code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): if len(lowerCAmelCase_ ) == 0: return False __lowercase : List[Any] = len(lowerCAmelCase_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCAmelCase_ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase : str = [int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase : Tuple = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase : Any = '''''' if binary_search(sequence, target) else '''not ''' print(f'''{target} was {not_str}found in {sequence}''')
233
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : int = '''▁''' lowerCamelCase : Optional[int] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCamelCase : str = { '''google/pegasus-xsum''': 5_12, } lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = VOCAB_FILES_NAMES _A : Tuple = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , __a : int , __a : Any="<pad>" , __a : Optional[int]="</s>" , __a : Union[str, Any]="<unk>" , __a : Optional[int]="<mask_2>" , __a : Optional[int]="<mask_1>" , __a : Dict=None , __a : List[str]=103 , __a : Optional[Dict[str, Any]] = None , **__a : List[Any] , ) -> None: """simple docstring""" __lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(__a , __a ): raise TypeError( F"additional_special_tokens should be of type {type(__a )}, but is" F" {type(__a )}" ) __lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__a ) , self.offset - 1 ) ] if len(set(__a ) ) != len(__a ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __lowercase : Optional[Any] = additional_special_tokens_extended else: __lowercase : int = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] __lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__a , unk_token=__a , mask_token=__a , pad_token=__a , mask_token_sent=__a , offset=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : Optional[Any] = mask_token_sent __lowercase : Dict = vocab_file __lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) # add special tokens to encoder dict __lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowerCAmelCase ( self : int ) -> Dict[str, int]: """simple docstring""" __lowercase : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.__dict__.copy() __lowercase : Optional[Any] = None return state def __setstate__( self : Tuple , __a : Any ) -> Tuple: """simple docstring""" __lowercase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[str] = {} __lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Dict , __a : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__a , out_type=__a ) def lowerCAmelCase ( self : List[str] , __a : str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __lowercase : Union[str, Any] = self.sp_model.piece_to_id(__a ) return sp_id + self.offset def lowerCAmelCase ( self : Dict , __a : int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __lowercase : List[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCAmelCase ( self : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : Optional[int] = [] __lowercase : Tuple = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token __lowercase : str = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : int , __a : Optional[Any]=False ) -> int: """simple docstring""" return 1 def lowerCAmelCase ( self : Optional[int] , __a : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase ( self : Union[str, Any] , __a : List , __a : Optional[List] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__a ) elif token_ids_a is None: return self._special_token_mask(__a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Tuple=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Tuple , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Optional[int] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Any = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
233
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None snake_case ,snake_case : List[Any] = get_aligned_output_features_output_indices(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ['''c'''] ) self.assertEqual(UpperCamelCase__ , [2] ) # Out indices set to match out features snake_case ,snake_case : List[str] = get_aligned_output_features_output_indices(['''a''', '''c'''] , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ['''a''', '''c'''] ) self.assertEqual(UpperCamelCase__ , [0, 2] ) # Out features set to match out indices snake_case ,snake_case : str = get_aligned_output_features_output_indices(UpperCamelCase__ , [0, 2] , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ['''a''', '''c'''] ) self.assertEqual(UpperCamelCase__ , [0, 2] ) # Out features selected from negative indices snake_case ,snake_case : Union[str, Any] = get_aligned_output_features_output_indices(UpperCamelCase__ , [-3, -1] , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ['''a''', '''c'''] ) self.assertEqual(UpperCamelCase__ , [-3, -1] ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , UpperCamelCase__ ) # Out features must be a list with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = BackboneMixin() snake_case : str = ['''a''', '''b''', '''c'''] snake_case : List[Any] = ['''a''', '''c'''] snake_case : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case : int = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case : Union[str, Any] = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
83
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=0.9 , UpperCamelCase__ : Any=None , ) -> Tuple: """simple docstring""" snake_case : List[Any] = parent snake_case : Tuple = batch_size snake_case : str = image_size snake_case : Tuple = num_channels snake_case : List[Any] = patch_size snake_case : Optional[Any] = tubelet_size snake_case : Tuple = num_frames snake_case : Optional[Any] = is_training snake_case : Tuple = use_labels snake_case : List[str] = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Tuple = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Any = mask_ratio snake_case : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Dict = (image_size // patch_size) ** 2 snake_case : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : Optional[int] = int(mask_ratio * self.seq_length ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Any = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" snake_case : Any = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : int = torch.ones((self.num_masks,) ) snake_case : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case : str = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches snake_case : Tuple = mask.sum().item() snake_case : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Optional[int] = config_and_inputs snake_case : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case : List[Any] = VideoMAEModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Optional[int] = torch.ones((self.model_tester.num_masks,) ) snake_case : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Dict = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : Optional[int] = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> str: """simple docstring""" snake_case ,snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.has_attentions: pass else: snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = True for model_class in self.all_model_classes: snake_case : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : List[str] = False snake_case : Tuple = True snake_case : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Any = True snake_case : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : Any = len(UpperCamelCase__ ) # Check attention is always last and order is fine snake_case : Union[str, Any] = True snake_case : Union[str, Any] = True snake_case : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) snake_case : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Union[str, Any] = outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def _UpperCamelCase ( ) -> str: '''simple docstring''' snake_case : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case : str = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" snake_case : Tuple = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Dict = prepare_video() snake_case : int = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : int = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" snake_case : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Tuple = prepare_video() snake_case : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask snake_case : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case : Dict = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**UpperCamelCase__ ) # verify the logits snake_case : str = torch.Size([1, 1408, 1536] ) snake_case : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Any = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): snake_case : Optional[int] = model(**UpperCamelCase__ ) snake_case : str = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
83
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> float: '''simple docstring''' if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( __UpperCamelCase , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 ) if __name__ == "__main__": import doctest doctest.testmod()
115
import socket def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ = socket.gethostname() SCREAMING_SNAKE_CASE__ = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: SCREAMING_SNAKE_CASE__ = sock.recv(10_24 ) if not data: break out_file.write(__UpperCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
219
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Dict =MvpTokenizer a : int =MvpTokenizerFast a : Any =True a : int =filter_roberta_detectors def lowerCamelCase__ ( self ): '''simple docstring''' super().setUp() __lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE,range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase = {"""unk_token""": """<unk>"""} __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file,"""w""",encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file,"""w""",encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,max_length=len(__SCREAMING_SNAKE_CASE ),padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9),batch.input_ids.shape ) self.assertEqual((2, 9),batch.attention_mask.shape ) __lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""",__SCREAMING_SNAKE_CASE ) self.assertIn("""attention_mask""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""labels""",__SCREAMING_SNAKE_CASE ) self.assertNotIn("""decoder_attention_mask""",__SCREAMING_SNAKE_CASE ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(text_target=__SCREAMING_SNAKE_CASE,max_length=32,padding="""max_length""",return_tensors="""pt""" ) self.assertEqual(32,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""],padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape,(2, 10_24) ) @require_torch def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = ["""A long paragraph for summarization."""] __lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE,text_target=__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ) __lowerCAmelCase = inputs["""input_ids"""] __lowerCAmelCase = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase__ ( self ): '''simple docstring''' pass def lowerCamelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = """A, <mask> AllenNLP sentence.""" __lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_token_type_ids=__SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ),sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ),sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ),) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""],[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __SCREAMING_SNAKE_CASE,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =KandinskyVaaImgaImgPipeline a : List[Any] =["""image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] =[ """image_embeds""", """negative_image_embeds""", """image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Optional[Any] =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __lowerCAmelCase = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = """A red cartoon frog, 4k""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,strength=0.2,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = ['audio_values', 'audio_mask'] def __init__( self : Optional[int] , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Optional[Any]=[16, 16] , lowerCAmelCase : Optional[Any]=128 , lowerCAmelCase : Union[str, Any]=4_4100 , lowerCAmelCase : Any=86 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : List[str]=0.0 , **lowerCAmelCase : Any , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = spectrogram_length lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = feature_size // self.patch_size[1] lowerCAmelCase = n_fft lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = padding_value lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T def __lowercase ( self : int , lowerCAmelCase : np.array ): lowerCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = log_spec - 20.0 lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): lowerCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): lowerCAmelCase = audio_features[i] lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCAmelCase = {"""audio_values""": padded_audio_features} lowerCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
155
1
from __future__ import annotations def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> list[str]: """simple docstring""" if nth_term == "": return [""] UpperCamelCase_ = int(_snake_case ) UpperCamelCase_ = int(_snake_case ) UpperCamelCase_ = [] for temp in range(int(_snake_case ) ): series.append(f"1 / {pow(temp + 1 , int(_snake_case ) )}" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :str = int(input("""Enter the last number (nth term) of the P-Series""")) SCREAMING_SNAKE_CASE :str = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
369
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , )-> Optional[int]: UpperCamelCase_ = size if size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = apply_ocr def UpperCAmelCase_ ( self )-> str: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , "do_resize" ) ) self.assertTrue(hasattr(_lowercase , "size" ) ) self.assertTrue(hasattr(_lowercase , "apply_ocr" ) ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> str: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> Any: # with apply_OCR = True UpperCamelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCamelCase_ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False UpperCamelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
60
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: Union[int, Iterable[int]] , lowerCamelCase: bool , lowerCamelCase: int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(lowerCamelCase: str , lowerCamelCase: List[Any] , lowerCamelCase: Any=0 , lowerCamelCase: Optional[Any]=None ): __A = round(val / multiple ) * multiple if max_val is not None and x > max_val: __A = math.floor(val / multiple ) * multiple if x < min_val: __A = math.ceil(val / multiple ) * multiple return x __A = (output_size, output_size) if isinstance(lowerCamelCase , lowerCamelCase ) else output_size __A , __A = get_image_size(lowerCamelCase ) __A , __A = output_size # determine new height and width __A = output_height / input_height __A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __A = scale_width else: # fit height __A = scale_height __A = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase ) __A = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase ) return (new_height, new_width) class A_ ( _lowerCamelCase ): lowerCAmelCase__ = ["""pixel_values"""] def __init__(self :Optional[Any] , _UpperCamelCase :bool = True , _UpperCamelCase :Dict[str, int] = None , _UpperCamelCase :PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase :bool = False , _UpperCamelCase :int = 1 , _UpperCamelCase :bool = True , _UpperCamelCase :Union[int, float] = 1 / 255 , _UpperCamelCase :bool = True , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , **_UpperCamelCase :Any , )-> None: super().__init__(**_UpperCamelCase ) __A = size if size is not None else {'''height''': 384, '''width''': 384} __A = get_size_dict(_UpperCamelCase ) __A = do_resize __A = size __A = keep_aspect_ratio __A = ensure_multiple_of __A = resample __A = do_rescale __A = rescale_factor __A = do_normalize __A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :np.ndarray , _UpperCamelCase :Dict[str, int] , _UpperCamelCase :bool = False , _UpperCamelCase :int = 1 , _UpperCamelCase :PILImageResampling = PILImageResampling.BICUBIC , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :Dict , )-> np.ndarray: __A = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __A = get_resize_output_image_size( _UpperCamelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_UpperCamelCase , multiple=_UpperCamelCase , ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :np.ndarray , _UpperCamelCase :Union[int, float] , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :List[Any] , )-> str: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :np.ndarray , _UpperCamelCase :Union[float, List[float]] , _UpperCamelCase :Union[float, List[float]] , _UpperCamelCase :Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase :List[str] , )-> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :ImageInput , _UpperCamelCase :bool = None , _UpperCamelCase :int = None , _UpperCamelCase :bool = None , _UpperCamelCase :int = None , _UpperCamelCase :PILImageResampling = None , _UpperCamelCase :bool = None , _UpperCamelCase :float = None , _UpperCamelCase :bool = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :Optional[Union[float, List[float]]] = None , _UpperCamelCase :Optional[Union[str, TensorType]] = None , _UpperCamelCase :ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase :Optional[Any] , )-> PIL.Image.Image: __A = do_resize if do_resize is not None else self.do_resize __A = size if size is not None else self.size __A = get_size_dict(_UpperCamelCase ) __A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __A = resample if resample is not None else self.resample __A = do_rescale if do_rescale is not None else self.do_rescale __A = rescale_factor if rescale_factor is not None else self.rescale_factor __A = do_normalize if do_normalize is not None else self.do_normalize __A = image_mean if image_mean is not None else self.image_mean __A = image_std if image_std is not None else self.image_std __A = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __A = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: __A = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: __A = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: __A = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] __A = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] __A = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Any , _UpperCamelCase :List[Tuple] = None )-> int: __A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_UpperCamelCase ): __A = target_sizes.numpy() __A = [] for idx in range(len(_UpperCamelCase ) ): __A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_UpperCamelCase ) __A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCamelCase ) else: __A = logits.argmax(dim=1 ) __A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
117
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = cva.getAffineTransform(lowerCamelCase , lowerCamelCase ) return cva.warpAffine(lowerCamelCase , lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image snake_case__ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : str = gray_img.shape # set different points to rotate image snake_case__ : Any = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) snake_case__ : str = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) snake_case__ : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) snake_case__ : List[str] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[Any] = plt.figure(1) snake_case__ : Dict = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
117
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : int = StableDiffusionXLImgaImgPipeline __UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} __UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCamelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _A: Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _A: Tuple = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) _A: str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _A: Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=3_2 , ) _A: Dict = CLIPTextModel(lowerCAmelCase_ ) _A: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase_ ) _A: Dict = CLIPTextModelWithProjection(lowerCAmelCase_ ) _A: Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=lowerCAmelCase_ ) _A: List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str=0 ): """simple docstring""" _A: int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Optional[Any] = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: List[str] = torch.manual_seed(lowerCAmelCase_ ) else: _A: List[str] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _A: List[Any] = self.get_dummy_components() _A: List[str] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: str = self.get_dummy_inputs(lowerCAmelCase_ ) _A: Dict = sd_pipe(**lowerCAmelCase_ ).images _A: str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _A: Any = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : str ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" pass def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = self.get_dummy_components() _A: Optional[int] = StableDiffusionXLImgaImgPipeline(**lowerCAmelCase_ ) _A: Dict = sd_pipe.to(lowerCAmelCase_ ) _A: Optional[Any] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # forward without prompt embeds _A: str = self.get_dummy_inputs(lowerCAmelCase_ ) _A: int = 3 * ['''this is a negative prompt'''] _A: Union[str, Any] = negative_prompt _A: Dict = 3 * [inputs['''prompt''']] _A: List[str] = sd_pipe(**lowerCAmelCase_ ) _A: Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _A: Optional[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) _A: List[Any] = 3 * ['''this is a negative prompt'''] _A: Any = 3 * [inputs.pop('''prompt''' )] ( _A ): Tuple = sd_pipe.encode_prompt(lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _A: List[Any] = sd_pipe( **lowerCAmelCase_ , prompt_embeds=lowerCAmelCase_ , negative_prompt_embeds=lowerCAmelCase_ , pooled_prompt_embeds=lowerCAmelCase_ , negative_pooled_prompt_embeds=lowerCAmelCase_ , ) _A: List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str="cpu" , lowerCAmelCase_ : Tuple=torch.floataa , lowerCAmelCase_ : Dict=0 ): """simple docstring""" _A: Tuple = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: Any = np.random.RandomState(lowerCAmelCase_ ).standard_normal((1, 4, 6_4, 6_4) ) _A: Union[str, Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) _A: Any = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: Dict = self.get_inputs(lowerCAmelCase_ ) _A: List[Any] = pipe(**lowerCAmelCase_ ).images _A: List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _A: str = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
360
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = len(UpperCAmelCase_ ) for i in range(1 , UpperCAmelCase_ ): _UpperCamelCase : str = collection[i] _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : List[Any] = i - 1 while low <= high: _UpperCamelCase : Any = (low + high) // 2 if val < collection[mid]: _UpperCamelCase : int = mid - 1 else: _UpperCamelCase : int = mid + 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ , -1 ): _UpperCamelCase : Any = collection[j - 1] _UpperCamelCase : List[Any] = val return collection if __name__ == "__main__": snake_case_ : Any = input('Enter numbers separated by a comma:\n').strip() snake_case_ : int = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
83
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : str = encoder_ffn_dim _UpperCamelCase : List[Any] = num_encoder_layers _UpperCamelCase : Tuple = num_encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : List[Any] = num_decoder_attention_heads _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : str = init_std # Normal(0, this parameter) _UpperCamelCase : List[str] = activation_function # parameters for xlmprophetnet _UpperCamelCase : Tuple = ngram _UpperCamelCase : Optional[Any] = num_buckets _UpperCamelCase : Tuple = relative_max_distance _UpperCamelCase : str = disable_ngram_loss _UpperCamelCase : str = eps # 3 Types of Dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : List[str] = dropout _UpperCamelCase : Tuple = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
83
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""String lengths must match!""" ) _A : str = 0 for chara, chara in zip(snake_case_,snake_case_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
343
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCAmelCase = CLIPTextModel(lowercase ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> Union[str, Any]: if str(lowercase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase ) else: lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCAmelCase = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _snake_case ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowerCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = """.""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self ) -> str: lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = """.""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self ) -> Tuple: lowerCAmelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = """.""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) lowerCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
46
"""simple docstring""" SCREAMING_SNAKE_CASE__ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on SCREAMING_SNAKE_CASE__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """Morse code here!""" print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = encrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = decrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
46
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( snake_case_ , unittest.TestCase ): _lowerCAmelCase = KandinskyVaaControlnetPipeline _lowerCAmelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCAmelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCAmelCase = False @property def __UpperCAmelCase ( self ) -> Optional[Any]: return 32 @property def __UpperCAmelCase ( self ) -> Any: return 32 @property def __UpperCAmelCase ( self ) -> Optional[int]: return self.time_input_dim @property def __UpperCAmelCase ( self ) -> Any: return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ) -> int: return 1_00 @property def __UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _a = UNetaDConditionModel(**__magic_name__ ) return model @property def __UpperCAmelCase ( self ) -> int: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self ) -> str: _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type='epsilon' , thresholding=__magic_name__ , ) _a = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=0 ) -> Dict: _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __magic_name__ ) # create hint _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith('mps' ): _a = torch.manual_seed(__magic_name__ ) else: _a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _a = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self ) -> str: _a = 'cpu' _a = self.get_dummy_components() _a = self.pipeline_class(**__magic_name__ ) _a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _a = pipe(**self.get_dummy_inputs(__magic_name__ ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> List[str]: _a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _a = torch.from_numpy(np.array(__magic_name__ ) ).float() / 2_5_5.0 _a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _a = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) _a = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _a = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) _a = 'A robot, 4k photo' _a = torch.Generator(device='cuda' ).manual_seed(0 ) _a = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _a = torch.Generator(device='cuda' ).manual_seed(0 ) _a = pipeline( image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , hint=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , output_type='np' , ) _a = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
356
'''simple docstring''' def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
0
from __future__ import annotations def __A ( __lowerCAmelCase , __lowerCAmelCase )-> list[tuple[int, int]]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = position _UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCAmelCase = [] for position in positions: _UpperCAmelCase , _UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCAmelCase ) return permissible_positions def __A ( __lowerCAmelCase )-> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> bool: """simple docstring""" if is_complete(__lowerCAmelCase ): return True for position in get_valid_pos(__lowerCAmelCase , len(__lowerCAmelCase ) ): _UpperCAmelCase , _UpperCAmelCase = position if board[y][x] == 0: _UpperCAmelCase = curr + 1 if open_knight_tour_helper(__lowerCAmelCase , __lowerCAmelCase , curr + 1 ): return True _UpperCAmelCase = 0 return False def __A ( __lowerCAmelCase )-> list[list[int]]: """simple docstring""" _UpperCAmelCase = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): _UpperCAmelCase = 1 if open_knight_tour_helper(__lowerCAmelCase , (i, j) , 1 ): return board _UpperCAmelCase = 0 _UpperCAmelCase = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
39
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
0
def __UpperCAmelCase ( __a : int = 1_000_000 ) -> int: """simple docstring""" _a : List[Any] = set(range(3 ,__a ,2 ) ) primes.add(2 ) for p in range(3 ,__a ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,__a ,__a ) ) ) _a : Any = [float(__a ) for n in range(limit + 1 )] for p in primes: for n in range(__a ,limit + 1 ,__a ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
350
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[str] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
"""simple docstring""" import math def lowercase (_lowerCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase (_lowerCAmelCase = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
301
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=__snake_case , speech_processor=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , ) def a_ ( self , __snake_case = "auto" ): if slice_size == "auto": snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def a_ ( self ): self.enable_attention_slicing(__snake_case ) @torch.no_grad() def __call__( self , __snake_case , __snake_case=1_6_0_0_0 , __snake_case = 5_1_2 , __snake_case = 5_1_2 , __snake_case = 5_0 , __snake_case = 7.5 , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , **__snake_case , ): snake_case = self.speech_processor.feature_extractor( __snake_case , return_tensors='''pt''' , sampling_rate=__snake_case ).input_features.to(self.device ) snake_case = self.speech_model.generate(__snake_case , max_length=4_8_0_0_0_0 ) snake_case = self.speech_processor.tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case , normalize=__snake_case )[ 0 ] if isinstance(__snake_case , __snake_case ): snake_case = 1 elif isinstance(__snake_case , __snake_case ): snake_case = len(__snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__snake_case )}.''' ) # get prompt text embeddings snake_case = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case = text_input_ids[:, : self.tokenizer.model_max_length] snake_case = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case , snake_case , snake_case = text_embeddings.shape snake_case = text_embeddings.repeat(1 , __snake_case , 1 ) snake_case = text_embeddings.view(bs_embed * num_images_per_prompt , __snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case = 42 if negative_prompt is None: snake_case = [''''''] * batch_size elif type(__snake_case ) is not type(__snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(__snake_case )} !=''' F''' {type(__snake_case )}.''' ) elif isinstance(__snake_case , __snake_case ): snake_case = [negative_prompt] elif batch_size != len(__snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(__snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: snake_case = negative_prompt snake_case = text_input_ids.shape[-1] snake_case = self.tokenizer( __snake_case , padding='''max_length''' , max_length=__snake_case , truncation=__snake_case , return_tensors='''pt''' , ) snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case = uncond_embeddings.shape[1] snake_case = uncond_embeddings.repeat(1 , __snake_case , 1 ) snake_case = uncond_embeddings.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case = torch.randn(__snake_case , generator=__snake_case , device='''cpu''' , dtype=__snake_case ).to( self.device ) else: snake_case = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) snake_case = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case = {} if accepts_eta: snake_case = eta for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual snake_case = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform guidance if do_classifier_free_guidance: snake_case , snake_case = noise_pred.chunk(2 ) snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) snake_case = 1 / 0.1_8215 * latents snake_case = self.vae.decode(__snake_case ).sample snake_case = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case = self.numpy_to_pil(__snake_case ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
213
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case=1_3 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=9_9 , __snake_case=3_2 , __snake_case=5 , __snake_case=4 , __snake_case=4 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.1 , __snake_case=True , __snake_case=5_1_2 , __snake_case=1_6 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_multiple_size snake_case = hidden_act snake_case = hidden_dropout snake_case = attention_dropout snake_case = weight_tying snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def a_ ( self ): snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, input_mask, token_labels def a_ ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.prepare_config_and_inputs() snake_case = True return config, input_ids, input_mask, token_labels def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXJapaneseModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) snake_case = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXJapaneseModel(__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , __snake_case , __snake_case , __snake_case ): snake_case = True snake_case = GPTNeoXJapaneseForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass snake_case = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case = model(__snake_case , attention_mask=__snake_case , output_hidden_states=__snake_case ) snake_case = output_from_no_past['''hidden_states'''][0] snake_case = model( __snake_case , attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def a_ ( self ): snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case = config_and_inputs snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __magic_name__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __magic_name__ = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a_ ( self ): snake_case = GPTNeoXJapaneseModelTester(self ) snake_case = ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): # This regression test was failing with PyTorch < 1.3 snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case = None self.model_tester.create_and_check_model_as_decoder(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case , snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__snake_case , __snake_case , __snake_case ) def a_ ( self ): snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__snake_case ) @slow def a_ ( self ): snake_case = '''abeja/gpt-neox-japanese-2.7b''' snake_case = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] snake_case = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] snake_case = GPTNeoXJapaneseTokenizer.from_pretrained(__snake_case ) snake_case = GPTNeoXJapaneseForCausalLM.from_pretrained(__snake_case ) snake_case = [] for prompt in prompts: snake_case = tokenizer(__snake_case , return_tensors='''pt''' ).input_ids snake_case = model.generate(__snake_case , max_length=5_0 ) snake_case = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) predicted_outputs += generated_string self.assertListEqual(__snake_case , __snake_case )
213
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError("""String lengths must match!""" ) UpperCamelCase = 0 for chara, chara in zip(UpperCamelCase_ , UpperCamelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
343
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
1
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a=None , _a=None , _a=None , **_a ) -> Any: """simple docstring""" if tokenize_kwargs is None: SCREAMING_SNAKE_CASE__ : Any = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) SCREAMING_SNAKE_CASE__ : str = truncation SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenize_kwargs SCREAMING_SNAKE_CASE__ : int = {} if return_tensors is not None: SCREAMING_SNAKE_CASE__ : Any = return_tensors return preprocess_params, {}, postprocess_params def _a ( self , _a , **_a ) -> Dict[str, GenericTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.framework SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer(_a , return_tensors=_a , **_a ) return model_inputs def _a ( self , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model(**_a ) return model_outputs def _a ( self , _a , _a=False ) -> str: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_a , **_a ) -> int: """simple docstring""" return super().__call__(*_a , **_a )
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : int = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator SCREAMING_SNAKE_CASE__ : List[Any] = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(__lowerCAmelCase ) , """Postfix""".center(__lowerCAmelCase ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE__ : Optional[int] = """)""" # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE__ : Optional[Any] = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a :Optional[int] = input("\nEnter an Infix Equation = ") # Input an Infix equation a :Dict = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
56
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_UpperCamelCase , '_dynamo' ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : bool = True ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _SCREAMING_SNAKE_CASE =is_compiled_module(_UpperCamelCase ) if is_compiled: _SCREAMING_SNAKE_CASE =model _SCREAMING_SNAKE_CASE =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =model.module if not keep_fpaa_wrapper: _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , 'forward' ) _SCREAMING_SNAKE_CASE =model.__dict__.pop('_original_forward' , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , '__wrapped__' ): _SCREAMING_SNAKE_CASE =forward.__wrapped__ if forward == original_forward: break _SCREAMING_SNAKE_CASE =forward if getattr(_UpperCamelCase , '_converted_to_transformer_engine' , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: _SCREAMING_SNAKE_CASE =model _SCREAMING_SNAKE_CASE =compiled_model return model def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" PartialState().wait_for_everyone() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Tuple ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def _lowerCAmelCase ( **_UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" for key, value in kwargs.items(): _SCREAMING_SNAKE_CASE =str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _lowerCAmelCase ( _UpperCamelCase : int ) -> Any: """simple docstring""" if not hasattr(_UpperCamelCase , '__qualname__' ) and not hasattr(_UpperCamelCase , '__name__' ): _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , '__class__' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '__qualname__' ): return obj.__qualname__ if hasattr(_UpperCamelCase , '__name__' ): return obj.__name__ return str(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =value return destination def _lowerCAmelCase ( _UpperCamelCase : int = None ) -> bool: """simple docstring""" if port is None: _SCREAMING_SNAKE_CASE =2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
47
'''simple docstring''' lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): __lowercase = F"Expected string as input, found {type(A__ ).__name__}" raise TypeError(A__ ) __lowercase = spanish_id.replace('''-''' , '''''' ).upper() if len(A__ ) != 9: raise ValueError(A__ ) try: __lowercase = int(spanish_id_clean[0:8] ) __lowercase = spanish_id_clean[8] except ValueError as ex: raise ValueError(A__ ) from ex if letter.isdigit(): raise ValueError(A__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
104
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ =128_022 UpperCamelCase_ =128_028 @require_sentencepiece class _a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase = MaMaaaTokenizer UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True def snake_case ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().setUp() _UpperCamelCase : int = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] _UpperCamelCase : Optional[int] = dict(zip(_SCREAMING_SNAKE_CASE, range(len(_SCREAMING_SNAKE_CASE ) ) ) ) _UpperCamelCase : str = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE, save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE, save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) _UpperCamelCase : Union[str, Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Dict, **lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **_SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict, lowerCAmelCase__ : int ) -> int: '''simple docstring''' return ( "This is a test", "This is a test", ) def snake_case ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Tuple = """</s>""" _UpperCamelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ), _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ), _SCREAMING_SNAKE_CASE ) def snake_case ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''</s>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''<s>''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ), tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' pass def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[int] = self.get_tokenizer() _UpperCamelCase : str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ), [2, 3, 4, 5, 6], ) _UpperCamelCase : int = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) _UpperCamelCase : Dict = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE, '''This is a test''' ) @slow def snake_case ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase : Any = {"""input_ids""": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE, model_name='''facebook/m2m100_418M''', revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''', ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): UpperCamelCase = 'facebook/m2m100_418M' UpperCamelCase = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] UpperCamelCase = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off UpperCamelCase = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def snake_case ( cls : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='''en''', tgt_lang='''fr''' ) _UpperCamelCase : Optional[int] = 1 return cls def snake_case ( self : Any ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('''ar''' ), 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ), 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ), 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ), 1_2_8_0_6_3 ) def snake_case ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : str = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ), self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''], 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ), _SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Any = """en""" _UpperCamelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' self.assertIn(_SCREAMING_SNAKE_CASE, self.tokenizer.all_special_ids ) # fmt: off _UpperCamelCase : List[Any] = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _UpperCamelCase : List[str] = self.tokenizer.decode(_SCREAMING_SNAKE_CASE, skip_special_tokens=_SCREAMING_SNAKE_CASE ) _UpperCamelCase : Optional[int] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token, _SCREAMING_SNAKE_CASE ) def snake_case ( self : str ) -> List[Any]: '''simple docstring''' _UpperCamelCase : str = tempfile.mkdtemp() _UpperCamelCase : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCamelCase : str = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id, _SCREAMING_SNAKE_CASE ) @require_torch def snake_case ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase : List[Any] = """en""" _UpperCamelCase : Dict = """fr""" _UpperCamelCase : Optional[int] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_SCREAMING_SNAKE_CASE, return_tensors='''pt''' ) _UpperCamelCase : Tuple = shift_tokens_right( batch['''labels'''], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: _UpperCamelCase : int = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def snake_case ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) _UpperCamelCase : int = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) @require_torch def snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _UpperCamelCase : Union[str, Any] = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def snake_case ( self : str ) -> Dict: '''simple docstring''' _UpperCamelCase : Dict = self.tokenizer._build_translation_inputs('''A test''', return_tensors='''pt''', src_lang='''en''', tgt_lang='''ar''' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ), { # en_XX, A, test, EOS '''input_ids''': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 1_2_8_0_0_6, }, )
360
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
128
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a ( unittest.TestCase ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : str=99 , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , ) -> List[Any]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_choices def UpperCamelCase ( self : Tuple ) -> Optional[Any]: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__SCREAMING_SNAKE_CASE , ) return config, input_ids, attention_mask def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self : int ) -> int: lowerCamelCase_ = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> int: for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained('distilbert-base-uncased' ) lowerCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class a ( unittest.TestCase ): @slow def UpperCamelCase ( self : str ) -> int: lowerCamelCase_ = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
183
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = StableDiffusionSAGPipeline UpperCAmelCase_ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ = False def __snake_case ( self : int): '''simple docstring''' torch.manual_seed(0) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCAmelCase__ = CLIPTextModel(lowercase__) lowerCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __snake_case ( self : Dict , lowercase__ : List[Any] , lowercase__ : int=0): '''simple docstring''' if str(lowercase__).startswith('mps'): lowerCAmelCase__ = torch.manual_seed(lowercase__) else: lowerCAmelCase__ = torch.Generator(device=lowercase__).manual_seed(lowercase__) lowerCAmelCase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __snake_case ( self : Optional[Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') lowerCAmelCase__ = sag_pipe.to(lowercase__) sag_pipe.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = '.' lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') lowerCAmelCase__ = sag_pipe.to(lowercase__) sag_pipe.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = '.' lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = sag_pipe( [prompt] , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') lowerCAmelCase__ = sag_pipe.to(lowercase__) sag_pipe.set_progress_bar_config(disable=lowercase__) lowerCAmelCase__ = '.' lowerCAmelCase__ = torch.manual_seed(0) lowerCAmelCase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowerCAmelCase__ = output.images assert image.shape == (1, 512, 768, 3)
358
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 42 @flax_register_to_config class a_ ( nn.Module , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 32 UpperCAmelCase_ = 4 UpperCAmelCase_ = 4 UpperCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase_ = False UpperCAmelCase_ = (320, 640, 1_280, 1_280) UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = None UpperCAmelCase_ = 1_280 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = False UpperCAmelCase_ = jnp.floataa UpperCAmelCase_ = True UpperCAmelCase_ = 0 UpperCAmelCase_ = False def __snake_case ( self : Optional[int] , lowercase__ : jax.random.KeyArray): '''simple docstring''' lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase__ = jnp.zeros(lowercase__ , dtype=jnp.floataa) lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa) lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowercase__) lowerCAmelCase__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__)["params"] def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.block_out_channels lowerCAmelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) lowerCAmelCase__ = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype) lowerCAmelCase__ = self.only_cross_attention if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types) # down lowerCAmelCase__ = [] lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(lowercase__) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase__ = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase__) lowerCAmelCase__ = down_blocks # mid lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase__ = [] lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(lowercase__) - 1)] lowerCAmelCase__ = i == len(lowercase__) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase__ = FlaxCrossAttnUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase__) lowerCAmelCase__ = output_channel lowerCAmelCase__ = up_blocks # out lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) lowerCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : bool = True , lowercase__ : bool = False , ): '''simple docstring''' if not isinstance(lowercase__ , jnp.ndarray): lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase__ , jnp.ndarray) and len(timesteps.shape) == 0: lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa) lowerCAmelCase__ = jnp.expand_dims(lowercase__ , 0) lowerCAmelCase__ = self.time_proj(lowercase__) lowerCAmelCase__ = self.time_embedding(lowercase__) # 2. pre-process lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 2, 3, 1)) lowerCAmelCase__ = self.conv_in(lowercase__) # 3. down lowerCAmelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) else: lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase__ , lowercase__): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase__ = new_down_block_res_samples # 4. mid lowerCAmelCase__ = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = up_block( lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , ) else: lowerCAmelCase__ = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train) # 6. post-process lowerCAmelCase__ = self.conv_norm_out(lowercase__) lowerCAmelCase__ = nn.silu(lowercase__) lowerCAmelCase__ = self.conv_out(lowercase__) lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase__)
119
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return 100 @property def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) return CLIPVisionModelWithProjection(__UpperCamelCase ) @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowercase_ : int = UnCLIPTextProjModel(**__UpperCamelCase ) return model @property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Optional[int] = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowercase_ : Dict = UNetaDConditionModel(**__UpperCamelCase ) return model @property def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(1 ) lowercase_ : Dict = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Dict = self.dummy_decoder lowercase_ : Optional[int] = self.dummy_text_proj lowercase_ : Union[str, Any] = self.dummy_text_encoder lowercase_ : Optional[Any] = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_super_res_first lowercase_ : List[Any] = self.dummy_super_res_last lowercase_ : str = UnCLIPScheduler( variance_type='learned_range' ,prediction_type='epsilon' ,num_train_timesteps=1000 ,) lowercase_ : List[Any] = UnCLIPScheduler( variance_type='fixed_small_log' ,prediction_type='epsilon' ,num_train_timesteps=1000 ,) lowercase_ : Optional[Any] = CLIPImageProcessor(crop_size=32 ,size=32 ) lowercase_ : List[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=0 ,__UpperCamelCase=True ) -> Optional[Any]: '''simple docstring''' lowercase_ : int = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): lowercase_ : Any = torch.manual_seed(__UpperCamelCase ) else: lowercase_ : Optional[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) if pil_image: lowercase_ : Dict = input_image * 0.5 + 0.5 lowercase_ : int = input_image.clamp(0 ,1 ) lowercase_ : str = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() lowercase_ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(__UpperCamelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = 'cpu' lowercase_ : Dict = self.get_dummy_components() lowercase_ : Union[str, Any] = self.pipeline_class(**__UpperCamelCase ) lowercase_ : Optional[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : List[Any] = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : Optional[int] = pipe(**__UpperCamelCase ) lowercase_ : List[Any] = output.images lowercase_ : int = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : str = pipe( **__UpperCamelCase ,return_dict=__UpperCamelCase ,)[0] lowercase_ : List[str] = image[0, -3:, -3:, -1] lowercase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : Any = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = 'cpu' lowercase_ : Any = self.get_dummy_components() lowercase_ : Any = self.pipeline_class(**__UpperCamelCase ) lowercase_ : str = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : str = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : Any = pipe(**__UpperCamelCase ) lowercase_ : List[str] = output.images lowercase_ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : Tuple = pipe( **__UpperCamelCase ,return_dict=__UpperCamelCase ,)[0] lowercase_ : Optional[int] = image[0, -3:, -3:, -1] lowercase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : Any = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Tuple = 'cpu' lowercase_ : Optional[Any] = self.get_dummy_components() lowercase_ : Optional[int] = self.pipeline_class(**__UpperCamelCase ) lowercase_ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : str = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : Any = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowercase_ : Optional[Any] = pipe(**__UpperCamelCase ) lowercase_ : Tuple = output.images lowercase_ : Dict = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : Any = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowercase_ : List[Any] = pipe( **__UpperCamelCase ,return_dict=__UpperCamelCase ,)[0] lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] lowercase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase_ : Optional[Any] = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Tuple = torch.device('cpu' ) class UpperCamelCase : lowercase = 1 lowercase_ : Any = self.get_dummy_components() lowercase_ : Optional[int] = self.pipeline_class(**__UpperCamelCase ) lowercase_ : Optional[int] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Tuple = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowercase_ : Optional[Any] = pipe.decoder.dtype lowercase_ : Tuple = 1 lowercase_ : Dict = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase_ : str = pipe.prepare_latents( __UpperCamelCase ,dtype=__UpperCamelCase ,device=__UpperCamelCase ,generator=__UpperCamelCase ,latents=__UpperCamelCase ,scheduler=DummyScheduler() ) lowercase_ : Any = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase_ : List[str] = pipe.prepare_latents( __UpperCamelCase ,dtype=__UpperCamelCase ,device=__UpperCamelCase ,generator=__UpperCamelCase ,latents=__UpperCamelCase ,scheduler=DummyScheduler() ) lowercase_ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) lowercase_ : int = pipe( **__UpperCamelCase ,decoder_latents=__UpperCamelCase ,super_res_latents=__UpperCamelCase ).images lowercase_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ,pil_image=__UpperCamelCase ) # Don't pass image, instead pass embedding lowercase_ : Union[str, Any] = pipeline_inputs.pop('image' ) lowercase_ : Union[str, Any] = pipe.image_encoder(__UpperCamelCase ).image_embeds lowercase_ : Tuple = pipe( **__UpperCamelCase ,decoder_latents=__UpperCamelCase ,super_res_latents=__UpperCamelCase ,image_embeddings=__UpperCamelCase ,).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase_ : Any = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__UpperCamelCase ,expected_max_diff=__UpperCamelCase ) @skip_mps def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Optional[int] = torch_device == 'cpu' lowercase_ : List[Any] = True lowercase_ : str = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=__UpperCamelCase ,relax_max_difference=__UpperCamelCase ,additional_params_copy_to_batched_inputs=__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase_ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=__UpperCamelCase ,additional_params_copy_to_batched_inputs=__UpperCamelCase ,) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__UpperCamelCase ) @skip_mps def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' return super().test_save_load_local() @skip_mps def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowercase_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowercase_ : List[str] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' ,torch_dtype=torch.floataa ) lowercase_ : Optional[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipeline( __UpperCamelCase ,generator=__UpperCamelCase ,output_type='np' ,) lowercase_ : Any = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__UpperCamelCase ,__UpperCamelCase ,15 )
213
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __SCREAMING_SNAKE_CASE =None __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __SCREAMING_SNAKE_CASE ={ "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __SCREAMING_SNAKE_CASE =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : str = vocab_file lowercase_ : Optional[Any] = False if not self.vocab_file else True lowercase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : List[Any] = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : Dict = src_lang if src_lang is not None else 'en_XX' lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : List[Any] = self(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Optional[Any] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Dict = tgt_lang_id return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "en_XX" ,__UpperCamelCase = None ,__UpperCamelCase = "ro_RO" ,**__UpperCamelCase ,) -> BatchEncoding: '''simple docstring''' lowercase_ : Union[str, Any] = src_lang lowercase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Any = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Optional[Any] = [] lowercase_ : int = [self.eos_token_id, self.cur_lang_code] lowercase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : str = [] lowercase_ : Dict = [self.eos_token_id, self.cur_lang_code] lowercase_ : str = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase_ : Tuple = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file ,__UpperCamelCase ) return (out_vocab_file,)
213
1
'''simple docstring''' lowercase__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
356
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
56
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=64 , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : List[Any]=64 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : List[Any]=16 , lowercase_ : str=2 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def A_ ( self : List[str] ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def A_ ( self : str ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Tuple ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] ): snake_case_ = MPNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = MPNetForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = MPNetForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.num_choices snake_case_ = MPNetForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : List[str] ): snake_case_ = self.num_labels snake_case_ = MPNetForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Union[str, Any] ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = True def A_ ( self : Tuple ): snake_case_ = MPNetModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase_ ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): snake_case_ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) snake_case_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ = model(lowercase_ )[0] snake_case_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
56
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """git_vision_model""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=30_72 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) ->int: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = intermediate_size a_ = num_hidden_layers a_ = num_attention_heads a_ = num_channels a_ = patch_size a_ = image_size a_ = initializer_range a_ = attention_dropout a_ = layer_norm_eps a_ = hidden_act @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type") == "git": a_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : int = """git""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10_24 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1_01 , __UpperCAmelCase=1_02 , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) if vision_config is None: a_ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values.") a_ = GitVisionConfig(**__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = tie_word_embeddings a_ = num_image_with_embedding a_ = bos_token_id a_ = eos_token_id def UpperCAmelCase__ ( self) ->Tuple: a_ = copy.deepcopy(self.__dict__) a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
358
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''audio_values''', '''audio_mask'''] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : str=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Dict=1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1_6, 1_6] ,SCREAMING_SNAKE_CASE__ : Dict=1_2_8 ,SCREAMING_SNAKE_CASE__ : str=4_4_1_0_0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=8_6 ,SCREAMING_SNAKE_CASE__ : Tuple=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,**SCREAMING_SNAKE_CASE__ : Any ,): super().__init__( feature_size=SCREAMING_SNAKE_CASE__ ,sampling_rate=SCREAMING_SNAKE_CASE__ ,padding_value=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : int = spectrogram_length __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = patch_size __lowerCamelCase : Any = feature_size // self.patch_size[1] __lowerCamelCase : Tuple = n_fft __lowerCamelCase : List[str] = sampling_rate // hop_length_to_sampling_rate __lowerCamelCase : Tuple = sampling_rate __lowerCamelCase : str = padding_value __lowerCamelCase : Tuple = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=SCREAMING_SNAKE_CASE__ ,min_frequency=0.0 ,max_frequency=22050.0 ,sampling_rate=SCREAMING_SNAKE_CASE__ ,norm='slaney' ,mel_scale='slaney' ,).T def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.array): __lowerCamelCase : Dict = spectrogram( SCREAMING_SNAKE_CASE__ ,window_function(self.n_fft ,'hann') ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='dB' ,db_range=80.0 ,) __lowerCamelCase : Optional[Any] = log_spec[:, :-1] __lowerCamelCase : List[Any] = log_spec - 20.0 __lowerCamelCase : Tuple = np.clip(log_spec / 40.0 ,-2.0 ,0.0) + 1.0 return log_spec def __call__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = True ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,**SCREAMING_SNAKE_CASE__ : int ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __lowerCamelCase : int = isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __lowerCamelCase : Tuple = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple)) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list))) ) if is_batched: __lowerCamelCase : int = [np.asarray([speech] ,dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray): __lowerCamelCase : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa) elif isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCamelCase : Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCamelCase : int = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCamelCase : int = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Any = [np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa) for feature in audio_features] # Create audio attention mask __lowerCamelCase : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCamelCase : Dict = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] __lowerCamelCase : int = np.array(SCREAMING_SNAKE_CASE__).astype(np.floataa) # convert into correct format for padding __lowerCamelCase : Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCamelCase : List[str] = np.ones([len(SCREAMING_SNAKE_CASE__), 1, max_time_len, self.feature_size]).astype(np.floataa) __lowerCamelCase : Any = padded_audio_features * self.padding_value for i in range(len(SCREAMING_SNAKE_CASE__)): __lowerCamelCase : int = audio_features[i] __lowerCamelCase : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: __lowerCamelCase : int = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowerCamelCase : List[str] = {'audio_values': padded_audio_features} __lowerCamelCase : List[str] = BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__) return encoded_inputs
73
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [] for part_id in partition_order: UpperCamelCase_ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""").collect() for row_idx, row in enumerate(_lowerCAmelCase): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(1_00).repartition(1) UpperCamelCase_ = Spark(_lowerCAmelCase) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(10).repartition(2) UpperCamelCase_ = [1, 0] UpperCamelCase_ = _generate_iterable_examples(_lowerCAmelCase , _lowerCAmelCase) # Reverse the partitions. UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , _lowerCAmelCase) for i, (row_id, row_dict) in enumerate(generate_fn()): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(10).repartition(1) UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: UpperCamelCase_ = lambda _lowerCAmelCase: x.reverse() UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [2, 1, 0]) UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shuffle_data_sources(_lowerCAmelCase) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(20).repartition(4) # Partitions 0 and 2 UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [0, 2]) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase_ = SparkExamplesIterable(_lowerCAmelCase).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 UpperCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCAmelCase , [1, 3]) for i, (row_id, row_dict) in enumerate(_lowerCAmelCase): UpperCamelCase_ , UpperCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase (): UpperCamelCase_ = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() UpperCamelCase_ = spark.range(1_00).repartition(1) UpperCamelCase_ = Spark(_lowerCAmelCase) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
128
0
from __future__ import annotations from collections.abc import Iterator class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =value lowerCamelCase_ =None lowerCamelCase_ =None class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =tree def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> str: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self )-> str: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
354
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
49
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} with open(snake_case__, '''r''' ) as file: for line_number, line in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE_ = line.strip() if line: SCREAMING_SNAKE_CASE_ = line.split() SCREAMING_SNAKE_CASE_ = line_number SCREAMING_SNAKE_CASE_ = words[0] SCREAMING_SNAKE_CASE_ = value return result def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE_ = getattr(snake_case__, snake_case__ ) SCREAMING_SNAKE_CASE_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): SCREAMING_SNAKE_CASE_ = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE_ = 'param' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ = getattr(snake_case__, snake_case__ ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ = hf_pointer for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE_ = getattr(snake_case__, snake_case__ ) SCREAMING_SNAKE_CASE_ = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE_ = value[0] else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE_ = getattr(snake_case__, snake_case__ ) SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case__ ): SCREAMING_SNAKE_CASE_ = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE_ = 'param' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ = '.'.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE_ = key SCREAMING_SNAKE_CASE_ = value if 'lm_head' in full_key else value[0] __UpperCAmelCase = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None ): SCREAMING_SNAKE_CASE_ = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(snake_case__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace('''*''', snake_case__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE_ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_ = 'weight' else: SCREAMING_SNAKE_CASE_ = None if hf_dict is not None: rename_dict(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) else: set_recursively(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) return is_used return is_used def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( snake_case__, snake_case__, snake_case__, snake_case__, hf_model.config.feat_extract_norm == '''group''', ) SCREAMING_SNAKE_CASE_ = True else: SCREAMING_SNAKE_CASE_ = load_wavaveca_layer(snake_case__, snake_case__, snake_case__ ) if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE_ = name.split('''.''' ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=True, __lowerCamelCase=False ): if config_path is not None: SCREAMING_SNAKE_CASE_ = WavaVecaConfig.from_pretrained(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE_ = read_txt_into_dict(snake_case__ ) SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = WavaVecaForSequenceClassification(snake_case__ ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, ) feature_extractor.save_pretrained(snake_case__ ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE_ = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE_ = target_dict.pad_index SCREAMING_SNAKE_CASE_ = target_dict.bos_index SCREAMING_SNAKE_CASE_ = target_dict.eos_index SCREAMING_SNAKE_CASE_ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE_ = os.path.join(snake_case__, '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__, exist_ok=snake_case__ ) SCREAMING_SNAKE_CASE_ = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 with open(snake_case__, '''w''', encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case__, snake_case__ ) SCREAMING_SNAKE_CASE_ = WavaVecaCTCTokenizer( snake_case__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=snake_case__, ) SCREAMING_SNAKE_CASE_ = True if config.feat_extract_norm == 'layer' else False SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor(feature_extractor=snake_case__, tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ = WavaVecaForCTC(snake_case__ ) else: SCREAMING_SNAKE_CASE_ = WavaVecaForPreTraining(snake_case__ ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE_ = argparse.Namespace(task='''audio_pretraining''' ) SCREAMING_SNAKE_CASE_ = fairseq.tasks.setup_task(snake_case__ ) SCREAMING_SNAKE_CASE_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=snake_case__ ) SCREAMING_SNAKE_CASE_ = model[0].eval() recursively_load_weights(snake_case__, snake_case__, not is_finetuned ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
299
import functools from typing import Any def UpperCamelCase ( snake_case__ : str , snake_case__ : list[str] ) -> bool: # Validation if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(snake_case__ , snake_case__ ) or not all( isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie UpperCamelCase : dict[str, Any] = {} UpperCamelCase : List[str] = 'WORD_KEEPER' for word in words: UpperCamelCase : List[str] = trie for c in word: if c not in trie_node: UpperCamelCase : int = {} UpperCamelCase : str = trie_node[c] UpperCamelCase : Tuple = True UpperCamelCase : List[Any] = len(snake_case__ ) # Dynamic programming method @functools.cache def is_breakable(snake_case__ : int ) -> bool: if index == len_string: return True UpperCamelCase : Dict = trie for i in range(snake_case__ , snake_case__ ): UpperCamelCase : List[Any] = trie_node.get(string[i] , snake_case__ ) if trie_node is None: return False if trie_node.get(snake_case__ , snake_case__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
119
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
197
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class a__ ( __snake_case ): A__ : Dict = 'fnet' def __init__( self , UpperCAmelCase=3_2_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=False , UpperCAmelCase=5_1_2 , UpperCAmelCase=3 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_tpu_fourier_optimizations __a = tpu_short_seq_length
197
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCamelCase( _a ): lowercase_ : int = """openai/whisper-base""" lowercase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowercase_ : Any = """transcriber""" lowercase_ : List[Any] = WhisperProcessor lowercase_ : List[str] = WhisperForConditionalGeneration lowercase_ : Any = ["""audio"""] lowercase_ : Union[str, Any] = ["""text"""] def UpperCamelCase ( self, lowerCamelCase) -> Tuple: """simple docstring""" return self.pre_processor(lowerCamelCase, return_tensors='pt').input_features def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.model.generate(inputs=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" return self.pre_processor.batch_decode(lowerCamelCase, skip_special_tokens=lowerCamelCase)[0]
21
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase : def __init__(self : Optional[Any] , _A : Dict , _A : int=3 , _A : Optional[int]=7 , _A : str=True , _A : Dict=True , _A : Optional[int]=False , _A : Tuple=True , _A : Any=99 , _A : List[str]=32 , _A : List[Any]=5 , _A : Optional[Any]=4 , _A : Any=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=5_12 , _A : Union[str, Any]=16 , _A : Optional[Any]=2 , _A : Union[str, Any]=0.02 , _A : str=3 , _A : Optional[Any]=4 , _A : Dict=None , ) -> List[Any]: __snake_case : Dict = parent __snake_case : Dict = batch_size __snake_case : Optional[int] = seq_length __snake_case : Tuple = is_training __snake_case : List[str] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : str = vocab_size __snake_case : Dict = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : int = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : Tuple = num_labels __snake_case : Dict = num_choices __snake_case : List[Any] = scope def _lowercase (self : Optional[Any]) -> int: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case : Union[str, Any] = None if self.use_input_mask: __snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) __snake_case : List[str] = None __snake_case : List[Any] = None __snake_case : List[Any] = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices) __snake_case : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase (self : Optional[Any]) -> Any: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_A , ) def _lowercase (self : int , _A : Optional[Any] , _A : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Dict , _A : List[Any] , _A : Union[str, Any]) -> str: __snake_case : Union[str, Any] = FalconModel(config=_A) model.to(_A) model.eval() __snake_case : int = model(_A , attention_mask=_A) __snake_case : Optional[int] = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowercase (self : Optional[Any] , _A : List[str] , _A : Tuple , _A : Dict , _A : Any , _A : List[str] , _A : List[Any] , _A : List[Any] , _A : Any , _A : List[Any] , ) -> Union[str, Any]: __snake_case : str = True __snake_case : Optional[int] = FalconModel(_A) model.to(_A) model.eval() __snake_case : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __snake_case : int = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) __snake_case : Union[str, Any] = model(_A , attention_mask=_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowercase (self : Optional[int] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : int , _A : List[str] , _A : str , _A : int , _A : Optional[int] , ) -> Optional[Any]: __snake_case : str = FalconForCausalLM(config=_A) model.to(_A) model.eval() __snake_case : List[Any] = model(_A , attention_mask=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowercase (self : Dict , _A : int , _A : List[Any] , _A : str , _A : Union[str, Any] , _A : Optional[int] , _A : Any , _A : Tuple , _A : List[Any] , _A : Dict , ) -> Optional[int]: __snake_case : str = True __snake_case : Any = True __snake_case : int = FalconForCausalLM(config=_A) model.to(_A) model.eval() # first forward pass __snake_case : int = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __snake_case : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case : List[str] = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case : str = torch.cat([input_mask, next_mask] , dim=-1) __snake_case : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] __snake_case : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3)) def _lowercase (self : Optional[int]) -> Optional[int]: __snake_case : Tuple = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = config_and_inputs __snake_case : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : List[str] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase : Optional[int] = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : str = False UpperCAmelCase : List[Any] = False def _lowercase (self : int) -> Union[str, Any]: __snake_case : Optional[int] = FalconModelTester(self) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=37) def _lowercase (self : List[str]) -> Dict: self.config_tester.run_common_tests() def _lowercase (self : List[str]) -> Any: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Union[str, Any]) -> Any: __snake_case , *__snake_case : Tuple = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __snake_case : int = alibi self.model_tester.create_and_check_model(_A , *_A) def _lowercase (self : Dict) -> List[str]: __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = 3 __snake_case : Union[str, Any] = input_dict['input_ids'] __snake_case : Optional[int] = input_ids.ne(1).to(_A) __snake_case : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case : Optional[Any] = FalconForSequenceClassification(_A) model.to(_A) model.eval() __snake_case : Any = model(_A , attention_mask=_A , labels=_A) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowercase (self : Any) -> Optional[int]: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = 3 __snake_case : Optional[Any] = 'single_label_classification' __snake_case : Union[str, Any] = input_dict['input_ids'] __snake_case : Optional[int] = input_ids.ne(1).to(_A) __snake_case : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case : Any = FalconForSequenceClassification(_A) model.to(_A) model.eval() __snake_case : Any = model(_A , attention_mask=_A , labels=_A) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowercase (self : Optional[Any]) -> List[Any]: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = input_dict['input_ids'] __snake_case : Optional[Any] = FalconForCausalLM(_A) model.to(_A) model.eval() __snake_case : Dict = model(_A , use_cache=_A) __snake_case : Optional[Any] = input_ids.shape[0] __snake_case : List[str] = model._convert_to_rw_cache(result.past_key_values) __snake_case : List[str] = model._convert_cache_to_standard_format(_A , _A) for layer in range(len(_A)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def _lowercase (self : str) -> Optional[Any]: __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Union[str, Any] = 3 __snake_case : Optional[int] = 'multi_label_classification' __snake_case : List[str] = input_dict['input_ids'] __snake_case : List[Any] = input_ids.ne(1).to(_A) __snake_case : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case : List[Any] = FalconForSequenceClassification(_A) model.to(_A) model.eval() __snake_case : Union[str, Any] = model(_A , attention_mask=_A , labels=_A) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowercase (self : int) -> str: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_A , 'use_cache'): return __snake_case : Optional[int] = model_class(_A).to(_A) if "use_cache" not in inputs: __snake_case : Union[str, Any] = True __snake_case : Any = model(**_A) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __snake_case : Union[str, Any] = ( getattr(_A , 'decoder_layers' , _A) or getattr(_A , 'num_decoder_layers' , _A) or config.num_hidden_layers ) __snake_case : Optional[int] = getattr(_A , 'num_kv_heads' , config.num_attention_heads) __snake_case : Optional[int] = getattr(_A , 'd_model' , config.hidden_size) __snake_case : List[str] = embed_dim // num_attention_heads __snake_case : Any = outputs['past_key_values'] self.assertEqual(len(_A) , _A) __snake_case , __snake_case : str = inputs['input_ids'].shape for i in range(_A): if config.new_decoder_architecture: __snake_case : int = config.num_attention_heads elif config.multi_query: __snake_case : Tuple = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Any) -> Union[str, Any]: __snake_case : Tuple = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b') __snake_case : Any = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b') model.eval() model.to(_A) __snake_case : Optional[int] = tokenizer('My favorite food is' , return_tensors='pt').to(_A) __snake_case : Dict = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) __snake_case : Tuple = model.generate(**_A , do_sample=_A , max_new_tokens=19) __snake_case : Optional[int] = tokenizer.batch_decode(_A)[0] self.assertEqual(_A , _A) @slow def _lowercase (self : Optional[Any]) -> Any: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __snake_case : Any = AutoTokenizer.from_pretrained(_A) __snake_case : Optional[int] = FalconForCausalLM.from_pretrained(_A) model.eval() model.to(_A) __snake_case : Union[str, Any] = tokenizer('My favorite food is' , return_tensors='pt').to(_A) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_A , do_sample=_A , max_new_tokens=4) model.generate(**_A , do_sample=_A , max_new_tokens=4) model.generate(**_A , num_beams=2 , max_new_tokens=4) @slow def _lowercase (self : List[str]) -> Optional[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __snake_case : List[str] = AutoTokenizer.from_pretrained(_A) __snake_case : int = FalconForCausalLM.from_pretrained(_A) model.eval() model.to(device=_A) __snake_case : List[str] = tokenizer('My favorite food is' , return_tensors='pt').to(_A) # Test results are the same with and without cache __snake_case : str = model.generate(**_A , do_sample=_A , max_new_tokens=20 , use_cache=_A) __snake_case : List[str] = model.generate(**_A , do_sample=_A , max_new_tokens=20 , use_cache=_A) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
95
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Union[str, Any]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _a : str= "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Tuple: __snake_case : Optional[Any] = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_A , required=_A , help='Model\'s type.') train_parser.add_argument( '--tf_checkpoint' , type=_A , required=_A , help='TensorFlow checkpoint path or folder.') train_parser.add_argument( '--pytorch_dump_output' , type=_A , required=_A , help='Path to the PyTorch saved model output.') train_parser.add_argument('--config' , type=_A , default='' , help='Configuration file path or folder.') train_parser.add_argument( '--finetuning_task_name' , type=_A , default=_A , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_A) def __init__(self : List[str] , _A : str , _A : str , _A : str , _A : str , _A : str , *_A : Any , ) -> Optional[Any]: __snake_case : List[Any] = logging.get_logger('transformers-cli/converting') self._logger.info(f"Loading model {model_type}") __snake_case : List[str] = model_type __snake_case : int = tf_checkpoint __snake_case : Optional[int] = pytorch_dump_output __snake_case : Optional[Any] = config __snake_case : Optional[Any] = finetuning_task_name def _lowercase (self : List[str]) -> str: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_A) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) if "ckpt" in self._tf_checkpoint.lower(): __snake_case : Union[str, Any] = self._tf_checkpoint __snake_case : List[Any] = '' else: __snake_case : Optional[Any] = self._tf_checkpoint __snake_case : List[Any] = '' convert_transfo_xl_checkpoint_to_pytorch( _A , self._config , self._pytorch_dump_output , _A) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]')
95
1
from numpy import exp, pi, sqrt def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Any = 0.0 ,__lowercase : List[str] = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
140
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
303
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ) -> int: super().tearDown() gc.collect() def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : Any = controlnet_params _SCREAMING_SNAKE_CASE : List[str] = '''bird''' _SCREAMING_SNAKE_CASE : Dict = jax.device_count() _SCREAMING_SNAKE_CASE : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) _SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) _SCREAMING_SNAKE_CASE : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) _SCREAMING_SNAKE_CASE : str = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCamelCase__ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Union[str, Any] = replicate(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=5_0 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _SCREAMING_SNAKE_CASE : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : Any = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : str = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : str = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) _SCREAMING_SNAKE_CASE : List[str] = controlnet_params _SCREAMING_SNAKE_CASE : Optional[Any] = '''Chef in the kitchen''' _SCREAMING_SNAKE_CASE : Tuple = jax.device_count() _SCREAMING_SNAKE_CASE : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _SCREAMING_SNAKE_CASE : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) _SCREAMING_SNAKE_CASE : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) _SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCamelCase__ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Any = replicate(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = shard(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Dict = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=5_0 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _SCREAMING_SNAKE_CASE : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : List[str] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : str = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
357
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ ='src/diffusers' UpperCamelCase__ ='.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ =importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ =spec.loader.load_module() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): return line.startswith(__lowerCamelCase ) or len(__lowerCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$", __lowerCamelCase ) is not None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = object_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's find the module where our object lives. _SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(__lowerCamelCase ) and not os.path.isfile(os.path.join(__lowerCamelCase, f"""{module}.py""" ) ): i += 1 if i < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase, parts[i] ) if i >= len(__lowerCamelCase ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__lowerCamelCase, f"""{module}.py""" ), "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() # Now let's find the class / func in the code! _SCREAMING_SNAKE_CASE : Union[str, Any] = "" _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__lowerCamelCase ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""", lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__lowerCamelCase ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _SCREAMING_SNAKE_CASE : Optional[int] = line_index while line_index < len(__lowerCamelCase ) and _should_continue(lines[line_index], __lowerCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : Optional[int] = lines[start_index:line_index] return "".join(__lowerCamelCase ) UpperCamelCase__ =re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase__ =re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase__ =re.compile(R'<FILL\s+[^>]*>') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = code.split("\n" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while idx < len(__lowerCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__lowerCamelCase ): return re.search(R"^(\s*)\S", lines[idx] ).groups()[0] return "" def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(get_indent(__lowerCamelCase ) ) > 0 if has_indent: _SCREAMING_SNAKE_CASE : Union[str, Any] = f"""class Bla:\n{code}""" _SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119, preview=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = black.format_str(__lowerCamelCase, mode=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = style_docstrings_in_code(__lowerCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: _SCREAMING_SNAKE_CASE : int = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = search.groups() _SCREAMING_SNAKE_CASE : Any = find_code_in_diffusers(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 _SCREAMING_SNAKE_CASE : int = theoretical_indent _SCREAMING_SNAKE_CASE : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _SCREAMING_SNAKE_CASE : Any = True while line_index < len(__lowerCamelCase ) and should_continue: line_index += 1 if line_index >= len(__lowerCamelCase ): break _SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] _SCREAMING_SNAKE_CASE : str = _should_continue(__lowerCamelCase, __lowerCamelCase ) and re.search(f"""^{indent}# End copy""", __lowerCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] _SCREAMING_SNAKE_CASE : Optional[Any] = "".join(__lowerCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies _SCREAMING_SNAKE_CASE : Dict = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__lowerCamelCase ) is None] _SCREAMING_SNAKE_CASE : str = "\n".join(__lowerCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : str = replace_pattern.replace("with", "" ).split("," ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [_re_replace_pattern.search(__lowerCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pattern.groups() _SCREAMING_SNAKE_CASE : Tuple = re.sub(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if option.strip() == "all-casing": _SCREAMING_SNAKE_CASE : List[Any] = re.sub(obja.lower(), obja.lower(), __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = re.sub(obja.upper(), obja.upper(), __lowerCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _SCREAMING_SNAKE_CASE : int = blackify(lines[start_index - 1] + theoretical_code ) _SCREAMING_SNAKE_CASE : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _SCREAMING_SNAKE_CASE : int = start_index + 1 if overwrite and len(__lowerCamelCase ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__lowerCamelCase, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__lowerCamelCase ) return diffs def lowerCamelCase__ (__lowerCamelCase = False ): _SCREAMING_SNAKE_CASE : int = glob.glob(os.path.join(__lowerCamelCase, "**/*.py" ), recursive=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = [] for filename in all_files: _SCREAMING_SNAKE_CASE : int = is_copy_consistent(__lowerCamelCase, __lowerCamelCase ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = "\n".join(__lowerCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ =parser.parse_args() check_copies(args.fix_and_overwrite)
325
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() __UpperCamelCase = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True ) -> int: if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case_ = cached_file(UpperCAmelCase , UpperCAmelCase , force_download=not use_cached_models ) snake_case_ = config_class.from_json_file(UpperCAmelCase ) snake_case_ = True snake_case_ = True print(f'Building TensorFlow model from configuration: {config}' ) snake_case_ = model_class(UpperCAmelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case_ = cached_file( UpperCAmelCase , UpperCAmelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case_ = load_pytorch_checkpoint_in_tfa_model(UpperCAmelCase , UpperCAmelCase ) if compare_with_pt_model: snake_case_ = tf_model(tf_model.dummy_inputs , training=UpperCAmelCase ) # build the network snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' ) snake_case_ = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase , config=UpperCAmelCase , state_dict=UpperCAmelCase ) with torch.no_grad(): snake_case_ = pt_model(**pt_model.dummy_inputs ) snake_case_ = pto[0].numpy() snake_case_ = tfo[0].numpy() snake_case_ = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2e-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(UpperCAmelCase , save_format='h5' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , ) -> Union[str, Any]: if args_model_type is None: snake_case_ = list(MODEL_CLASSES.keys() ) else: snake_case_ = [args_model_type] for j, model_type in enumerate(UpperCAmelCase , start=1 ): print('=' * 100 ) print(f' Converting model type {j}/{len(UpperCAmelCase )}: {model_type}' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case_ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case_ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCAmelCase , UpperCAmelCase ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue snake_case_ = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(UpperCAmelCase )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: snake_case_ = cached_file(UpperCAmelCase , UpperCAmelCase , force_download=not use_cached_models ) else: snake_case_ = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case_ = cached_file(UpperCAmelCase , UpperCAmelCase , force_download=not use_cached_models ) else: snake_case_ = model_shortcut_name if os.path.isfile(UpperCAmelCase ): snake_case_ = 'converted_model' convert_pt_checkpoint_to_tf( model_type=UpperCAmelCase , pytorch_checkpoint_path=UpperCAmelCase , config_file=UpperCAmelCase , tf_dump_path=os.path.join(UpperCAmelCase , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=UpperCAmelCase , ) if remove_cached_files: os.remove(UpperCAmelCase ) os.remove(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') __UpperCamelCase = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
69
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __a = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a = tensor[:sequence_length] else: __a = tensor[:sequence_length] return out_tensor.tolist() def __snake_case ( _UpperCAmelCase ): __a = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __a = unicodedata.category(_UpperCAmelCase ) if cat.startswith('''P''' ): return True return False @dataclass class _A ( __UpperCAmelCase ): UpperCamelCase__ : PreTrainedTokenizerBase UpperCamelCase__ : Union[bool, str, PaddingStrategy] = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = -100 UpperCamelCase__ : str = "pt" def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' import torch __a = '''label''' if '''label''' in features[0].keys() else '''labels''' __a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __a = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __a = torch.tensor(batch['''entity_ids''']).shape[1] __a = self.tokenizer.padding_side if padding_side == "right": __a = [ list(__SCREAMING_SNAKE_CASE) + [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) for label in labels ] else: __a = [ [self.label_pad_token_id] * (sequence_length - len(__SCREAMING_SNAKE_CASE)) + list(__SCREAMING_SNAKE_CASE) for label in labels ] __a = [feature['''ner_tags'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , -1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = [feature['''original_entity_spans'''] for feature in features] __a = padding_tensor(__SCREAMING_SNAKE_CASE , (-1, -1) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {k: torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa) for k, v in batch.items()} return batch
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _A ( lowerCAmelCase_ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = {} with open(lowerCAmelCase_ , "r" ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = line.strip() if line: lowerCAmelCase__ = line.split() lowerCAmelCase__ = line_number lowerCAmelCase__ = words[0] lowerCAmelCase__ = value return result def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ): """simple docstring""" for attribute in key.split("." ): lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowerCAmelCase__ = "param" if weight_type is not None and weight_type != "param": lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = hf_pointer for attribute in hf_param_name.split("." ): lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = shape_pointer.shape # let's reduce dimension lowerCAmelCase__ = value[0] else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _A ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): lowerCAmelCase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowerCAmelCase__ = "param" if weight_type is not None and weight_type != "param": lowerCAmelCase__ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowerCAmelCase__ = ".".join([key, hf_param_name] ) else: lowerCAmelCase__ = key lowerCAmelCase__ = value if "lm_head" in full_key else value[0] UpperCamelCase = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _A ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Any=None ): """simple docstring""" lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , lowerCAmelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = "weight" else: lowerCAmelCase__ = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True else: lowerCAmelCase__ = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ): """simple docstring""" lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[str]=False ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: lowerCAmelCase__ = WavaVecaConfig() if is_seq_class: lowerCAmelCase__ = read_txt_into_dict(lowerCAmelCase_ ) lowerCAmelCase__ = idalabel lowerCAmelCase__ = WavaVecaForSequenceClassification(lowerCAmelCase_ ) lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase_ , ) lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ = WavaVecaForCTC(lowerCAmelCase_ ) else: lowerCAmelCase__ = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) lowerCAmelCase__ = fairseq.tasks.setup_task(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCamelCase = parser.parse_args() UpperCamelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
221
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase__ ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
197
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowercase = nums[0] lowercase = 0 for num in nums[1:]: lowercase , lowercase = ( max_excluding + num, max(lowerCAmelCase__ , lowerCAmelCase__ ), ) return max(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
197
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right A_ = 5_00_03 A_ = 5_00_02 @require_sentencepiece @require_tokenizers class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = PLBartTokenizer lowercase__ = None lowercase__ = False def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Any = PLBartTokenizer(a_, language_codes="""base""", keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = PLBartTokenizer(a_, language_codes="""base""", keep_accents=a_ ) _snake_case : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _snake_case : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : List[str] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _snake_case : int = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) _snake_case : Tuple = tokenizer.vocab_size _snake_case : Dict = [tokenizer.convert_ids_to_tokens(a_ ) for x in range(end - 4, a_ )] self.assertListEqual(a_, ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) _snake_case : List[Any] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" _snake_case : Optional[int] = tokenizer(a_ ).input_ids self.assertEqual( tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ ), a_, ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : int = PLBartTokenizer(a_, language_codes="""multi""", keep_accents=a_ ) _snake_case : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a_, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) _snake_case : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) _snake_case : Dict = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _snake_case : int = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) _snake_case : Optional[int] = tokenizer.vocab_size _snake_case : Tuple = [tokenizer.convert_ids_to_tokens(a_ ) for x in range(end - 7, a_ )] self.assertListEqual( a_, ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) _snake_case : Any = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" _snake_case : int = tokenizer(a_ ).input_ids self.assertEqual( tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ ), a_, ) @require_torch @require_sentencepiece @require_tokenizers class lowercase( unittest.TestCase ): '''simple docstring''' lowercase__ = "uclanlp/plbart-python-en_XX" lowercase__ = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] lowercase__ = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] lowercase__ = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def UpperCamelCase_ ( cls: List[str] ): '''simple docstring''' _snake_case : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name, language_codes="""base""", src_lang="""python""", tgt_lang="""en_XX""" ) _snake_case : Tuple = 1 return cls def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""], 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""], 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""], 50_003 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertIn(a_, self.tokenizer.all_special_ids ) _snake_case : Optional[int] = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] _snake_case : Optional[Any] = self.tokenizer.decode(a_, skip_special_tokens=a_ ) _snake_case : Dict = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=a_ ) self.assertEqual(a_, a_ ) self.assertNotIn(self.tokenizer.eos_token, a_ ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0], a_ ) _snake_case : str = 10 _snake_case : Optional[Any] = self.tokenizer(a_, max_length=a_, truncation=a_ ).input_ids[0] self.assertEqual(ids[-2], 2 ) self.assertEqual(ids[-1], a_ ) self.assertEqual(len(a_ ), a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ), [50_004, 50_001] ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) _snake_case : Dict = PLBartTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, a_ ) @require_torch def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=a_, return_tensors="""pt""" ) _snake_case : Any = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist(), [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0], a_ ) self.assertEqual(batch.decoder_input_ids[1][-1], 2 ) self.assertEqual(batch.labels[1][-2:].tolist(), [2, EN_CODE] ) @require_torch def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=a_, truncation=a_, max_length=len(self.expected_src_tokens ), return_tensors="""pt""", ) _snake_case : int = shift_tokens_right(batch["""labels"""], self.tokenizer.pad_token_id ) self.assertIsInstance(a_, a_ ) self.assertEqual((2, 26), batch.input_ids.shape ) self.assertEqual((2, 26), batch.attention_mask.shape ) _snake_case : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, a_ ) self.assertEqual(2, batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = self.tokenizer(self.src_text, padding=a_, truncation=a_, max_length=3, return_tensors="""pt""" ) _snake_case : Optional[int] = self.tokenizer( text_target=self.tgt_text, padding=a_, truncation=a_, max_length=10, return_tensors="""pt""" ) _snake_case : List[Any] = targets["""input_ids"""] _snake_case : str = shift_tokens_right(a_, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.tokenizer._build_translation_inputs( """A test""", return_tensors="""pt""", src_lang="""en_XX""", tgt_lang="""java""" ) self.assertEqual( nested_simplify(a_ ), { # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50_003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50_001, }, )
132
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Dict = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
132
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowerCAmelCase ( enum.Enum): _lowercase : Any = 0 _lowercase : str = 1 _lowercase : str = 2 @add_end_docstrings(UpperCamelCase__) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a__ : Optional[Any] =None if self.model.config.prefix is not None: a__ : str =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a__ : Any =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a__ , a__ , a__ : Tuple =self._sanitize_parameters(prefix=lowerCAmelCase__ , **self._forward_params ) a__ : List[str] ={**self._preprocess_params, **preprocess_params} a__ : Tuple ={**self._forward_params, **forward_params} def _lowercase ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' a__ : Tuple ={} if prefix is not None: a__ : Optional[Any] =prefix if prefix: a__ : Optional[Any] =self.tokenizer( lowerCAmelCase__ , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) a__ : str =prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) a__ : List[Any] =handle_long_generation preprocess_params.update(lowerCAmelCase__ ) a__ : Tuple =generate_kwargs a__ : Union[str, Any] ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) a__ : str =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) a__ : Any =ReturnType.TENSORS if return_type is not None: a__ : Dict =return_type if clean_up_tokenization_spaces is not None: a__ : int =clean_up_tokenization_spaces if stop_sequence is not None: a__ : Optional[int] =self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) a__ : Optional[Any] =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowercase ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] =self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework ) a__ : Optional[Any] =prompt_text if handle_long_generation == "hole": a__ : Tuple =inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: a__ : List[str] =generate_kwargs["max_new_tokens"] else: a__ : Dict =generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: a__ : Optional[Any] =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) a__ : Tuple =inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: a__ : List[Any] =inputs["attention_mask"][:, -keep_length:] return inputs def _lowercase ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Optional[int] =model_inputs["input_ids"] a__ : Optional[Any] =model_inputs.get("attention_mask" , lowerCAmelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: a__ : Tuple =None a__ : Tuple =None a__ : Dict =1 else: a__ : List[str] =input_ids.shape[0] a__ : Any =model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a__ : List[Any] =generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: a__ : Any ="max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: a__ : Any =generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a__ : List[Any] ="min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a__ : Union[str, Any] =self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =generated_sequence.shape[0] if self.framework == "pt": a__ : Any =generated_sequence.reshape(lowerCAmelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a__ : Tuple =tf.reshape(lowerCAmelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=ReturnType.FULL_TEXT , lowerCAmelCase__=True ) -> Union[str, Any]: '''simple docstring''' a__ : str =model_outputs["generated_sequence"][0] a__ : Dict =model_outputs["input_ids"] a__ : Optional[int] =model_outputs["prompt_text"] a__ : str =generated_sequence.numpy().tolist() a__ : Any =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a__ : str ={"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a__ : List[Any] =self.tokenizer.decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a__ : int =0 else: a__ : Any =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: a__ : str =prompt_text + text[prompt_length:] else: a__ : Union[str, Any] =text[prompt_length:] a__ : str ={"generated_text": all_text} records.append(lowerCAmelCase__ ) return records
95
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCAmelCase : int = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): """simple docstring""" a__ : Optional[int] =XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE ) a__ : Dict =finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) a__ : List[str] =finetuning_task a__ : Tuple =GLUE_TASKS_NUM_LABELS[finetuning_task] a__ : List[Any] =XLNetForSequenceClassification(SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: a__ : Optional[int] =finetuning_task a__ : Dict =XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: a__ : List[Any] =XLNetLMHeadModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Dict =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f'''Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(f'''Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE )}''' ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) UpperCAmelCase : int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
95
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( a ): def __init__( self : Union[str, Any] , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Optional[int] ) -> None: '''simple docstring''' warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
206
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=2 , __lowercase=99 , __lowercase=0 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=12 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase="last" , __lowercase=None , __lowercase=None , ) -> Optional[Any]: __UpperCamelCase :Union[str, Any] = parent __UpperCamelCase :Dict = batch_size __UpperCamelCase :Any = seq_length __UpperCamelCase :List[str] = is_training __UpperCamelCase :Dict = use_input_lengths __UpperCamelCase :Tuple = use_token_type_ids __UpperCamelCase :Union[str, Any] = use_labels __UpperCamelCase :Dict = gelu_activation __UpperCamelCase :int = sinusoidal_embeddings __UpperCamelCase :Optional[int] = causal __UpperCamelCase :int = asm __UpperCamelCase :Tuple = n_langs __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Tuple = n_special __UpperCamelCase :str = hidden_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :int = num_attention_heads __UpperCamelCase :Optional[Any] = hidden_dropout_prob __UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase :Tuple = max_position_embeddings __UpperCamelCase :Dict = type_vocab_size __UpperCamelCase :Tuple = type_sequence_label_size __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :int = num_labels __UpperCamelCase :Optional[Any] = num_choices __UpperCamelCase :List[Any] = summary_type __UpperCamelCase :str = use_proj __UpperCamelCase :List[Any] = scope def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Optional[Any] = None if self.use_input_lengths: __UpperCamelCase :str = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase :List[str] = None if self.use_token_type_ids: __UpperCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __UpperCamelCase :Optional[int] = None __UpperCamelCase :List[str] = None __UpperCamelCase :str = None if self.use_labels: __UpperCamelCase :int = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2).float() __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :Optional[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: __UpperCamelCase :Dict = FlaubertModel(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :str = model(__lowercase , lengths=__lowercase , langs=__lowercase) __UpperCamelCase :Tuple = model(__lowercase , langs=__lowercase) __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]: __UpperCamelCase :Optional[int] = FlaubertWithLMHeadModel(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Optional[int] = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int: __UpperCamelCase :int = FlaubertForQuestionAnsweringSimple(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Union[str, Any] = model(__lowercase) __UpperCamelCase :Optional[int] = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Tuple: __UpperCamelCase :Tuple = FlaubertForQuestionAnswering(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Union[str, Any] = model(__lowercase) __UpperCamelCase :Dict = model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , p_mask=__lowercase , ) __UpperCamelCase :int = model( __lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , ) ((__UpperCamelCase) , ) :Dict = result_with_labels.to_tuple() __UpperCamelCase :Union[str, Any] = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase) ((__UpperCamelCase) , ) :Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :int = FlaubertForSequenceClassification(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Union[str, Any] = model(__lowercase) __UpperCamelCase :List[Any] = model(__lowercase , labels=__lowercase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[int]: __UpperCamelCase :Union[str, Any] = self.num_labels __UpperCamelCase :List[str] = FlaubertForTokenClassification(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Dict: __UpperCamelCase :List[str] = self.num_choices __UpperCamelCase :int = FlaubertForMultipleChoice(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Any = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Tuple = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :int = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :int = config_and_inputs __UpperCamelCase :List[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Dict = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ : Optional[int] = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> int: __UpperCamelCase :Union[str, Any] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCamelCase :Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase) __UpperCamelCase :Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase) return inputs_dict def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = FlaubertModelTester(self) __UpperCamelCase :Any = ConfigTester(self , config_class=__lowercase , emb_dim=37) def UpperCamelCase__ ( self) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowercase) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowercase) @slow def UpperCamelCase__ ( self) -> Any: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Tuple = FlaubertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @slow @require_torch_gpu def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCamelCase :int = True __UpperCamelCase :List[str] = model_class(config=__lowercase) __UpperCamelCase :Dict = self._prepare_for_class(__lowercase , __lowercase) __UpperCamelCase :List[str] = torch.jit.trace( __lowercase , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowercase , os.path.join(__lowercase , '''traced_model.pt''')) __UpperCamelCase :Optional[Any] = torch.jit.load(os.path.join(__lowercase , '''traced_model.pt''') , map_location=__lowercase) loaded(inputs_dict['''input_ids'''].to(__lowercase) , inputs_dict['''attention_mask'''].to(__lowercase)) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''') __UpperCamelCase :Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) with torch.no_grad(): __UpperCamelCase :str = model(__lowercase)[0] __UpperCamelCase :Optional[Any] = torch.Size((1, 11, 768)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Dict = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4))
43
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : int=7 , snake_case__ : List[str]=3 , snake_case__ : List[str]=1_8 , snake_case__ : int=3_0 , snake_case__ : List[str]=4_0_0 , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=3_2 , snake_case__ : Dict=True , ): '''simple docstring''' lowercase :Any = parent lowercase :str = batch_size lowercase :List[Any] = num_channels lowercase :Tuple = image_size lowercase :List[str] = min_resolution lowercase :Union[str, Any] = max_resolution lowercase :Any = do_resize lowercase :int = size_divisor lowercase :Union[str, Any] = do_rescale def __snake_case ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : List[Any] = GLPNImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :List[Any] = GLPNImageProcessingTester(self ) @property def __snake_case ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case__ , '''size_divisor''' ) ) self.assertTrue(hasattr(snake_case__ , '''resample''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_rescale''' ) ) def __snake_case ( self : str ): '''simple docstring''' pass def __snake_case ( self : int ): '''simple docstring''' lowercase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self : int ): '''simple docstring''' lowercase :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase :int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
370
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=16 ,snake_case=36 ,snake_case=6 ,snake_case=6 ,snake_case=6 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : Union[str, Any] = parent lowercase : Dict = batch_size lowercase : Optional[int] = seq_length lowercase : Union[str, Any] = is_training lowercase : Dict = use_input_mask lowercase : Dict = use_token_type_ids lowercase : str = use_labels lowercase : Union[str, Any] = vocab_size lowercase : int = embedding_size lowercase : List[str] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = num_hidden_groups lowercase : List[Any] = num_attention_heads lowercase : Union[str, Any] = intermediate_size lowercase : Any = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : List[str] = type_vocab_size lowercase : int = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : int = num_labels lowercase : Optional[Any] = num_choices lowercase : Union[str, Any] = scope def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Tuple = None lowercase : Any = None lowercase : Any = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,num_hidden_groups=self.num_hidden_groups ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ) lowercase : str = model(snake_case ,token_type_ids=snake_case ) lowercase : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = AlbertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Union[str, Any] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,sentence_order_label=snake_case ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape ,(self.batch_size, config.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = AlbertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = AlbertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[str] = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,start_positions=snake_case ,end_positions=snake_case ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.num_labels lowercase : Tuple = AlbertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : Tuple = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = self.num_labels lowercase : Optional[int] = AlbertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Any = AlbertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() lowercase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Tuple = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase : Dict = model( snake_case ,attention_mask=snake_case ,token_type_ids=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : str = config_and_inputs lowercase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Tuple= ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _a : List[str]= ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) _a : Dict= True def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' lowercase : List[str] = super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case ) lowercase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = AlbertModelTester(self ) lowercase : Optional[int] = ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Optional[Any] = type self.model_tester.create_and_check_model(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] = AlbertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = AlbertModel.from_pretrained("""albert-base-v2""" ) lowercase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : List[str] = model(snake_case ,attention_mask=snake_case )[0] lowercase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,snake_case ) lowercase : int = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case ,atol=1e-4 ) )
20
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCamelCase = TypeVar("T") class UpperCamelCase__( Generic[T] ): def __init__( self ,__UpperCAmelCase ) -> None: A__ = data A__ = self A__ = 0 class UpperCamelCase__( Generic[T] ): def __init__( self ) -> None: # map from node name to the node object A__ = {} def snake_case__ ( self ,__UpperCAmelCase ) -> None: # create a new set with x as its member A__ = DisjointSetTreeNode(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> DisjointSetTreeNode[T]: # find the set x belongs to (with path-compression) A__ = self.map[data] if elem_ref != elem_ref.parent: A__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # helper function for union operation if nodea.rank > nodea.rank: A__ = nodea else: A__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) ,self.find_set(__UpperCAmelCase ) ) class UpperCamelCase__( Generic[T] ): def __init__( self ) -> None: # connections: map from the node to the neighbouring nodes (with weights) A__ = {} def snake_case__ ( self ,__UpperCAmelCase ) -> None: # add a node ONLY if its not present in the graph if node not in self.connections: A__ = {} def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) A__ = weight A__ = weight def snake_case__ ( self ) -> GraphUndirectedWeighted[T]: A__ = [] A__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set A__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation A__ = 0 A__ = 0 A__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A__ , A__ , A__ = edges[index] index += 1 A__ = disjoint_set.find_set(__UpperCAmelCase ) A__ = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase ,__UpperCAmelCase ) return graph
221
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _SCREAMING_SNAKE_CASE = HfArgumentParser(InitializationArguments) _SCREAMING_SNAKE_CASE = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _SCREAMING_SNAKE_CASE = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
3
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case = 0 def lowerCAmelCase ( self : str )-> Any: snake_case = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> str: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[str] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : Tuple )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case = AutoImageProcessor.from_pretrained(__snake_case ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case = CLIPImageProcessor(**__snake_case ) # save in new folder model_config.save_pretrained(__snake_case ) config.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) # make sure private variable is not incorrectly saved snake_case = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowerCAmelCase ( self : int )-> Dict: with self.assertRaisesRegex( __snake_case , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCAmelCase ( self : Tuple )-> int: with self.assertRaisesRegex( __snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case = AutoImageProcessor.from_pretrained(__snake_case , revision="""aaaaaa""" ) def lowerCAmelCase ( self : str )-> Union[str, Any]: with self.assertRaisesRegex( __snake_case , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : List[str] )-> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__snake_case ): snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case , trust_remote_code=__snake_case ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCAmelCase ( self : List[str] )-> Dict: try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): AutoImageProcessor.register(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = Path(__snake_case ) / """preprocessor_config.json""" snake_case = Path(__snake_case ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(__snake_case , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(__snake_case , """w""" ) ) snake_case = CustomImageProcessor.from_pretrained(__snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__snake_case ) snake_case = AutoImageProcessor.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Dict )-> Optional[int]: class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = True try: AutoConfig.register("""custom""" , __snake_case ) AutoImageProcessor.register(__snake_case , __snake_case ) # If remote code is not set, the default is to use local snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=__snake_case ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(__snake_case , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
3
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a :str = logging.get_logger(__name__) class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = """linear""" _SCREAMING_SNAKE_CASE :List[str] = """cosine""" _SCREAMING_SNAKE_CASE :int = """cosine_with_restarts""" _SCREAMING_SNAKE_CASE :List[Any] = """polynomial""" _SCREAMING_SNAKE_CASE :Any = """constant""" _SCREAMING_SNAKE_CASE :Union[str, Any] = """constant_with_warmup""" _SCREAMING_SNAKE_CASE :int = """piecewise_constant""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = -1 ) -> Dict: return LambdaLR(__lowerCAmelCase , lambda __lowerCAmelCase : 1 , last_epoch=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = -1 ) -> int: def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1.0 , __lowerCAmelCase ) ) return 1.0 return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = -1 ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : Tuple = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = rule_str.split(""":""" ) SCREAMING_SNAKE_CASE__ : Any = int(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = float(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = value SCREAMING_SNAKE_CASE__ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(__lowerCAmelCase , __lowerCAmelCase ): def rule_func(__lowerCAmelCase ) -> float: SCREAMING_SNAKE_CASE__ : Any = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE__ : List[str] = create_rules_function(__lowerCAmelCase , __lowerCAmelCase ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , last_epoch=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=-1 ) -> Union[str, Any]: def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.5 , __lowerCAmelCase = -1 ) -> Any: def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = -1 ) -> Tuple: def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1E-7 , __lowerCAmelCase=1.0 , __lowerCAmelCase=-1 ) -> Any: SCREAMING_SNAKE_CASE__ : str = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__lowerCAmelCase ): if current_step < num_warmup_steps: return float(__lowerCAmelCase ) / float(max(1 , __lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE__ : List[Any] = lr_init - lr_end SCREAMING_SNAKE_CASE__ : Dict = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE__ : str = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE__ : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a :str = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = -1 , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int = SchedulerType(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCAmelCase , last_epoch=__lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCAmelCase , step_rules=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , num_cycles=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , power=__lowerCAmelCase , last_epoch=__lowerCAmelCase , ) return schedule_func( __lowerCAmelCase , num_warmup_steps=__lowerCAmelCase , num_training_steps=__lowerCAmelCase , last_epoch=__lowerCAmelCase )
132
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[List[PIL.Image.Image], np.ndarray] _SCREAMING_SNAKE_CASE :Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
132
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Union[str, Any] , A : str ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __snake_case: str = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(A ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" __snake_case: Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: str = PyTorchBenchmark(A ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: str = """sgugger/tiny-distilbert-classification""" __snake_case: List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) __snake_case: Optional[Any] = PyTorchBenchmark(A ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Dict = """sshleifer/tiny-gpt2""" __snake_case: List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Tuple = PyTorchBenchmark(A ) __snake_case: Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: str = """sshleifer/tiny-gpt2""" __snake_case: Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Union[str, Any] = PyTorchBenchmark(A ) __snake_case: Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" __snake_case: List[Any] = AutoConfig.from_pretrained(A ) # set architectures equal to `None` __snake_case: Union[str, Any] = None __snake_case: Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: List[Any] = PyTorchBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: str = """sshleifer/tiny-gpt2""" __snake_case: int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: str = PyTorchBenchmark(A ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def UpperCAmelCase__ ( self : Dict ): __snake_case: List[str] = """sshleifer/tiny-gpt2""" __snake_case: List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) __snake_case: int = PyTorchBenchmark(A ) __snake_case: List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[int] = """sshleifer/tiny-gpt2""" __snake_case: Tuple = AutoConfig.from_pretrained(A ) __snake_case: Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: List[Any] = PyTorchBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Tuple = """sshleifer/tinier_bart""" __snake_case: Optional[int] = AutoConfig.from_pretrained(A ) __snake_case: List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Union[str, Any] = PyTorchBenchmark(A , configs=[config] ) __snake_case: Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ): __snake_case: Tuple = """sshleifer/tiny-gpt2""" __snake_case: Union[str, Any] = AutoConfig.from_pretrained(A ) __snake_case: List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: int = PyTorchBenchmark(A , configs=[config] ) __snake_case: List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = """sshleifer/tinier_bart""" __snake_case: List[Any] = AutoConfig.from_pretrained(A ) __snake_case: Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) __snake_case: Optional[Any] = PyTorchBenchmark(A , configs=[config] ) __snake_case: int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Optional[int] = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(A , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(A , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(A , """train_time.csv""" ) , env_info_csv_file=os.path.join(A , """env.csv""" ) , multi_process=A , ) __snake_case: Dict = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(A , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: int = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(A : List[str] ): self.assertTrue(hasattr(A , """sequential""" ) ) self.assertTrue(hasattr(A , """cumulative""" ) ) self.assertTrue(hasattr(A , """current""" ) ) self.assertTrue(hasattr(A , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case: Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , """log.txt""" ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) __snake_case: List[Any] = PyTorchBenchmark(A ) __snake_case: List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , """log.txt""" ) ).exists() )
293
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
293
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Optional[int] = logging.get_logger(__name__) lowerCamelCase :str = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = 'yolos' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=[512, 864] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=100 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ): super().__init__(**lowercase ) A_ : Optional[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : Dict = intermediate_size A_ : List[str] = hidden_act A_ : Dict = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : str = initializer_range A_ : Optional[Any] = layer_norm_eps A_ : Dict = image_size A_ : int = patch_size A_ : Union[str, Any] = num_channels A_ : Any = qkv_bias A_ : Union[str, Any] = num_detection_tokens A_ : Optional[int] = use_mid_position_embeddings A_ : Dict = auxiliary_loss # Hungarian matcher A_ : Optional[Any] = class_cost A_ : List[Any] = bbox_cost A_ : List[Any] = giou_cost # Loss coefficients A_ : Union[str, Any] = bbox_loss_coefficient A_ : Optional[Any] = giou_loss_coefficient A_ : Tuple = eos_coefficient class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4 @property def _a (self ): return 12
206
'''simple docstring''' import argparse import struct import unittest class _lowerCAmelCase : def __init__(self , lowercase ): A_ : List[str] = data # Initialize hash values A_ : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants A_ : List[Any] = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] A_ : Tuple = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a (lowercase ): A_ : Any = b"""\x80""" + (b"""\x00""" * (63 - (len(lowercase ) + 8) % 64)) A_ : Optional[Any] = struct.pack(""">Q""" , (len(lowercase ) * 8) ) return data + padding + big_endian_integer def _a (self ): # Convert into blocks of 64 bytes A_ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A_ : Tuple = list(struct.unpack(""">16L""" , lowercase ) ) # add 48 0-ed integers words += [0] * 48 A_, A_, A_, A_, A_, A_, A_, A_ : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A_ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A_ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A_ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression A_ : Union[str, Any] = self.ror(lowercase , 6 ) ^ self.ror(lowercase , 11 ) ^ self.ror(lowercase , 25 ) A_ : List[Any] = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) A_ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 A_ : List[str] = self.ror(lowercase , 2 ) ^ self.ror(lowercase , 13 ) ^ self.ror(lowercase , 22 ) A_ : str = (a & b) ^ (a & c) ^ (b & c) A_ : int = (sa + maj) % 0X1_0000_0000 A_, A_, A_, A_, A_, A_, A_, A_ : List[Any] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) A_ : int = [a, b, c, d, e, f, g, h] # Modify final values A_ : Dict = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] A_ : Any = """""".join([hex(lowercase )[2:].zfill(8 ) for value in self.hashes] ) def _a (self , lowercase , lowercase ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): import hashlib A_ : Optional[Any] = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowercase ).hash , hashlib.shaaaa(lowercase ).hexdigest() ) def a ( ): '''simple docstring''' import doctest doctest.testmod() A_ : Any = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) A_ : List[str] = parser.parse_args() A_ : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: A_ : Union[str, Any] = f.read() else: A_ : Optional[Any] = bytes(lowerCamelCase__ , """utf-8""" ) print(SHAaaa(lowerCamelCase__ ).hash ) if __name__ == "__main__": main()
206
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : torch.FloatTensor class A_ ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Any , lowercase_ : int = 3 , lowercase_ : int = 3 , lowercase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowercase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowercase_ : Tuple[int] = (64,) , lowercase_ : int = 1 , lowercase_ : str = "silu" , lowercase_ : int = 3 , lowercase_ : int = 32 , lowercase_ : int = 256 , lowercase_ : int = 32 , lowercase_ : Optional[int] = None , lowercase_ : float = 0.1_8215 , lowercase_ : str = "group" , ) -> str: super().__init__() # pass init params to Encoder UpperCAmelCase : Optional[Any] = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) UpperCAmelCase : Union[str, Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase : Tuple = nn.Convad(lowercase_ , lowercase_ , 1 ) UpperCAmelCase : str = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_ ) UpperCAmelCase : Union[str, Any] = nn.Convad(lowercase_ , lowercase_ , 1 ) # pass init params to Decoder UpperCAmelCase : Dict = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , ) @apply_forward_hook def UpperCAmelCase_ ( self : List[str] , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ) -> VQEncoderOutput: UpperCAmelCase : Tuple = self.encoder(lowercase_ ) UpperCAmelCase : Optional[Any] = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def UpperCAmelCase_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : bool = False , lowercase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: UpperCAmelCase : List[str] = self.quantize(lowercase_ ) else: UpperCAmelCase : Union[str, Any] = h UpperCAmelCase : Optional[Any] = self.post_quant_conv(lowercase_ ) UpperCAmelCase : Any = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase : str = sample UpperCAmelCase : Union[str, Any] = self.encode(lowercase_ ).latents UpperCAmelCase : Union[str, Any] = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
367
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase__ = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def UpperCamelCase( UpperCAmelCase_ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: UpperCAmelCase : Union[str, Any] = R'.*/layers_(\d+)' UpperCAmelCase : List[str] = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) UpperCAmelCase : str = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": UpperCAmelCase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : List[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": UpperCAmelCase : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) UpperCAmelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""{key} -> {new_key}""" ) UpperCAmelCase : List[Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase : Optional[int] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase : List[str] = s_dict[key].shape[0] UpperCAmelCase : List[Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowercase__ = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase_ , 'r' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) UpperCAmelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase : Dict = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) UpperCAmelCase : str = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] UpperCAmelCase : Union[str, Any] = str(activation[1] ) UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : List[str] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_="./" , UpperCAmelCase_=8 ): # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: UpperCAmelCase : List[Any] = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: UpperCAmelCase : str = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) UpperCAmelCase : str = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) UpperCAmelCase : str = flax_params['target'] UpperCAmelCase : Union[str, Any] = flatten_dict(UpperCAmelCase_ , sep='/' ) UpperCAmelCase : Tuple = rename_keys(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
280
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case_ = n - k # Calculate C(n,k) for i in range(UpperCAmelCase_ ): result *= n - i result //= i + 1 return result def _a ( _SCREAMING_SNAKE_CASE ) -> int: return binomial_coefficient(2 * node_count , UpperCAmelCase_ ) // (node_count + 1) def _a ( _SCREAMING_SNAKE_CASE ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) snake_case_ = 1 for i in range(1 , n + 1 ): result *= i return result def _a ( _SCREAMING_SNAKE_CASE ) -> int: return catalan_number(UpperCAmelCase_ ) * factorial(UpperCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
347
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
0
import collections import os import re from pathlib import Path __SCREAMING_SNAKE_CASE : Dict = "src/transformers" # Matches is_xxx_available() __SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __SCREAMING_SNAKE_CASE : int = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'\s+\"\S*\":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __SCREAMING_SNAKE_CASE : Any = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __SCREAMING_SNAKE_CASE : Any = re.compile(R'^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __SCREAMING_SNAKE_CASE : Dict = re.compile(R'^\s+\"([^\"]+)\",') # Catches a line with objects between brackets only: ["foo", "bar"], __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __SCREAMING_SNAKE_CASE : Tuple = re.compile(R'^\s*try:') # Catches a line with else: __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'^\s*else:') def snake_case (__lowercase ) -> Any: '''simple docstring''' if _re_test_backend.search(__lowerCAmelCase ) is None: return None _snake_case : Any = [b[0] for b in _re_backend.findall(__lowerCAmelCase )] backends.sort() return "_and_".join(__lowerCAmelCase ) def snake_case (__lowercase ) -> List[str]: '''simple docstring''' with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _snake_case : str = f.readlines() _snake_case : Dict = 0 while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _snake_case : int = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _snake_case : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__lowerCAmelCase ): _snake_case : Union[str, Any] = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0] _snake_case : Union[str, Any] = re.findall(r"\[([^\]]+)\]" , __lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _snake_case : Optional[int] = _re_import_struct_key_value.search(__lowerCAmelCase ) if single_line_import_search is not None: _snake_case : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _snake_case : Optional[int] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _snake_case : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _snake_case : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None: _snake_case : Optional[int] = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(", " ) _snake_case : Optional[Any] = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_between_brackets.search(__lowerCAmelCase ) is not None: _snake_case : Tuple = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(", " ) _snake_case : Any = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0] objects.extend(__lowerCAmelCase ) elif _re_quote_object.search(__lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _snake_case : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _snake_case : Optional[int] = [] while ( line_index < len(__lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _snake_case : Optional[int] = lines[line_index] _snake_case : int = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _snake_case : Optional[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _snake_case : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _snake_case : List[str] = lines[line_index] _snake_case : str = _re_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _snake_case : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case (__lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' def find_duplicates(__lowercase ): return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _snake_case : List[Any] = [] for key in import_dict_objects.keys(): _snake_case : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) _snake_case : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _snake_case : Any = """base imports""" if key == """none""" else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def snake_case () -> str: '''simple docstring''' _snake_case : Optional[int] = [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: _snake_case : Optional[Any] = os.path.join(__lowerCAmelCase , "__init__.py" ) _snake_case : Dict = parse_init(__lowerCAmelCase ) if objects is not None: _snake_case : List[str] = analyze_results(*__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _snake_case : List[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) > 0: raise ValueError("\n\n".join(__lowerCAmelCase ) ) def snake_case () -> Dict: '''simple docstring''' _snake_case : Dict = [] for path, directories, files in os.walk(__lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__lowerCAmelCase ) / folder).glob("*.py" ) ) ) == 0: continue _snake_case : Union[str, Any] = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) ) _snake_case : List[str] = short_path.replace(os.path.sep , "." ) submodules.append(__lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue _snake_case : Tuple = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) ) _snake_case : Optional[int] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__lowerCAmelCase ) return submodules __SCREAMING_SNAKE_CASE : Optional[Any] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def snake_case () -> int: '''simple docstring''' from transformers.utils import direct_transformers_import _snake_case : int = direct_transformers_import(__lowerCAmelCase ) _snake_case : Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__lowerCAmelCase , "__init__.py" ) , "r" ) as f: _snake_case : str = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , __lowerCAmelCase ) ) ) _snake_case : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__lowerCAmelCase ) > 0: _snake_case : Dict = """\n""".join(F"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
362
def snake_case () -> Dict: '''simple docstring''' _snake_case : List[str] = 0 for i in range(1 , 1_001 ): total += i**i return str(__lowercase )[-10:] if __name__ == "__main__": print(solution())
284
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowercase : Optional[int] = HfArgumentParser(InitializationArguments) lowercase : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowercase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowercase : Optional[int] = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) lowercase : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowercase : str = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
3
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = BeautifulSoup(requests.get(snake_case__ , params=snake_case__ ).content , '''html.parser''' ) A : Dict = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A : Optional[int] = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowercase : str = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 20_18, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
3
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Tuple , *_lowercase : List[str] , **_lowercase : int ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[Any] , *_lowercase : int , **_lowercase : Any ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Tuple , *_lowercase : Any , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Tuple , *_lowercase : int , **_lowercase : List[Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : List[str] , *_lowercase : int , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Tuple , *_lowercase : Union[str, Any] , **_lowercase : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : List[str] , **_lowercase : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Tuple , *_lowercase : List[Any] , **_lowercase : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : int , *_lowercase : Tuple , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : int , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Dict , *_lowercase : Union[str, Any] , **_lowercase : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Optional[int] , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : List[str] , *_lowercase : List[Any] , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Dict , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Union[str, Any] , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Any , *_lowercase : Any , **_lowercase : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Any , *_lowercase : Dict , **_lowercase : Any ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Any , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Dict , *_lowercase : List[str] , **_lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : List[str] , *_lowercase : Dict , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Any , *_lowercase : Tuple , **_lowercase : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Tuple , *_lowercase : Tuple , **_lowercase : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Dict , *_lowercase : int , **_lowercase : Optional[int] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Tuple , **_lowercase : Tuple ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : str , *_lowercase : Union[str, Any] , **_lowercase : List[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Tuple , *_lowercase : str , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Tuple , **_lowercase : List[str] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : int , *_lowercase : Dict , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : Dict , *_lowercase : Dict , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : List[str] , *_lowercase : Optional[int] , **_lowercase : Optional[int] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : Any , *_lowercase : Tuple , **_lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[str] , *_lowercase : Any , **_lowercase : Any ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Dict , **_lowercase : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class __snake_case ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ["flax"] def __init__( self : List[Any] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def __a ( cls : List[str] , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Tuple , **_lowercase : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] )
204
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["input_features", "attention_mask"] def __init__( self : int , _lowercase : Dict=80 , _lowercase : Union[str, Any]=1_60_00 , _lowercase : str=0.0 , _lowercase : int=10 , _lowercase : str=25 , _lowercase : Union[str, Any]="hamming_window" , _lowercase : Dict=3_27_68.0 , _lowercase : Optional[int]=0.97 , _lowercase : Optional[int]=1.0 , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=False , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = frame_signal_scale SCREAMING_SNAKE_CASE__ = preemphasis_coeff SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = return_attention_mask SCREAMING_SNAKE_CASE__ = win_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = hop_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ = (self.n_fft // 2) + 1 def __a ( self : str , _lowercase : np.array ): """simple docstring""" if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" if self.normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def __a ( self : int , _lowercase : List[np.ndarray] , _lowercase : Optional[np.ndarray] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self : Dict , _lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Optional[int] = None , _lowercase : bool = False , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[int] = None , **_lowercase : List[str] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE__ = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE__ = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
204
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Any = IFInpaintingSuperResolutionPipeline __magic_name__ :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __magic_name__ :List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __magic_name__ :List[str] = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Tuple = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[int] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self ): '''simple docstring''' self._test_save_load_local() def snake_case ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
293
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = StableDiffusionXLImgaImgPipeline __magic_name__ :List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __magic_name__ :Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} __magic_name__ :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ :str = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ :Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) lowerCAmelCase__ :str = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) lowerCAmelCase__ :str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) lowerCAmelCase__ :int = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :Any = CLIPTextModelWithProjection(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) lowerCAmelCase__ :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Optional[int] = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :int = self.get_dummy_components() lowerCAmelCase__ :List[str] = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = sd_pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase__ :List[str] = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.get_dummy_components() lowerCAmelCase__ :str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt'] lowerCAmelCase__ :Tuple = negative_prompt lowerCAmelCase__ :str = 3 * [inputs['prompt']] lowerCAmelCase__ :Optional[Any] = sd_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 3 * ['this is a negative prompt'] lowerCAmelCase__ :str = 3 * [inputs.pop('prompt' )] ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) :List[str] = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) lowerCAmelCase__ :str = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowerCAmelCase__ :Optional[int] = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ :int = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
293
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __snake_case ( _lowercase): snake_case__ : int = "deit" def __init__( self : List[str] , __lowerCAmelCase : int=7_6_8 , __lowerCAmelCase : Tuple=1_2 , __lowerCAmelCase : str=1_2 , __lowerCAmelCase : Dict=3_0_7_2 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : List[str]=1E-12 , __lowerCAmelCase : Dict=2_2_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : str=True , __lowerCAmelCase : int=1_6 , **__lowerCAmelCase : int , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : int = qkv_bias _lowerCamelCase : Optional[Any] = encoder_stride class __snake_case ( _lowercase): snake_case__ : Tuple = version.parse("1.11") @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return 1E-4
360
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [randint(-10_00, 10_00 ) for i in range(10 )] _lowerCamelCase : Tuple = randint(-50_00, 50_00 ) return (arr, r) lowerCAmelCase__ = make_dataset() def snake_case_ ( A_ : list[int], A_ : int ): '''simple docstring''' for triplet in permutations(A_, 3 ): if sum(A_ ) == target: return tuple(sorted(A_ ) ) return (0, 0, 0) def snake_case_ ( A_ : list[int], A_ : int ): '''simple docstring''' arr.sort() _lowerCamelCase : Optional[Any] = len(A_ ) for i in range(n - 1 ): _lowerCamelCase , _lowerCamelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' _lowerCamelCase : List[Any] = ''' triplet_sum1(*dataset) ''' _lowerCamelCase : str = ''' triplet_sum2(*dataset) ''' _lowerCamelCase : Optional[int] = repeat(setup=A_, stmt=A_, repeat=5, number=1_00_00 ) _lowerCamelCase : Union[str, Any] = repeat(setup=A_, stmt=A_, repeat=5, number=1_00_00 ) return (min(A_ ), min(A_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase__ = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
175
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCAmelCase_ ( __A, __A, __A, __A, ) -> list[float]: '''simple docstring''' UpperCAmelCase__ = coefficient_matrix.shape UpperCAmelCase__ = constant_matrix.shape if rowsa != colsa: UpperCAmelCase__ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__A ) if colsa != 1: UpperCAmelCase__ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__A ) if rowsa != rowsa: UpperCAmelCase__ = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__A ) if len(__A ) != rowsa: UpperCAmelCase__ = ( 'Number of initial values must be equal to number of rows in coefficient ' f"""matrix but received {len(__A )} and {rowsa}""" ) raise ValueError(__A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) UpperCAmelCase__ = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) UpperCAmelCase__ = table.shape strictly_diagonally_dominant(__A ) # Iterates the whole matrix for given number of times for _ in range(__A ): UpperCAmelCase__ = [] for row in range(__A ): UpperCAmelCase__ = 0 for col in range(__A ): if col == row: UpperCAmelCase__ = table[row][col] elif col == cols - 1: UpperCAmelCase__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCAmelCase__ = (temp + val) / denom new_val.append(__A ) UpperCAmelCase__ = new_val return [float(__A ) for i in new_val] def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = table.shape UpperCAmelCase__ = True for i in range(0, __A ): UpperCAmelCase__ = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
65
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _A: """simple docstring""" @staticmethod def UpperCAmelCase_ ( *_A , **_A ): pass def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : Dict = np.array(a ) __A : List[Any] = npimg.shape return {"hash": hashimage(a ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _A( unittest.TestCase ): """simple docstring""" UpperCamelCase : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCamelCase : int = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase_ ( self , _A , _A , _A ): __A : Dict = MaskGenerationPipeline(model=_A , image_processor=_A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ ( self , _A , _A ): pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCAmelCase_ ( self ): pass @slow @require_torch def UpperCAmelCase_ ( self ): __A : Union[str, Any] = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __A : List[str] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing __A : List[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase_ ( self ): __A : Optional[Any] = 'facebook/sam-vit-huge' __A : List[str] = pipeline('mask-generation' , model=_A ) __A : Tuple = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __A : List[str] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] , )
280
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]=7 , lowercase_ : Any=3 , lowercase_ : Optional[int]=30 , lowercase_ : str=400 , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=True , lowercase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowercase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=1 / 255 , lowercase_ : str=True , ) -> int: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase : Tuple = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : List[str] = min_resolution UpperCAmelCase : Any = max_resolution UpperCAmelCase : Dict = do_resize UpperCAmelCase : Tuple = size UpperCAmelCase : List[Any] = do_normalize UpperCAmelCase : Tuple = image_mean UpperCAmelCase : Union[str, Any] = image_std UpperCAmelCase : Tuple = do_rescale UpperCAmelCase : Optional[int] = rescale_factor UpperCAmelCase : Optional[Any] = do_pad def UpperCAmelCase_ ( self : Any ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self : str , lowercase_ : int , lowercase_ : Optional[int]=False ) -> List[str]: if not batched: UpperCAmelCase : Union[str, Any] = image_inputs[0] if isinstance(lowercase_ , Image.Image ): UpperCAmelCase , UpperCAmelCase : Any = image.size else: UpperCAmelCase , UpperCAmelCase : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase : Dict = int(self.size['shortest_edge'] * h / w ) UpperCAmelCase : Tuple = self.size['shortest_edge'] elif w > h: UpperCAmelCase : Optional[Any] = self.size['shortest_edge'] UpperCAmelCase : str = int(self.size['shortest_edge'] * w / h ) else: UpperCAmelCase : List[Any] = self.size['shortest_edge'] UpperCAmelCase : Union[str, Any] = self.size['shortest_edge'] else: UpperCAmelCase : Dict = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : List[Any] = max(lowercase_ , key=lambda lowercase_ : item[0] )[0] UpperCAmelCase : Any = max(lowercase_ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Tuple = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : str ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowercase_ ) UpperCAmelCase : List[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> int: pass def UpperCAmelCase_ ( self : Tuple ) -> List[str]: # Initialize image_processing UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) UpperCAmelCase : Dict = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : str = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: # Initialize image_processings UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase : Optional[Any] = self.image_processing_class(do_resize=lowercase_ , do_normalize=lowercase_ , do_rescale=lowercase_ ) # create random PyTorch tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase : Any = image_processing_a.pad(lowercase_ , return_tensors='pt' ) UpperCAmelCase : Union[str, Any] = image_processing_a(lowercase_ , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: # prepare image and target UpperCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCAmelCase : int = json.loads(f.read() ) UpperCAmelCase : Dict = {'image_id': 39_769, 'annotations': target} # encode them UpperCAmelCase : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) UpperCAmelCase : str = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase : int = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) UpperCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area UpperCAmelCase : List[Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes UpperCAmelCase : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) UpperCAmelCase : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase : List[str] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd UpperCAmelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels UpperCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify orig_size UpperCAmelCase : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size UpperCAmelCase : str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: # prepare image, target and masks_path UpperCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCAmelCase : List[Any] = json.loads(f.read() ) UpperCAmelCase : List[str] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} UpperCAmelCase : int = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCAmelCase : Optional[int] = YolosImageProcessor(format='coco_panoptic' ) UpperCAmelCase : str = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' ) # verify pixel values UpperCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase_ ) UpperCAmelCase : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) ) # verify area UpperCAmelCase : Union[str, Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) ) # verify boxes UpperCAmelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) ) # verify image_id UpperCAmelCase : Dict = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) ) # verify is_crowd UpperCAmelCase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) ) # verify class_labels UpperCAmelCase : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) ) # verify masks UpperCAmelCase : Union[str, Any] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ ) # verify orig_size UpperCAmelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) ) # verify size UpperCAmelCase : Any = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
280
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase__ = logging.get_logger("transformers.models.speecht5") def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): hf_model.apply_weight_norm() UpperCAmelCase : Dict = checkpoint['input_conv.weight_g'] UpperCAmelCase : Any = checkpoint['input_conv.weight_v'] UpperCAmelCase : Any = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): UpperCAmelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCAmelCase : Union[str, Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCAmelCase : str = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase : Any = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase : Optional[int] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase : Dict = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase : Optional[int] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase : Dict = checkpoint['output_conv.1.weight_g'] UpperCAmelCase : str = checkpoint['output_conv.1.weight_v'] UpperCAmelCase : Union[str, Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if config_path is not None: UpperCAmelCase : Any = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase_ ) else: UpperCAmelCase : Optional[Any] = SpeechTaHifiGanConfig() UpperCAmelCase : List[Any] = SpeechTaHifiGan(UpperCAmelCase_ ) UpperCAmelCase : int = torch.load(UpperCAmelCase_ ) load_weights(orig_checkpoint['model']['generator'] , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCAmelCase : int = np.load(UpperCAmelCase_ ) UpperCAmelCase : str = stats[0].reshape(-1 ) UpperCAmelCase : List[str] = stats[1].reshape(-1 ) UpperCAmelCase : Union[str, Any] = torch.from_numpy(UpperCAmelCase_ ).float() UpperCAmelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ).float() model.save_pretrained(UpperCAmelCase_ ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
280
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :Tuple = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Dict = '''mvp''' UpperCamelCase__ : Optional[int] = ['''past_key_values'''] UpperCamelCase__ : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=50_267 , __SCREAMING_SNAKE_CASE : Any=1_024 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Dict=4_096 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Any=4_096 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : List[Any]=1_024 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : Tuple=100 , __SCREAMING_SNAKE_CASE : List[str]=800 , **__SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = classifier_dropout __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = use_prompt __a = prompt_length __a = prompt_mid_dim super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __SCREAMING_SNAKE_CASE): __a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''')
49
import re from filelock import FileLock try: import nltk _snake_case : Any = True except (ImportError, ModuleNotFoundError): _snake_case : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def a_ ( lowerCAmelCase_ : str ): re.sub('<n>', '', lowerCAmelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase_ ) )
284
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : str = logging.get_logger(__name__) A__ : Tuple = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowercase__ ( snake_case__, snake_case__ ): _UpperCAmelCase :Union[str, Any] = "resnet" _UpperCAmelCase :Optional[int] = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , snake_case__ : str=3 , snake_case__ : Dict=64 , snake_case__ : List[Any]=[256, 512, 1024, 2048] , snake_case__ : Tuple=[3, 4, 6, 3] , snake_case__ : List[str]="bottleneck" , snake_case__ : List[str]="relu" , snake_case__ : Any=False , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=None , **snake_case__ : Tuple , ): super().__init__(**snake_case__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) lowerCamelCase_ : Tuple =num_channels lowerCamelCase_ : List[Any] =embedding_size lowerCamelCase_ : List[Any] =hidden_sizes lowerCamelCase_ : List[str] =depths lowerCamelCase_ : Union[str, Any] =layer_type lowerCamelCase_ : Tuple =hidden_act lowerCamelCase_ : Union[str, Any] =downsample_in_first_stage lowerCamelCase_ : Any =["stem"] + [F"""stage{idx}""" for idx in range(1 , len(snake_case__ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ : Any =get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names ) class lowercase__ ( snake_case__ ): _UpperCAmelCase :Union[str, Any] = version.parse("1.11" ) @property def UpperCAmelCase__ ( self : Dict ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase__ ( self : List[str] ): return 1E-3
209
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase__ ( snake_case__ ): def __init__( self : Tuple , snake_case__ : Optional[int] , snake_case__ : int=None , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[int]=None , **snake_case__ : Optional[int] ): lowerCamelCase_ : Dict =parent lowerCamelCase_ : List[str] =config_class lowerCamelCase_ : Union[str, Any] =has_text_modality lowerCamelCase_ : Optional[int] =kwargs lowerCamelCase_ : List[str] =common_properties def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[str] =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Any =( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case__ , snake_case__ ) , msg=F"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case__ ): try: setattr(snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=F"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case__ ): try: lowerCamelCase_ : Dict =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=F"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Tuple =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Any =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case__ ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : List[Any] =os.path.join(snake_case__ , "config.json" ) config_first.to_json_file(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class.from_json_file(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Dict =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class.from_pretrained(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Dict =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Dict ="test" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : str =os.path.join(snake_case__ , snake_case__ ) config_first.save_pretrained(snake_case__ ) lowerCamelCase_ : Optional[Any] =self.config_class.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Optional[Any] =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCamelCase_ : List[Any] =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase__ ( self : List[Any] ): if self.config_class.is_composition: return lowerCamelCase_ : Tuple =self.config_class() self.parent.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : List[str] =copy.deepcopy(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(snake_case__ , snake_case__ ) != value: wrong_values.append((key, getattr(snake_case__ , snake_case__ ), value) ) if len(snake_case__ ) > 0: lowerCamelCase_ : Any ="\n".join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCAmelCase__ ( self : int ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
209
1
import qiskit def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCamelCase_ = qiskit.QuantumCircuit(lowercase , lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCamelCase_ = qiskit.execute(lowercase , lowercase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
204
from collections.abc import Callable import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : Callable , lowercase : float , lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowercase ): lowerCamelCase_ = y[k] + step_size * ode_func(lowercase , y[k] ) lowerCamelCase_ = y[k] + ( (step_size / 2) * (ode_func(lowercase , y[k] ) + ode_func(x + step_size , lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
204
1
from collections import namedtuple lowercase_ = namedtuple("""from_to""", """from_ to""") lowercase_ = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00454, 264.172), """cubicyard""": from_to(0.76455, 1.30795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.000236588, 4226.75), } def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ", ".join(SCREAMING_SNAKE_CASE_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ", ".join(SCREAMING_SNAKE_CASE_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
224
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: lowercase__ , lowercase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
224
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Optional[Any]: """simple docstring""" def wrapper(*__A : str , **__A : Union[str, Any] ): a_ : int = timeit.default_timer() a_ : Optional[int] = func(*__A , **__A ) a_ : Union[str, Any] = timeit.default_timer() - starttime return delta a_ : str = func.__name__ return wrapper def SCREAMING_SNAKE_CASE_ ( __A : dict , __A : Optional[Any]=1_00 , __A : Dict=None ) -> Union[str, Any]: """simple docstring""" a_ : Dict = [] a_ : Dict = seq_shapes or {} for i in range(__A ): a_ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__A , _ArrayXD ): a_ : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__A , datasets.Value ): if v.dtype == "string": a_ : Union[str, Any] = 'The small grey turtle was surprisingly fast when challenged.' else: a_ : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__A , datasets.Sequence ): while isinstance(__A , datasets.Sequence ): a_ : Optional[Any] = v.feature a_ : str = seq_shapes[k] a_ : Optional[Any] = np.random.rand(*__A ).astype(v.dtype ) a_ : int = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[str] , __A : str=1_00 , __A : str=None ) -> Union[str, Any]: """simple docstring""" a_ : Optional[int] = generate_examples(__A , num_examples=__A , seq_shapes=__A ) with ArrowWriter(features=__A , path=__A ) as writer: for key, record in dummy_data: a_ : List[str] = features.encode_example(__A ) writer.write(__A ) a_ : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) a_ : Dict = datasets.Dataset.from_file(filename=__A , info=datasets.DatasetInfo(features=__A ) ) return dataset
32
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = 'roberta' elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = 'transformer' a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = F"""{prefix}.embeddings.{w}.weight""" a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = F"""{prefix}.embeddings.LayerNorm.{w}""" a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[F"""lm_head.dense.{w}"""] a_ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[F"""{prefix}.ln_f.{w}"""] a_ = state_dict['lm_head.weight'] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
175
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = UNetaDModel UpperCamelCase : Union[str, Any] = "sample" @property def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCamelCase = self.dummy_input return init_dict, inputs_dict class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = UNetaDModel UpperCamelCase : Dict = "sample" @property def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 4 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Tuple: '''simple docstring''' return (4, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (4, 32, 32) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCamelCase = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() lowerCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) lowerCamelCase = model_accelerate(A , A )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=A , low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() lowerCamelCase = model_normal_load(A , A )["""sample"""] assert torch_all_close(A , A , rtol=1e-3 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(A ) lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-3 ) ) class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = UNetaDModel UpperCamelCase : Optional[int] = "sample" @property def __A ( self , A=(32, 32) ) -> List[Any]: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCamelCase = self.dummy_input return init_dict, inputs_dict @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = self.dummy_input lowerCamelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(A ) lowerCamelCase = noise lowerCamelCase = model(**A ) assert image is not None, "Make sure output is not None" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (2_56, 2_56) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> List[str]: '''simple docstring''' pass
66
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Dict = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = "gptj" UpperCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A=5_04_00 , A=20_48 , A=40_96 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.02 , A=True , A=5_02_56 , A=5_02_56 , A=False , **A , ) -> int: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = n_positions lowerCamelCase = n_embd lowerCamelCase = n_layer lowerCamelCase = n_head lowerCamelCase = n_inner lowerCamelCase = rotary_dim lowerCamelCase = activation_function lowerCamelCase = resid_pdrop lowerCamelCase = embd_pdrop lowerCamelCase = attn_pdrop lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_range lowerCamelCase = use_cache lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: '''simple docstring''' super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? lowerCamelCase = 0 @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_head def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() lowerCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase , lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase = seqlen + 2 lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] lowerCamelCase = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase = ordered_inputs["""attention_mask"""].dtype lowerCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: '''simple docstring''' return 13
66
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _SCREAMING_SNAKE_CASE ( a , a , a , a , ) -> list[float]: __A , __A : Optional[Any] = coefficient_matrix.shape __A , __A : str = constant_matrix.shape if rowsa != colsa: __A : Optional[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(a ) if colsa != 1: __A : int = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(a ) if rowsa != rowsa: __A : Any = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(a ) if len(a ) != rowsa: __A : str = ( 'Number of initial values must be equal to number of rows in coefficient ' F"""matrix but received {len(a )} and {rowsa}""" ) raise ValueError(a ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __A : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __A , __A : Any = table.shape strictly_diagonally_dominant(a ) # Iterates the whole matrix for given number of times for _ in range(a ): __A : Dict = [] for row in range(a ): __A : Dict = 0 for col in range(a ): if col == row: __A : List[str] = table[row][col] elif col == cols - 1: __A : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __A : str = (temp + val) / denom new_val.append(a ) __A : int = new_val return [float(a ) for i in new_val] def _SCREAMING_SNAKE_CASE ( a ) -> bool: __A , __A : Union[str, Any] = table.shape __A : Any = True for i in range(0 , a ): __A : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
280
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _SCREAMING_SNAKE_CASE ( a , a , a , ) -> float: if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( a , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
from PIL import Image def snake_case_ ( lowerCAmelCase_ : Image , lowerCAmelCase_ : float ): def brightness(lowerCAmelCase_ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowerCAmelCase_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase : List[str] = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
from __future__ import annotations import math def lowerCAmelCase__(__snake_case ) -> list[int]: '''simple docstring''' if num <= 0: lowerCamelCase__ = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(__snake_case ) lowerCamelCase__ = [True] * (num + 1) lowerCamelCase__ = [] lowerCamelCase__ = 2 lowerCamelCase__ = int(math.sqrt(__snake_case ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__snake_case ) # Set multiples of start be False for i in range(start * start ,num + 1 ,__snake_case ): if sieve[i] is True: lowerCamelCase__ = False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(__snake_case ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
209
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = "▁" _a = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _a = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _a = { "facebook/m2m100_418M": 1_024, } # fmt: off _a = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="m2m100" , __lowerCAmelCase = None , __lowerCAmelCase=8 , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = language_codes lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCamelCase__ = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowerCamelCase__ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = load_json(__lowerCAmelCase ) lowerCamelCase__ = {v: k for k, v in self.encoder.items()} lowerCamelCase__ = spm_file lowerCamelCase__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) lowerCamelCase__ = len(self.encoder ) lowerCamelCase__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } lowerCamelCase__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} lowerCamelCase__ = {v: k for k, v in self.lang_token_to_id.items()} lowerCamelCase__ = src_lang if src_lang is not None else '''en''' lowerCamelCase__ = tgt_lang lowerCamelCase__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCamelCase__ = num_madeup_words @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = [1] * len(self.prefix_tokens ) lowerCamelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowerCamelCase__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = "en" , __lowerCAmelCase = None , __lowerCAmelCase = "ro" , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = self.get_lang_id(__lowerCAmelCase ) lowerCamelCase__ = tgt_lang_id return inputs def __lowerCamelCase ( self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) lowerCamelCase__ = self.lang_token_to_id[lang_token] lowerCamelCase__ = [self.cur_lang_id] lowerCamelCase__ = [self.eos_token_id] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) lowerCamelCase__ = self.lang_token_to_id[lang_token] lowerCamelCase__ = [self.cur_lang_id] lowerCamelCase__ = [self.eos_token_id] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.lang_code_to_token[lang] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def lowerCAmelCase__(__snake_case ,__snake_case ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' lowerCamelCase__ = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def lowerCAmelCase__(__snake_case ) -> Union[Dict, List]: '''simple docstring''' with open(__snake_case ,'''r''' ) as f: return json.load(__snake_case ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> None: '''simple docstring''' with open(__snake_case ,'''w''' ) as f: json.dump(__snake_case ,__snake_case ,indent=2 )
209
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' _snake_case : int = filter(lambda __lowercase : p.requires_grad , model.parameters() ) _snake_case : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) def snake_case (__lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' if metric == "rouge2": _snake_case : int = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _snake_case : Dict = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _snake_case : Optional[int] = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _snake_case : Union[str, Any] = ModelCheckpoint( dirpath=__lowercase , filename=__lowercase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def snake_case (__lowercase , __lowercase ) -> List[Any]: '''simple docstring''' return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowercase , verbose=__lowercase , ) class lowercase_ ( pl.Callback ): def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Optional[Any] = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase_ ) @rank_zero_only def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=True ): logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _snake_case : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _snake_case : Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : Tuple = od / "test_results.txt" _snake_case : Tuple = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : Tuple = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _snake_case : Optional[Any] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowercase_ ) generations_file.parent.mkdir(exist_ok=lowercase_ ) with open(lowercase_ , "a+" ) as writer: for key in sorted(lowercase_ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : Dict = metrics[key] if isinstance(lowercase_ , torch.Tensor ): _snake_case : Any = val.item() _snake_case : List[Any] = f"""{key}: {val:.6f}\n""" writer.write(lowercase_ ) if not save_generations: return if "preds" in metrics: _snake_case : Union[str, Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowercase_ ) @rank_zero_only def UpperCamelCase ( self , lowercase_ , lowercase_ ): try: _snake_case : Tuple = pl_module.model.model.num_parameters() except AttributeError: _snake_case : List[str] = pl_module.model.num_parameters() _snake_case : Union[str, Any] = count_trainable_parameters(lowercase_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase ( self , lowercase_ , lowercase_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase_ , lowercase_ , "test" ) @rank_zero_only def UpperCamelCase ( self , lowercase_ , lowercase_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
360
def snake_case (__lowercase ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__lowercase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
284
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCAmelCase_ : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowerCAmelCase_ : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Any ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCAmelCase_ : Optional[int] = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCAmelCase_ : int = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) lowerCAmelCase_ : Any = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Dict = Accelerator() lowercase__ : List[Any] = (accelerator.state.process_index + 2, 1_0) lowercase__ : Any = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase__ : List[Any] = """""" lowercase__ : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase__ : Optional[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase__ : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
224
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[str] = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """informer""" _SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str = "student_t" , SCREAMING_SNAKE_CASE_ : str = "nll" , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : List[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : int = 6_4 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : str = "gelu" , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : float = 0.1 , SCREAMING_SNAKE_CASE_ : int = 1_0_0 , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str = "prob" , SCREAMING_SNAKE_CASE_ : int = 5 , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ): # time series specific configuration lowerCAmelCase_ : Dict = prediction_length lowerCAmelCase_ : List[str] = context_length or prediction_length lowerCAmelCase_ : List[Any] = distribution_output lowerCAmelCase_ : int = loss lowerCAmelCase_ : Optional[int] = input_size lowerCAmelCase_ : Tuple = num_time_features lowerCAmelCase_ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ : int = scaling lowerCAmelCase_ : List[Any] = num_dynamic_real_features lowerCAmelCase_ : Union[str, Any] = num_static_real_features lowerCAmelCase_ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : str = cardinality else: lowerCAmelCase_ : Any = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase_ : Optional[int] = embedding_dimension else: lowerCAmelCase_ : Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase_ : Optional[int] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase_ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase_ : Any = d_model lowerCAmelCase_ : Union[str, Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_attention_heads lowerCAmelCase_ : Any = encoder_ffn_dim lowerCAmelCase_ : List[str] = decoder_ffn_dim lowerCAmelCase_ : Optional[Any] = encoder_layers lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Dict = encoder_layerdrop lowerCAmelCase_ : str = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : Union[str, Any] = use_cache # Informer lowerCAmelCase_ : Optional[int] = attention_type lowerCAmelCase_ : Any = sampling_factor lowerCAmelCase_ : int = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
224
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=64 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = vocab_size - 1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def A__ (self ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = True return config, input_ids, input_mask, token_labels def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = GPTNeoXModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) _lowerCAmelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = GPTNeoXModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.num_labels _lowerCAmelCase = GPTNeoXForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = True _lowerCAmelCase = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) _lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) _lowerCAmelCase = output_from_no_past['hidden_states'][0] _lowerCAmelCase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __UpperCamelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def A__ (self ): '''simple docstring''' _lowerCAmelCase = GPTNeoXModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def A__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() _lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def A__ (self ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = GPTNeoXModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() _lowerCAmelCase = original_model(_UpperCAmelCase ).last_hidden_state _lowerCAmelCase = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} _lowerCAmelCase = GPTNeoXModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() _lowerCAmelCase = scaled_model(_UpperCAmelCase ).last_hidden_state _lowerCAmelCase = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): @slow def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: _lowerCAmelCase = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase ) _lowerCAmelCase = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(_UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _lowerCAmelCase = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' _lowerCAmelCase = model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 ) _lowerCAmelCase = tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
369
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE : List[str] = False class __lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( image=lowerCamelCase , generator=lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
317
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[int] = """nllb-moe""" _A : List[str] = ["""past_key_values"""] _A : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Union[str, Any] , snake_case: str=128_112 , snake_case: Optional[int]=1_024 , snake_case: str=12 , snake_case: Union[str, Any]=4_096 , snake_case: Dict=16 , snake_case: Tuple=12 , snake_case: Union[str, Any]=4_096 , snake_case: str=16 , snake_case: Dict=0.0_5 , snake_case: Any=0.0_5 , snake_case: str=True , snake_case: Any=True , snake_case: Any="relu" , snake_case: Dict=1_024 , snake_case: List[Any]=0.1 , snake_case: Union[str, Any]=0.1 , snake_case: Optional[Any]=0.0 , snake_case: str=0.0_2 , snake_case: int=2 , snake_case: List[str]=True , snake_case: str=False , snake_case: Optional[Any]="float32" , snake_case: int=False , snake_case: Optional[Any]=128 , snake_case: Any=64 , snake_case: List[Any]=4 , snake_case: str=4 , snake_case: int=0.0_0_1 , snake_case: Optional[Any]=0.0_0_1 , snake_case: List[Any]="all" , snake_case: Dict=False , snake_case: Any=False , snake_case: Dict=1.0 , snake_case: Optional[Any]=0.2 , snake_case: Any=1 , snake_case: Tuple=0 , snake_case: Any=2 , snake_case: str=False , **snake_case: Optional[Any] , ) -> int: snake_case_ :List[Any] = vocab_size snake_case_ :List[Any] = max_position_embeddings snake_case_ :Any = d_model snake_case_ :Tuple = encoder_ffn_dim snake_case_ :Tuple = encoder_layers snake_case_ :List[str] = encoder_attention_heads snake_case_ :List[Any] = decoder_ffn_dim snake_case_ :Optional[Any] = decoder_layers snake_case_ :Optional[Any] = decoder_attention_heads snake_case_ :Tuple = dropout snake_case_ :List[str] = attention_dropout snake_case_ :Union[str, Any] = activation_dropout snake_case_ :Tuple = activation_function snake_case_ :Optional[int] = init_std snake_case_ :Union[str, Any] = encoder_layerdrop snake_case_ :int = decoder_layerdrop snake_case_ :Dict = use_cache snake_case_ :Optional[int] = encoder_layers snake_case_ :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ :int = router_z_loss_coef snake_case_ :Tuple = router_aux_loss_coef snake_case_ :Tuple = decoder_sparse_step snake_case_ :str = encoder_sparse_step snake_case_ :Optional[Any] = num_experts snake_case_ :Union[str, Any] = expert_capacity snake_case_ :Dict = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) snake_case_ :Any = router_dtype snake_case_ :List[str] = router_ignore_padding_tokens snake_case_ :Optional[int] = batch_prioritized_routing snake_case_ :Optional[int] = second_expert_policy snake_case_ :str = normalize_router_prob_before_dropping snake_case_ :Optional[int] = moe_eval_capacity_token_fraction snake_case_ :Tuple = moe_token_dropout snake_case_ :Optional[int] = output_router_logits super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , **snake_case , )
66
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __a = pd.read_csv("sample_data.csv", header=None) __a = df.shape[:1][0] # If you're using some other dataset input the target column __a = df.iloc[:, 1:2] __a = actual_data.values.reshape(len_data, 1) __a = MinMaxScaler().fit_transform(actual_data) __a = 10 __a = 5 __a = 20 __a = len_data - periods * look_back __a = actual_data[:division] __a = actual_data[division - look_back :] __a , __a = [], [] __a , __a = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __a = np.array(train_x) __a = np.array(test_x) __a = np.array([list(i.ravel()) for i in train_y]) __a = np.array([list(i.ravel()) for i in test_y]) __a = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __a = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __a = model.predict(x_test)
66
1
'''simple docstring''' def a_ ( _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case : Dict = [] __snake_case : Any = set({'(', '[', '{'} ) __snake_case : List[Any] = set({')', ']', '}'} ) __snake_case : List[Any] = {'{': '}', '[': ']', '(': ')'} for i in range(len(_UpperCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_UpperCAmelCase ) == 0 or (len(_UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_UpperCAmelCase ) == 0 def a_ ( ) -> Optional[int]: __snake_case : Any = input('Enter sequence of brackets: ' ) if is_balanced(_UpperCAmelCase ): print(_UpperCAmelCase ,'is balanced' ) else: print(_UpperCAmelCase ,'is not balanced' ) if __name__ == "__main__": main()
0
'''simple docstring''' from __future__ import annotations A__ : str = '''Muhammad Umer Farooq''' A__ : int = '''MIT''' A__ : Optional[int] = '''1.0.0''' A__ : List[Any] = '''Muhammad Umer Farooq''' A__ : Optional[Any] = '''[email protected]''' A__ : Optional[Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , __a : str ) -> None: '''simple docstring''' super().__init__() __snake_case : list[str] = [] __snake_case : Dict = domain def A_ ( self : Dict , __a : str , __a : list[tuple[str, str | None]] ) -> None: '''simple docstring''' # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case : Optional[Any] = parse.urljoin(self.domain , __a ) self.urls.append(__a ) def a_ ( _UpperCAmelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCAmelCase ).split('.' )[-2:] ) def a_ ( _UpperCAmelCase : str ) -> str: return parse.urlparse(_UpperCAmelCase ).netloc def a_ ( _UpperCAmelCase : str = "https://github.com" ) -> list[str]: __snake_case : List[Any] = get_domain_name(_UpperCAmelCase ) # Initialize the parser __snake_case : Tuple = Parser(_UpperCAmelCase ) try: # Open URL __snake_case : Any = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case : Dict = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case : List[Any] = requests.get(_UpperCAmelCase ) # Get the valid email. __snake_case : Optional[Any] = re.findall('[a-zA-Z0-9]+@' + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": A__ : Tuple = emails_from_url('''https://github.com''') print(F"""{len(emails)} emails found:""") print('''\n'''.join(sorted(emails)))
0
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {"vocab_file": "spm_char.model"} __a = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __a = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = ["input_ids", "attention_mask"] def __init__( self: List[Any] , snake_case: Optional[int] , snake_case: List[str]="<s>" , snake_case: Dict="</s>" , snake_case: str="<unk>" , snake_case: Optional[Any]="<pad>" , snake_case: Optional[Dict[str, Any]] = None , **snake_case: Tuple , ) -> Tuple: snake_case_ :str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) snake_case_ :Union[str, Any] = vocab_file snake_case_ :Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @property def lowerCAmelCase_ ( self: int ) -> List[str]: return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self: Dict ) -> Tuple: snake_case_ :Any = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ) -> int: snake_case_ :Optional[int] = self.__dict__.copy() snake_case_ :str = None return state def __setstate__( self: Union[str, Any] , snake_case: Tuple ) -> Optional[int]: snake_case_ :List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :Optional[int] = {} snake_case_ :Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> List[Any]: return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def lowerCAmelCase_ ( self: Optional[int] , snake_case: str ) -> Any: return self.sp_model.piece_to_id(UpperCAmelCase_ ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Tuple ) -> str: snake_case_ :Union[str, Any] = self.sp_model.IdToPiece(UpperCAmelCase_ ) return token def lowerCAmelCase_ ( self: Any , snake_case: Dict ) -> int: snake_case_ :List[str] = [] snake_case_ :Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ :str = [] else: current_sub_tokens.append(UpperCAmelCase_ ) out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] , snake_case: List[str]=None ) -> str: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self: int , snake_case: List[int] , snake_case: Optional[List[int]] = None , snake_case: bool = False ) -> List[str]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) snake_case_ :Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + suffix_ones return ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def lowerCAmelCase_ ( self: List[Any] , snake_case: str , snake_case: Optional[str] = None ) -> str: if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ :Any = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ :Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
66
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __UpperCAmelCase (unittest.TestCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[Any]=13 , UpperCAmelCase_: List[str]=7 , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: List[str]=True , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: str=99 , UpperCAmelCase_: List[Any]=32 , UpperCAmelCase_: Dict=5 , UpperCAmelCase_: Tuple=4 , UpperCAmelCase_: Optional[Any]=37 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: List[Any]=0.1 , UpperCAmelCase_: List[Any]=512 , UpperCAmelCase_: Any=16 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Union[str, Any]=0.02 , UpperCAmelCase_: Union[str, Any]=4 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_choices def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=UpperCAmelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self: List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _SCREAMING_SNAKE_CASE = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase_ , atol=1E-4 ) )
306
0
from string import ascii_uppercase _SCREAMING_SNAKE_CASE : Any = {char: i for i, char in enumerate(ascii_uppercase)} _SCREAMING_SNAKE_CASE : Union[str, Any] = dict(enumerate(ascii_uppercase)) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) SCREAMING_SNAKE_CASE__ = 0 while True: if x == i: SCREAMING_SNAKE_CASE__ = 0 if len(_A ) == len(_A ): break key += key[i] i += 1 return key def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 0 for letter in message: if letter == " ": cipher_text += " " else: SCREAMING_SNAKE_CASE__ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: SCREAMING_SNAKE_CASE__ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'THE GERMAN ATTACK' SCREAMING_SNAKE_CASE__ = 'SECRET' SCREAMING_SNAKE_CASE__ = generate_key(_A , _A ) SCREAMING_SNAKE_CASE__ = cipher_text(_A , _A ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(_A , _A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
353
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _SCREAMING_SNAKE_CASE : str = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : Dict = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _SCREAMING_SNAKE_CASE : int = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } _SCREAMING_SNAKE_CASE : Tuple = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def UpperCAmelCase_ ( _A ): '''simple docstring''' if isinstance(_A , _A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def UpperCAmelCase_ ( _A , _A , _A , _A , _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.norm.bias'''] SCREAMING_SNAKE_CASE__ = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE__ = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE__ = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE__ = checkpoint['''label_emb.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE__ = unet_config['''down_block_types'''] SCREAMING_SNAKE_CASE__ = unet_config['''layers_per_block'''] SCREAMING_SNAKE_CASE__ = unet_config['''attention_head_dim'''] SCREAMING_SNAKE_CASE__ = unet_config['''block_out_channels'''] SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = channels_list[0] for i, layer_type in enumerate(_A ): SCREAMING_SNAKE_CASE__ = channels_list[i] SCREAMING_SNAKE_CASE__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_A ): SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''down_blocks.{i}.downsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''input_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) current_layer += 1 SCREAMING_SNAKE_CASE__ = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.attentions.0''' SCREAMING_SNAKE_CASE__ = '''middle_block.1''' SCREAMING_SNAKE_CASE__ = convert_attention(_A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = '''mid_block.resnets.1''' SCREAMING_SNAKE_CASE__ = '''middle_block.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = unet_config['''up_block_types'''] for i, layer_type in enumerate(_A ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.1''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.resnets.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.0''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A , has_skip=_A ) SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.attentions.{j}''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer}.1''' SCREAMING_SNAKE_CASE__ = convert_attention( _A , _A , _A , _A , _A ) current_layer += 1 if i != len(_A ) - 1: SCREAMING_SNAKE_CASE__ = F'''up_blocks.{i}.upsamplers.0''' SCREAMING_SNAKE_CASE__ = F'''output_blocks.{current_layer-1}.2''' SCREAMING_SNAKE_CASE__ = convert_resnet(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE__ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : List[str] = strabool(args.class_cond) _SCREAMING_SNAKE_CASE : int = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: _SCREAMING_SNAKE_CASE : Union[str, Any] = None _SCREAMING_SNAKE_CASE : int = con_pt_to_diffuser(args.unet_path, unet_config) _SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _SCREAMING_SNAKE_CASE : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _SCREAMING_SNAKE_CASE : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _SCREAMING_SNAKE_CASE : int = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") _SCREAMING_SNAKE_CASE : int = CMStochasticIterativeScheduler(**scheduler_config) _SCREAMING_SNAKE_CASE : str = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
218
0
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence UpperCAmelCase : Optional[Any] = gray_code_sequence_string(lowerCAmelCase_ ) # # convert them to integers for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase : Optional[Any] = int(sequence[i] , 2 ) return sequence def UpperCamelCase( UpperCAmelCase_ ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase : Optional[int] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase : str = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase : List[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase : Union[str, Any] = '0' + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase : List[str] = '1' + smaller_sequence[i] sequence.append(lowerCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
151
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _snake_case : Tuple = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _snake_case : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a_ ( lowerCAmelCase_ : str ): if "://" in dataset_path: __lowerCAmelCase = dataset_path.split('://' )[1] return dataset_path def a_ ( lowerCAmelCase_ : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def a_ ( lowerCAmelCase_ : fsspec.AbstractFileSystem, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = not is_remote_filesystem(lowerCAmelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCAmelCase_ ), fs._strip_protocol(lowerCAmelCase_ ) ) else: fs.mv(lowerCAmelCase_, lowerCAmelCase_, recursive=lowerCAmelCase_ ) def a_ ( ): if hasattr(fsspec.asyn, 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = threading.Lock()
284
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowercase__ : Optional[int] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowercase__ : Tuple = TaTokenizerFast lowercase__ : List[str] = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowercase__ : Optional[int] = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
362
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Tuple = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'trocr' _snake_case : List[str] = ['past_key_values'] _snake_case : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any]=50265 , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : List[str]=12 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : List[Any]=4096 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=512 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Any=2 , **lowerCAmelCase__ : Optional[int] , ) -> Any: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
287
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = TFAutoModel.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[Any] = AutoModel.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : List[str] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Any = TFAutoModelForPreTraining.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = AutoModelForPreTraining.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> str: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Tuple = AutoModelForCausalLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Any = AutoModelForCausalLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : int = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : str = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Tuple = AutoModelForMaskedLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase , from_pt=lowercase) a__ , a__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(lowercase , from_tf=lowercase) a__ , a__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( lowercase , output_loading_info=lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : Optional[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : int = TFAutoModelForSequenceClassification.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Any = AutoModelForSequenceClassification.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a__ : List[Any] = AutoConfig.from_pretrained(lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase , from_pt=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) a__ : str = AutoModelForQuestionAnswering.from_pretrained(lowercase , from_tf=lowercase) self.assertIsNotNone(lowercase) self.assertIsInstance(lowercase , lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) a__ : Any = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase , from_pt=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410) a__ : int = AutoModelWithLMHead.from_pretrained(lowercase , from_tf=lowercase) self.assertIsInstance(lowercase , lowercase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowercase) , 1_4410)
99
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
1
def _a ( a :int ) -> Tuple: a = [] a = set({'''(''', '''[''', '''{'''} ) a = set({''')''', ''']''', '''}'''} ) a = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(a ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a ) == 0 or (len(a ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a ) == 0 def _a ( ) -> int: a = input('''Enter sequence of brackets: ''' ) if is_balanced(a ): print(a , '''is balanced''' ) else: print(a , '''is not balanced''' ) if __name__ == "__main__": main()
0
from __future__ import annotations UpperCAmelCase__ = "Muhammad Umer Farooq" UpperCAmelCase__ = "MIT" UpperCAmelCase__ = "1.0.0" UpperCAmelCase__ = "Muhammad Umer Farooq" UpperCAmelCase__ = "[email protected]" UpperCAmelCase__ = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None: """simple docstring""" super().__init__() a = [] a = domain def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None: """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: a = parse.urljoin(self.domain , __UpperCAmelCase ) self.urls.append(__UpperCAmelCase ) def _a ( a :str ) -> str: return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] ) def _a ( a :str ) -> str: return parse.urlparse(a ).netloc def _a ( a :str = "https://github.com" ) -> list[str]: a = get_domain_name(a ) # Initialize the parser a = Parser(a ) try: # Open URL a = requests.get(a ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through a = set() for link in parser.urls: # open URL. # read = requests.get(link) try: a = requests.get(a ) # Get the valid email. a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a ) if __name__ == "__main__": UpperCAmelCase__ = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
0
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , lowercase_ : Optional[int] , lowercase_ : int=13 , lowercase_ : Optional[int]=30 , lowercase_ : Dict=2 , lowercase_ : Any=3 , lowercase_ : Any=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=32 , lowercase_ : int=5 , lowercase_ : Dict=4 , lowercase_ : str=37 , lowercase_ : Tuple="gelu" , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Optional[int]=10 , lowercase_ : int=0.02 , lowercase_ : Union[str, Any]=None , ) -> Any: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def __UpperCAmelCase ( self : Dict) -> str: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Tuple) -> List[str]: """simple docstring""" _UpperCamelCase = ViTMSNModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Tuple) -> Dict: """simple docstring""" _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , labels=lowercase_) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}") print("Labels: {labels}") self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : str) -> str: """simple docstring""" _UpperCamelCase = ViTMSNModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds") def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" pass def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_) def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def __UpperCAmelCase ( self : int) -> str: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = ViTMSNModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def lowerCAmelCase__ ( ) ->int: '''simple docstring''' _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-msn-small") if is_vision_available() else None @slow def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" torch.manual_seed(2) _UpperCamelCase = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small").to(lowercase_) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase_ , return_tensors="pt").to(lowercase_) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowercase_) # verify the logits _UpperCamelCase = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) _UpperCamelCase = torch.tensor([-0.08_03, -0.44_54, -0.23_75]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowercase : Dict = logging.get_logger(__name__) lowercase : Union[str, Any] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __snake_case : def __init__( self ,snake_case=None ,**snake_case ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) lowercase : Any = model lowercase : Optional[Any] = kwargs.get("""model_save_dir""" ,snake_case ) lowercase : str = kwargs.get("""latest_model_name""" ,snake_case ) def __call__( self ,**snake_case ): '''simple docstring''' lowercase : Tuple = {k: np.array(snake_case ) for k, v in kwargs.items()} return self.model.run(snake_case ,snake_case ) @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case ,snake_case=None ,snake_case=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) lowercase : Optional[Any] = """CPUExecutionProvider""" return ort.InferenceSession(snake_case ,providers=[provider] ,sess_options=snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,**snake_case ): '''simple docstring''' lowercase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) lowercase : Dict = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case ,snake_case ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase : Dict = self.model_save_dir.joinpath(snake_case ) if src_path.exists(): lowercase : Optional[int] = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case ,snake_case ) except shutil.SameFileError: pass def _SCREAMING_SNAKE_CASE ( self ,snake_case ,**snake_case ,): '''simple docstring''' if os.path.isfile(snake_case ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(snake_case ,exist_ok=snake_case ) # saving model weights/files self._save_pretrained(snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case = None ,snake_case = None ,snake_case = False ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case ): lowercase : Any = OnnxRuntimeModel.load_model( os.path.join(snake_case ,snake_case ) ,provider=snake_case ,sess_options=snake_case ) lowercase : int = Path(snake_case ) # load model from hub else: # download model lowercase : Union[str, Any] = hf_hub_download( repo_id=snake_case ,filename=snake_case ,use_auth_token=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,) lowercase : int = Path(snake_case ).parent lowercase : Union[str, Any] = Path(snake_case ).name lowercase : int = OnnxRuntimeModel.load_model(snake_case ,provider=snake_case ,sess_options=snake_case ) return cls(model=snake_case ,**snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,snake_case = True ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : int = None if len(str(snake_case ).split("""@""" ) ) == 2: lowercase , lowercase : List[Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=snake_case ,revision=snake_case ,cache_dir=snake_case ,force_download=snake_case ,use_auth_token=snake_case ,**snake_case ,)
20
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
218
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' UpperCAmelCase__ = nn.Parameter(SCREAMING_SNAKE_CASE__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' UpperCAmelCase__ = nn.Parameter(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = np.asarray(weights[0] ) UpperCAmelCase__ = np.asarray(weights[1] ) UpperCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = np.asarray(weights[0] ) UpperCAmelCase__ = np.asarray(weights[1] ) UpperCAmelCase__ = np.asarray(weights[2] ) UpperCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = weights[0][0][0] UpperCAmelCase__ = np.asarray(layer_norm_a[0] ) UpperCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # lsh weights + output UpperCAmelCase__ = weights[0][1] if len(SCREAMING_SNAKE_CASE__ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) # intermediate weighs UpperCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE__ ) == 4: UpperCAmelCase__ = intermediate_weights[2] # layernorm 2 UpperCAmelCase__ = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate dense UpperCAmelCase__ = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate out UpperCAmelCase__ = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = torch_model.reformer # word embeds UpperCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' UpperCAmelCase__ = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # output layer norm UpperCAmelCase__ = np.asarray(weights[7][0] ) UpperCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # output embeddings UpperCAmelCase__ = np.asarray(weights[9][0] ) UpperCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase__ = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: UpperCAmelCase__ = pickle.load(SCREAMING_SNAKE_CASE__ )["""weights"""] set_model_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
355
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCamelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
61
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : str = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''lilt''' def __init__( self , __SCREAMING_SNAKE_CASE=3_05_22 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=10_24 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = vocab_size lowercase_ : Dict = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Tuple = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Optional[int] = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : List[str] = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : Tuple = classifier_dropout lowercase_ : Any = channel_shrink_ratio lowercase_ : List[Any] = max_ad_position_embeddings
93
from __future__ import annotations import collections import pprint from pathlib import Path def _a ( lowerCamelCase ): return "".join(sorted(lowerCamelCase ) ) def _a ( lowerCamelCase ): return word_by_signature[signature(lowerCamelCase )] _lowerCamelCase =Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _lowerCamelCase =sorted({word.strip().lower() for word in data.splitlines()}) _lowerCamelCase =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCamelCase ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
287
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str: A__ : List[str] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: A__ : Optional[Any] = 6 A__ : Union[str, Any] = 1_2_8 A__ : Dict = (2, 2, 1_8, 2) A__ : Optional[int] = (4, 8, 1_6, 3_2) elif "large" in model_name: A__ : Any = 1_2 A__ : str = 1_9_2 A__ : List[str] = (2, 2, 1_8, 2) A__ : Any = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""" ) A__ : Optional[int] = window_size A__ : Optional[int] = embed_dim A__ : Dict = depths A__ : List[str] = num_heads return config def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Optional[int]: if "encoder.mask_token" in name: A__ : Dict = name.replace("""encoder.mask_token""", """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: A__ : List[str] = name.replace("""encoder.patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: A__ : Union[str, Any] = name.replace("""encoder.patch_embed.norm""", """embeddings.norm""" ) if "attn.proj" in name: A__ : List[Any] = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name: A__ : List[str] = name.replace("""attn""", """attention.self""" ) if "norm1" in name: A__ : Tuple = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : Optional[Any] = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: A__ : str = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : str = name.replace("""mlp.fc2""", """output.dense""" ) if name == "encoder.norm.weight": A__ : List[str] = """layernorm.weight""" if name == "encoder.norm.bias": A__ : Dict = """layernorm.bias""" if "decoder" in name: pass else: A__ : Tuple = """swin.""" + name return name def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any] ) ->Tuple: for key in orig_state_dict.copy().keys(): A__ : str = orig_state_dict.pop(UpperCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: A__ : Optional[Any] = key.split(""".""" ) A__ : Union[str, Any] = int(key_split[2] ) A__ : Tuple = int(key_split[4] ) A__ : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ : Optional[Any] = val[:dim, :] A__ : int = val[ dim : dim * 2, : ] A__ : Union[str, Any] = val[-dim:, :] else: A__ : List[Any] = val[ :dim ] A__ : List[str] = val[ dim : dim * 2 ] A__ : int = val[ -dim: ] else: A__ : Optional[Any] = val return orig_state_dict def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ) ->List[Any]: A__ : Tuple = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""model"""] A__ : List[Any] = get_swin_config(UpperCAmelCase__ ) A__ : Tuple = SwinForMaskedImageModeling(UpperCAmelCase__ ) model.eval() A__ : Dict = convert_state_dict(UpperCAmelCase__, UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} ) A__ : str = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) A__ : List[Any] = image_processor(images=UpperCAmelCase__, return_tensors="""pt""" ) with torch.no_grad(): A__ : Optional[Any] = model(**UpperCAmelCase__ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowercase : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _lowercase : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _lowercase : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowercase : str = False @property def UpperCAmelCase ( self : int ) -> Tuple: return 3_2 @property def UpperCAmelCase ( self : Any ) -> Union[str, Any]: return 3_2 @property def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: return self.time_input_dim @property def UpperCAmelCase ( self : Any ) -> List[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase ( self : Dict ) -> Dict: return 1_0_0 @property def UpperCAmelCase ( self : int ) -> int: torch.manual_seed(0 ) __lowerCAmelCase: Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowerCAmelCase: str = UNetaDConditionModel(**UpperCAmelCase ) return model @property def UpperCAmelCase ( self : str ) -> Tuple: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase: Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self : Dict ) -> Tuple: __lowerCAmelCase: int = self.dummy_unet __lowerCAmelCase: Optional[Any] = self.dummy_movq __lowerCAmelCase: str = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __lowerCAmelCase: Optional[int] = DDIMScheduler(**UpperCAmelCase ) __lowerCAmelCase: int = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : int=0 ) -> List[str]: __lowerCAmelCase: str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __lowerCAmelCase: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create init_image __lowerCAmelCase: int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __lowerCAmelCase: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase: Dict = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint __lowerCAmelCase: Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith('mps' ): __lowerCAmelCase: List[Any] = torch.manual_seed(UpperCAmelCase ) else: __lowerCAmelCase: str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCAmelCase: List[str] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase: int = 'cpu' __lowerCAmelCase: List[str] = self.get_dummy_components() __lowerCAmelCase: Optional[Any] = self.pipeline_class(**UpperCAmelCase ) __lowerCAmelCase: str = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) __lowerCAmelCase: Dict = output.images __lowerCAmelCase: str = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] __lowerCAmelCase: Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: int = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : int ) -> Tuple: __lowerCAmelCase: str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) __lowerCAmelCase: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowerCAmelCase: Tuple = init_image.resize((5_1_2, 5_1_2) ) __lowerCAmelCase: str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __lowerCAmelCase: Dict = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 255.0 __lowerCAmelCase: Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowerCAmelCase: Dict = 'A robot, 4k photo' __lowerCAmelCase: Union[str, Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) __lowerCAmelCase: List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __lowerCAmelCase: int = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = pipe_prior( UpperCAmelCase , image=UpperCAmelCase , strength=0.85 , generator=UpperCAmelCase , negative_prompt='' , ).to_tuple() __lowerCAmelCase: Any = pipeline( image=UpperCAmelCase , image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) __lowerCAmelCase: Any = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
322
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case__ : str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case__ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _lowerCamelCase ( lowerCamelCase_ : list[list[int]] ): """simple docstring""" UpperCAmelCase_ : Tuple = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : List[Any] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase_ : Optional[Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowerCamelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowerCamelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowerCamelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase_ : str = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowerCamelCase_ ) return next_generation def _lowerCamelCase ( lowerCamelCase_ : list[list[int]] , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : int = [] for _ in range(lowerCamelCase_ ): # Create output image UpperCAmelCase_ : List[Any] = Image.new('RGB' , (len(cells[0] ), len(lowerCamelCase_ )) ) UpperCAmelCase_ : List[Any] = img.load() # Save cells to image for x in range(len(lowerCamelCase_ ) ): for y in range(len(cells[0] ) ): UpperCAmelCase_ : Optional[int] = 255 - cells[y][x] * 255 UpperCAmelCase_ : Optional[int] = (colour, colour, colour) # Save image images.append(lowerCamelCase_ ) UpperCAmelCase_ : int = new_generation(lowerCamelCase_ ) return images if __name__ == "__main__": snake_case__ : str = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
274
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase: int = logging.get_logger(__name__) _lowercase: str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _lowercase: List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } _lowercase: str = {'facebook/blenderbot_small-90M': 512} def a( A : List[Any] ) -> List[str]: """simple docstring""" a = set() a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a = char a = set(A ) return pairs class _lowercase ( lowerCamelCase_ ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="__start__" , lowerCamelCase_="__end__" , lowerCamelCase_="__unk__" , lowerCamelCase_="__null__" , **lowerCamelCase_ , ): """simple docstring""" super().__init__(unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a ) with open(__a , encoding="utf-8" ) as vocab_handle: a = json.load(__a ) a = {v: k for k, v in self.encoder.items()} with open(__a , encoding="utf-8" ) as merges_handle: a = merges_handle.read().split("\n" )[1:-1] a = [tuple(merge.split() ) for merge in merges] a = dict(zip(__a , range(len(__a ) ) ) ) a = {} @property def UpperCamelCase_ (self ): """simple docstring""" return len(self.encoder ) def UpperCamelCase_ (self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if token in self.cache: return self.cache[token] a = re.sub("([.,!?()])" , R" \1" , __a ) a = re.sub("(')" , R" \1 " , __a ) a = re.sub(R"\s{2,}" , " " , __a ) if "\n" in token: a = token.replace("\n" , " __newln__" ) a = token.split(" " ) a = [] for token in tokens: if not len(__a ): continue a = token.lower() a = tuple(__a ) a = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) a = get_pairs(__a ) if not pairs: words.append(__a ) continue while True: a = min(__a , key=lambda lowerCamelCase_ : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a , a = bigram a = [] a = 0 while i < len(__a ): try: a = word.index(__a , __a ) new_word.extend(word[i:j] ) a = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a = tuple(__a ) a = new_word if len(__a ) == 1: break else: a = get_pairs(__a ) a = "@@ ".join(__a ) a = word[:-4] a = word words.append(__a ) return " ".join(__a ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] a = re.findall(R"\S+\n?" , __a ) for token in words: split_tokens.extend(list(self.bpe(__a ).split(" " ) ) ) return split_tokens def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = token.lower() return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.decoder.get(__a , self.unk_token ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = " ".join(__a ).replace("@@ " , "" ).strip() return out_string def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(__a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) a = 0 with open(__a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) a = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return vocab_file, merge_file
227
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
0
def UpperCamelCase ( _a , _a , _a , _a , _a , _a ) -> int: '''simple docstring''' if index == r: for j in range(_a ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase_ :Any = arr[i] combination_util(_a , _a , _a , index + 1 , _a , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_a , _a , _a , _a , _a , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCamelCase ( _a , _a , _a ) -> Optional[Any]: '''simple docstring''' lowercase_ :List[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(_a , _a , _a , 0 , _a , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
363
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") SCREAMING_SNAKE_CASE : int = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: SCREAMING_SNAKE_CASE : Optional[Any] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) SCREAMING_SNAKE_CASE : Any = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _lowerCamelCase ( lowercase__ ): UpperCAmelCase_ = """cvt""" def __init__(self , __a=3 , __a=[7, 3, 3] , __a=[4, 2, 2] , __a=[2, 1, 1] , __a=[64, 1_92, 3_84] , __a=[1, 3, 6] , __a=[1, 2, 10] , __a=[4.0, 4.0, 4.0] , __a=[0.0, 0.0, 0.0] , __a=[0.0, 0.0, 0.0] , __a=[0.0, 0.0, 0.1] , __a=[True, True, True] , __a=[False, False, True] , __a=["dw_bn", "dw_bn", "dw_bn"] , __a=[3, 3, 3] , __a=[1, 1, 1] , __a=[2, 2, 2] , __a=[1, 1, 1] , __a=[1, 1, 1] , __a=0.02 , __a=1e-1_2 , **__a , ) -> Optional[int]: super().__init__(**lowercase_ ) UpperCamelCase = num_channels UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = depth UpperCamelCase = mlp_ratio UpperCamelCase = attention_drop_rate UpperCamelCase = drop_rate UpperCamelCase = drop_path_rate UpperCamelCase = qkv_bias UpperCamelCase = cls_token UpperCamelCase = qkv_projection_method UpperCamelCase = kernel_qkv UpperCamelCase = padding_kv UpperCamelCase = stride_kv UpperCamelCase = padding_q UpperCamelCase = stride_q UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps
153
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , lowercase_=2 , ): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : int = (image_size // patch_size) ** 2 UpperCAmelCase_ : Optional[Any] = num_patches + 2 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = DeiTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Optional[Any] = DeiTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : List[str] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[int] = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = config_and_inputs UpperCAmelCase_ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : List[str] = False def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = DeiTModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowercase_ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_=False ): """simple docstring""" UpperCAmelCase_ : Tuple = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase_ : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Dict = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase_ : List[str] = model_class(lowercase_ ) model.gradient_checkpointing_enable() model.to(lowercase_ ) model.train() UpperCAmelCase_ : Optional[int] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCAmelCase_ : Any = model(**lowercase_ ).loss loss.backward() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCAmelCase_ : str = problem_type["title"] UpperCAmelCase_ : List[Any] = problem_type["num_labels"] UpperCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase_ : int = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if problem_type["num_labels"] > 1: UpperCAmelCase_ : List[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_ ) as warning_list: UpperCAmelCase_ : List[str] = model(**lowercase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = DeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( ): UpperCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( lowercase_ ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowercase_ ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCAmelCase_ : str = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ : str = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : List[str] = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ : int = model(lowercase_ )
61
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowercase__ : Optional[int] = 'sshleifer/mar_enro_6_3_student' class __lowerCAmelCase ( _snake_case ): """simple docstring""" def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=UpperCamelCase__ , ) _UpperCamelCase = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' MarianMTModel.from_pretrained(UpperCamelCase__ ) @slow @require_torch_gpu def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _UpperCamelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _UpperCamelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''\"$@\"''' , '''''' ) for k, v in env_vars_to_replace.items(): _UpperCamelCase = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) ) _UpperCamelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _UpperCamelCase = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future _UpperCamelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): _UpperCamelCase = argparse.ArgumentParser() _UpperCamelCase = pl.Trainer.add_argparse_args(UpperCamelCase__ ) _UpperCamelCase = SummarizationModule.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = main(UpperCamelCase__ ) # Check metrics _UpperCamelCase = load_json(model.metrics_save_path ) _UpperCamelCase = metrics['''val'''][0] _UpperCamelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , UpperCamelCase__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _UpperCamelCase = os.listdir(UpperCamelCase__ ) _UpperCamelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _UpperCamelCase = os.path.join(args.output_dir , UpperCamelCase__ ) _UpperCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) _UpperCamelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _UpperCamelCase = {os.path.basename(UpperCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class __lowerCAmelCase ( _snake_case ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" _UpperCamelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _UpperCamelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _UpperCamelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''\"$@\"''' , '''''' ) _UpperCamelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _UpperCamelCase = bash_script.replace(UpperCamelCase__ , str(UpperCamelCase__ ) ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = bash_script.replace('''--fp16''' , '''''' ) _UpperCamelCase = 6 _UpperCamelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', f"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(UpperCamelCase__ , '''argv''' , UpperCamelCase__ ): _UpperCamelCase = argparse.ArgumentParser() _UpperCamelCase = pl.Trainer.add_argparse_args(UpperCamelCase__ ) _UpperCamelCase = SummarizationDistiller.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) _UpperCamelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _UpperCamelCase = distill_main(UpperCamelCase__ ) # Check metrics _UpperCamelCase = load_json(model.metrics_save_path ) _UpperCamelCase = metrics['''val'''][0] _UpperCamelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , UpperCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict _UpperCamelCase = os.listdir(UpperCamelCase__ ) _UpperCamelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] _UpperCamelCase = os.path.join(args.output_dir , UpperCamelCase__ ) _UpperCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) _UpperCamelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _UpperCamelCase = {os.path.basename(UpperCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
363
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowercase__ : Any = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowercase__ : Tuple = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = CamembertTokenizer _snake_case : str = CamembertTokenizerFast _snake_case : int = True _snake_case : List[str] = True def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''<pad>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCamelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase__ , )
287
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): SCREAMING_SNAKE_CASE_ = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> str: '''simple docstring''' return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __snake_case : Optional[bool] = field( default=lowerCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) __snake_case : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) __snake_case : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) __snake_case : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) __snake_case : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) __snake_case : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) __snake_case : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) __snake_case : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) __snake_case : bool = field( default=lowerCAmelCase_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) __snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __snake_case : Optional[int] = field( default=lowerCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) __snake_case : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCamelCase__ : '''simple docstring''' __snake_case : WavaVecaProcessor __snake_case : Union[bool, str] = True __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : Optional[int] = None __snake_case : Optional[int] = None def __call__( self : Optional[int] ,lowerCamelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' SCREAMING_SNAKE_CASE = [{"""input_values""": feature["""input_values"""]} for feature in features] SCREAMING_SNAKE_CASE = [{"""input_ids""": feature["""labels"""]} for feature in features] SCREAMING_SNAKE_CASE = self.processor.pad( lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) SCREAMING_SNAKE_CASE = self.processor.pad( labels=lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length_labels ,pad_to_multiple_of=self.pad_to_multiple_of_labels ,return_tensors="""pt""" ,) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) ,-100 ) SCREAMING_SNAKE_CASE = labels return batch class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : nn.Module ,lowerCamelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() SCREAMING_SNAKE_CASE = self._prepare_inputs(lowerCamelCase__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE = self.compute_loss(lowerCamelCase__ ,lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = self.compute_loss(lowerCamelCase__ ,lowerCamelCase__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase__ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase__ ) else: loss.backward() return loss.detach() def __lowercase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , _SCREAMING_SNAKE_CASE ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: SCREAMING_SNAKE_CASE = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) SCREAMING_SNAKE_CASE = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer SCREAMING_SNAKE_CASE = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = re.sub(_SCREAMING_SNAKE_CASE , """""" , batch["""sentence"""] ).lower() + """ """ return batch SCREAMING_SNAKE_CASE = train_dataset.map(_SCREAMING_SNAKE_CASE , remove_columns=["""sentence"""] ) SCREAMING_SNAKE_CASE = eval_dataset.map(_SCREAMING_SNAKE_CASE , remove_columns=["""sentence"""] ) def extract_all_chars(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = """ """.join(batch["""text"""] ) SCREAMING_SNAKE_CASE = list(set(_SCREAMING_SNAKE_CASE ) ) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE = train_dataset.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , batch_size=-1 , keep_in_memory=_SCREAMING_SNAKE_CASE , remove_columns=train_dataset.column_names , ) SCREAMING_SNAKE_CASE = train_dataset.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , batch_size=-1 , keep_in_memory=_SCREAMING_SNAKE_CASE , remove_columns=eval_dataset.column_names , ) SCREAMING_SNAKE_CASE = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) SCREAMING_SNAKE_CASE = {v: k for k, v in enumerate(_SCREAMING_SNAKE_CASE )} SCREAMING_SNAKE_CASE = vocab_dict[""" """] del vocab_dict[" "] SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = min(len(_SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE = train_dataset.select(range(_SCREAMING_SNAKE_CASE ) ) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_val_samples ) ) SCREAMING_SNAKE_CASE = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = torchaudio.load(batch["""path"""] ) SCREAMING_SNAKE_CASE = resampler(_SCREAMING_SNAKE_CASE ).squeeze().numpy() SCREAMING_SNAKE_CASE = 1_60_00 SCREAMING_SNAKE_CASE = batch["""text"""] return batch SCREAMING_SNAKE_CASE = train_dataset.map( _SCREAMING_SNAKE_CASE , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( _SCREAMING_SNAKE_CASE , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_SCREAMING_SNAKE_CASE ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" SCREAMING_SNAKE_CASE = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(_SCREAMING_SNAKE_CASE ) return batch SCREAMING_SNAKE_CASE = train_dataset.map( _SCREAMING_SNAKE_CASE , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( _SCREAMING_SNAKE_CASE , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , ) # Metric SCREAMING_SNAKE_CASE = datasets.load_metric("""wer""" ) def compute_metrics(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = pred.predictions SCREAMING_SNAKE_CASE = np.argmax(_SCREAMING_SNAKE_CASE , axis=-1 ) SCREAMING_SNAKE_CASE = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE = processor.batch_decode(_SCREAMING_SNAKE_CASE ) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE = processor.batch_decode(pred.label_ids , group_tokens=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = wer_metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE = DataCollatorCTCWithPadding(processor=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) # Initialize our Trainer SCREAMING_SNAKE_CASE = CTCTrainer( model=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE = min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("""train""" , _SCREAMING_SNAKE_CASE ) trainer.save_metrics("""train""" , _SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = data_args.max_val_samples if data_args.max_val_samples is not None else len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("""eval""" , _SCREAMING_SNAKE_CASE ) trainer.save_metrics("""eval""" , _SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
296
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git_vision_model" def __init__( self : List[Any] ,lowerCamelCase__ : Dict=768 ,lowerCamelCase__ : Union[str, Any]=3072 ,lowerCamelCase__ : Optional[int]=12 ,lowerCamelCase__ : Tuple=12 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]="quick_gelu" ,lowerCamelCase__ : Optional[Any]=1e-5 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,**lowerCamelCase__ : Union[str, Any] ,) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git" def __init__( self : Optional[int] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=30522 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Union[str, Any]=6 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : List[str]=3072 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : List[str]=1024 ,lowerCamelCase__ : List[str]=0.02 ,lowerCamelCase__ : str=1e-1_2 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Optional[int]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int=101 ,lowerCamelCase__ : int=102 ,lowerCamelCase__ : Dict=None ,**lowerCamelCase__ : List[Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = num_image_with_embedding SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
296
1
def lowerCamelCase__ ( snake_case_ : int = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
238
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( __a :Tuple ) -> int: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( __a :Optional[Any] ) -> Tuple: """simple docstring""" A__ = create_tensor(__a ) A__ = gather(__a ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( __a :Dict ) -> Dict: """simple docstring""" A__ = [state.process_index] A__ = gather_object(__a ) assert len(__a ) == state.num_processes, F'{gathered_obj}, {len(__a )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( __a :List[Any] ) -> int: """simple docstring""" A__ = create_tensor(__a ) A__ = broadcast(__a ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( __a :List[str] ) -> Union[str, Any]: """simple docstring""" if state.is_main_process: A__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A__ = torch.arange(state.num_processes ).to(state.device ) A__ = pad_across_processes(__a ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( __a :List[str] ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """sum""" ) A__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :List[Any] ) -> Dict: """simple docstring""" if state.num_processes != 2: return A__ = create_tensor(__a ) A__ = reduce(__a , """mean""" ) A__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__a , __a ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( __a :Dict ) -> List[str]: """simple docstring""" main() def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(__a ) state.print("""testing gather_object""" ) test_gather_object(__a ) state.print("""testing broadcast""" ) test_broadcast(__a ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(__a ) state.print("""testing reduce_sum""" ) test_reduce_sum(__a ) state.print("""testing reduce_mean""" ) test_reduce_mean(__a ) if __name__ == "__main__": main()
274
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A : Tuple = logging.getLogger(__name__) def __lowerCamelCase ( __a :Optional[int] , __a :List[str] ) -> Tuple: """simple docstring""" A__ = np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( __a :Tuple ) -> Dict: """simple docstring""" with open(__a , encoding="""utf_8""" ) as f: A__ = csv.reader(__a ) A__ = [] next(__a ) # skip the first line for line in tqdm(__a ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( __a :Optional[int] , __a :List[Any] , __a :Dict , __a :Optional[Any] , __a :Optional[Any] , __a :int ) -> Union[str, Any]: """simple docstring""" A__ = [] for dataset in encoded_datasets: A__ = len(__a ) A__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A__ = np.zeros((n_batch, 2) , dtype=np.intaa ) A__ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) A__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = with_conta A__ = with_conta A__ = len(__a ) - 1 A__ = len(__a ) - 1 A__ = with_conta A__ = with_conta A__ = mc_label A__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__a , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=__a , type=__a , required=__a , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=__a , default="""""" ) parser.add_argument("""--eval_dataset""" , type=__a , default="""""" ) parser.add_argument("""--seed""" , type=__a , default=4_2 ) parser.add_argument("""--num_train_epochs""" , type=__a , default=3 ) parser.add_argument("""--train_batch_size""" , type=__a , default=8 ) parser.add_argument("""--eval_batch_size""" , type=__a , default=1_6 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=__a , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=__a , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=__a , default=6.25E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=__a , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=__a , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=__a , default=0.01 ) parser.add_argument("""--lm_coef""" , type=__a , default=0.9 ) parser.add_argument("""--n_valid""" , type=__a , default=3_7_4 ) parser.add_argument("""--server_ip""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A__ = ["""_start_""", """_delimiter_""", """_classify_"""] A__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) A__ = tokenizer.convert_tokens_to_ids(__a ) A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a :Tuple ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info("""Encoding dataset...""" ) A__ = load_rocstories_dataset(args.train_dataset ) A__ = load_rocstories_dataset(args.eval_dataset ) A__ = (train_dataset, eval_dataset) A__ = tokenize_and_encode(__a ) # Compute the max input length for the Transformer A__ = model.config.n_positions // 2 - 2 A__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A__ = min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A__ = pre_process_datasets(__a , __a , __a , *__a ) A__ , A__ = tensor_datasets[0], tensor_datasets[1] A__ = TensorDataset(*__a ) A__ = RandomSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) A__ = TensorDataset(*__a ) A__ = SequentialSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A__ = args.max_steps A__ = args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: A__ = len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs A__ = list(model.named_parameters() ) A__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A__ = AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) A__ = get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: A__ , A__ , A__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): A__ = 0 A__ = 0 A__ = tqdm(__a , desc="""Training""" ) for step, batch in enumerate(__a ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch A__ = model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A__ = """Training loss: {:.2e} lr: {:.2e}""".format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A__ = model.module if hasattr(__a , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A__ = os.path.join(args.output_dir , __a ) A__ = os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() A__ , A__ = 0, 0 A__ , A__ = 0, 0 for batch in tqdm(__a , desc="""Evaluating""" ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch with torch.no_grad(): A__ , A__ , A__ , A__ = model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = mc_logits.detach().cpu().numpy() A__ = mc_labels.to("""cpu""" ).numpy() A__ = accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A__ = eval_loss / nb_eval_steps A__ = eval_accuracy / nb_eval_examples A__ = tr_loss / nb_tr_steps if args.do_train else None A__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
274
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowercase : int =[ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowerCAmelCase_ ( _lowercase : List[Any]=True) -> str: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a__ ) ) class snake_case__ (a__ ): """simple docstring""" __lowerCAmelCase :int = None __lowerCAmelCase :Dict = None def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Any: """simple docstring""" with TemporaryDirectory() as tmp_dir: a__ : Dict = dataset_module_factory(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ) a__ : Tuple = import_main_class(dataset_module.module_path , dataset=SCREAMING_SNAKE_CASE_ ) a__ : DatasetBuilder = builder_cls( cache_dir=SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ , hash=dataset_module.hash , ) a__ : Optional[int] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=SCREAMING_SNAKE_CASE_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) a__ : List[str] = cached_path(SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ ) self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) @pytest.mark.integration def lowerCAmelCase_ ( _lowercase : Any) -> List[str]: """simple docstring""" a__ : str = tmp_path_factory.mktemp("""test_hf_gcp""") / 'test_wikipedia_simple' a__ : Tuple = dataset_module_factory("""wikipedia""" , cache_dir=snake_case__) a__ : Dict = import_main_class(dataset_module.module_path) a__ : DatasetBuilder = builder_cls( cache_dir=snake_case__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam a__ : List[Any] = None builder_instance.download_and_prepare() a__ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> Optional[Any]: """simple docstring""" a__ : List[str] = dataset_module_factory("""wikipedia""" , cache_dir=snake_case__) a__ : int = import_main_class(dataset_module.module_path , dataset=snake_case__) a__ : DatasetBuilder = builder_cls( cache_dir=snake_case__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) a__ : Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(snake_case__ , snake_case__) assert "train" in ds assert isinstance(ds["""train"""] , snake_case__) assert next(iter(ds["""train"""]))
365
import torch from diffusers import StableDiffusionPipeline _lowercase : Optional[int] ="path-to-your-trained-model" _lowercase : Union[str, Any] =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _lowercase : Any ="A photo of sks dog in a bucket" _lowercase : Any =pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
266
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = len(lowerCamelCase__ ) + 1 _A : List[Any] = len(lowerCamelCase__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _A : Any = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] # since string of zero length match pattern of zero length _A : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1,lowerCamelCase__ ): _A : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1,lowerCamelCase__ ): _A : Any = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1,lowerCamelCase__ ): for j in range(1,lowerCamelCase__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _A : int = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _A : int = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _A : List[str] = dp[i - 1][j] else: _A : int = 0 else: _A : Union[str, Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _snake_case = "aab" _snake_case = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Optional[Any] = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[int]: lowercase__ : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ : Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ : Dict = [3, 3, 3, 3] lowercase__ : str = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ : List[str] = [4, 4, 4, 4] lowercase__ : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ : List[str] = [3, 3, 3, 3] else: lowercase__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ : Optional[int] = 96 elif "small" in model_name: lowercase__ : Union[str, Any] = 96 elif "base" in model_name: lowercase__ : Tuple = 1_28 elif "large" in model_name: lowercase__ : Any = 1_92 elif "xlarge" in model_name: lowercase__ : Any = 2_56 elif "huge" in model_name: lowercase__ : Union[str, Any] = 3_52 # set label information lowercase__ : List[Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ : Optional[int] = '''imagenet-22k-id2label.json''' else: lowercase__ : Optional[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Dict = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : int = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: if "patch_embed.proj" in name: lowercase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ : Dict = '''encoder.''' + name if "encoder.layers" in name: lowercase__ : Tuple = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ : Union[str, Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ : Dict = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ : Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ : Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ : Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__ : Dict = '''layernorm.bias''' if "head" in name: lowercase__ : Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__ : List[Any] = '''focalnet.''' + name return name def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> List[str]: # fmt: off lowercase__ : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ : Optional[int] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowerCamelCase ) lowercase__ : str = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ : int = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val lowercase__ : List[Any] = get_focalnet_config(__lowerCamelCase ) lowercase__ : Optional[int] = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion lowercase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : int = BitImageProcessor( do_resize=__lowerCamelCase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=2_24 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) lowercase__ : str = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase__ : List[str] = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : List[str] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__ : Optional[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) lowercase__ : Optional[Any] = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__ : Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__ : Optional[int] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__ : Dict = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__ : List[str] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__ : List[str] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
302
1
import numpy as np snake_case : List[str] = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class _snake_case : def __init__( self ): a :Dict = np.array(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a , a :Optional[int] = np.where(letter == self.SQUARE ) a :List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :Tuple = self.SQUARE[indexa - 1, indexa - 1] return letter def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[str] = message.lower() a :str = message.replace(''' ''' , '''''' ) a :Optional[Any] = message.replace('''j''' , '''i''' ) a :Optional[Any] = np.empty((2, len(_lowerCamelCase )) ) for letter_index in range(len(_lowerCamelCase ) ): a :str = self.letter_to_numbers(message[letter_index] ) a :Union[str, Any] = numbers[0] a :Dict = numbers[1] a :Optional[Any] = first_step.reshape(2 * len(_lowerCamelCase ) ) a :List[Any] = '''''' for numbers_index in range(len(_lowerCamelCase ) ): a :Tuple = int(second_step[numbers_index * 2] ) a :List[Any] = int(second_step[(numbers_index * 2) + 1] ) a :Dict = self.numbers_to_letter(_lowerCamelCase , _lowerCamelCase ) a :Dict = encoded_message + letter return encoded_message def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = message.lower() message.replace(''' ''' , '''''' ) a :Any = np.empty(2 * len(_lowerCamelCase ) ) for letter_index in range(len(_lowerCamelCase ) ): a :Union[str, Any] = self.letter_to_numbers(message[letter_index] ) a :int = numbers[0] a :Optional[Any] = numbers[1] a :Optional[Any] = first_step.reshape((2, len(_lowerCamelCase )) ) a :Tuple = '''''' for numbers_index in range(len(_lowerCamelCase ) ): a :Union[str, Any] = int(second_step[0, numbers_index] ) a :Union[str, Any] = int(second_step[1, numbers_index] ) a :Tuple = self.numbers_to_letter(_lowerCamelCase , _lowerCamelCase ) a :Union[str, Any] = decoded_message + letter return decoded_message
94
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase =logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = PILImageResampling.BILINEAR , __magic_name__ = True , __magic_name__ = 1 / 2_5_5 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): super().__init__(**__magic_name__ ) lowerCamelCase : Dict = size if size is not None else {"""shortest_edge""": 3_8_4} lowerCamelCase : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Dict = do_resize lowerCamelCase : List[Any] = size # Default value set here for backwards compatibility where the value in config is None lowerCamelCase : Any = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowerCamelCase : Union[str, Any] = resample lowerCamelCase : str = do_rescale lowerCamelCase : Union[str, Any] = rescale_factor lowerCamelCase : Tuple = do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ): lowerCamelCase : Union[str, Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowerCamelCase : str = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowerCamelCase : List[str] = int(shortest_edge / crop_pct ) lowerCamelCase : Optional[Any] = get_resize_output_image_size(__magic_name__ , size=__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : Optional[int] = resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__magic_name__ , size=(shortest_edge, shortest_edge) , data_format=__magic_name__ , **__magic_name__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __magic_name__ , size=(shortest_edge, shortest_edge) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ): return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ): lowerCamelCase : str = do_resize if do_resize is not None else self.do_resize lowerCamelCase : Optional[Any] = crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase : Optional[int] = resample if resample is not None else self.resample lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase : Tuple = image_std if image_std is not None else self.image_std lowerCamelCase : Dict = size if size is not None else self.size lowerCamelCase : str = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) lowerCamelCase : List[str] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase : Optional[Any] = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: lowerCamelCase : List[Any] = [self.resize(image=__magic_name__ , size=__magic_name__ , crop_pct=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCamelCase : Union[str, Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: lowerCamelCase : List[Any] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] lowerCamelCase : Optional[int] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCamelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
287
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } __SCREAMING_SNAKE_CASE : Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase_( lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: for attribute in key.split('''.''' ): _lowerCamelCase = getattr(lowercase_ , lowercase_ ) if weight_type is not None: _lowerCamelCase = getattr(lowercase_ , lowercase_ ).shape else: _lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_( lowercase_ : Union[str, Any] , lowercase_ : int ) -> str: _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(lowercase_ )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: _lowerCamelCase = """weight_g""" elif "weight_v" in name: _lowerCamelCase = """weight_v""" elif "bias" in name: _lowerCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase = """weight""" else: _lowerCamelCase = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] ) -> int: _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any=None , lowercase_ : Tuple=None , lowercase_ : str=True ) -> List[Any]: if config_path is not None: _lowerCamelCase = UniSpeechSatConfig.from_pretrained(lowercase_ ) else: _lowerCamelCase = UniSpeechSatConfig() _lowerCamelCase = """""" if is_finetuned: _lowerCamelCase = UniSpeechSatForCTC(lowercase_ ) else: _lowerCamelCase = UniSpeechSatForPreTraining(lowercase_ ) _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _lowerCamelCase = model[0].eval() recursively_load_weights(lowercase_ , lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
359
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
238
"""simple docstring""" from __future__ import annotations _lowercase : Dict = 1.6_021E-19 # units = C def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
238
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def a_ ( _lowercase = "isbn/0140328726" ): _UpperCamelCase : Tuple = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: _UpperCamelCase : Optional[int] = F"""{olid} is not a valid Open Library olid""" raise ValueError(lowercase__ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def a_ ( _lowercase ): _UpperCamelCase : Optional[int] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } _UpperCamelCase : Any = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _UpperCamelCase : int = [ get_openlibrary_data(author['''key'''] )["""name"""] for author in data["""Authors"""] ] _UpperCamelCase : Union[str, Any] = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase__ , lowercase__ ): _UpperCamelCase : int = """, """.join(lowercase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCamelCase_ =input("""\nEnter the ISBN code to search (or \'quit\' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCamelCase_ =summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print("""\n""".join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
351
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ =0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ =[int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _a : def __init__( self : str ) -> str: '''simple docstring''' _UpperCamelCase : str = WATERMARK_BITS _UpperCamelCase : Optional[int] = WatermarkEncoder() self.encoder.set_watermark('''bits''', self.watermark ) def snake_case ( self : Dict, lowerCAmelCase__ : torch.FloatTensor ) -> int: '''simple docstring''' if images.shape[-1] < 2_5_6: return images _UpperCamelCase : Union[str, Any] = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1 ).float().numpy() _UpperCamelCase : List[str] = [self.encoder.encode(lowerCAmelCase__, '''dwtDct''' ) for image in images] _UpperCamelCase : Dict = torch.from_numpy(np.array(lowerCAmelCase__ ) ).permute(0, 3, 1, 2 ) _UpperCamelCase : Optional[int] = torch.clamp(2 * (images / 2_5_5 - 0.5), min=-1.0, max=1.0 ) return images
128
0
"""simple docstring""" def _snake_case ( lowercase__ ): stooge(lowercase__ , 0 , len(lowercase__ ) - 1 ) return arr def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _lowerCamelCase, _lowerCamelCase : Optional[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _lowerCamelCase : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase__ , i + t , (lowercase__) ) # Recursively sort first 2/3 elements stooge(lowercase__ , lowercase__ , (h - t) ) if __name__ == "__main__": lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
96
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : int = ["input_features", "attention_mask"] def __init__( self : Optional[Any], _lowerCamelCase : Union[str, Any]=80, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Any=80, _lowerCamelCase : List[str]=0.0, _lowerCamelCase : int=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : Optional[int]=True, **_lowerCamelCase : List[str], ): '''simple docstring''' super().__init__(feature_size=_lowerCamelCase, sampling_rate=_lowerCamelCase, padding_value=_lowerCamelCase, **_lowerCamelCase ) __A = num_mel_bins __A = do_ceptral_normalize __A = normalize_means __A = normalize_vars __A = True def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : np.ndarray, ): '''simple docstring''' __A = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) __A = ta_kaldi.fbank(_lowerCamelCase, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray, _lowerCamelCase : int, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : Optional[bool] = True, _lowerCamelCase : float = 0.0, ): '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: __A = x[:input_length].mean(axis=0 ) __A = np.subtract(_lowerCamelCase, _lowerCamelCase ) if normalize_vars: __A = x[:input_length].std(axis=0 ) __A = np.divide(_lowerCamelCase, _lowerCamelCase ) if input_length < x.shape[0]: __A = padding_value # make sure array is in float32 __A = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[np.ndarray], _lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_lowerCamelCase, _lowerCamelCase, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(_lowerCamelCase, _lowerCamelCase ) ] def __call__( self : Optional[Any], _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], _lowerCamelCase : Union[bool, str, PaddingStrategy] = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : bool = False, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[Union[str, TensorType]] = None, _lowerCamelCase : Optional[int] = None, _lowerCamelCase : Optional[bool] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __A = isinstance(_lowerCamelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __A = is_batched_numpy or ( isinstance(_lowerCamelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase, np.ndarray ): __A = np.asarray(_lowerCamelCase, dtype=np.floataa ) elif isinstance(_lowerCamelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __A = [raw_speech] # extract fbank features __A = [self._extract_fbank_features(_lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __A = BatchFeature({'''input_features''': features} ) __A = self.pad( _lowerCamelCase, padding=_lowerCamelCase, max_length=_lowerCamelCase, truncation=_lowerCamelCase, pad_to_multiple_of=_lowerCamelCase, return_attention_mask=_lowerCamelCase, **_lowerCamelCase, ) # make sure list is in array format __A = padded_inputs.get('''input_features''' ) if isinstance(input_features[0], _lowerCamelCase ): __A = [np.asarray(_lowerCamelCase, dtype=np.floataa ) for feature in input_features] __A = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __A = [np.asarray(_lowerCamelCase, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A = ( np.array(_lowerCamelCase, dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase, max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __A = self.normalize( padded_inputs['''input_features'''], attention_mask=_lowerCamelCase ) if return_tensors is not None: __A = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
266
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) __A : List[Any] = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: _UpperCAmelCase = TOKENIZER_CLASSES else: _UpperCAmelCase = {tokenizer_name: getattr(__snake_case , tokenizer_name + '''Fast''' )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: _UpperCAmelCase = TOKENIZER_CLASSES[tokenizer_name] _UpperCAmelCase = True if checkpoint_name is None: _UpperCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() ) else: _UpperCAmelCase = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer _UpperCAmelCase = tokenizer_class.from_pretrained(__snake_case , force_download=__snake_case ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: _UpperCAmelCase , _UpperCAmelCase = checkpoint.split('''/''' ) _UpperCAmelCase = os.path.join(__snake_case , __snake_case ) elif add_prefix: _UpperCAmelCase = checkpoint _UpperCAmelCase = dump_path else: _UpperCAmelCase = None _UpperCAmelCase = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _UpperCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _UpperCAmelCase = file_path.split(__snake_case )[-1][0] if next_char == "/": _UpperCAmelCase = os.path.join(__snake_case , __snake_case ) _UpperCAmelCase = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) _UpperCAmelCase = tokenizer.save_pretrained( __snake_case , legacy_format=__snake_case , filename_prefix=__snake_case ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__snake_case ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __A : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0