[int]] ) ->int: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
79
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[Any] = """align_text_model""" def __init__( self : int , a_ : Union[str, Any]=3_05_22 , a_ : Any=7_68 , a_ : Any=12 , a_ : Any=12 , a_ : Union[str, Any]=30_72 , a_ : List[str]="gelu" , a_ : Optional[Any]=0.1 , a_ : Optional[int]=0.1 , a_ : str=5_12 , a_ : Dict=2 , a_ : Dict=0.02 , a_ : int=1e-1_2 , a_ : List[str]=0 , a_ : Tuple="absolute" , a_ : Any=True , **a_ : Optional[Any] , ): super().__init__(**a_ ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Tuple = type_vocab_size lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : int = position_embedding_type lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : List[Any] = pad_token_id @classmethod def lowerCamelCase ( cls : List[Any] , a_ : Union[str, os.PathLike] , **a_ : List[str] ): cls._set_token_in_kwargs(a_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = cls.get_config_dict(a_ , **a_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = """align_vision_model""" def __init__( self : Dict , a_ : int = 3 , a_ : int = 6_00 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , a_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 25_60 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.2 , **a_ : Dict , ): super().__init__(**a_ ) lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : Optional[Any] = width_coefficient lowerCAmelCase_ : int = depth_coefficient lowerCAmelCase_ : List[Any] = depth_divisor lowerCAmelCase_ : Union[str, Any] = kernel_sizes lowerCAmelCase_ : Union[str, Any] = in_channels lowerCAmelCase_ : Tuple = out_channels lowerCAmelCase_ : Tuple = depthwise_padding lowerCAmelCase_ : Dict = strides lowerCAmelCase_ : Dict = num_block_repeats lowerCAmelCase_ : int = expand_ratios lowerCAmelCase_ : Tuple = squeeze_expansion_ratio lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Any = hidden_dim lowerCAmelCase_ : List[str] = pooling_type lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : int = batch_norm_eps lowerCAmelCase_ : Optional[int] = batch_norm_momentum lowerCAmelCase_ : Optional[Any] = drop_connect_rate lowerCAmelCase_ : Any = sum(a_ ) * 4 @classmethod def lowerCamelCase ( cls : int , a_ : Union[str, os.PathLike] , **a_ : Any ): cls._set_token_in_kwargs(a_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Union[str, Any] = """align""" a_ : int = True def __init__( self : Union[str, Any] , a_ : List[str]=None , a_ : List[Any]=None , a_ : Dict=6_40 , a_ : Optional[int]=1.0 , a_ : Tuple=0.02 , **a_ : Dict , ): super().__init__(**a_ ) if text_config is None: lowerCAmelCase_ : Optional[int] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowerCAmelCase_ : Optional[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowerCAmelCase_ : List[str] = AlignTextConfig(**a_ ) lowerCAmelCase_ : Union[str, Any] = AlignVisionConfig(**a_ ) lowerCAmelCase_ : Optional[int] = projection_dim lowerCAmelCase_ : str = temperature_init_value lowerCAmelCase_ : Any = initializer_range @classmethod def lowerCamelCase ( cls : List[Any] , a_ : AlignTextConfig , a_ : AlignVisionConfig , **a_ : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a_ ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Tuple = self.text_config.to_dict() lowerCAmelCase_ : Any = self.vision_config.to_dict() lowerCAmelCase_ : Dict = self.__class__.model_type return output
241
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase__ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
241
1
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __snake_case ( lowerCamelCase_ , lowerCamelCase_ ): @register_to_config def __init__( self : List[Any] , *, _lowercase : int = 4 , _lowercase : int = 7_68 , _lowercase : int , _lowercase : Tuple , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(_lowerCAmelCase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE__ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens SCREAMING_SNAKE_CASE__ = nn.Linear( _lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = nn.LayerNorm(_lowerCAmelCase ) def __a ( self : Optional[Any] , *, _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Any ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE__ = image_embeddings.shape[0] SCREAMING_SNAKE_CASE__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = classifier_free_guidance_embeddings.expand( _lowerCAmelCase , -1 ) SCREAMING_SNAKE_CASE__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE__ = self.embedding_proj(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.clip_image_embeddings_project_to_time_embeddings(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE__ = self.clip_extra_context_tokens_proj(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens.reshape(_lowerCAmelCase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE__ = self.encoder_hidden_states_proj(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.text_encoder_hidden_states_norm(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
219
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MobileBertTokenizer lowerCAmelCase__ = MobileBertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english lowerCAmelCase__ = """google/mobilebert-uncased""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' super().setUp() __lowercase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __lowercase =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase ='UNwant\u00E9d,running' __lowercase ='unwanted, running' return input_text, output_text def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.tokenizer_class(self.vocab_file) __lowercase =tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [9, 6, 7, 1_2, 1_0, 1_1]) def __lowerCamelCase ( self : Dict): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase ='UNwant\u00E9d,running' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) # With lower casing __lowercase =self.get_tokenizer(do_lower_case=_lowerCAmelCase) __lowercase =self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase) __lowercase ='UNwant\u00E9d,running' __lowercase =tokenizer.tokenize(_lowerCAmelCase) __lowercase =rust_tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =self.get_rust_tokenizer() __lowercase =tokenizer.encode(_lowerCAmelCase) __lowercase =rust_tokenizer.encode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase ={} for i, token in enumerate(_lowerCAmelCase): __lowercase =i __lowercase =WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) def __lowerCamelCase ( self : str): '''simple docstring''' self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def __lowerCamelCase ( self : List[str]): '''simple docstring''' self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']]) @slow def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.tokenizer_class.from_pretrained('google/mobilebert-uncased') __lowercase =tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __lowercase =tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) __lowercase =tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , 'do_lower_case') else False __lowercase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'])) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping']) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =['的', '人', '有'] __lowercase =''.join(_lowerCAmelCase) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __lowercase =True __lowercase =self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase) __lowercase =tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =False __lowercase =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) __lowercase =tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase) __lowercase =tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase) # it is expected that only the first Chinese character is not preceded by "##". __lowercase =[ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase)
166
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '-m', '--pretrained_model_name_or_path', type=a_, default=a_, required=a_, help='Path to pretrained model or model identifier from huggingface.co/models.', ) parser.add_argument( '-c', '--caption', type=a_, default='robotic cat with wings', help='Text used to generate images.', ) parser.add_argument( '-n', '--images_num', type=a_, default=4, help='How much images to generate.', ) parser.add_argument( '-s', '--seed', type=a_, default=42, help='Seed for random process.', ) parser.add_argument( '-ci', '--cuda_id', type=a_, default=0, help='cuda_id.', ) lowerCamelCase : List[Any] = parser.parse_args() return args def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' if not len(a_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCamelCase : str = imgs[0].size lowerCamelCase : Optional[Any] = Image.new('RGB', size=(cols * w, rows * h) ) lowerCamelCase : Optional[Any] = grid.size for i, img in enumerate(a_ ): grid.paste(a_, box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase ( a_, a_="robotic cat with wings", a_=7.5, a_=50, a_=1, a_=42, ): '''simple docstring''' lowerCamelCase : Optional[Any] = torch.Generator(pipeline.device ).manual_seed(a_ ) lowerCamelCase : List[str] = pipeline( a_, guidance_scale=a_, num_inference_steps=a_, generator=a_, num_images_per_prompt=a_, ).images lowerCamelCase : Tuple = int(math.sqrt(a_ ) ) lowerCamelCase : Optional[Any] = image_grid(a_, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images _A = parse_args() # Load models and create wrapper for stable diffusion _A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _A = unet.to(torch.device('cuda', args.cuda_id)) _A = pipeline.to(unet.device) _A , _A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _A = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
367
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : int = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase : Tuple = key.replace('module.encoder', 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase : str = key.replace('module.decoder', 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase : Any = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase : Dict = key.replace(F"""patch_embed{idx}""", F"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: lowerCamelCase : Optional[int] = key.replace('norm', 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase : List[str] = key.replace(F"""layer_norm{idx}""", F"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: lowerCamelCase : List[Any] = key.replace('layer_norm1', 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase : str = key.replace('layer_norm2', 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase : Union[str, Any] = key[key.find('block' ) + len('block' )] lowerCamelCase : List[str] = key.replace(F"""block{idx}""", F"""block.{int(a_ )-1}""" ) if "attn.q" in key: lowerCamelCase : Union[str, Any] = key.replace('attn.q', 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase : Dict = key.replace('attn.proj', 'attention.output.dense' ) if "attn" in key: lowerCamelCase : int = key.replace('attn', 'attention.self' ) if "fc1" in key: lowerCamelCase : Any = key.replace('fc1', 'dense1' ) if "fc2" in key: lowerCamelCase : List[Any] = key.replace('fc2', 'dense2' ) if "linear_pred" in key: lowerCamelCase : Optional[Any] = key.replace('linear_pred', 'classifier' ) if "linear_fuse" in key: lowerCamelCase : Union[str, Any] = key.replace('linear_fuse.conv', 'linear_fuse' ) lowerCamelCase : Optional[int] = key.replace('linear_fuse.bn', 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase : str = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase : List[Any] = key.replace(F"""linear_c{idx}""", F"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: lowerCamelCase : int = key.replace('bot_conv', '0.convolution' ) if "skip_conv1" in key: lowerCamelCase : Any = key.replace('skip_conv1', '1.convolution' ) if "skip_conv2" in key: lowerCamelCase : Optional[Any] = key.replace('skip_conv2', '2.convolution' ) if "fusion1" in key: lowerCamelCase : str = key.replace('fusion1', '1.fusion' ) if "fusion2" in key: lowerCamelCase : Optional[Any] = key.replace('fusion2', '2.fusion' ) if "fusion3" in key: lowerCamelCase : List[str] = key.replace('fusion3', '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase : Optional[int] = key.replace('conv', 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase : Tuple = key.replace('module.last_layer_depth', 'head.head' ) lowerCamelCase : List[Any] = value return new_state_dict def UpperCAmelCase ( a_, a_ ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase : Any = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase : List[Any] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def UpperCAmelCase ( a_, a_, a_=False, a_=None ): '''simple docstring''' lowerCamelCase : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase : Any = GLPNImageProcessor() # prepare image lowerCamelCase : int = prepare_img() lowerCamelCase : Tuple = image_processor(images=a_, return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase : Optional[Any] = torch.load(a_, map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase : Any = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict lowerCamelCase : Optional[int] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass lowerCamelCase : str = model(a_ ) lowerCamelCase : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase : Any = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: lowerCamelCase : str = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add model', use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization='nielsr', commit_message='Add image processor', use_temp_dir=a_, ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
205
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A_ : def __init__( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : str=1_6 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple=3_2 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Dict=[0, 1, 2, 3] , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : int=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=3 , UpperCAmelCase : str=[1, 3_8_4, 2_4, 2_4] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=None , ) -> Tuple: __lowerCAmelCase: List[Any] = parent __lowerCAmelCase: int = batch_size __lowerCAmelCase: Union[str, Any] = image_size __lowerCAmelCase: Optional[Any] = patch_size __lowerCAmelCase: Any = num_channels __lowerCAmelCase: Optional[int] = is_training __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Optional[int] = num_hidden_layers __lowerCAmelCase: Tuple = backbone_out_indices __lowerCAmelCase: Union[str, Any] = num_attention_heads __lowerCAmelCase: List[Any] = intermediate_size __lowerCAmelCase: Any = hidden_act __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: Dict = attention_probs_dropout_prob __lowerCAmelCase: List[Any] = initializer_range __lowerCAmelCase: Dict = num_labels __lowerCAmelCase: Optional[Any] = backbone_featmap_shape __lowerCAmelCase: Union[str, Any] = scope __lowerCAmelCase: Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase: Any = (image_size // patch_size) ** 2 __lowerCAmelCase: Optional[int] = num_patches + 1 def UpperCAmelCase ( self : Any ) -> Optional[Any]: __lowerCAmelCase: Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: List[str] = None if self.use_labels: __lowerCAmelCase: int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCAmelCase: Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[int] ) -> int: __lowerCAmelCase: Any = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [9_6, 1_9_2, 3_8_4, 7_6_8], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ) -> Dict: __lowerCAmelCase: int = DPTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] ) -> Tuple: __lowerCAmelCase: int = self.num_labels __lowerCAmelCase: Union[str, Any] = DPTForDepthEstimation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ) -> List[Any]: __lowerCAmelCase: int = self.num_labels __lowerCAmelCase: List[str] = DPTForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: int = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowercase : Any = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : Dict = False _lowercase : str = False _lowercase : int = False def UpperCAmelCase ( self : int ) -> List[str]: __lowerCAmelCase: str = DPTModelTester(self ) __lowerCAmelCase: int = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : List[str] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def UpperCAmelCase ( self : str ) -> Optional[Any]: pass def UpperCAmelCase ( self : str ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: str = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: str = model_class(__lowerCAmelCase ) __lowerCAmelCase: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: Optional[int] = [*signature.parameters.keys()] __lowerCAmelCase: Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def UpperCAmelCase ( self : str ) -> str: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) def UpperCAmelCase ( self : Dict ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCAmelCase , __lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: str = True if model_class in get_values(__lowerCAmelCase ): continue __lowerCAmelCase: Dict = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() __lowerCAmelCase: Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __lowerCAmelCase: List[Any] = model(**__lowerCAmelCase ).loss loss.backward() def UpperCAmelCase ( self : Any ) -> str: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __lowerCAmelCase , __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: Dict = False __lowerCAmelCase: Optional[Any] = True if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue __lowerCAmelCase: Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() __lowerCAmelCase: Optional[Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __lowerCAmelCase: List[Any] = model(**__lowerCAmelCase ).loss loss.backward() def UpperCAmelCase ( self : Any ) -> str: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: Dict = _config_zero_init(__lowerCAmelCase ) for model_class in self.all_model_classes: __lowerCAmelCase: Tuple = model_class(config=__lowerCAmelCase ) # Skip the check for the backbone __lowerCAmelCase: Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __lowerCAmelCase: Optional[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: pass @slow def UpperCAmelCase ( self : List[Any] ) -> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __lowerCAmelCase: Dict = DPTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: Any = 'add' with self.assertRaises(__lowerCAmelCase ): __lowerCAmelCase: List[Any] = DPTForDepthEstimation(__lowerCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[Any] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) __lowerCAmelCase: Tuple = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(__lowerCAmelCase ) __lowerCAmelCase: Dict = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase: Optional[int] = model(**__lowerCAmelCase ) __lowerCAmelCase: List[str] = outputs.predicted_depth # verify the predicted depth __lowerCAmelCase: Optional[Any] = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __lowerCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __lowerCAmelCase , atol=1E-4 ) )
322
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase = TapasConfig.from_json_file(lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_46_94 _UpperCAmelCase = 0.20_79_51 _UpperCAmelCase = 0.12_11_94 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0_35_25_13 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.45_19 _UpperCAmelCase = 0.90_34_21 _UpperCAmelCase = 2_22.0_88 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_31_41 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=lowercase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase ,lowercase ,lowercase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=5_12 ) tokenizer.save_pretrained(lowercase ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase (a__ ,unittest.TestCase ): __snake_case : List[str] = LEDTokenizer __snake_case : Union[str, Any] = LEDTokenizerFast __snake_case : Any = True def UpperCamelCase ( self: str ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE = {'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def UpperCamelCase ( self: Dict , **UpperCAmelCase_: Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCamelCase ( self: List[Any] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _SCREAMING_SNAKE_CASE = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = tokenizer(_lowerCamelCase , max_length=len(_lowerCamelCase ) , padding=_lowerCamelCase , return_tensors="""pt""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_torch def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""pt""" ) self.assertIn("""input_ids""" , _lowerCamelCase ) self.assertIn("""attention_mask""" , _lowerCamelCase ) self.assertNotIn("""labels""" , _lowerCamelCase ) self.assertNotIn("""decoder_attention_mask""" , _lowerCamelCase ) @require_torch def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = tokenizer(text_target=_lowerCamelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors="""pt""" ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ['''A long paragraph for summarization.'''] _SCREAMING_SNAKE_CASE = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = tokenizer(_lowerCamelCase , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = tokenizer(text_target=_lowerCamelCase , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = inputs['''input_ids'''] _SCREAMING_SNAKE_CASE = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase ( self: List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _SCREAMING_SNAKE_CASE = ['''Summary of the text.''', '''Another summary.'''] _SCREAMING_SNAKE_CASE = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _SCREAMING_SNAKE_CASE = tokenizer(_lowerCamelCase , padding=_lowerCamelCase ) _SCREAMING_SNAKE_CASE = [[0] * len(_lowerCamelCase ) for x in encoded_output['''input_ids''']] _SCREAMING_SNAKE_CASE = tokenizer.pad(_lowerCamelCase ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , _lowerCamelCase ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase ( self: Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _SCREAMING_SNAKE_CASE = '''A, <mask> AllenNLP sentence.''' _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowerCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowerCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
354
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _A = grid[0] for row_n in range(1 , len(__lowercase ) ): _A = grid[row_n] _A = fill_row(__lowercase , __lowercase ) _A = grid[row_n] return grid[-1][-1] def __lowercase ( __lowercase , __lowercase ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
79
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') lowerCamelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the training data.'''} ) snake_case = field(default=snake_case_ , metadata={'''help''': '''A folder containing the validation data.'''} ) snake_case = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) snake_case = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) snake_case = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) snake_case = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case = field(default=snake_case_ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Optional[int]=192 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=0.6 ): '''simple docstring''' _A = input_size _A = mask_patch_size _A = model_patch_size _A = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) _A = self.input_size // self.mask_patch_size _A = self.mask_patch_size // self.model_patch_size _A = self.rand_size**2 _A = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Any ): '''simple docstring''' _A = np.random.permutation(self.token_count )[: self.mask_count] _A = np.zeros(self.token_count , dtype=__UpperCAmelCase ) _A = 1 _A = mask.reshape((self.rand_size, self.rand_size) ) _A = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = torch.stack([example["pixel_values"] for example in examples] ) _A = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __lowercase ( ) -> Dict: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: _A = ds["train"].train_test_split(data_args.train_val_split ) _A = split["train"] _A = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _A = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase ) elif model_args.model_name_or_path: _A = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _A = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowercase , "decoder_type" ): _A = "simmim" # adapt config _A = model_args.image_size if model_args.image_size is not None else config.image_size _A = model_args.patch_size if model_args.patch_size is not None else config.patch_size _A = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _A = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase ) elif model_args.model_name_or_path: _A = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _A = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _A = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _A = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) _A = AutoModelForMaskedImageModeling.from_config(__lowercase ) if training_args.do_train: _A = ds["train"].column_names else: _A = ds["validation"].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = "image" elif "img" in column_names: _A = "img" else: _A = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _A = Compose( [ Lambda(lambda __lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _A = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__lowercase ): _A = [transforms(__lowercase ) for image in examples[image_column_name]] _A = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: _A = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: _A = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowercase ) # Initialize our trainer _A = Trainer( model=__lowercase , args=__lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics("eval" , __lowercase ) trainer.save_metrics("eval" , __lowercase ) # Write model card and (optionally) push to hub _A = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
79
1
'''simple docstring''' def __lowerCamelCase ( A__ = 10 , A__ = 1_000 , A__ = True ) -> int: """simple docstring""" assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def __lowerCamelCase ( A__ , A__ , A__ ) -> None: """simple docstring""" assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(A__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) UpperCamelCase = lower UpperCamelCase = higher UpperCamelCase = [] while True: UpperCamelCase = get_avg(__snake_case , __snake_case ) last_numbers.append(__snake_case ) if answer(__snake_case ) == "low": UpperCamelCase = number elif answer(__snake_case ) == "high": UpperCamelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def __lowerCamelCase ( ) -> None: """simple docstring""" UpperCamelCase = int(input('Enter lower value : ' ).strip() ) UpperCamelCase = int(input('Enter high value : ' ).strip() ) UpperCamelCase = int(input('Enter value to guess : ' ).strip() ) guess_the_number(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": main()
364
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MODEL_FOR_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ] , ) UpperCamelCase = text_generator.model.config.eos_token_id UpperCamelCase = '<pad>' UpperCamelCase = text_generator( ['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], [ {'generated_token_ids': ANY(UpperCamelCase__ )}, {'generated_token_ids': ANY(UpperCamelCase__ )}, ], ] , ) @require_tf def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output UpperCamelCase = text_generator('This is a test' , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) UpperCamelCase = text_generator(['This is a test', 'This is a second test'] , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def A ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = TextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return text_generator, ["This is a test", "Another test"] def A ( self : int ): """simple docstring""" UpperCamelCase = 'Hello I believe in' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = text_generator(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) UpperCamelCase = text_generator(UpperCamelCase__ , stop_sequence=' fe' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': 'Hello I believe in fe'}] ) def A ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = text_generator.model UpperCamelCase = text_generator.tokenizer UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = pipeline(task='text-generation' , model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , return_full_text=UpperCamelCase__ ) UpperCamelCase = text_generator('This is a test' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) UpperCamelCase = text_generator('This is a test' , return_full_text=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) UpperCamelCase = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], [{'generated_text': ANY(UpperCamelCase__ )}, {'generated_text': ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_text=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_full_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = text_generator('test' , return_text=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase = text_generator('' ) self.assertEqual(UpperCamelCase__ , [{'generated_text': ANY(UpperCamelCase__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_0_0 , max_new_tokens=2_0 ) UpperCamelCase = text_generator('This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(UpperCamelCase__ ): text_generator( 'This is a test' * 5_0_0 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def A ( self : int ): """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase = pipe('This is a test' ) self.assertEqual( UpperCamelCase__ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def A ( self : int ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def A ( self : Any ): """simple docstring""" import torch UpperCamelCase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=UpperCamelCase__ , top_p=0.5 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = 'Hello world' UpperCamelCase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": UpperCamelCase = logging.get_logger('transformers.generation.tf_utils' ) else: UpperCamelCase = logging.get_logger('transformers.generation.utils' ) UpperCamelCase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(UpperCamelCase__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_new_tokens=1 ) self.assertNotIn(UpperCamelCase__ , cl.out ) with CaptureLogger(UpperCamelCase__ ) as cl: UpperCamelCase = text_generator(UpperCamelCase__ , max_length=1_0 ) self.assertNotIn(UpperCamelCase__ , cl.out )
249
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} a_ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } a_ = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a__ ( ): __lowerCamelCase = ( list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) ) ) __lowerCamelCase = bs[:] __lowerCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 __lowerCamelCase = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = set() __lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase = char return pairs class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(__UpperCAmelCase ) __lowerCamelCase = {v: k for k, v in self.encoder.items()} __lowerCamelCase = errors # how to handle errors in decoding __lowerCamelCase = bytes_to_unicode() __lowerCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: __lowerCamelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCamelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCamelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowerCamelCase = {} __lowerCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCamelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowerCamelCase = tuple(__UpperCAmelCase ) __lowerCamelCase = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: __lowerCamelCase = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase ,__lowerCamelCase = bigram __lowerCamelCase = [] __lowerCamelCase = 0 while i < len(__UpperCAmelCase ): try: __lowerCamelCase = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase = tuple(__UpperCAmelCase ) __lowerCamelCase = new_word if len(__UpperCAmelCase ) == 1: break else: __lowerCamelCase = get_pairs(__UpperCAmelCase ) __lowerCamelCase = ''' '''.join(__UpperCAmelCase ) __lowerCamelCase = word return word def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [] for token in re.findall(self.pat , __UpperCAmelCase ): __lowerCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = ''''''.join(__UpperCAmelCase ) __lowerCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' ) __lowerCamelCase = 0 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCamelCase = token_index writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] __lowerCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): __lowerCamelCase = ''' ''' + text return (text, kwargs)
330
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
1
import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = "path-to-your-trained-model" SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") SCREAMING_SNAKE_CASE : Union[str, Any] = "A photo of sks dog in a bucket" SCREAMING_SNAKE_CASE : List[Any] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
84
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _lowerCamelCase: def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : Optional[int] = UNetaDConditionModel( sample_size=32, layers_per_block=1, block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=3, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Dict = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[str]: """simple docstring""" torch.manual_seed(0) _lowercase : List[str] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) _lowercase : List[str] = UNetaDConditionModel( sample_size=32, layers_per_block=[1, 2], block_out_channels=[32, 64], down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ], mid_block_type='UNetMidBlock2DSimpleCrossAttn', up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'], in_channels=6, out_channels=6, cross_attention_dim=32, encoder_hid_dim=32, attention_head_dim=8, addition_embed_type='text', addition_embed_type_num_heads=2, cross_attention_norm='group_norm', resnet_time_scale_shift='scale_shift', act_fn='gelu', class_embed_type='timestep', mid_block_scale_factor=1.4_1_4, time_embedding_act_fn='gelu', time_embedding_dim=32, ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) _lowercase : Optional[int] = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, thresholding=lowerCamelCase, dynamic_thresholding_ratio=0.9_5, sample_max_value=1.0, prediction_type='epsilon', variance_type='learned_range', ) torch.manual_seed(0) _lowercase : str = DDPMScheduler( num_train_timesteps=10_00, beta_schedule='squaredcos_cap_v2', beta_start=0.0_0_0_1, beta_end=0.0_2, ) torch.manual_seed(0) _lowercase : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : int = inputs['prompt'] _lowercase : Dict = inputs['generator'] _lowercase : Optional[int] = inputs['num_inference_steps'] _lowercase : str = inputs['output_type'] if "image" in inputs: _lowercase : List[Any] = inputs['image'] else: _lowercase : List[Any] = None if "mask_image" in inputs: _lowercase : Union[str, Any] = inputs['mask_image'] else: _lowercase : Dict = None if "original_image" in inputs: _lowercase : Any = inputs['original_image'] else: _lowercase : Tuple = None _lowercase , _lowercase : str = pipe.encode_prompt(lowerCamelCase) # inputs with prompt converted to embeddings _lowercase : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : int = image if mask_image is not None: _lowercase : str = mask_image if original_image is not None: _lowercase : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : Dict = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase, lowerCamelCase) is None, F'''`{optional_component}` did not stay set to None after loading.''', ) _lowercase : Dict = self.get_dummy_inputs(lowerCamelCase) _lowercase : Optional[Any] = inputs['generator'] _lowercase : Any = inputs['num_inference_steps'] _lowercase : List[Any] = inputs['output_type'] # inputs with prompt converted to embeddings _lowercase : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowercase : str = image if mask_image is not None: _lowercase : Optional[int] = mask_image if original_image is not None: _lowercase : int = original_image _lowercase : str = pipe_loaded(**lowerCamelCase)[0] _lowercase : List[Any] = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe(**lowerCamelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase) _lowercase : List[str] = self.pipeline_class.from_pretrained(lowerCamelCase) pipe_loaded.to(lowerCamelCase) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : Tuple = pipe_loaded(**lowerCamelCase)[0] _lowercase : str = np.abs(to_np(lowerCamelCase) - to_np(lowerCamelCase)).max() self.assertLess(lowerCamelCase, 1E-4)
84
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
304
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ = data_utils.TransfoXLTokenizer lowercase_ = data_utils.TransfoXLCorpus lowercase_ = data_utils lowercase_ = data_utils def a ( A__ : int , A__ : Dict , A__ : Union[str, Any] , A__ : Union[str, Any] ) -> List[str]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: _lowercase =pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowercase =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _lowercase =corpus.vocab.__dict__ torch.save(A__ , A__ ) _lowercase =corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) _lowercase =pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowercase =os.path.abspath(A__ ) _lowercase =os.path.abspath(A__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowercase =TransfoXLConfig() else: _lowercase =TransfoXLConfig.from_json_file(A__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowercase =TransfoXLLMHeadModel(A__ ) _lowercase =load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model _lowercase =os.path.join(A__ , A__ ) _lowercase =os.path.join(A__ , A__ ) print(F'''Save PyTorch model to {os.path.abspath(A__ )}''' ) torch.save(model.state_dict() , A__ ) print(F'''Save configuration file to {os.path.abspath(A__ )}''' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
205
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( _A , _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ (self : int): torch.manual_seed(0) A = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) A = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) A = CLIPTextModel(__SCREAMING_SNAKE_CASE) A = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") A = 7_7 A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int=0): if str(__SCREAMING_SNAKE_CASE).startswith("mps"): A = torch.manual_seed(__SCREAMING_SNAKE_CASE) else: A = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(__SCREAMING_SNAKE_CASE) A = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE__ (self : Tuple): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3) def SCREAMING_SNAKE_CASE__ (self : Dict): super().test_inference_batch_single_identical(expected_max_diff=3E-3) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = "cpu" # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() torch.manual_seed(0) A = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder A = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE) A = text_encoder A = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE) A = alt_pipe.to(__SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) A = "A photo of an astronaut" A = alt_pipe(**__SCREAMING_SNAKE_CASE) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ (self : str): A = "cpu" # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) torch.manual_seed(0) A = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder A = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE) A = text_encoder A = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE) A = alt_pipe.to(__SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE) A = alt_pipe(**__SCREAMING_SNAKE_CASE) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): # make sure here that pndm scheduler skips prk A = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=__SCREAMING_SNAKE_CASE) A = alt_pipe.to(__SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = "A painting of a squirrel eating a burger" A = torch.manual_seed(0) A = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="np") A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE__ (self : Dict): A = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler") A = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE) A = alt_pipe.to(__SCREAMING_SNAKE_CASE) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) A = "A painting of a squirrel eating a burger" A = torch.manual_seed(0) A = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy") A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
57
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __A : Any = open # noqa: we just need to have a builtin inside this module to test it properly
57
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures') SCREAMING_SNAKE_CASE_: List[Any] =get_tests_dir('fixtures/dummy_feature_extractor_config.json') SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures/dummy-config.json') class __A ( unittest.TestCase ): def _lowercase (self : List[Any] ): UpperCAmelCase_ = 0 def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def _lowercase (self : Any ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) UpperCAmelCase_ = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved UpperCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _lowercase (self : Dict ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("bert-base" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def _lowercase (self : List[str] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def _lowercase (self : int ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def _lowercase (self : Union[str, Any] ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : List[Any] ): class __A ( UpperCamelCase__ ): a__ : Optional[Any] = True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> Dict: if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True __lowerCAmelCase : List[Any] = 4 __lowerCAmelCase : str = (1 << p) - 1 for _ in range(p - 2 ): __lowerCAmelCase : int = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
356
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. __lowerCAmelCase : str = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] __lowerCAmelCase : str = run_maze(SCREAMING_SNAKE_CASE , 0 , 0 , SCREAMING_SNAKE_CASE ) if solved: print("""\n""".join(str(SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] ) -> bool: __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): __lowerCAmelCase : str = 1 return True __lowerCAmelCase : Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds __lowerCAmelCase : Optional[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCAmelCase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCAmelCase : Tuple = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE , i + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j + 1 , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , i - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j - 1 , SCREAMING_SNAKE_CASE ) ): return True __lowerCAmelCase : Tuple = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
232
0
def A_ ( _lowerCAmelCase = 50 ) -> int: UpperCamelCase : List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( a_ = 3 ) -> qiskit.result.counts.Counts: if isinstance(a_ ,a_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __UpperCamelCase : str =QuantumRegister(a_ ,'qr' ) __UpperCamelCase : Optional[int] =ClassicalRegister(a_ ,'cr' ) __UpperCamelCase : Optional[Any] =QuantumCircuit(a_ ,a_ ) __UpperCamelCase : Any =number_of_qubits for i in range(a_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,a_ ,a_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a_ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a_ ,a_ ) # simulate with 10000 shots __UpperCamelCase : Any =Aer.get_backend('qasm_simulator' ) __UpperCamelCase : Tuple =execute(a_ ,a_ ,shots=10_000 ) return job.result().get_counts(a_ ) if __name__ == "__main__": print( f"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
365
from math import pow, sqrt def A ( *a_ ) -> bool: __UpperCamelCase : Union[str, Any] =len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def A ( a_ ,a_ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
245
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _SCREAMING_SNAKE_CASE : def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :int = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase_ :str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__A , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCAmelCase_ :Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowerCAmelCase_ :Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Dict = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = inputs["""prompt"""] lowerCAmelCase_ :Optional[int] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Optional[int] = inputs["""output_type"""] if "image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""image"""] else: lowerCAmelCase_ :int = None if "mask_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""mask_image"""] else: lowerCAmelCase_ :int = None if "original_image" in inputs: lowerCAmelCase_ :List[Any] = inputs["""original_image"""] else: lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ , lowerCAmelCase_ :int = pipe.encode_prompt(__A ) # inputs with prompt converted to embeddings lowerCAmelCase_ :List[str] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :int = image if mask_image is not None: lowerCAmelCase_ :Tuple = mask_image if original_image is not None: lowerCAmelCase_ :Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__A , __A , __A ) lowerCAmelCase_ :Optional[int] = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__A , __A ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) lowerCAmelCase_ :Dict = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = inputs["""generator"""] lowerCAmelCase_ :Any = inputs["""num_inference_steps"""] lowerCAmelCase_ :Tuple = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCAmelCase_ :Tuple = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCAmelCase_ :Optional[int] = image if mask_image is not None: lowerCAmelCase_ :str = mask_image if original_image is not None: lowerCAmelCase_ :Tuple = original_image lowerCAmelCase_ :Union[str, Any] = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :Optional[int] = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Dict = pipe(**__A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__A ) lowerCAmelCase_ :Any = self.pipeline_class.from_pretrained(__A ) pipe_loaded.to(__A ) pipe_loaded.set_progress_bar_config(disable=__A ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = pipe_loaded(**__A )[0] lowerCAmelCase_ :Dict = np.abs(to_np(__A ) - to_np(__A ) ).max() self.assertLess(__A , 1E-4 )
84
"""simple docstring""" def _snake_case ( lowercase__ : int = 1_0 ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError("""Invalid input""" ) lowerCAmelCase_ :List[str] = 1_0**n lowerCAmelCase_ :int = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
84
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Optional[Any] = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
from math import pi, sqrt def __snake_case ( _lowerCAmelCase : float ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __snake_case ( ) -> None: assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : List[str] = 1.0 while num: _lowerCAmelCase : List[str] = float(input('''Gamma of: ''')) print(F'''gamma({num}) = {gamma(num)}''') print('''\nEnter 0 to exit...''')
70
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A : int = logging.get_logger(__name__) A : Optional[int] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class _UpperCamelCase : '''simple docstring''' def __init__( self , __a=None , **__a ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) __lowerCAmelCase = model __lowerCAmelCase = kwargs.get("model_save_dir" , __a ) __lowerCAmelCase = kwargs.get("latest_model_name" , __a ) def __call__( self , **__a ): __lowerCAmelCase = {k: np.array(__a ) for k, v in kwargs.items()} return self.model.run(__a , __a ) @staticmethod def snake_case ( __a , __a=None , __a=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) __lowerCAmelCase = "CPUExecutionProvider" return ort.InferenceSession(__a , providers=[provider] , sess_options=__a ) def snake_case ( self , __a , __a = None , **__a ): __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCAmelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCAmelCase = Path(__a ).joinpath(__a ) try: shutil.copyfile(__a , __a ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCAmelCase = self.model_save_dir.joinpath(__a ) if src_path.exists(): __lowerCAmelCase = Path(__a ).joinpath(__a ) try: shutil.copyfile(__a , __a ) except shutil.SameFileError: pass def snake_case ( self , __a , **__a , ): if os.path.isfile(__a ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(__a , exist_ok=__a ) # saving model weights/files self._save_pretrained(__a , **__a ) @classmethod def snake_case ( cls , __a , __a = None , __a = None , __a = False , __a = None , __a = None , __a = None , __a = None , **__a , ): __lowerCAmelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__a ): __lowerCAmelCase = OnnxRuntimeModel.load_model( os.path.join(__a , __a ) , provider=__a , sess_options=__a ) __lowerCAmelCase = Path(__a ) # load model from hub else: # download model __lowerCAmelCase = hf_hub_download( repo_id=__a , filename=__a , use_auth_token=__a , revision=__a , cache_dir=__a , force_download=__a , ) __lowerCAmelCase = Path(__a ).parent __lowerCAmelCase = Path(__a ).name __lowerCAmelCase = OnnxRuntimeModel.load_model(__a , provider=__a , sess_options=__a ) return cls(model=__a , **__a ) @classmethod def snake_case ( cls , __a , __a = True , __a = None , __a = None , **__a , ): __lowerCAmelCase = None if len(str(__a ).split("@" ) ) == 2: __lowerCAmelCase , __lowerCAmelCase = model_id.split("@" ) return cls._from_pretrained( model_id=__a , revision=__a , cache_dir=__a , force_download=__a , use_auth_token=__a , **__a , )
57
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowerCAmelCase = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } __lowerCAmelCase = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def snake_case ( self , **__a ): return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = processor(text=__a ) __lowerCAmelCase = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__a ) __lowerCAmelCase = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
57
1
import string def lowerCAmelCase_ ( UpperCamelCase_ ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCamelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase_ = string.ascii_uppercase.find(UpperCamelCase_ ) UpperCamelCase_ = num - key if num < 0: UpperCamelCase_ = num + len(string.ascii_uppercase ) UpperCamelCase_ = translated + string.ascii_uppercase[num] else: UpperCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = input("Encrypted message: " ) UpperCamelCase_ = message.upper() decrypt(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
def a__ ( A_ = 10**9 ): '''simple docstring''' __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __magic_name__ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
88
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False')) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env') @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ]) class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :List[Any] ) -> Any: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="utf-8" , check=a , ) assert hasattr(self , "env" ) def _lowerCamelCase ( self :Any , a :Optional[Any] ) -> Dict: __UpperCamelCase : str = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __UpperCamelCase : Optional[int] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a , py_version="py36" , ) def _lowerCamelCase ( self :Dict , a :Dict ) -> Optional[int]: TrainingJobAnalytics(a ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def _lowerCamelCase ( self :Dict , a :Tuple ) -> List[Any]: # create estimator __UpperCamelCase : int = self.create_estimator(a ) # run training estimator.fit() # result dataframe __UpperCamelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __UpperCamelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase : int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , a )
232
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "EncodecFeatureExtractor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Optional[Any] ,A : Tuple ,A : Dict ): super().__init__(A ,A ) __A = self.feature_extractor __A = False def UpperCamelCase_ ( self : int ,A : Tuple=None ,A : int=None ,A : List[str]=True ): return self.tokenizer.get_decoder_prompt_ids(task=A ,language=A ,no_timestamps=A ) def __call__( self : Optional[Any] ,*A : Tuple ,**A : int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A ,**A ) __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("sampling_rate" ,A ) __A = kwargs.pop("text" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: __A = self.tokenizer(A ,**A ) if audio is not None: __A = self.feature_extractor(A ,*A ,sampling_rate=A ,**A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __A = audio_inputs["padding_mask"] return inputs def UpperCamelCase_ ( self : Optional[int] ,*A : List[str] ,**A : Optional[int] ): __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("padding_mask" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio_values is not None: return self._decode_audio(A ,padding_mask=A ) else: return self.tokenizer.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : List[Any] ,*A : Dict ,**A : List[Any] ): return self.tokenizer.decode(*A ,**A ) def UpperCamelCase_ ( self : Dict ,A : List[str] ,A : Optional = None ): __A = to_numpy(A ) __A , __A , __A = audio_values.shape if padding_mask is None: return list(A ) __A = to_numpy(A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A = seq_len - padding_mask.shape[-1] __A = 1 - self.feature_extractor.padding_value __A = np.pad(A ,((0, 0), (0, difference)) ,"constant" ,constant_values=A ) __A = audio_values.tolist() for i in range(A ): __A = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A = sliced_audio.reshape(A ,-1 ) return audio_values
124
import copy import re class UpperCAmelCase : '''simple docstring''' snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def UpperCamelCase_ ( cls : Dict ,A : Dict ,A : Any ): __A = prefix __A = defaults cls.build_naming_info() @staticmethod def UpperCamelCase_ ( A : Dict ,A : int ): if len(A ) == 0: return "" __A = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A ) + 1 ): __A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A : str ): __A = "" while integer != 0: __A = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __A = 0 while True: __A = word + "#" + int_to_alphabetic(A ) if sword in info["reverse_short_word"]: continue else: __A = sword break __A = short_word __A = word return short_word @staticmethod def UpperCamelCase_ ( A : int ,A : Tuple ): __A = param_name.split("_" ) __A = [TrialShortNamer.shortname_for_word(A ,A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __A = ["", "_"] for separator in separators: __A = separator.join(A ) if shortname not in info["reverse_short_param"]: __A = shortname __A = param_name return shortname return param_name @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Tuple ): __A = TrialShortNamer.shortname_for_key(A ,A ) __A = short_name __A = param_name @classmethod def UpperCamelCase_ ( cls : Dict ): if cls.NAMING_INFO is not None: return __A = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A ,A ) __A = info @classmethod def UpperCamelCase_ ( cls : Dict ,A : List[str] ): cls.build_naming_info() assert cls.PREFIX is not None __A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __A = cls.NAMING_INFO["short_param"][k] if isinstance(A ,A ): __A = 1 if v else 0 __A = "" if isinstance(A ,(int, float) ) else "-" __A = f'''{key}{sep}{v}''' name.append(A ) return "_".join(A ) @classmethod def UpperCamelCase_ ( cls : Tuple ,A : Tuple ): __A = repr[len(cls.PREFIX ) + 1 :] if repr == "": __A = [] else: __A = repr.split("_" ) __A = {} for value in values: if "-" in value: __A , __A = value.split("-" ) else: __A = re.sub("[0-9.]" ,"" ,A ) __A = float(re.sub("[^0-9.]" ,"" ,A ) ) __A = cls.NAMING_INFO["reverse_short_param"][p_k] __A = p_v for k in cls.DEFAULTS: if k not in parameters: __A = cls.DEFAULTS[k] return parameters
124
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def __snake_case ( UpperCAmelCase_ : Optional[Any] ): lowerCamelCase_ = tf.convert_to_tensor(_A ) lowerCamelCase_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __snake_case ( UpperCAmelCase_ : Tuple ): lowerCamelCase_ = tf.convert_to_tensor(_A ) lowerCamelCase_ = tf.cast(math.pi , x.dtype ) lowerCamelCase_ = tf.cast(0.04_4715 , x.dtype ) lowerCamelCase_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_A , 3 )) )) return x * cdf def __snake_case ( UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = tf.convert_to_tensor(_A ) return x * tf.tanh(tf.math.softplus(_A ) ) def __snake_case ( UpperCAmelCase_ : Union[str, Any] ): lowerCamelCase_ = tf.convert_to_tensor(_A ) lowerCamelCase_ = tf.cast(0.04_4715 , x.dtype ) lowerCamelCase_ = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __snake_case ( UpperCAmelCase_ : List[Any] ): lowerCamelCase_ = tf.convert_to_tensor(_A ) lowerCamelCase_ = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __snake_case ( UpperCAmelCase_ : Tuple ): return tf.clip_by_value(_gelu(_A ) , -10 , 10 ) def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]=-1 ): lowerCamelCase_ = tf.split(_A , 2 , axis=_A ) return a * tf.math.sigmoid(_A ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def __snake_case ( UpperCAmelCase_ : str ): return tf.keras.activations.gelu(_A , approximate=_A ) a_ : List[Any] = tf.keras.activations.gelu a_ : Optional[int] = approximate_gelu_wrap else: a_ : Tuple = _gelu a_ : List[str] = _gelu_new a_ : str = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def __snake_case ( UpperCAmelCase_ : Dict ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
55
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class a__ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type(UpperCAmelCase__ ) def __call__( self : Any , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : List[str] ) ->Any: """simple docstring""" return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[int] ) ->Any: """simple docstring""" return {}, {}, {} def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = load_image(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = image.size SCREAMING_SNAKE_CASE : Tuple = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework ) return model_inputs def _lowercase ( self : int , UpperCAmelCase__ : Any ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model(**UpperCAmelCase__ ) return model_outputs def _lowercase ( self : Tuple , UpperCAmelCase__ : Union[str, Any] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = model_outputs.predicted_depth SCREAMING_SNAKE_CASE : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE : str = (output * 2_5_5 / np.max(UpperCAmelCase__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Dict = predicted_depth SCREAMING_SNAKE_CASE : Optional[int] = depth return output_dict
245
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
102
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _a ( SCREAMING_SNAKE_CASE_ : Any ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ): __lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowerCAmelCase = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) __lowerCAmelCase = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) __lowerCAmelCase = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) __lowerCAmelCase = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) __lowerCAmelCase = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) __lowerCAmelCase = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) __lowerCAmelCase = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) __lowerCAmelCase = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) __lowerCAmelCase = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) __lowerCAmelCase = key.replace("image_encoder.module" , "flava.image_model" ) __lowerCAmelCase = key.replace("text_encoder.module" , "flava.text_model" ) __lowerCAmelCase = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) __lowerCAmelCase = key.replace("mm_encoder.module" , "flava.multimodal_model" ) __lowerCAmelCase = key.replace("text_projection" , "flava.text_projection" ) __lowerCAmelCase = key.replace("image_projection" , "flava.image_projection" ) __lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): __lowerCAmelCase = value return upgrade @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=None ): if config_path is not None: __lowerCAmelCase = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: __lowerCAmelCase = FlavaConfig() __lowerCAmelCase = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval() __lowerCAmelCase = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) else: __lowerCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) __lowerCAmelCase = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = hf_model.state_dict() __lowerCAmelCase = count_parameters(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") UpperCamelCase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
102
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A__ , A__ , A__ : Union[str, Any] =False, False, False @dataclass class UpperCAmelCase : _lowercase: Optional[int] = None _lowercase: bool = True _lowercase: bool = True _lowercase: Optional[str] = None # Automatically constructed _lowercase: ClassVar[str] = "dict" _lowercase: ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase: str = field(default='''Audio''' , init=snake_case_ , repr=snake_case_ ) def __call__( self : int ) -> int: return self.pa_type def lowercase__ ( self : List[Any] , __snake_case : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__snake_case , __snake_case ): return {"bytes": None, "path": value} elif isinstance(__snake_case , __snake_case ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCAmelCase = BytesIO() sf.write(__snake_case , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCAmelCase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _lowerCAmelCase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 _lowerCAmelCase = BytesIO(bytes() ) sf.write(__snake_case , __snake_case , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : List[Any] , __snake_case : dict , __snake_case : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) _lowerCAmelCase , _lowerCAmelCase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err _lowerCAmelCase = xsplitext(__snake_case )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: _lowerCAmelCase = token_per_repo_id or {} _lowerCAmelCase = path.split("""::""" )[-1] try: _lowerCAmelCase = string_to_dict(__snake_case , config.HUB_DATASETS_URL )["""repo_id"""] _lowerCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCAmelCase = None with xopen(__snake_case , """rb""" , use_auth_token=__snake_case ) as f: _lowerCAmelCase , _lowerCAmelCase = sf.read(__snake_case ) else: _lowerCAmelCase , _lowerCAmelCase = sf.read(__snake_case ) _lowerCAmelCase = array.T if self.mono: _lowerCAmelCase = librosa.to_mono(__snake_case ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCAmelCase = librosa.resample(__snake_case , orig_sr=__snake_case , target_sr=self.sampling_rate ) _lowerCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowercase__ ( self : int , __snake_case : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.binary() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): _lowerCAmelCase = pa.array([Audio().encode_example(__snake_case ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: _lowerCAmelCase = storage.field("""bytes""" ) else: _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: _lowerCAmelCase = storage.field("""path""" ) else: _lowerCAmelCase = pa.array([None] * len(__snake_case ) , type=pa.string() ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__snake_case , self.pa_type ) def lowercase__ ( self : Any , __snake_case : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__snake_case : List[Any] ): with xopen(__snake_case , """rb""" ) as f: _lowerCAmelCase = f.read() return bytes_ _lowerCAmelCase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCAmelCase = pa.array( [os.path.basename(__snake_case ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) _lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__snake_case , self.pa_type )
70
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowercase: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __snake_case : str , __snake_case : Any=0 ) -> str: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : Optional[int] ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = StableDiffusionControlNetImgaImgPipeline _lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__snake_case : Optional[Any] ): if isinstance(__snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowercase__ ( self : int ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : int ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__snake_case , controlnet=__snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = """evil space-punk bird""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = pipe( __snake_case , __snake_case , control_image=__snake_case , generator=__snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
70
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class lowercase( lowerCAmelCase__ ): '''simple docstring''' def __init__( self: List[Any], **a_: Optional[int] ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) requires_backends(self, """vision""" ) requires_backends(self, """torch""" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self: Optional[int], **a_: int ): '''simple docstring''' _snake_case : Optional[int] = {} _snake_case : Tuple = {} _snake_case : List[Any] = {} # preprocess args if "points_per_batch" in kwargs: _snake_case : int = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _snake_case : str = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _snake_case : Optional[Any] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _snake_case : Union[str, Any] = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _snake_case : Union[str, Any] = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _snake_case : Union[str, Any] = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _snake_case : int = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _snake_case : Any = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _snake_case : Tuple = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _snake_case : List[Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _snake_case : Union[str, Any] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _snake_case : int = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self: str, a_: Union[str, Any], *a_: List[Any], a_: Optional[int]=None, a_: Dict=None, **a_: List[Any] ): '''simple docstring''' return super().__call__(_SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE, num_workers=_SCREAMING_SNAKE_CASE, batch_size=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self: Tuple, a_: Optional[Any], a_: List[Any]=64, a_: Dict = 0, a_: Tuple = 512 / 1_500, a_: int = 32, a_: List[Any] = 1, ): '''simple docstring''' _snake_case : Any = load_image(_SCREAMING_SNAKE_CASE ) _snake_case : Optional[Any] = self.image_processor.size["""longest_edge"""] _snake_case , _snake_case , _snake_case , _snake_case : Dict = self.image_processor.generate_crop_boxes( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) _snake_case : int = self.image_processor(images=_SCREAMING_SNAKE_CASE, return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _snake_case : Any = self.get_inference_context() with inference_context(): _snake_case : str = self._ensure_tensor_on_device(_SCREAMING_SNAKE_CASE, device=self.device ) _snake_case : Optional[Any] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _snake_case : List[Any] = image_embeddings _snake_case : int = grid_points.shape[1] _snake_case : Optional[int] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): _snake_case : Union[str, Any] = grid_points[:, i : i + points_per_batch, :, :] _snake_case : Dict = input_labels[:, i : i + points_per_batch] _snake_case : Optional[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase_ ( self: Optional[int], a_: Optional[Any], a_: List[str]=0.88, a_: List[Any]=0.95, a_: List[str]=0, a_: int=1, ): '''simple docstring''' _snake_case : int = model_inputs.pop("""input_boxes""" ) _snake_case : Dict = model_inputs.pop("""is_last""" ) _snake_case : int = model_inputs.pop("""original_sizes""" ).tolist() _snake_case : Optional[int] = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _snake_case : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _snake_case : List[Any] = model_outputs["""pred_masks"""] _snake_case : int = self.image_processor.post_process_masks( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, binarize=_SCREAMING_SNAKE_CASE ) _snake_case : Any = model_outputs["""iou_scores"""] _snake_case , _snake_case , _snake_case : Tuple = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase_ ( self: Tuple, a_: Dict, a_: int=False, a_: Tuple=False, a_: str=0.7, ): '''simple docstring''' _snake_case : Any = [] _snake_case : Optional[Any] = [] _snake_case : Dict = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _snake_case : List[Any] = torch.cat(_SCREAMING_SNAKE_CASE ) _snake_case : Optional[Any] = torch.cat(_SCREAMING_SNAKE_CASE ) _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = self.image_processor.post_process_for_mask_generation( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) _snake_case : Optional[Any] = defaultdict(_SCREAMING_SNAKE_CASE ) for output in model_outputs: for k, v in output.items(): extra[k].append(_SCREAMING_SNAKE_CASE ) _snake_case : List[str] = {} if output_rle_mask: _snake_case : Optional[Any] = rle_mask if output_bboxes_mask: _snake_case : Tuple = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
355
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = WavaVecaPhonemeCTCTokenizer lowercase__ = False def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' super().setUp() _snake_case : List[Any] = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _snake_case : List[str] = dict(zip(a_, range(len(a_ ) ) ) ) _snake_case : Union[str, Any] = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _snake_case : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) def UpperCamelCase_ ( self: Tuple, a_: str, a_: List[str]=False, a_: str=20, a_: Optional[int]=5 ): '''simple docstring''' _snake_case : Union[str, Any] = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=a_ )) for i in range(len(a_ ) )] _snake_case : List[Any] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1], do_phonemize=a_ ), a_ ) ) if max_length is not None and len(a_ ) > max_length: _snake_case : Dict = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _snake_case : List[Any] = toks + toks # toks_str = [t[1] for t in toks] _snake_case : str = [t[0] for t in toks] # Ensure consistency _snake_case : Optional[Any] = tokenizer.decode(a_, clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _snake_case : Optional[Any] = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=a_ ) + """ """ + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _snake_case : str = """ """ + output_txt _snake_case : Tuple = tokenizer.encode(a_, add_special_tokens=a_ ) return output_txt, output_ids def UpperCamelCase_ ( self: int, **a_: List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **a_ ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _snake_case : Optional[Any] = tokenizer("""m xxx ɪ""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _snake_case : Union[str, Any] = tokenizer("""m aaa ɪ ccc""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa _snake_case : Any = tokenizer("""maɪ c""", do_phonemize=a_ ).input_ids self.assertEqual(a_, [3, 200] ) # mai should be <unk> (=3) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : Optional[int] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : int = """Hello how are you""" _snake_case : int = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Tuple = """Hello how are you""" _snake_case : List[str] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Optional[Any] = tokenizer.decode(tokenizer(a_ ).input_ids ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _snake_case : List[Any] = tokenizer.decode(sample_ids[0] ) _snake_case : str = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Union[str, Any] = """Hello how are you""" _snake_case : Tuple = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(a_, """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : int = """Hello how are you""" _snake_case : Dict = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a_ ).input_ids, tokenizer(a_, do_phonemize=a_ ).input_ids ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _snake_case : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _snake_case : List[str] = tokenizer.decode(sample_ids[0] ) _snake_case : Optional[int] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _snake_case : int = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=a_ ) _snake_case : Dict = tokenizer.batch_decode(a_, filter_word_delimiter_token=a_ ) self.assertEqual(a_, batch_tokens[0] ) self.assertEqual(a_, ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : str = """Hello how are you""" _snake_case : List[Any] = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Union[str, Any] = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _snake_case : Any = """Hello how are you""" _snake_case : Any = tokenizer.phonemize(a_, phonemizer_lang="""en-us""" ) _snake_case : Any = tokenizer.decode(tokenizer(a_ ).input_ids, filter_word_delimiter_token=a_ ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip(), a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""", word_delimiter_token=a_ ) _snake_case : str = """Hello how are you""" _snake_case : str = tokenizer(a_, phonemizer_lang="""en-us""" ).input_ids _snake_case : List[str] = tokenizer(a_, phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a_, a_ ) _snake_case : Dict = tokenizer.decode(a_ ) _snake_case : Union[str, Any] = tokenizer.decode(a_ ) self.assertEqual(a_, """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a_, """ɛ l o h aʊ a ʁ j u""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _snake_case : Optional[Any] = """Hello how Are you""" _snake_case : Optional[int] = """hello how are you""" _snake_case : List[str] = tokenizer(a_ ).input_ids _snake_case : int = tokenizer(a_ ).input_ids self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _snake_case : List[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on _snake_case : List[Any] = tokenizer.batch_decode(a_ ) self.assertEqual(a_, ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def UpperCamelCase_ ( a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : List[str] = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _snake_case : Optional[int] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _snake_case : Any = tokenizer.decode(a_, output_char_offsets=a_, filter_word_delimiter_token=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ), 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a_, a_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""], """char""" ) ), outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """char""" ), ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """start_offset""" ), [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""], """end_offset""" ), [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a_: List[str], a_: Optional[Any] ): self.assertTrue(isinstance(a_, a_ ) ) self.assertTrue(isinstance(outputs_list[0], a_ ) ) # transform list to ModelOutput _snake_case : int = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""], outputs_batch_a["""text"""] ) def recursive_check(a_: Union[str, Any], a_: Optional[Any] ): if isinstance(a_, a_ ): [recursive_check(a_, a_ ) for la, la in zip(a_, a_ )] self.assertEqual(a_, a_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""], outputs_batch_a["""char_offsets"""] ) # fmt: off _snake_case : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _snake_case : int = tokenizer.batch_decode(a_, output_char_offsets=a_ ) _snake_case : Union[str, Any] = [tokenizer.decode(a_, output_char_offsets=a_ ) for ids in sample_ids] check_list_tuples_equal(a_, a_ ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : int = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : Optional[Any] = tokenizer.vocab_size _snake_case : int = len(a_ ) self.assertNotEqual(a_, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _snake_case : Optional[int] = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _snake_case : Any = tokenizer.add_tokens(a_ ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : List[str] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size + len(a_ ) ) _snake_case : Optional[Any] = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) _snake_case : Optional[int] = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _snake_case : Dict = tokenizer.add_special_tokens(a_ ) _snake_case : List[str] = tokenizer.vocab_size _snake_case : List[Any] = len(a_ ) self.assertNotEqual(a_, 0 ) self.assertEqual(a_, a_ ) self.assertEqual(a_, len(a_ ) ) self.assertEqual(a_, all_size_a + len(a_ ) ) _snake_case : Dict = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""", add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : str = self.get_tokenizers(fast=a_, do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _snake_case : str = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(output["""text"""], a_ )
132
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase__ : str = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , SCREAMING_SNAKE_CASE_=None )-> List[Any]: '''simple docstring''' __UpperCamelCase = {} if top_k is not None: __UpperCamelCase = top_k return {}, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = load_image(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework ) return model_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE_ ) return model_outputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 )-> int: '''simple docstring''' if top_k > self.model.config.num_labels: __UpperCamelCase = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase = model_outputs.logits.softmax(-1 )[0] __UpperCamelCase , __UpperCamelCase = probs.topk(SCREAMING_SNAKE_CASE_ ) elif self.framework == "tf": __UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __UpperCamelCase = tf.math.top_k(SCREAMING_SNAKE_CASE_ , k=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __UpperCamelCase = scores.tolist() __UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
from decimal import Decimal, getcontext from math import ceil, factorial def __a ( lowerCAmelCase_ : int ) -> str: '''simple docstring''' if not isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCAmelCase_= precision UpperCAmelCase_= ceil(precision / 14 ) UpperCAmelCase_= 42_68_80 * Decimal(1_00_05 ).sqrt() UpperCAmelCase_= 1 UpperCAmelCase_= 13_59_14_09 UpperCAmelCase_= Decimal(lowerCAmelCase_ ) for k in range(1 ,lowerCAmelCase_ ): UpperCAmelCase_= factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __A = 50 print(f'The first {n} digits of pi is: {pi(n)}')
277
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __a ( ) -> str: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(2 ,4 ) UpperCAmelCase_= torch.optim.AdamW(model.parameters() ,lr=1.0 ) UpperCAmelCase_= torch.optim.lr_scheduler.OneCycleLR(lowerCAmelCase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase_= DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __a ( lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __a ( lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_= torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCAmelCase_ ) class lowercase ( snake_case__): """simple docstring""" @require_cuda def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_= GradientState() assert state.num_steps == 1 UpperCAmelCase_= 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase_= False assert state.sync_gradients is False GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), )= accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__UpperCAmelCase : Dict , **__UpperCAmelCase : Tuple ): pass with patch("""torch.cuda.set_device""" , __UpperCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): UpperCAmelCase_= Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() accelerator.prepare(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= get_signature(__UpperCAmelCase ) # saving hook def save_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ): UpperCAmelCase_= {"""class_name""": models[0].__class__.__name__} with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # loading hook def load_config(__UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): with open(os.path.join(__UpperCAmelCase , """data.json""" ) , """r""" ) as f: UpperCAmelCase_= json.load(__UpperCAmelCase ) UpperCAmelCase_= config["""class_name"""] UpperCAmelCase_= accelerator.register_save_state_pre_hook(__UpperCAmelCase ) UpperCAmelCase_= accelerator.register_load_state_pre_hook(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__UpperCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_= """random""" # make sure loaded weights match with hooks removed accelerator.load_state(__UpperCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__UpperCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= None # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(dummy_obj is None ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_= Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= create_components() UpperCAmelCase_= [1, 2, 3] # This should work UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(__UpperCAmelCase , """_is_accelerate_prepared""" , __UpperCAmelCase ) , __UpperCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: from transformers import AutoModelForCausalLM UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map={"""""": 0} , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= Accelerator() with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= """cpu""" UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , llm_inta_enable_fpaa_cpu_offload=__UpperCAmelCase ) # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: from transformers import AutoModelForCausalLM UpperCAmelCase_= {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should not work and get value error with self.assertRaises(__UpperCAmelCase ): UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) UpperCAmelCase_= infer_auto_device_map(__UpperCAmelCase ) UpperCAmelCase_= 1 UpperCAmelCase_= AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=__UpperCAmelCase , device_map=__UpperCAmelCase , ) UpperCAmelCase_= Accelerator() # This should work UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_= torch.nn.Linear(10 , 10 ) UpperCAmelCase_= torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase_= Accelerator(cpu=__UpperCAmelCase ) UpperCAmelCase_= accelerator.prepare(__UpperCAmelCase )
277
1
from collections import namedtuple lowerCamelCase : Dict = namedtuple('from_to', 'from_ to') lowerCamelCase : Optional[Any] = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_0_0_0), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(lowercase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(lowercase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
124
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase : Any = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCamelCase : int = parser.parse_args() if args.check_lib: lowerCamelCase : Optional[int] = importlib.import_module('transformers') lowerCamelCase : List[str] = Path(transformers_module.__file__).parent else: lowerCamelCase : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
124
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : List[str] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =(PNDMScheduler,) lowerCamelCase__ =(('num_inference_steps', 50),) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' __snake_case : Tuple = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a_ ) return config def SCREAMING_SNAKE_CASE (self , a_=0 , **a_ ): '''simple docstring''' __snake_case : Dict = dict(self.forward_default_kwargs ) __snake_case : str = kwargs.pop('''num_inference_steps''' , a_ ) __snake_case : str = self.dummy_sample __snake_case : Any = 0.1 * sample __snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : Any = self.get_scheduler_config(**a_ ) __snake_case : int = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals __snake_case : Tuple = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) __snake_case : List[Any] = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals __snake_case : Any = dummy_past_residuals[:] __snake_case : int = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample __snake_case : Union[str, Any] = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __snake_case : Tuple = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample __snake_case : Tuple = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self , a_=0 , **a_ ): '''simple docstring''' __snake_case : int = dict(self.forward_default_kwargs ) __snake_case : Optional[Any] = kwargs.pop('''num_inference_steps''' , a_ ) __snake_case : List[Any] = self.dummy_sample __snake_case : List[Any] = 0.1 * sample __snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __snake_case : str = self.get_scheduler_config() __snake_case : int = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) __snake_case : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) __snake_case : Any = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) __snake_case : str = dummy_past_residuals[:] __snake_case : Any = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample __snake_case : Dict = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __snake_case : List[Any] = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample __snake_case : Union[str, Any] = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' __snake_case : List[str] = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config(**a_ ) __snake_case : Tuple = scheduler_class(**a_ ) __snake_case : List[Any] = 10 __snake_case : List[str] = self.dummy_model() __snake_case : Any = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.prk_timesteps ): __snake_case : int = model(a_ , a_ ) __snake_case : Optional[int] = scheduler.step_prk(a_ , a_ , a_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __snake_case : int = model(a_ , a_ ) __snake_case : Optional[int] = scheduler.step_plms(a_ , a_ , a_ ).prev_sample return sample def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = dict(self.forward_default_kwargs ) __snake_case : Any = kwargs.pop('''num_inference_steps''' , a_ ) for scheduler_class in self.scheduler_classes: __snake_case : Optional[Any] = self.get_scheduler_config() __snake_case : Dict = scheduler_class(**a_ ) __snake_case : List[Any] = self.dummy_sample __snake_case : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(a_ , '''set_timesteps''' ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ , '''set_timesteps''' ): __snake_case : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __snake_case : List[Any] = dummy_past_residuals[:] __snake_case : str = scheduler.step_prk(a_ , 0 , a_ , **a_ ).prev_sample __snake_case : Dict = scheduler.step_prk(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __snake_case : Tuple = scheduler.step_plms(a_ , 0 , a_ , **a_ ).prev_sample __snake_case : List[str] = scheduler.step_plms(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a_ ) __snake_case : List[str] = self.scheduler_classes[0] __snake_case : Tuple = self.get_scheduler_config(steps_offset=1 ) __snake_case : int = scheduler_class(**a_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a_ , beta_end=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: __snake_case : List[str] = self.dummy_sample __snake_case : Dict = 0.1 * sample __snake_case : Tuple = self.get_scheduler_config() __snake_case : List[str] = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __snake_case : Optional[Any] = scheduler.step_prk(a_ , a_ , a_ ).prev_sample def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with self.assertRaises(a_ ): __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**a_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.full_loop() __snake_case : Any = torch.sum(torch.abs(a_ ) ) __snake_case : Dict = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.full_loop(prediction_type='''v_prediction''' ) __snake_case : str = torch.sum(torch.abs(a_ ) ) __snake_case : int = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) __snake_case : Any = torch.sum(torch.abs(a_ ) ) __snake_case : int = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) __snake_case : Any = torch.sum(torch.abs(a_ ) ) __snake_case : List[str] = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
102
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ShapEPipeline lowerCamelCase__ =['prompt'] lowerCamelCase__ =['prompt'] lowerCamelCase__ =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ =False @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __snake_case : Optional[int] = PriorTransformer(**a_ ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __snake_case : List[Any] = ShapERenderer(**a_ ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.dummy_prior __snake_case : str = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : Tuple = self.dummy_renderer __snake_case : int = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=a_ , clip_sample=a_ , clip_sample_range=1.0 , ) __snake_case : Union[str, Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Tuple = torch.manual_seed(a_ ) else: __snake_case : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''cpu''' __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) __snake_case : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case : List[str] = output.images[0] __snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = torch_device == '''cpu''' __snake_case : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a_ , relax_max_difference=a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_dummy_components() __snake_case : int = self.pipeline_class(**a_ ) __snake_case : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = 1 __snake_case : List[Any] = 2 __snake_case : int = self.get_dummy_inputs(a_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Dict = batch_size * [inputs[key]] __snake_case : Union[str, Any] = pipe(**a_ , num_images_per_prompt=a_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __snake_case : Optional[Any] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __snake_case : Optional[int] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : str = pipe( '''a shark''' , generator=a_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a_ , a_ )
102
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase_ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''') # remove text_unet pipe.remove_unused_weights() pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = generator.manual_seed(0) SCREAMING_SNAKE_CASE_ : Any = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Tuple = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images SCREAMING_SNAKE_CASE_ : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
354
"""simple docstring""" UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8 def _A (__a , __a ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ : str = 300 UpperCAmelCase_ : str = 28 UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
318
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=2 , _a=24 , _a=16 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , _a=2 , _a=2 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : List[str] = frequency_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ : Any = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ : Any = num_patches + 2 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ : int = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_values, labels def _a ( self ) -> Union[str, Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ASTModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_values""": input_values} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Dict = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Any = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Tuple = False def _a ( self , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _a ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _a ( self ) -> List[str]: """simple docstring""" pass def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(_a ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict = ["""input_values"""] self.assertListEqual(arg_names[:1] , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( ) -> int: SCREAMING_SNAKE_CASE__ : List[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> int: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_feature_extractor SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Dict = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_audio() SCREAMING_SNAKE_CASE__ : List[str] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(_a , sampling_rate=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**_a ) # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _a ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
132
0
import qiskit def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE__ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator SCREAMING_SNAKE_CASE__ = qiskit.execute(lowercase_ , lowercase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
362
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
169
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch a_ :Any = random.Random() def lowercase_ (A : int , A : Union[str, Any]=1.0 , A : List[str]=None , A : Any=None ): if rng is None: snake_case__ : List[str] = global_rng snake_case__ : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[str], _snake_case : Tuple=7, _snake_case : Union[str, Any]=4_0_0, _snake_case : Any=2_0_0_0, _snake_case : Dict=1, _snake_case : Optional[Any]=0.0, _snake_case : List[Any]=1_6_0_0_0, _snake_case : List[Any]=True, _snake_case : List[Any]=8_0, _snake_case : Dict=1_6, _snake_case : str=6_4, _snake_case : Tuple="hann_window", _snake_case : Union[str, Any]=8_0, _snake_case : Optional[Any]=7_6_0_0, _snake_case : str=1e-10, _snake_case : Any=True, ) ->Union[str, Any]: snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = min_seq_length snake_case__ : List[Any] = max_seq_length snake_case__ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Tuple = feature_size snake_case__ : List[Any] = padding_value snake_case__ : Any = sampling_rate snake_case__ : Dict = do_normalize snake_case__ : Union[str, Any] = num_mel_bins snake_case__ : Any = hop_length snake_case__ : Any = win_length snake_case__ : Any = win_function snake_case__ : Optional[int] = fmin snake_case__ : int = fmax snake_case__ : Union[str, Any] = mel_floor snake_case__ : Union[str, Any] = return_attention_mask def lowercase_ ( self : Optional[int] ) ->List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase_ ( self : Any, _snake_case : Optional[Any]=False, _snake_case : List[str]=False ) ->Union[str, Any]: def _flatten(_snake_case : List[str] ): return list(itertools.chain(*_snake_case ) ) if equal_length: snake_case__ : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: snake_case__ : Any = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs def lowercase_ ( self : Union[str, Any], _snake_case : str=False, _snake_case : Dict=False ) ->List[str]: if equal_length: snake_case__ : Optional[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : List[str] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: snake_case__ : int = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SpeechTaFeatureExtractor def lowercase_ ( self : int ) ->Union[str, Any]: snake_case__ : List[str] = SpeechTaFeatureExtractionTester(self ) def lowercase_ ( self : Any, _snake_case : Dict ) ->Any: self.assertTrue(np.all(np.mean(_snake_case, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : List[Any] ) ->Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : int = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Tuple = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input snake_case__ : str = feat_extract(speech_inputs[0], return_tensors='np' ).input_values snake_case__ : List[str] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test batched snake_case__ : Any = feat_extract(_snake_case, return_tensors='np' ).input_values snake_case__ : Union[str, Any] = feat_extract(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) def lowercase_ ( self : int ) ->Optional[int]: snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : int = ['longest', 'max_length', 'do_not_pad'] snake_case__ : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case, _snake_case ): snake_case__ : Optional[int] = feat_extract(_snake_case, padding=_snake_case, max_length=_snake_case, return_tensors='np' ) snake_case__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase_ ( self : Union[str, Any] ) ->Optional[Any]: snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Tuple = range(8_0_0, 1_4_0_0, 2_0_0 ) snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] snake_case__ : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] snake_case__ : str = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case, _snake_case ): snake_case__ : List[str] = feat_extract(_snake_case, max_length=_snake_case, padding=_snake_case ) snake_case__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase_ ( self : List[Any] ) ->Optional[Any]: snake_case__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Optional[Any] = feat_extract( _snake_case, truncation=_snake_case, max_length=1_0_0_0, padding='max_length', return_tensors='np' ) snake_case__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase_ ( self : int ) ->Union[str, Any]: snake_case__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : str = feat_extract( _snake_case, truncation=_snake_case, max_length=1_0_0_0, padding='longest', return_tensors='np' ) snake_case__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case__ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : List[str] = feat_extract( _snake_case, truncation=_snake_case, max_length=2_0_0_0, padding='longest', return_tensors='np' ) snake_case__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def lowercase_ ( self : List[str] ) ->Dict: snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : List[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : int = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ : Optional[int] = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : Optional[int] ) ->Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Dict = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size snake_case__ : Optional[int] = feature_extractor(audio_target=_snake_case, padding=_snake_case, return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case__ : Dict = feature_extractor(speech_inputs[0], return_tensors='np' ).input_values snake_case__ : Any = feature_extractor(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test batched snake_case__ : Dict = feature_extractor(_snake_case, return_tensors='np' ).input_values snake_case__ : Dict = feature_extractor(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case__ : int = np.asarray(_snake_case ) snake_case__ : Union[str, Any] = feature_extractor(_snake_case, return_tensors='np' ).input_values snake_case__ : Union[str, Any] = feature_extractor(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) def lowercase_ ( self : Union[str, Any] ) ->str: snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : Tuple = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case, processed_features[input_name] ) ) ) snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) snake_case__ : Union[str, Any] = BatchFeature({input_name: speech_inputs}, tensor_type='np' ) snake_case__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase_ ( self : List[str] ) ->Any: snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Tuple = feat_extract.model_input_names[0] snake_case__ : List[Any] = BatchFeature({input_name: speech_inputs}, tensor_type='pt' ) snake_case__ : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase_ ( self : Optional[int] ) ->Tuple: snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : List[str] = BatchFeature({input_name: speech_inputs} ) snake_case__ : int = feat_extract.num_mel_bins # hack! snake_case__ : Tuple = feat_extract.pad(_snake_case, padding='longest', return_tensors='np' )[input_name] snake_case__ : Union[str, Any] = feat_extract.pad(_snake_case, padding='longest', return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowercase_ ( self : int ) ->Any: snake_case__ : Any = self.feat_extract_dict snake_case__ : List[Any] = True snake_case__ : Union[str, Any] = self.feature_extraction_class(**_snake_case ) snake_case__ : Any = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : List[Any] = [len(_snake_case ) for x in speech_inputs] snake_case__ : Union[str, Any] = feat_extract.model_input_names[0] snake_case__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case__ : List[str] = feat_extract.num_mel_bins # hack! snake_case__ : str = feat_extract.pad(_snake_case, padding='longest', return_tensors='np' ) self.assertIn('attention_mask', _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), _snake_case ) def lowercase_ ( self : Optional[int] ) ->str: snake_case__ : int = self.feat_extract_dict snake_case__ : List[str] = True snake_case__ : Tuple = self.feature_extraction_class(**_snake_case ) snake_case__ : List[str] = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : str = [len(_snake_case ) for x in speech_inputs] snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case__ : Optional[Any] = min(_snake_case ) snake_case__ : Union[str, Any] = feat_extract.num_mel_bins # hack! snake_case__ : Tuple = feat_extract.pad( _snake_case, padding='max_length', max_length=_snake_case, truncation=_snake_case, return_tensors='np' ) self.assertIn('attention_mask', _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] ) def lowercase_ ( self : List[Any], _snake_case : Optional[int] ) ->Optional[Any]: from datasets import load_dataset snake_case__ : str = load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' ) # automatic decoding with librispeech snake_case__ : Dict = ds.sort('id' ).select(range(_snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase_ ( self : str ) ->str: # fmt: off snake_case__ : List[Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on snake_case__ : Union[str, Any] = self._load_datasamples(1 ) snake_case__ : Optional[int] = SpeechTaFeatureExtractor() snake_case__ : List[Any] = feature_extractor(_snake_case, return_tensors='pt' ).input_values self.assertEquals(input_values.shape, (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0], _snake_case, atol=1e-6 ) ) def lowercase_ ( self : Any ) ->str: # fmt: off snake_case__ : Optional[Any] = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on snake_case__ : List[str] = self._load_datasamples(1 ) snake_case__ : str = SpeechTaFeatureExtractor() snake_case__ : Optional[Any] = feature_extractor(audio_target=_snake_case, return_tensors='pt' ).input_values self.assertEquals(input_values.shape, (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0], _snake_case, atol=1e-4 ) )
277
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int], _snake_case : List[Any], _snake_case : str=7, _snake_case : Tuple=3, _snake_case : List[str]=3_0, _snake_case : Tuple=4_0_0, _snake_case : Any=True, _snake_case : List[Any]=None, _snake_case : int=0.9, _snake_case : Optional[Any]=None, _snake_case : str=True, _snake_case : Union[str, Any]=[0.5, 0.5, 0.5], _snake_case : Union[str, Any]=[0.5, 0.5, 0.5], ) ->List[Any]: snake_case__ : int = size if size is not None else {'shortest_edge': 3_0} snake_case__ : Tuple = crop_size if crop_size is not None else {'height': 3_0, 'width': 3_0} snake_case__ : Union[str, Any] = parent snake_case__ : Dict = batch_size snake_case__ : int = num_channels snake_case__ : Tuple = min_resolution snake_case__ : Any = max_resolution snake_case__ : List[Any] = do_resize_and_center_crop snake_case__ : str = size snake_case__ : str = crop_pct snake_case__ : List[str] = crop_size snake_case__ : Optional[int] = do_normalize snake_case__ : Tuple = image_mean snake_case__ : Tuple = image_std def lowercase_ ( self : Optional[int] ) ->int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PoolFormerImageProcessor if is_vision_available() else None def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Union[str, Any] = PoolFormerImageProcessingTester(self ) @property def lowercase_ ( self : int ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_snake_case, 'size' ) ) self.assertTrue(hasattr(_snake_case, 'crop_pct' ) ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'image_mean' ) ) self.assertTrue(hasattr(_snake_case, 'image_std' ) ) def lowercase_ ( self : List[str] ) ->List[str]: snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 3_0} ) self.assertEqual(image_processor.crop_size, {'height': 3_0, 'width': 3_0} ) snake_case__ : int = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size, {'height': 8_4, 'width': 8_4} ) def lowercase_ ( self : List[Any] ) ->List[Any]: pass def lowercase_ ( self : List[str] ) ->str: # Initialize image_processing snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : str = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : int ) ->List[Any]: # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : List[Any] = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : List[str] ) ->List[str]: # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : Optional[Any] = image_processing(_snake_case, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
277
1
from __future__ import annotations from typing import TypedDict class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) A__ = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation A__ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: A__ = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) A__ = [''] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): A__ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowercase_ = "Provide a string that I will generate its BWT transform: " lowercase_ = input(entry_msg).strip() lowercase_ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) lowercase_ = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
282
from __future__ import annotations from scipy.special import comb # type: ignore class A : """simple docstring""" def __init__( self : Any,lowercase_ : list[tuple[float, float]] )-> Optional[int]: '''simple docstring''' A__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. A__ = len(lowercase_ ) - 1 def snake_case__ ( self : List[Any],lowercase_ : float )-> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_ ),5 ) == 1 return output_values def snake_case__ ( self : str,lowercase_ : float )-> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = self.basis_function(lowercase_ ) A__ = 0.0 A__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case__ ( self : str,lowercase_ : float = 0.01 )-> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore A__ = [] # x coordinates of points to plot A__ = [] # y coordinates of points to plot A__ = 0.0 while t <= 1: A__ = self.bezier_curve_function(lowercase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size A__ = [i[0] for i in self.list_of_points] A__ = [i[1] for i in self.list_of_points] plt.plot( lowercase_,lowercase_,color='blue',label='Curve of Degree ' + str(self.degree ),) plt.scatter(lowercase_,lowercase_,color='red',label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
282
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase : List[str] = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Dict = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowercase ( a ): lowercase__ : Optional[int] = """pix2struct_text_model""" lowercase__ : List[Any] = ["""past_key_values"""] lowercase__ : List[Any] = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , _UpperCamelCase : Union[str, Any]=50_244 , _UpperCamelCase : Tuple=768 , _UpperCamelCase : Tuple=64 , _UpperCamelCase : List[str]=2_048 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : int=12 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : int=128 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Any=1e-6 , _UpperCamelCase : int=1.0 , _UpperCamelCase : Union[str, Any]="gelu_new" , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[str]=0 , _UpperCamelCase : Any=1 , _UpperCamelCase : Tuple=False , _UpperCamelCase : Any=True , **_UpperCamelCase : Tuple , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = d_kv SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = relative_attention_num_buckets SCREAMING_SNAKE_CASE = relative_attention_max_distance SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , is_decoder=_UpperCamelCase , **_UpperCamelCase , ) @classmethod def __snake_case( cls : Union[str, Any] , _UpperCamelCase : Union[str, os.PathLike] , **_UpperCamelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class lowercase ( a ): lowercase__ : Union[str, Any] = """pix2struct_vision_model""" def __init__( self : List[str] , _UpperCamelCase : List[Any]=768 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Optional[Any]=2_048 , _UpperCamelCase : Optional[int]=64 , _UpperCamelCase : int=12 , _UpperCamelCase : int=12 , _UpperCamelCase : Tuple="gelu_new" , _UpperCamelCase : List[str]=1e-6 , _UpperCamelCase : str=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Any=1e-10 , _UpperCamelCase : Any=1.0 , _UpperCamelCase : Tuple=4_096 , _UpperCamelCase : Tuple=32 , _UpperCamelCase : Any=128 , **_UpperCamelCase : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = patch_embed_hidden_size SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = dense_act_fn SCREAMING_SNAKE_CASE = seq_len SCREAMING_SNAKE_CASE = relative_attention_num_buckets SCREAMING_SNAKE_CASE = relative_attention_max_distance SCREAMING_SNAKE_CASE = d_kv @classmethod def __snake_case( cls : Dict , _UpperCamelCase : Union[str, os.PathLike] , **_UpperCamelCase : Optional[int] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class lowercase ( a ): lowercase__ : int = """pix2struct""" lowercase__ : Optional[Any] = True def __init__( self : Any , _UpperCamelCase : Any=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Union[str, Any]=1.0 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Tuple=False , _UpperCamelCase : List[str]=False , _UpperCamelCase : Any=True , **_UpperCamelCase : List[str] , ) -> str: '''simple docstring''' super().__init__(tie_word_embeddings=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) SCREAMING_SNAKE_CASE = PixaStructTextConfig(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = PixaStructVisionConfig(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE = self.text_config.pad_token_id SCREAMING_SNAKE_CASE = self.text_config.eos_token_id SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = self.initializer_range SCREAMING_SNAKE_CASE = self.initializer_range SCREAMING_SNAKE_CASE = is_vqa @classmethod def __snake_case( cls : List[str] , _UpperCamelCase : PixaStructTextConfig , _UpperCamelCase : PixaStructVisionConfig , **_UpperCamelCase : Tuple ) -> List[str]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCamelCase ) def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
366
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCamelCase = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] lowerCamelCase = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def UpperCAmelCase__ ( ): '''simple docstring''' a__ =calculate_rouge(_lowercase , _lowercase , bootstrap_aggregation=_lowercase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowercase , _lowercase ) a__ =calculate_rouge(_lowercase , _lowercase , bootstrap_aggregation=_lowercase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ ='''rougeLsum''' a__ =calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=[k] )[k] a__ =calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCAmelCase__ ( ): '''simple docstring''' a__ =['''rouge1''', '''rouge2''', '''rougeL'''] a__ =calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=_lowercase ) a__ =calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase , rouge_keys=_lowercase ) assert score_sep == score_no_sep def UpperCAmelCase__ ( ): '''simple docstring''' a__ =[ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] a__ =[ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase ) == calculate_rouge(_lowercase , _lowercase , newline_sep=_lowercase ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =[ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] a__ =[ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] a__ =calculate_rouge(_lowercase , _lowercase , rouge_keys=['''rougeLsum'''] , newline_sep=_lowercase )['''rougeLsum'''] a__ =calculate_rouge(_lowercase , _lowercase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def UpperCAmelCase__ ( ): '''simple docstring''' a__ =Path('''examples/seq2seq/test_data/wmt_en_ro''' ) a__ =calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowercase , _lowercase ) a__ =calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=_lowercase ) assert isinstance(_lowercase , _lowercase )
188
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
"""simple docstring""" from collections import namedtuple __UpperCamelCase : Optional[int] = namedtuple('''from_to''', '''from_ to''') __UpperCamelCase : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ''', '''.join(A_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ''', '''.join(A_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Any = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
74
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) a :Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) a :str = False a :Any = False def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> Optional[int]: lowercase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowercase_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=1_3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : List[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Tuple=3_2 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4 , SCREAMING_SNAKE_CASE_ : List[Any]=3_7 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ) -> Any: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = embedding_size def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: lowercase_ = TFMobileBertModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = [input_ids, input_mask] lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: lowercase_ = TFMobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> str: lowercase_ = TFMobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: lowercase_ = TFMobileBertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: lowercase_ = self.num_labels lowercase_ = TFMobileBertForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: lowercase_ = self.num_choices lowercase_ = TFMobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) lowercase_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: lowercase_ = self.num_labels lowercase_ = TFMobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: lowercase_ = TFMobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any ) -> List[str]: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def _lowercase ( self : int ) -> List[str]: lowercase_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self : Optional[int] ) -> List[str]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Tuple: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> Tuple: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> str: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Dict ) -> Any: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: lowercase_ = TFMobileBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : str ) -> Optional[Any]: lowercase_ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowercase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowercase_ = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
30
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = [randint(-1000 , 1000 ) for i in range(10 )] UpperCAmelCase__ = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase : Optional[int] = make_dataset() def lowerCAmelCase ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" for triplet in permutations(_lowerCAmelCase , 3 ): if sum(_lowerCAmelCase ) == target: return tuple(sorted(_lowerCAmelCase ) ) return (0, 0, 0) def lowerCAmelCase ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" arr.sort() UpperCAmelCase__ = len(_lowerCAmelCase ) for i in range(n - 1 ): UpperCAmelCase__ , UpperCAmelCase__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase__ = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase__ = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase__ = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=1_0000 ) UpperCAmelCase__ = repeat(setup=_lowerCAmelCase , stmt=_lowerCAmelCase , repeat=5 , number=1_0000 ) return (min(_lowerCAmelCase ), min(_lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : Optional[int] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
169
0
def snake_case_ (__A : str ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __lowerCAmelCase : Tuple = sorted(string.lower() ) return len(__A ) == len(set(__A ) ) if __name__ == "__main__": __UpperCAmelCase = input("""Enter a string """).strip() __UpperCAmelCase = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
139
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase : ClassVar[Features] =Features({"audio": Audio()} ) lowerCamelCase : ClassVar[Features] =Features({"labels": ClassLabel} ) lowerCamelCase : str ="audio" lowerCamelCase : str ="labels" def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Dict ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __lowerCAmelCase : Tuple = copy.deepcopy(self ) __lowerCAmelCase : Tuple = self.label_schema.copy() __lowerCAmelCase : Union[str, Any] = features[self.label_column] __lowerCAmelCase : Any = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
139
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , lowercase : Any , lowercase : Union[str, Any]=13 , lowercase : List[str]=7 , lowercase : Tuple=True , lowercase : Any=True , lowercase : str=True , lowercase : Any=True , lowercase : Optional[int]=99 , lowercase : Union[str, Any]=32 , lowercase : Any=5 , lowercase : str=4 , lowercase : int=37 , lowercase : str="gelu" , lowercase : List[Any]=0.1 , lowercase : Dict=0.1 , lowercase : List[Any]=512 , lowercase : List[Any]=16 , lowercase : int=2 , lowercase : List[Any]=0.02 , lowercase : Optional[int]=4 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def A ( self : Optional[int] ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowercase , ) return config, input_ids, attention_mask def A ( self : List[str] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Tuple ): '''simple docstring''' _snake_case = FlaxDistilBertModelTester(self ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('distilbert-base-uncased' ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : str ): '''simple docstring''' _snake_case = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _snake_case = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(lowercase , attention_mask=lowercase )[0] _snake_case = (1, 11, 768) self.assertEqual(output.shape , lowercase ) _snake_case = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
282
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "longformer" def __init__( self : Optional[Any] , lowercase : Union[List[int], int] = 512 , lowercase : int = 2 , lowercase : int = 1 , lowercase : int = 0 , lowercase : int = 2 , lowercase : int = 30_522 , lowercase : int = 768 , lowercase : int = 12 , lowercase : int = 12 , lowercase : int = 3_072 , lowercase : str = "gelu" , lowercase : float = 0.1 , lowercase : float = 0.1 , lowercase : int = 512 , lowercase : int = 2 , lowercase : float = 0.02 , lowercase : float = 1E-12 , lowercase : bool = False , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , **lowercase ) _snake_case = attention_window _snake_case = sep_token_id _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = onnx_export class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase : "PretrainedConfig" , lowercase : str = "default" , lowercase : "List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(lowercase , lowercase , lowercase ) _snake_case = True @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A ( self : int ): '''simple docstring''' _snake_case = super().outputs if self.task == "default": _snake_case = {0: 'batch'} return outputs @property def A ( self : List[Any] ): '''simple docstring''' return 1E-4 @property def A ( self : List[str] ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def A ( self : str , lowercase : "PreTrainedTokenizerBase" , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' _snake_case = super().generate_dummy_inputs( preprocessor=lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _snake_case = torch.zeros_like(inputs['input_ids'] ) # make every second token global _snake_case = 1 return inputs
282
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> Dict: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
207
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a_ ( lowerCAmelCase_ : Dict[str, torch.Tensor] ): __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for rt in rc.restypes: __lowerCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCAmelCase = {name: i for i, name in enumerate(lowerCAmelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.intaa, device=protein['aatype'].device, ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.intaa, device=protein['aatype'].device, ) __lowerCAmelCase = torch.tensor( lowerCAmelCase_, dtype=torch.floataa, device=protein['aatype'].device, ) __lowerCAmelCase = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase = restype_atomaa_mask[protein_aatype] __lowerCAmelCase = residx_atomaa_mask __lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCAmelCase = restype_atomaa_to_atomaa[protein_aatype] __lowerCAmelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCAmelCase = torch.zeros([21, 37], dtype=torch.floataa, device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCAmelCase = rc.restype_atoa[restype_letter] __lowerCAmelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCAmelCase = rc.atom_order[atom_name] __lowerCAmelCase = 1 __lowerCAmelCase = restype_atomaa_mask[protein_aatype] __lowerCAmelCase = residx_atomaa_mask return protein def a_ ( lowerCAmelCase_ : Dict[str, torch.Tensor] ): __lowerCAmelCase = tree_map(lambda lowerCAmelCase_ : torch.tensor(lowerCAmelCase_, device=batch['aatype'].device ), lowerCAmelCase_, np.ndarray ) __lowerCAmelCase = tensor_tree_map(lambda lowerCAmelCase_ : np.array(lowerCAmelCase_ ), make_atomaa_masks(lowerCAmelCase_ ) ) return out
207
1
import unittest import numpy as np def a( A : Optional[int] , A : Optional[Any] , A : List[str] , A : str = None , ) -> Tuple: """simple docstring""" a = np.shape(lowerCamelCase__ ) a = np.shape(lowerCamelCase__ ) a = np.shape(lowerCamelCase__ ) if shape_a[0] != shape_b[0]: a = ( """Expected the same number of rows for A and B. """ f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(lowerCamelCase__ ) if shape_b[1] != shape_c[1]: a = ( """Expected the same number of columns for B and C. """ f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(lowerCamelCase__ ) a = pseudo_inv if a_inv is None: try: a = np.linalg.inv(lowerCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a = np.array([[0, 3], [3, 0], [2, 3]] ) a = np.array([[2, 1], [6, 3]] ) a = schur_complement(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = np.block([[a, b], [b.T, c]] ) a = np.linalg.det(lowerCamelCase_ ) a = np.linalg.det(lowerCamelCase_ ) a = np.linalg.det(lowerCamelCase_ ) self.assertAlmostEqual(lowerCamelCase_ , det_a * det_s ) def UpperCamelCase_ (self ): """simple docstring""" a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a = np.array([[0, 3], [3, 0], [2, 3]] ) a = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase_ ): schur_complement(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a = np.array([[0, 3], [3, 0], [2, 3]] ) a = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase_ ): schur_complement(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
227
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( lowerCamelCase__=None ): '''simple docstring''' A_ : int = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser A_ : int = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to A_ : int = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def a ( ): '''simple docstring''' A_ : Optional[int] = get_config_parser() A_ : List[str] = config_parser.parse_args() if not hasattr(lowerCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
206
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a = logging.get_logger(__name__) # General docstring __a = "RegNetConfig" # Base docstring __a = "facebook/regnet-y-040" __a = [1, 1088, 7, 7] # Image classification docstring __a = "facebook/regnet-y-040" __a = "tabby, tabby cat" __a = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : int = 3 , snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : Optional[str] = "relu" , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case__ : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case__ : Any = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=snake_case_ , strides=snake_case_ , padding="""VALID""" , groups=snake_case_ , use_bias=snake_case_ , name="""convolution""" , ) snake_case__ : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) snake_case__ : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase ( self : Optional[int] , snake_case_ : Dict ): snake_case__ : Tuple = self.convolution(self.padding(snake_case_ ) ) snake_case__ : int = self.normalization(snake_case_ ) snake_case__ : Dict = self.activation(snake_case_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : RegNetConfig , **snake_case_ : Any ): super().__init__(**snake_case_ ) snake_case__ : List[str] = config.num_channels snake_case__ : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def lowerCamelCase ( self : str , snake_case_ : List[Any] ): snake_case__ : Optional[Any] = shape_list(snake_case_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case__ : Dict = tf.transpose(snake_case_ , perm=(0, 2, 3, 1) ) snake_case__ : Dict = self.embedder(snake_case_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : int = 2 , **snake_case_ : Union[str, Any] ): super().__init__(**snake_case_ ) snake_case__ : Optional[int] = tf.keras.layers.ConvaD( filters=snake_case_ , kernel_size=1 , strides=snake_case_ , use_bias=snake_case_ , name="""convolution""" ) snake_case__ : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def lowerCamelCase ( self : int , snake_case_ : tf.Tensor , snake_case_ : bool = False ): return self.normalization(self.convolution(snake_case_ ) , training=snake_case_ ) class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : int , **snake_case_ : int ): super().__init__(**snake_case_ ) snake_case__ : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name="""pooler""" ) snake_case__ : Union[str, Any] = [ tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=snake_case_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] snake_case__ : Optional[int] = self.pooler(snake_case_ ) for layer_module in self.attention: snake_case__ : List[Any] = layer_module(snake_case_ ) snake_case__ : Tuple = hidden_state * pooled return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 1 , **snake_case_ : Optional[Any] ): super().__init__(**snake_case_ ) snake_case__ : str = in_channels != out_channels or stride != 1 snake_case__ : List[str] = max(1 , out_channels // config.groups_width ) snake_case__ : Optional[Any] = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case__ : Optional[Any] = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name="""layer.2""" ), ] snake_case__ : Optional[int] = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Dict , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = hidden_state for layer_module in self.layers: snake_case__ : Optional[Any] = layer_module(snake_case_ ) snake_case__ : int = self.shortcut(snake_case_ ) hidden_state += residual snake_case__ : Any = self.activation(snake_case_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 1 , **snake_case_ : Tuple ): super().__init__(**snake_case_ ) snake_case__ : Union[str, Any] = in_channels != out_channels or stride != 1 snake_case__ : Union[str, Any] = max(1 , out_channels // config.groups_width ) snake_case__ : Optional[int] = ( TFRegNetShortCut(snake_case_ , stride=snake_case_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) snake_case__ : List[Any] = [ TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( snake_case_ , stride=snake_case_ , groups=snake_case_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(snake_case_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(snake_case_ , kernel_size=1 , activation=snake_case_ , name="""layer.3""" ), ] snake_case__ : int = ACTaFN[config.hidden_act] def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ : str = hidden_state for layer_module in self.layers: snake_case__ : Union[str, Any] = layer_module(snake_case_ ) snake_case__ : Dict = self.shortcut(snake_case_ ) hidden_state += residual snake_case__ : Tuple = self.activation(snake_case_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : RegNetConfig , snake_case_ : int , snake_case_ : int , snake_case_ : int = 2 , snake_case_ : int = 2 , **snake_case_ : Union[str, Any] ): super().__init__(**snake_case_ ) snake_case__ : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer snake_case__ : Any = [ # downsampling is done in the first layer with stride of 2 layer(snake_case_ , snake_case_ , snake_case_ , stride=snake_case_ , name="""layers.0""" ), *[layer(snake_case_ , snake_case_ , snake_case_ , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def lowerCamelCase ( self : str , snake_case_ : Union[str, Any] ): for layer_module in self.layers: snake_case__ : Optional[int] = layer_module(snake_case_ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , snake_case_ : RegNetConfig , **snake_case_ : str ): super().__init__(**snake_case_ ) snake_case__ : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) snake_case__ : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case_ , snake_case_ , snake_case_ , depth=snake_case_ , name=f"stages.{i+1}" ) ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : tf.Tensor , snake_case_ : bool = False , snake_case_ : bool = True ): snake_case__ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : Tuple = hidden_states + (hidden_state,) snake_case__ : List[Any] = stage_module(snake_case_ ) if output_hidden_states: snake_case__ : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case_ , hidden_states=snake_case_ ) @keras_serializable class UpperCAmelCase_ ( tf.keras.layers.Layer ): """simple docstring""" lowercase = RegNetConfig def __init__( self : Optional[int] , snake_case_ : Dict , **snake_case_ : Optional[int] ): super().__init__(**snake_case_ ) snake_case__ : Optional[int] = config snake_case__ : int = TFRegNetEmbeddings(snake_case_ , name="""embedder""" ) snake_case__ : Optional[Any] = TFRegNetEncoder(snake_case_ , name="""encoder""" ) snake_case__ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case_ , name="""pooler""" ) @unpack_inputs def lowerCamelCase ( self : List[str] , snake_case_ : tf.Tensor , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : bool = False , ): snake_case__ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : str = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Tuple = self.embedder(snake_case_ , training=snake_case_ ) snake_case__ : Union[str, Any] = self.encoder( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) snake_case__ : Dict = encoder_outputs[0] snake_case__ : List[Any] = self.pooler(snake_case_ ) # Change to NCHW output format have uniformity in the modules snake_case__ : Optional[int] = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) snake_case__ : Optional[Any] = tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case__ : int = tuple([tf.transpose(snake_case_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case_ , pooler_output=snake_case_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = RegNetConfig lowercase = "regnet" lowercase = "pixel_values" @property def lowerCamelCase ( self : List[Any] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __a = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" __a = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _a , ) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Any , snake_case_ : RegNetConfig , *snake_case_ : Union[str, Any] , **snake_case_ : int ): super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) snake_case__ : Optional[Any] = TFRegNetMainLayer(snake_case_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self : int , snake_case_ : tf.Tensor , snake_case_ : Optional[bool] = None , snake_case_ : Optional[bool] = None , snake_case_ : str=False , ): snake_case__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : List[Any] = self.regnet( pixel_values=snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class UpperCAmelCase_ ( _a , _a ): """simple docstring""" def __init__( self : Any , snake_case_ : RegNetConfig , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): super().__init__(snake_case_ , *snake_case_ , **snake_case_ ) snake_case__ : Optional[Any] = config.num_labels snake_case__ : Any = TFRegNetMainLayer(snake_case_ , name="""regnet""" ) # classification head snake_case__ : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : tf.Tensor = None , snake_case_ : tf.Tensor = None , snake_case_ : bool = None , snake_case_ : bool = None , snake_case_ : List[Any]=False , ): snake_case__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Tuple = self.regnet( snake_case_ , output_hidden_states=snake_case_ , return_dict=snake_case_ , training=snake_case_ ) snake_case__ : int = outputs.pooler_output if return_dict else outputs[1] snake_case__ : Optional[int] = self.classifier[0](snake_case_ ) snake_case__ : int = self.classifier[1](snake_case_ ) snake_case__ : List[Any] = None if labels is None else self.hf_compute_loss(labels=snake_case_ , logits=snake_case_ ) if not return_dict: snake_case__ : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case_ , logits=snake_case_ , hidden_states=outputs.hidden_states )
43
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a = logging.getLogger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : str , snake_case_ : Tuple=None ): super().__init__( snake_case_ , question_encoder_tokenizer=snake_case_ , generator_tokenizer=snake_case_ , index=snake_case_ , init_retrieval=snake_case_ , ) snake_case__ : int = None def lowerCamelCase ( self : int , snake_case_ : int ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually snake_case__ : Optional[Any] = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case__ : int = str(distributed_port + 1 ) snake_case__ : List[str] = dist.new_group(ranks=snake_case_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase ( self : Optional[Any] ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase ( self : int , snake_case_ : str , snake_case_ : int , snake_case_ : int=torch.floataa ): snake_case__ : str = torch.empty(snake_case_ , dtype=snake_case_ ) dist.scatter(snake_case_ , src=0 , scatter_list=snake_case_ , group=self.process_group ) return target_tensor def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Dict = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case__ : Dict = next((addr for addr in addrs if addr.startswith("""e""" )) , snake_case_ ) return ifname def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : int ): # single GPU training if not dist.is_initialized(): snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(snake_case_ , snake_case_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case_ ) # distributed training snake_case__ : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic snake_case__ : str = None if self._is_main(): snake_case__ : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case_ )] dist.gather(torch.tensor(snake_case_ ) , dst=0 , gather_list=snake_case_ , group=self.process_group ) # scatter logic snake_case__ : Union[str, Any] = question_hidden_states.shape[0] snake_case__ : List[str] = [] snake_case__ : Dict = [] if self._is_main(): assert len(snake_case_ ) == world_size snake_case__ , snake_case__ : Union[str, Any] = self._main_retrieve(torch.cat(snake_case_ ).numpy() , snake_case_ ) snake_case__ , snake_case__ : Dict = torch.tensor(snake_case_ ), torch.tensor(snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._chunk_tensor(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = self._scattered(snake_case_ , [n_queries, n_docs] , target_type=torch.intaa ) snake_case__ : Dict = self._scattered(snake_case_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case_ )
43
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCamelCase : Any = 'scheduler_config.json' class snake_case ( UpperCAmelCase ): __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 3 __magic_name__ = 4 __magic_name__ = 5 @dataclass class snake_case ( UpperCAmelCase ): __magic_name__ = 42 class snake_case : __magic_name__ = SCHEDULER_CONFIG_NAME __magic_name__ = ['''dtype'''] __magic_name__ = [] __magic_name__ = True @classmethod def lowerCamelCase__ ( cls : Tuple , A : Dict[str, Any] = None , A : Optional[str] = None , A : Dict=False , **A : Union[str, Any] , ): '''simple docstring''' a, a : int = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , **A , ) a, a : List[Any] = cls.from_config(A , return_unused_kwargs=A , **A ) if hasattr(A , 'create_state' ) and getattr(A , 'has_state' , A ): a : List[str] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCamelCase__ ( self : Union[str, Any] , A : Union[str, os.PathLike] , A : bool = False , **A : Any ): '''simple docstring''' self.save_config(save_directory=A , push_to_hub=A , **A ) @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCamelCase__ ( cls : List[Any] ): '''simple docstring''' a : Tuple = list(set([cls.__name__] + cls._compatibles ) ) a : Tuple = importlib.import_module(__name__.split('.' )[0] ) a : Tuple = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes def snake_case (A_ :jnp.ndarray , A_ :Tuple[int] ): '''simple docstring''' assert len(A_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(A_ ) - x.ndim) ) , A_ ) def snake_case (A_ :int , A_ :str=0.999 , A_ :int=jnp.floataa ): '''simple docstring''' def alpha_bar(A_ :int ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 a : Optional[int] = [] for i in range(A_ ): a : Any = i / num_diffusion_timesteps a : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(A_ ) / alpha_bar(A_ ) , A_ ) ) return jnp.array(A_ , dtype=A_ ) @flax.struct.dataclass class snake_case : __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 @classmethod def lowerCamelCase__ ( cls : List[Any] , A : Optional[int] ): '''simple docstring''' a : int = scheduler.config if config.trained_betas is not None: a : Tuple = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a : Tuple = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a : Optional[Any] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a : List[str] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) a : Optional[int] = 1.0 - betas a : Any = jnp.cumprod(A , axis=0 ) return cls( alphas=A , betas=A , alphas_cumprod=A , ) def snake_case (A_ :CommonSchedulerState , A_ :jnp.ndarray , A_ :jnp.ndarray , A_ :jnp.ndarray ): '''simple docstring''' a : List[Any] = state.alphas_cumprod a : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 a : int = sqrt_alpha_prod.flatten() a : str = broadcast_to_shape_from_left(A_ , original_samples.shape ) a : Union[str, Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 a : Any = sqrt_one_minus_alpha_prod.flatten() a : Union[str, Any] = broadcast_to_shape_from_left(A_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def snake_case (A_ :CommonSchedulerState , A_ :jnp.ndarray , A_ :jnp.ndarray , A_ :jnp.ndarray ): '''simple docstring''' a, a : List[str] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) a : Union[str, Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def snake_case (A_ :CommonSchedulerState , A_ :jnp.ndarray , A_ :jnp.ndarray , A_ :jnp.ndarray ): '''simple docstring''' a, a : Optional[int] = get_sqrt_alpha_prod(A_ , A_ , A_ , A_ ) a : Optional[Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
186
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = BartphoTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() a : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : int = {'unk_token': '<unk>'} a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a : Optional[int] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Dict , **A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCamelCase__ ( self : Optional[int] , A : Dict ): '''simple docstring''' a : Tuple = 'This is a là test' a : List[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) a : int = 'This is a là test' a : int = '▁This ▁is ▁a ▁l à ▁t est'.split() a : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
186
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake A_ = numpy.array([0, 0]) A_ = numpy.array([0.5, 0.866_0254]) A_ = numpy.array([1, 0]) A_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = initial_vectors for _ in range(snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = iteration_step(snake_case ) return vectors def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): SCREAMING_SNAKE_CASE:int = vectors[i + 1] new_vectors.append(snake_case ) SCREAMING_SNAKE_CASE:str = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = numpy.radians(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = numpy.cos(snake_case ), numpy.sin(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case , snake_case ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Tuple = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = zip(*snake_case ) plt.plot(snake_case , snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() A_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
139
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _a , _a , unittest.TestCase ): _A : Tuple = AutoencoderKL _A : Union[str, Any] = '''sample''' _A : int = 1E-2 @property def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = 4 SCREAMING_SNAKE_CASE:Dict = 3 SCREAMING_SNAKE_CASE:str = (32, 32) SCREAMING_SNAKE_CASE:List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": image} @property def __UpperCamelCase ( self : Any ): return (3, 32, 32) @property def __UpperCamelCase ( self : int ): return (3, 32, 32) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Optional[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE:List[Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self : int ): pass def __UpperCamelCase ( self : Tuple ): pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def __UpperCamelCase ( self : str ): # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE:Optional[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE:str = model(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE:str = torch.randn_like(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE:List[Any] = self.model_class(**SCREAMING_SNAKE_CASE__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE:Optional[int] = model_a(**SCREAMING_SNAKE_CASE__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE:List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE:Dict = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE:Tuple = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def __UpperCamelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCamelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) SCREAMING_SNAKE_CASE:int = model.to(SCREAMING_SNAKE_CASE__ ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE:str = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE:Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE:Any = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) SCREAMING_SNAKE_CASE:Optional[int] = image.to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ).sample SCREAMING_SNAKE_CASE:str = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE:List[Any] = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: SCREAMING_SNAKE_CASE:Dict = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): return F'''gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE__ ) for s in shape] )}.npy''' def __UpperCamelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : Any=(4, 3, 512, 512) ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE:str = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:List[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) ).to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return image def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict="CompVis/stable-diffusion-v1-4" ,SCREAMING_SNAKE_CASE__ : int=False ): SCREAMING_SNAKE_CASE:Union[str, Any] = "fp16" if fpaa else None SCREAMING_SNAKE_CASE:Optional[Any] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE:Union[str, Any] = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE__ ,subfolder="vae" ,torch_dtype=SCREAMING_SNAKE_CASE__ ,revision=SCREAMING_SNAKE_CASE__ ,) model.to(SCREAMING_SNAKE_CASE__ ).eval() return model def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str]=0 ): if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE__ ) return torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Tuple = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:Union[str, Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ): SCREAMING_SNAKE_CASE:Tuple = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,sample_posterior=SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): SCREAMING_SNAKE_CASE:List[str] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE:int = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE:str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:Any = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[str] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE:Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE:Any = torch.tensor(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): SCREAMING_SNAKE_CASE:str = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ,fpaa=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[str] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.decode(SCREAMING_SNAKE_CASE__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE:int = model.decode(SCREAMING_SNAKE_CASE__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE:List[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = self.get_generator(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model.encode(SCREAMING_SNAKE_CASE__ ).latent_dist SCREAMING_SNAKE_CASE:int = dist.sample(generator=SCREAMING_SNAKE_CASE__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE:List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE:int = torch.tensor(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__ )
139
1
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = [10, 20, 30, 40, 50, 60] __snake_case = [2, 4, 6, 8, 10, 12] __snake_case = 100 self.assertEqual(kp.calc_profit(a__ , a__ , a__ ) , 210 ) def a (self : int ): """simple docstring""" self.assertRaisesRegex(a__ , '''max_weight must greater than zero.''' ) def a (self : str ): """simple docstring""" self.assertRaisesRegex(a__ , '''Weight can not be negative.''' ) def a (self : int ): """simple docstring""" self.assertRaisesRegex(a__ , '''Profit can not be negative.''' ) def a (self : str ): """simple docstring""" self.assertRaisesRegex(a__ , '''max_weight must greater than zero.''' ) def a (self : Optional[Any] ): """simple docstring""" self.assertRaisesRegex( a__ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
238
from __future__ import annotations snake_case_ = 'Muhammad Umer Farooq' snake_case_ = 'MIT' snake_case_ = '1.0.0' snake_case_ = 'Muhammad Umer Farooq' snake_case_ = '[email protected]' snake_case_ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = [] __snake_case = domain def a (self : Tuple , a__ : str , a__ : list[tuple[str, str | None]] ): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , a__ ) self.urls.append(a__ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return ".".join(get_sub_domain_name(snake_case_ ).split('''.''' )[-2:] ) def lowerCamelCase__ ( snake_case_ : str ) -> str: return parse.urlparse(snake_case_ ).netloc def lowerCamelCase__ ( snake_case_ : str = "https://github.com" ) -> list[str]: __snake_case = get_domain_name(snake_case_ ) # Initialize the parser __snake_case = Parser(snake_case_ ) try: # Open URL __snake_case = requests.get(snake_case_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(snake_case_ ) # Get the valid email. __snake_case = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(snake_case_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(snake_case_ ) if __name__ == "__main__": snake_case_ = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
238
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Optional[int], lowerCamelCase : Dict, lowerCamelCase : List[str]=1_024, lowerCamelCase : str=1_024, lowerCamelCase : Dict=3.6 ): '''simple docstring''' lowercase__ = tokenizer lowercase__ = tokenizer.bos_token_id lowercase__ = dataset lowercase__ = seq_length lowercase__ = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): '''simple docstring''' lowercase__ = iter(self.dataset ) lowercase__ = True while more_examples: lowercase__ , lowercase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCamelCase )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ = False break lowercase__ = tokenizer(lowerCamelCase, truncation=lowerCamelCase )['''input_ids'''] lowercase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0, len(lowerCamelCase ), self.seq_length ): lowercase__ = all_token_ids[i : i + self.seq_length] if len(lowerCamelCase ) == self.seq_length: yield torch.tensor(lowerCamelCase ) def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = {'''streaming''': True} lowercase__ = load_dataset(args.dataset_name , split='''train''' , **lowerCamelCase_ ) lowercase__ = ConstantLengthDataset(lowerCamelCase_ , lowerCamelCase_ , seq_length=args.seq_length ) lowercase__ = DataLoader(lowerCamelCase_ , batch_size=args.batch_size ) return eval_dataloader def a ( lowerCamelCase_ ): '''simple docstring''' model.eval() lowercase__ = [] for step, batch in enumerate(lowerCamelCase_ ): with torch.no_grad(): lowercase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) lowercase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowerCamelCase_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ = torch.mean(torch.cat(lowerCamelCase_ ) ) try: lowercase__ = torch.exp(lowerCamelCase_ ) except OverflowError: lowercase__ = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator A__ : List[Any] = Accelerator() # Parse configuration A__ : List[Any] = HfArgumentParser(EvaluationArguments) A__ : Tuple = parser.parse_args() set_seed(args.seed) # Logging A__ : int = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer A__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A__ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A__ : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. A__ , A__ : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') A__ , A__ : Any = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
207
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
207
1
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _lowerCamelCase : '''simple docstring''' A_ : List[str] A_ : Optional[str] = None # Automatically constructed A_ : ClassVar[str] = "dict" A_ : ClassVar[Any] = None A_ : str = field(default="""Translation""" , init=lowercase__ , repr=lowercase__ ) def __call__( self : int ) -> List[str]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __lowerCAmelCase ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class _lowerCamelCase : '''simple docstring''' A_ : Optional[List] = None A_ : Optional[int] = None A_ : Optional[str] = None # Automatically constructed A_ : ClassVar[str] = "dict" A_ : ClassVar[Any] = None A_ : str = field(default="""TranslationVariableLanguages""" , init=lowercase__ , repr=lowercase__ ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None __magic_name__ : List[Any] = len(self.languages ) if self.languages else None def __call__( self : int ) -> int: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def __lowerCAmelCase ( self : int , _A : int ) -> Any: __magic_name__ : Any = set(self.languages ) if self.languages and set(_A ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(_A ) - lang_set ) )}) are not in valid set ({", ".join(_A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __magic_name__ : Tuple = [] for lang, text in translation_dict.items(): if isinstance(_A , _A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __magic_name__ , __magic_name__ : Any = zip(*sorted(_A ) ) return {"language": languages, "translation": translations} def __lowerCAmelCase ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) __UpperCamelCase :int = 0 __UpperCamelCase :List[Any] = str(SCREAMING_SNAKE_CASE ) while len(SCREAMING_SNAKE_CASE ) != 1: __UpperCamelCase :List[Any] = [int(SCREAMING_SNAKE_CASE ) for i in num_string] __UpperCamelCase :Tuple = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): total *= numbers[i] __UpperCamelCase :Any = str(SCREAMING_SNAKE_CASE ) steps += 1 return steps def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Optional[int] = str(SCREAMING_SNAKE_CASE ) while len(SCREAMING_SNAKE_CASE ) != 1: __UpperCamelCase :Optional[int] = [int(SCREAMING_SNAKE_CASE ) for i in num_string] __UpperCamelCase :Tuple = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE ) ): total += numbers[i] __UpperCamelCase :Any = str(SCREAMING_SNAKE_CASE ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
43
import math import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1 ): '''simple docstring''' if ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers __UpperCamelCase :List[str] = qiskit.QuantumRegister(4 , '''qr''' ) __UpperCamelCase :str = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries __UpperCamelCase :Tuple = [input_a, input_a, carry_in] __UpperCamelCase :Optional[int] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits __UpperCamelCase :Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
43
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE__ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def __lowerCamelCase ( __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) -> Any: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCamelCase : Tuple = kwargs.pop("main_process_only" , __UpperCamelCase ) __UpperCamelCase : Tuple = kwargs.pop("in_order" , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: __UpperCamelCase : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase : List[str] = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def UpperCAmelCase_ (_lowerCAmelCase : str , _lowerCAmelCase : str = None ): if log_level is None: __UpperCamelCase : str = os.environ.get("ACCELERATE_LOG_LEVEL" , _lowerCAmelCase ) __UpperCamelCase : Optional[int] = logging.getLogger(_lowerCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCAmelCase , {} )
171
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : List[str] = None lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : int = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} lowercase : Optional[Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } lowercase : List[str] = { "google/rembert": 256, } lowercase : Tuple = "▁" class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[int] = VOCAB_FILES_NAMES lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[int] = RemBertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase="[CLS]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<unk>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<pad>" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , **__UpperCamelCase , ) -> Dict: '''simple docstring''' __UpperCamelCase : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) __UpperCamelCase : Any = do_lower_case __UpperCamelCase : List[str] = remove_space __UpperCamelCase : Optional[Any] = keep_accents __UpperCamelCase : Union[str, Any] = vocab_file __UpperCamelCase : Any = False if not self.vocab_file else True def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Any = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(__UpperCamelCase ) ) return __UpperCamelCase : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
171
1
from __future__ import annotations import math from collections.abc import Callable def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 100 , ) -> float: """simple docstring""" snake_case_ : Any = x_start snake_case_ : List[str] = fnc(UpperCAmelCase_ ) snake_case_ : str = 0.0 for _ in range(UpperCAmelCase_ ): # Approximates curve as a sequence of linear lines and sums their length snake_case_ : Dict = (x_end - x_start) / steps + xa snake_case_ : Optional[Any] = fnc(UpperCAmelCase_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case_ : Optional[Any] = xa snake_case_ : Optional[int] = fxa return length if __name__ == "__main__": def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') lowerCAmelCase_ = 1_0 while i <= 1_0_0_0_0_0: print(F'''With {i} steps: {line_length(f, -1_0, 1_0, i)}''') i *= 1_0
279
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VQModel lowerCamelCase : Union[str, Any] = 'sample' @property def lowercase_ ( self , SCREAMING_SNAKE_CASE_=(32, 32) ) -> Any: __lowerCamelCase : Tuple = 4 __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def lowercase_ ( self ) -> Optional[int]: return (3, 32, 32) @property def lowercase_ ( self ) -> List[Any]: return (3, 32, 32) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } __lowerCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> str: pass def lowercase_ ( self ) -> Optional[int]: pass def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase_ ( self ) -> int: __lowerCamelCase : List[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __lowerCamelCase : List[str] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __lowerCamelCase : Optional[int] = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE_ ).sample __lowerCamelCase : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCamelCase : Union[str, Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
185
0
def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = [], [] while len(lowerCamelCase__ ) > 1: lowerCamelCase_ , lowerCamelCase_ = min(lowerCamelCase__ ), max(lowerCamelCase__ ) start.append(lowerCamelCase__ ) end.append(lowerCamelCase__ ) collection.remove(lowerCamelCase__ ) collection.remove(lowerCamelCase__ ) end.reverse() return start + collection + end if __name__ == "__main__": __A =input('''Enter numbers separated by a comma:\n''').strip() __A =[int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
47
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A ={ '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
47
1
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase : Union[str, Any] = ["text", "image", "audio"] def snake_case__ ( __lowerCamelCase : List[str] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =[] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def snake_case__ ( __lowerCamelCase : List ): """simple docstring""" lowerCamelCase__ : Tuple =[] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class __SCREAMING_SNAKE_CASE : '''simple docstring''' def snake_case ( self : Any )-> Optional[Any]: self.assertTrue(hasattr(self.tool, '''inputs''' ) ) self.assertTrue(hasattr(self.tool, '''outputs''' ) ) lowerCamelCase__ : Tuple =self.tool.inputs for _input in inputs: if isinstance(_input, lowerCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ : Optional[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case ( self : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =create_inputs(self.tool.inputs ) lowerCamelCase__ : List[Any] =self.tool(*lowerCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ : Optional[int] =[outputs] self.assertListEqual(output_types(lowerCamelCase ), self.tool.outputs ) def snake_case ( self : Union[str, Any] )-> List[str]: self.assertTrue(hasattr(self.tool, '''description''' ) ) self.assertTrue(hasattr(self.tool, '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def snake_case ( self : Union[str, Any] )-> str: lowerCamelCase__ : List[str] =create_inputs(self.tool.inputs ) lowerCamelCase__ : Optional[Any] =self.tool(*lowerCamelCase ) if not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Any =[outputs] self.assertEqual(len(lowerCamelCase ), len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase, self.tool.outputs ): lowerCamelCase__ : List[Any] =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase, lowerCamelCase ) ) def snake_case ( self : Optional[Any] )-> List[Any]: lowerCamelCase__ : Optional[Any] =create_inputs(self.tool.inputs ) lowerCamelCase__ : List[str] =[] for _input, input_type in zip(lowerCamelCase, self.tool.inputs ): if isinstance(lowerCamelCase, lowerCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ : Any =self.tool(*lowerCamelCase ) if not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =[outputs] self.assertEqual(len(lowerCamelCase ), len(self.tool.outputs ) )
238
"""simple docstring""" from functools import lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =2 lowerCamelCase__ : Optional[int] =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" return len(unique_prime_factors(__lowerCamelCase ) ) def snake_case__ ( __lowerCamelCase : list ): """simple docstring""" return len(set(__lowerCamelCase ) ) in (0, 1) def snake_case__ ( __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Tuple =2 while True: # Increment each value of a generated range lowerCamelCase__ : Tuple =[base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCamelCase__ : Optional[Any] =[upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case__ ( __lowerCamelCase : int = 4 ): """simple docstring""" lowerCamelCase__ : List[Any] =run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
238
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase ( a__ ): def __init__( self , UpperCAmelCase__ = "▁" , UpperCAmelCase__ = True , UpperCAmelCase__ = "<unk>" , UpperCAmelCase__ = "</s>" , UpperCAmelCase__ = "<pad>" , ): A__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } A__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): A__ = token_dict["token"] A__ = Tokenizer(Unigram() ) A__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) A__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) A__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) A__ = TemplateProcessing( single=F"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) A__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8_000 , UpperCAmelCase__ = True , ): A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): A__ = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8_000 , UpperCAmelCase__ = True , ): A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def __A ( self ): A__ = json.loads(self._tokenizer.to_str() ) A__ = self.special_tokens["unk"]["id"] A__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__ ) )
370
def UpperCamelCase ( _A : int , _A : int )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( )-> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
198
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def _lowercase ( lowercase__ , lowercase__=False ): __lowerCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _lowercase ( lowercase__ , lowercase__ , lowercase__=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase : List[Any] = '''''' else: __lowerCAmelCase : Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase : List[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase : int = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] __lowerCAmelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def _lowercase ( lowercase__ ): __lowerCAmelCase : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = dct.pop(lowercase__ ) __lowerCAmelCase : List[Any] = val def _lowercase ( ): __lowerCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = ViTConfig() __lowerCAmelCase : List[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Dict = int(vit_name[-1_2:-1_0] ) __lowerCAmelCase : Optional[int] = int(vit_name[-9:-6] ) else: __lowerCAmelCase : List[str] = 1_0_0_0 __lowerCAmelCase : int = '''huggingface/label-files''' __lowerCAmelCase : int = '''imagenet-1k-id2label.json''' __lowerCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __lowerCAmelCase : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} __lowerCAmelCase : int = idalabel __lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Tuple = int(vit_name[-6:-4] ) __lowerCAmelCase : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): __lowerCAmelCase : Tuple = 1_9_2 __lowerCAmelCase : Optional[Any] = 7_6_8 __lowerCAmelCase : Optional[int] = 1_2 __lowerCAmelCase : Union[str, Any] = 3 elif vit_name[9:].startswith('''small''' ): __lowerCAmelCase : Any = 3_8_4 __lowerCAmelCase : Optional[int] = 1_5_3_6 __lowerCAmelCase : Dict = 1_2 __lowerCAmelCase : int = 6 else: pass else: if vit_name[4:].startswith('''small''' ): __lowerCAmelCase : Any = 7_6_8 __lowerCAmelCase : List[Any] = 2_3_0_4 __lowerCAmelCase : Optional[Any] = 8 __lowerCAmelCase : Any = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): __lowerCAmelCase : Dict = 1_0_2_4 __lowerCAmelCase : Tuple = 4_0_9_6 __lowerCAmelCase : int = 2_4 __lowerCAmelCase : List[str] = 1_6 elif vit_name[4:].startswith('''huge''' ): __lowerCAmelCase : Optional[int] = 1_2_8_0 __lowerCAmelCase : Optional[Any] = 5_1_2_0 __lowerCAmelCase : int = 3_2 __lowerCAmelCase : Any = 1_6 # load original model from timm __lowerCAmelCase : Dict = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase : List[str] = timm_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) __lowerCAmelCase : List[Any] = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowerCAmelCase : Tuple = ViTModel(lowercase__ ).eval() else: __lowerCAmelCase : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowerCAmelCase : Optional[Any] = DeiTImageProcessor(size=config.image_size ) else: __lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) __lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __lowerCAmelCase : int = encoding['''pixel_values'''] __lowerCAmelCase : str = model(lowercase__ ) if base_model: __lowerCAmelCase : List[str] = timm_model.forward_features(lowercase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 ) else: __lowerCAmelCase : Any = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
275
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __lowerCAmelCase : Optional[int] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : int = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = ord(lowercase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase : int = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' import torch __lowerCAmelCase : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase : List[Any] = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase : Dict = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase : Any = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: __lowerCAmelCase : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] __lowerCAmelCase : Tuple = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase : List[Any] = padding_tensor(A_ , -1 , A_ , A_ ) __lowerCAmelCase : Optional[int] = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) __lowerCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
275
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : List[Any] = args.log_outputs __magic_name__ : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric __magic_name__ : Optional[Any] = load_metric("""wer""" ) __magic_name__ : Dict = load_metric("""cer""" ) # compute metrics __magic_name__ : str = wer.compute(references=result["""target"""], predictions=result["""prediction"""] ) __magic_name__ : List[str] = cer.compute(references=result["""target"""], predictions=result["""prediction"""] ) # print & log results __magic_name__ : str = f'WER: {wer_result}\nCER: {cer_result}' print(_A ) with open(f'{dataset_id}_eval_results.txt', """w""" ) as f: f.write(_A ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __magic_name__ : Optional[int] = f'log_{dataset_id}_predictions.txt' __magic_name__ : Optional[Any] = f'log_{dataset_id}_targets.txt' with open(_A, """w""" ) as p, open(_A, """w""" ) as t: # mapping function to write output def write_to_file(_A, _A ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(_A, with_indices=_A ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Any = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __magic_name__ : List[Any] = re.sub(_A, """""", text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __magic_name__ : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: __magic_name__ : Tuple = """ """.join(text.split(_A ) ) return text def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Dict = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=_A ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __magic_name__ : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) __magic_name__ : Tuple = feature_extractor.sampling_rate # resample audio __magic_name__ : Any = dataset.cast_column("""audio""", Audio(sampling_rate=_A ) ) # load eval pipeline if args.device is None: __magic_name__ : Any = 0 if torch.cuda.is_available() else -1 __magic_name__ : Optional[int] = pipeline("""automatic-speech-recognition""", model=args.model_id, device=args.device ) # map function to decode audio def map_to_pred(_A ): __magic_name__ : List[Any] = asr( batch["""audio"""]["""array"""], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) __magic_name__ : Tuple = prediction["""text"""] __magic_name__ : Union[str, Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples __magic_name__ : Optional[Any] = dataset.map(_A, remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_A, _A ) if __name__ == "__main__": __magic_name__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __magic_name__: Any = parser.parse_args() main(args)
138
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Dict = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''blenderbot-small''' lowercase__ : Optional[int] = ['''past_key_values'''] lowercase__ : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : Tuple = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Union[str, Any] = d_model __magic_name__ : Optional[int] = encoder_ffn_dim __magic_name__ : Union[str, Any] = encoder_layers __magic_name__ : List[str] = encoder_attention_heads __magic_name__ : List[Any] = decoder_ffn_dim __magic_name__ : str = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Optional[int] = init_std __magic_name__ : Dict = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Optional[int] = use_cache __magic_name__ : List[Any] = encoder_layers __magic_name__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class snake_case__ ( _lowerCAmelCase ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : List[Any] = {0: """batch"""} __magic_name__ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ ,__magic_name__ : Dict = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any = super().outputs else: __magic_name__ : int = super(lowerCAmelCase__ , self ).outputs if self.use_past: __magic_name__ ,__magic_name__ : str = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs __magic_name__ : Optional[int] = seq_length if not self.use_past else 1 __magic_name__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ : Dict = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : List[Any] = common_inputs["""input_ids"""].shape __magic_name__ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ ,__magic_name__ : str = self.num_attention_heads __magic_name__ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Any = decoder_seq_length + 3 __magic_name__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ ,__magic_name__ : List[str] = self.num_layers __magic_name__ : Optional[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers __magic_name__ : Tuple = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. __magic_name__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : List[Any] = seqlen + 2 __magic_name__ ,__magic_name__ : Any = self.num_layers __magic_name__ ,__magic_name__ : int = self.num_attention_heads __magic_name__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Optional[int] = common_inputs["""attention_mask"""].dtype __magic_name__ : Optional[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Tuple = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : Tuple = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) __magic_name__ : List[str] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : List[str] = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": __magic_name__ : str = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: __magic_name__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __magic_name__ : Tuple = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
138
1