code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Tuple = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
347
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __SCREAMING_SNAKE_CASE : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} with open(_SCREAMING_SNAKE_CASE , """r""" ) as file: for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = line.strip() if line: snake_case_ = line.split() snake_case_ = line_number snake_case_ = words[0] snake_case_ = value return result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for attribute in key.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": snake_case_ = hf_pointer for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = shape_pointer.shape # let's reduce dimension snake_case_ = value[0] else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = value else: snake_case_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case_ = """.""".join([key, hf_param_name] ) else: snake_case_ = key snake_case_ = value if """lm_head""" in full_key else value[0] __SCREAMING_SNAKE_CASE : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: snake_case_ = False for key, mapped_key in MAPPING.items(): snake_case_ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = """weight_g""" elif "weight_v" in name: snake_case_ = """weight_v""" elif "bias" in name: snake_case_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = """weight""" else: snake_case_ = None if hf_dict is not None: rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_used return is_used def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ = True else: snake_case_ = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = full_name.split("""conv_layers.""" )[-1] snake_case_ = name.split(""".""" ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> int: if config_path is not None: snake_case_ = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaConfig() if is_seq_class: snake_case_ = read_txt_into_dict(_SCREAMING_SNAKE_CASE ) snake_case_ = idalabel snake_case_ = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: snake_case_ = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , ) snake_case_ = True if config.feat_extract_norm == """layer""" else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaForCTC(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case_ = argparse.Namespace(task="""audio_pretraining""" ) snake_case_ = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE ) snake_case_ = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
347
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = 'MobileNetV1Config' # Base docstring _lowercase = 'google/mobilenet_v1_1.0_224' _lowercase = [1, 10_24, 7, 7] # Image classification docstring _lowercase = 'google/mobilenet_v1_1.0_224' _lowercase = 'tabby, tabby cat' _lowercase = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase__ ( snake_case_ :int , snake_case_ :Optional[int] , snake_case_ :Dict=None ): __UpperCAmelCase = {} if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = model.mobilenet_va else: __UpperCAmelCase = model __UpperCAmelCase = '''MobilenetV1/Conv2d_0/''' __UpperCAmelCase = backbone.conv_stem.convolution.weight __UpperCAmelCase = backbone.conv_stem.normalization.bias __UpperCAmelCase = backbone.conv_stem.normalization.weight __UpperCAmelCase = backbone.conv_stem.normalization.running_mean __UpperCAmelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCAmelCase = i + 1 __UpperCAmelCase = i * 2 __UpperCAmelCase = backbone.layer[pt_index] __UpperCAmelCase = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' __UpperCAmelCase = pointer.convolution.weight __UpperCAmelCase = pointer.normalization.bias __UpperCAmelCase = pointer.normalization.weight __UpperCAmelCase = pointer.normalization.running_mean __UpperCAmelCase = pointer.normalization.running_var __UpperCAmelCase = backbone.layer[pt_index + 1] __UpperCAmelCase = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' __UpperCAmelCase = pointer.convolution.weight __UpperCAmelCase = pointer.normalization.bias __UpperCAmelCase = pointer.normalization.weight __UpperCAmelCase = pointer.normalization.running_mean __UpperCAmelCase = pointer.normalization.running_var if isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCAmelCase = model.classifier.weight __UpperCAmelCase = model.classifier.bias return tf_to_pt_map def lowercase__ ( snake_case_ :Tuple , snake_case_ :int , snake_case_ :Optional[int] ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCAmelCase = tf.train.list_variables(snake_case_ ) __UpperCAmelCase = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) __UpperCAmelCase = tf.train.load_variable(snake_case_ , snake_case_ ) __UpperCAmelCase = array # Build TF to PyTorch weights loading map __UpperCAmelCase = _build_tf_to_pytorch_map(snake_case_ , snake_case_ , snake_case_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue __UpperCAmelCase = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCAmelCase = np.transpose(snake_case_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCAmelCase = array.squeeze().transpose() else: __UpperCAmelCase = np.transpose(snake_case_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) __UpperCAmelCase = torch.from_numpy(snake_case_ ) tf_weights.pop(snake_case_ , snake_case_ ) tf_weights.pop(name + '''/RMSProp''' , snake_case_ ) tf_weights.pop(name + '''/RMSProp_1''' , snake_case_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , snake_case_ ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def lowercase__ ( snake_case_ :torch.Tensor , snake_case_ :nn.Convad ): __UpperCAmelCase , __UpperCAmelCase = features.shape[-2:] __UpperCAmelCase , __UpperCAmelCase = conv_layer.stride __UpperCAmelCase , __UpperCAmelCase = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCAmelCase = max(kernel_height - stride_height , 0 ) else: __UpperCAmelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCAmelCase = max(kernel_width - stride_width , 0 ) else: __UpperCAmelCase = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCAmelCase = pad_along_width // 2 __UpperCAmelCase = pad_along_width - pad_left __UpperCAmelCase = pad_along_height // 2 __UpperCAmelCase = pad_along_height - pad_top __UpperCAmelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case_ , snake_case_ , '''constant''' , 0.0 ) class _UpperCAmelCase ( nn.Module ): def __init__( self : Union[str, Any] , _lowercase : MobileNetVaConfig , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Optional[int] = 1 , _lowercase : Optional[int] = 1 , _lowercase : bool = False , _lowercase : Optional[bool] = True , _lowercase : Optional[bool or str] = True , ): super().__init__() __UpperCAmelCase = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) __UpperCAmelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __UpperCAmelCase = nn.Convad( in_channels=_lowercase , out_channels=_lowercase , kernel_size=_lowercase , stride=_lowercase , padding=_lowercase , groups=_lowercase , bias=_lowercase , padding_mode='''zeros''' , ) if use_normalization: __UpperCAmelCase = nn.BatchNormad( num_features=_lowercase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_lowercase , track_running_stats=_lowercase , ) else: __UpperCAmelCase = None if use_activation: if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowercase ): __UpperCAmelCase = ACTaFN[config.hidden_act] else: __UpperCAmelCase = config.hidden_act else: __UpperCAmelCase = None def a ( self : Union[str, Any] , _lowercase : torch.Tensor ): if self.config.tf_padding: __UpperCAmelCase = apply_tf_padding(_lowercase , self.convolution ) __UpperCAmelCase = self.convolution(_lowercase ) if self.normalization is not None: __UpperCAmelCase = self.normalization(_lowercase ) if self.activation is not None: __UpperCAmelCase = self.activation(_lowercase ) return features class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[Any] = MobileNetVaConfig a__ : List[str] = load_tf_weights_in_mobilenet_va a__ : Optional[Any] = "mobilenet_v1" a__ : Optional[int] = "pixel_values" a__ : str = False def a ( self : Optional[int] , _lowercase : Union[nn.Linear, nn.Convad] ): if isinstance(_lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowercase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowercase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _lowerCAmelCase , ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Tuple , _lowercase : MobileNetVaConfig , _lowercase : bool = True ): super().__init__(_lowercase ) __UpperCAmelCase = config __UpperCAmelCase = 32 __UpperCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) __UpperCAmelCase = MobileNetVaConvLayer( _lowercase , in_channels=config.num_channels , out_channels=_lowercase , kernel_size=3 , stride=2 , ) __UpperCAmelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCAmelCase = nn.ModuleList() for i in range(13 ): __UpperCAmelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowercase , in_channels=_lowercase , out_channels=_lowercase , kernel_size=3 , stride=strides[i] , groups=_lowercase , ) ) self.layer.append( MobileNetVaConvLayer( _lowercase , in_channels=_lowercase , out_channels=_lowercase , kernel_size=1 , ) ) __UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a ( self : Tuple , _lowercase : Optional[Any] ): raise NotImplementedError @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[str] , _lowercase : Optional[torch.Tensor] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , ): __UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __UpperCAmelCase = self.conv_stem(_lowercase ) __UpperCAmelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __UpperCAmelCase = layer_module(_lowercase ) if output_hidden_states: __UpperCAmelCase = all_hidden_states + (hidden_states,) __UpperCAmelCase = hidden_states if self.pooler is not None: __UpperCAmelCase = torch.flatten(self.pooler(_lowercase ) , start_dim=1 ) else: __UpperCAmelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=_lowercase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowerCAmelCase , ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : MobileNetVaConfig ): super().__init__(_lowercase ) __UpperCAmelCase = config.num_labels __UpperCAmelCase = MobileNetVaModel(_lowercase ) __UpperCAmelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCAmelCase = nn.Dropout(config.classifier_dropout_prob , inplace=_lowercase ) __UpperCAmelCase = nn.Linear(_lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Optional[Any] , _lowercase : Optional[torch.Tensor] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[torch.Tensor] = None , _lowercase : Optional[bool] = None , ): __UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase = self.mobilenet_va(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) __UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase = self.classifier(self.dropout(_lowercase ) ) __UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase = '''single_label_classification''' else: __UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCAmelCase = MSELoss() if self.num_labels == 1: __UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase = BCEWithLogitsLoss() __UpperCAmelCase = loss_fct(_lowercase , _lowercase ) if not return_dict: __UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states , )
363
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase__ ( snake_case_ :float , snake_case_ :float , snake_case_ :float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
86
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): """simple docstring""" snake_case__ = StableUnCLIPImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([] ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = 32 UpperCAmelCase__ = embedder_hidden_size # image encoding components UpperCAmelCase__ = CLIPImageProcessor(crop_size=32 ,size=32 ) torch.manual_seed(0 ) UpperCAmelCase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case ,projection_dim=__snake_case ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase__ = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) UpperCAmelCase__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCAmelCase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__snake_case ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) ) torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=__snake_case ,layers_per_block=1 ,upcast_attention=__snake_case ,use_linear_projection=__snake_case ,) torch.manual_seed(0 ) UpperCAmelCase__ = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=__snake_case ,steps_offset=1 ,) torch.manual_seed(0 ) UpperCAmelCase__ = AutoencoderKL() UpperCAmelCase__ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[Any]=0 ,lowerCamelCase__ : Tuple=True ): if str(__snake_case ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(__snake_case ) else: UpperCAmelCase__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: UpperCAmelCase__ = input_image * 0.5 + 0.5 UpperCAmelCase__ = input_image.clamp(0 ,1 ) UpperCAmelCase__ = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() UpperCAmelCase__ = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = StableUnCLIPImgaImgPipeline(**__snake_case ) UpperCAmelCase__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase__ = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) UpperCAmelCase__ = sd_pipe(**__snake_case ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowerCAmelCase ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) UpperCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' ,torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ = pipe(__snake_case ,'anime turle' ,generator=__snake_case ,output_type='np' ) UpperCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case ,__snake_case ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) UpperCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' ,torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ = pipe(__snake_case ,'anime turle' ,generator=__snake_case ,output_type='np' ) UpperCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case ,__snake_case ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' ,torch_dtype=torch.floataa ) UpperCAmelCase__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase__ = pipe( __snake_case ,'anime turtle' ,num_inference_steps=2 ,output_type='np' ,) UpperCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
98
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = 0 for ch in input_str: _SCREAMING_SNAKE_CASE : Optional[Any] = ord(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pow(2 , SCREAMING_SNAKE_CASE__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
200
0
"""simple docstring""" import numpy as np __SCREAMING_SNAKE_CASE : Optional[int] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class __A : '''simple docstring''' def __init__( self : Dict ) ->None: """simple docstring""" snake_case_ = np.array(UpperCAmelCase_ ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str ) ->np.ndarray: """simple docstring""" snake_case_ , snake_case_ = np.where(letter == self.SQUARE ) snake_case_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->str: """simple docstring""" snake_case_ = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : str ) ->str: """simple docstring""" snake_case_ = message.lower() snake_case_ = message.replace(""" """ , """""" ) snake_case_ = message.replace("""j""" , """i""" ) snake_case_ = np.empty((2, len(UpperCAmelCase_ )) ) for letter_index in range(len(UpperCAmelCase_ ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape(2 * len(UpperCAmelCase_ ) ) snake_case_ = """""" for numbers_index in range(len(UpperCAmelCase_ ) ): snake_case_ = int(second_step[numbers_index * 2] ) snake_case_ = int(second_step[(numbers_index * 2) + 1] ) snake_case_ = self.numbers_to_letter(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = encoded_message + letter return encoded_message def lowerCAmelCase ( self : str , UpperCAmelCase_ : str ) ->str: """simple docstring""" snake_case_ = message.lower() message.replace(""" """ , """""" ) snake_case_ = np.empty(2 * len(UpperCAmelCase_ ) ) for letter_index in range(len(UpperCAmelCase_ ) ): snake_case_ = self.letter_to_numbers(message[letter_index] ) snake_case_ = numbers[0] snake_case_ = numbers[1] snake_case_ = first_step.reshape((2, len(UpperCAmelCase_ )) ) snake_case_ = """""" for numbers_index in range(len(UpperCAmelCase_ ) ): snake_case_ = int(second_step[0, numbers_index] ) snake_case_ = int(second_step[1, numbers_index] ) snake_case_ = self.numbers_to_letter(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = decoded_message + letter return decoded_message
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: assert column_title.isupper() snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) - 1 snake_case_ = 0 while index >= 0: snake_case_ = (ord(column_title[index] ) - 64) * pow(26 , _SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
233
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""shortest_edge""": 384} _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = do_resize _snake_case = size # Default value set here for backwards compatibility where the value in config is None _snake_case = crop_pct if crop_pct is not None else 224 / 256 _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _snake_case = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _snake_case = int(shortest_edge / crop_pct ) _snake_case = get_resize_output_image_size(UpperCAmelCase , size=UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=UpperCAmelCase , **UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = crop_pct if crop_pct is not None else self.crop_pct _snake_case = resample if resample is not None else self.resample _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , crop_pct=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" ) _snake_case = bits * 2 - 1 return bits def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" ) _snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 ) _snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu""" _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple: super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) _snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample _snake_case = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
341
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Optional[Any] )-> Any: A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self :Optional[int] )-> Optional[Any]: A__ = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() A__ = [sys.executable] + distributed_args execute_subprocess_async(lowercase_ , env=os.environ.copy() )
123
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : str ): A__ = torch.load(_lowerCamelCase , map_location="cpu" ) if "model" in sd.keys(): A__ = torch.load(_lowerCamelCase , map_location="cpu" )["model"] # pop unnecessary weights A__ = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) A__ = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(_lowerCamelCase ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace(".qkv_proj." , ".q_proj." ) A__ = key.replace(".qkv_proj." , ".k_proj." ) A__ = key.replace(".qkv_proj." , ".v_proj." ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__, A__, A__ = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): A__ = load_checkpoint(_lowerCamelCase ) if config is not None: A__ = OPTConfig.from_pretrained(_lowerCamelCase ) else: A__ = OPTConfig() A__ = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __lowerCAmelCase : List[Any] =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
123
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: _lowerCAmelCase = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) _lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return flax_state_dict def __a(SCREAMING_SNAKE_CASE_ : Tuple[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, jnp.ndarray] , SCREAMING_SNAKE_CASE_ : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ : Tuple[str] ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) & {key, (model_prefix,) + key} ) > 0 # layer norm _lowerCAmelCase = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _lowerCAmelCase = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _lowerCAmelCase = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # embedding _lowerCAmelCase = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _lowerCAmelCase = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _lowerCAmelCase = pt_tuple_key[-2] + "_v" if name is not None: _lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _lowerCAmelCase = flax_model.params["params"] else: _lowerCAmelCase = flax_model.params _lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = {} _lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary _lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' import torch # Load the index _lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils _lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase = flax_model.params["params"] _lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: _lowerCAmelCase = flax_model.params _lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase = tuple(pt_key.split("." ) ) # remove base model prefix if necessary _lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase , _lowerCAmelCase = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary _lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue if "var" in flax_key[-1]: _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class _lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE_ , "rb" ) as state_f: try: _lowerCAmelCase = from_bytes(SCREAMING_SNAKE_CASE_ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights _lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE_ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE_ ) ).values() if any(SCREAMING_SNAKE_CASE_ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) _lowerCAmelCase = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = pt_model.state_dict() _lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) _lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _lowerCAmelCase = [] _lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix _lowerCAmelCase = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # conv layer _lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) _lowerCAmelCase = jnp.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # linear layer _lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) _lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _lowerCAmelCase = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: _lowerCAmelCase = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: _lowerCAmelCase = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _lowerCAmelCase = ".".join(SCREAMING_SNAKE_CASE_ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _lowerCAmelCase = key.split("." ) _lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: _lowerCAmelCase = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: _lowerCAmelCase = key_components[-2] + "_v" if name is not None: _lowerCAmelCase = key_components[:-3] + [name] _lowerCAmelCase = ".".join(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = key if flax_key in special_pt_names: _lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) else flax_tensor _lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE_ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # re-transform missing_keys to list _lowerCAmelCase = list(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' "If your task is similar to the task the model of the checkpoint was trained on, " F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
158
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
158
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): SCREAMING_SNAKE_CASE :List[str] = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE :Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Whether to log verbose messages or not."} , ) snake_case_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) snake_case_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) snake_case_ = field( default=0.99_99_95 , metadata={"help": "Decay of gumbel temperature during training."} ) def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) __A = logging.WARNING if model_args.verbose_logging: __A = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __A = logging.INFO logger.setLevel(__UpperCAmelCase ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = field( default=_lowerCamelCase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) snake_case_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) snake_case_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self : Tuple ,A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format __A = self.feature_extractor.pad( lowercase_ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,) __A = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) __A = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __A = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) __A = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __A = 1 __A = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __A = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowercase_ ,min_masks=2 ,) return batch class UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : Any ,*A : Any ,A : Tuple=1 ,A : Optional[Any]=0 ,A : List[Any]=1.0 ,**A : Any ): super().__init__(*lowercase_ ,**lowercase_ ) __A = 0 __A = max_gumbel_temp __A = min_gumbel_temp __A = gumbel_temp_decay def UpperCamelCase_ ( self : Any ,A : nn.Module ,A : Dict[str, Union[torch.Tensor, Any]] ): model.train() __A = self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): __A = self.compute_loss(lowercase_ ,lowercase_ ) else: __A = self.compute_loss(lowercase_ ,lowercase_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __A = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __A = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __A = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ) -> Tuple: """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A , __A , __A = parser.parse_args_into_dataclasses() configure_logger(__UpperCAmelCase , __UpperCAmelCase ) # Downloading and loading a dataset from the hub. __A = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __A = DatasetDict() __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __A = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__UpperCAmelCase ) def prepare_dataset(a_ ): # check that all files have the correct sampling rate __A , __A = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __A = datasets.map( __UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long __A = vectorized_datasets.filter( lambda a_ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a_ ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __A = vectorized_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __A = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm=\'layer\'" ) __A = WavaVecaForPreTraining(__UpperCAmelCase ) __A = DataCollatorForWavaVecaPretraining(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) __A = WavaVecaPreTrainer( model=__UpperCAmelCase , data_collator=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
356
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : numpy.ndarray ,A : numpy.ndarray ): __A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __A = numpy.random.rand( self.input_array.shape[1] ,4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __A = numpy.random.rand( 4 ,3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __A = numpy.random.rand(3 ,1 ) # Real output values provided. __A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __A = numpy.zeros(output_array.shape ) def UpperCamelCase_ ( self : Optional[Any] ): __A = sigmoid( numpy.dot(self.input_array ,self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return self.layer_between_second_hidden_layer_and_output def UpperCamelCase_ ( self : str ): __A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T ,2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,) __A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T ,numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,) __A = numpy.dot( self.input_array.T ,numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,self.first_hidden_layer_and_second_hidden_layer_weights.T ,) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) ,) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCamelCase_ ( self : Tuple ,A : numpy.ndarray ,A : int ,A : bool ): for iteration in range(1 ,iterations + 1 ): __A = self.feedforward() self.back_propagation() if give_loss: __A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def UpperCamelCase_ ( self : List[Any] ,A : numpy.ndarray ): __A = input_arr __A = sigmoid( numpy.dot(self.array ,self.input_layer_and_first_hidden_layer_weights ) ) __A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) __A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( a_ ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( a_ ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __A = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=1_0 , give_loss=a_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
124
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase (_lowerCamelCase ): _UpperCamelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _UpperCamelCase = 'CIDAS/clipseg-rd64-refined' _UpperCamelCase = 'image_segmenter' _UpperCamelCase = CLIPSegForImageSegmentation _UpperCamelCase = ['image', 'text'] _UpperCamelCase = ['image'] def __init__( self , *A_ , **A_ ) ->int: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' with torch.no_grad(): __lowerCAmelCase : Union[str, Any] = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = outputs.cpu().detach().numpy() __lowerCAmelCase : int = 0 __lowerCAmelCase : Optional[int] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
275
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = AutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : str = AutoModelForMaskedLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Dict = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) __lowerCAmelCase : Tuple = AutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE , from_tf=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 )
86
0
"""simple docstring""" def __lowercase ( _a ): if len(_a ) <= 1: return [tuple(_a )] snake_case_ : List[str] = [] def generate(_a , _a ): snake_case_ : Optional[int] = [0] * n res.append(tuple(_a ) ) snake_case_ : Optional[int] = 0 while i < n: if c[i] < i: if i % 2 == 0: snake_case_ : Any = arr[i], arr[0] else: snake_case_ : Dict = arr[i], arr[c[i]] res.append(tuple(_a ) ) c[i] += 1 snake_case_ : int = 0 else: snake_case_ : Tuple = 0 i += 1 generate(len(_a ) , _a ) return res if __name__ == "__main__": lowercase__ : Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : Tuple = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
362
"""simple docstring""" from collections.abc import Generator def __lowercase ( ): snake_case_, snake_case_ : List[str] = 0, 1 while True: snake_case_, snake_case_ : List[str] = b, a + b yield b def __lowercase ( _a = 1_000 ): snake_case_ : Tuple = 1 snake_case_ : List[str] = fibonacci_generator() while len(str(next(_a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
155
0
from __future__ import annotations from fractions import Fraction def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = [] __lowercase : Tuple = 11 __lowercase : Optional[int] = int("""1""" + """0""" * digit_len ) for num in range(lowerCAmelCase_ , lowerCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCAmelCase_ , lowerCAmelCase_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 __lowercase : int = 10 return solutions def snake_case_ ( lowerCAmelCase_ : int = 2 ): __lowercase : Any = 1.0 for fraction in fraction_list(lowerCAmelCase_ ): __lowercase : Union[str, Any] = Fraction(lowerCAmelCase_ ) result *= frac.denominator / frac.numerator return int(lowerCAmelCase_ ) if __name__ == "__main__": print(solution())
233
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase : Optional[int] = TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter __lowercase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase : Union[str, Any] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams __lowercase : List[Any] = 4 __lowercase : Union[str, Any] = True # hparam_utils.py hparams __lowercase : Any = 0.664_694 __lowercase : Tuple = 0.207_951 __lowercase : Dict = 0.121_194 __lowercase : List[str] = True __lowercase : str = True __lowercase : Dict = False __lowercase : Tuple = 0.0_352_513 __lowercase : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase : Optional[int] = 4 __lowercase : int = False # hparam_utils.py hparams __lowercase : Tuple = 36.4_519 __lowercase : str = 0.903_421 __lowercase : List[Any] = 222.088 __lowercase : Union[str, Any] = True __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Optional[Any] = 0.763_141 __lowercase : str = TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": __lowercase : List[Any] = TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": __lowercase : Optional[int] = TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase : Dict = TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) __lowercase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
233
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def UpperCamelCase( lowercase_=None ) -> Any: '''simple docstring''' if subparsers is not None: snake_case_ = subparsers.add_parser("""env""" ) else: snake_case_ = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=lowercase_ , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase( lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = torch.__version__ snake_case_ = torch.cuda.is_available() snake_case_ = is_xpu_available() snake_case_ = is_npu_available() snake_case_ = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase_ ): snake_case_ = load_config_from_file(args.config_file ).to_dict() snake_case_ = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """PyTorch XPU available""": str(lowercase_ ), """PyTorch NPU available""": str(lowercase_ ), """System RAM""": f'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: snake_case_ = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) snake_case_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowercase_ , lowercase_ ) else f'''\t{accelerate_config}''' ) print(lowercase_ ) snake_case_ = accelerate_config return info def UpperCamelCase( ) -> int: '''simple docstring''' snake_case_ = env_command_parser() snake_case_ = parser.parse_args() env_command(lowercase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
34
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCamelCase( ) -> str: '''simple docstring''' snake_case_ = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=lowercase_ ) snake_case_ = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase_ ) EnvironmentCommand.register_subcommand(lowercase_ ) TestCommand.register_subcommand(lowercase_ ) RunBeamCommand.register_subcommand(lowercase_ ) DummyDataCommand.register_subcommand(lowercase_ ) # Parse args snake_case_ , snake_case_ = parser.parse_known_args() if not hasattr(lowercase_ , """func""" ): parser.print_help() exit(1 ) snake_case_ = parse_unknown_args(lowercase_ ) # Run snake_case_ = args.func(lowercase_ , **lowercase_ ) service.run() if __name__ == "__main__": main()
34
1
_snake_case : Any = range(2, 20 + 1) _snake_case : str = [10**k for k in range(ks[-1] + 1)] _snake_case : dict[int, dict[int, list[list[int]]]] = {} def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = sum(a_i[j] for j in range(__lowerCamelCase , len(__lowerCamelCase ) ) ) __snake_case : List[str] = sum(a_i[j] * base[j] for j in range(min(len(__lowerCamelCase ) , __lowerCamelCase ) ) ) __snake_case , __snake_case : Optional[Any] = 0, 0 __snake_case : str = n - i __snake_case : int = memo.get(__lowerCamelCase ) if sub_memo is not None: __snake_case : Any = sub_memo.get(__lowerCamelCase ) if jumps is not None and len(__lowerCamelCase ) > 0: # find and make the largest jump without going over __snake_case : List[Any] = -1 for _k in range(len(__lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __snake_case : Dict = _k break if max_jump >= 0: __snake_case , __snake_case , __snake_case : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c __snake_case : str = diff + c for j in range(min(__lowerCamelCase , len(__lowerCamelCase ) ) ): __snake_case , __snake_case : List[str] = divmod(__lowerCamelCase , 1_0 ) if new_c > 0: add(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: __snake_case : Any = [] else: __snake_case : Tuple = {c: []} __snake_case : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __snake_case , __snake_case : Any = next_term(__lowerCamelCase , k - 1 , i + dn , __lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __snake_case , __snake_case : Union[str, Any] = compute(__lowerCamelCase , __lowerCamelCase , i + dn , __lowerCamelCase ) diff += _diff dn += terms_jumped __snake_case : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped __snake_case : List[Any] = 0 while j < len(__lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if i >= n: return 0, i if k > len(__lowerCamelCase ): a_i.extend([0 for _ in range(k - len(__lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __snake_case : Dict = i __snake_case , __snake_case , __snake_case : str = 0, 0, 0 for j in range(len(__lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __snake_case : List[Any] = ds_c + ds_b diff += addend __snake_case : List[str] = 0 for j in range(__lowerCamelCase ): __snake_case : List[str] = a_i[j] + addend __snake_case , __snake_case : Optional[Any] = divmod(__lowerCamelCase , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return diff, i - start_i def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): __snake_case : Optional[Any] = digits[j] + addend if s >= 1_0: __snake_case , __snake_case : Union[str, Any] = divmod(__lowerCamelCase , 1_0 ) __snake_case : Optional[Any] = addend // 1_0 + quotient else: __snake_case : Dict = s __snake_case : List[str] = addend // 1_0 if addend == 0: break while addend > 0: __snake_case , __snake_case : Dict = divmod(__lowerCamelCase , 1_0 ) digits.append(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 1_0**1_5 ): __snake_case : List[Any] = [1] __snake_case : int = 1 __snake_case : int = 0 while True: __snake_case , __snake_case : Any = next_term(__lowerCamelCase , 2_0 , i + dn , __lowerCamelCase ) dn += terms_jumped if dn == n - i: break __snake_case : List[str] = 0 for j in range(len(__lowerCamelCase ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
123
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _snake_case : Optional[Any] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Dict , **lowerCamelCase : List[Any] ) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
123
1
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = len(_snake_case ) for i in range(n - 1 ): for j in range(i + 1 , _snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( _snake_case ): """simple docstring""" if len(_snake_case ) <= 1: return arr, 0 UpperCAmelCase = len(_snake_case ) // 2 UpperCAmelCase = arr[0:mid] UpperCAmelCase = arr[mid:] UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(_snake_case ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(_snake_case ) UpperCAmelCase , UpperCAmelCase = _count_cross_inversions(_snake_case , _snake_case ) UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = 0 while i < len(_snake_case ) and j < len(_snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ): """simple docstring""" UpperCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase = count_inversions_bf(_snake_case ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , _snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase = count_inversions_bf(_snake_case ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _snake_case ) # an empty list should also have zero inversions UpperCAmelCase = [] UpperCAmelCase = count_inversions_bf(_snake_case ) UpperCAmelCase , UpperCAmelCase = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , _snake_case ) if __name__ == "__main__": main()
234
"""simple docstring""" from __future__ import annotations def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
234
1
"""simple docstring""" __UpperCamelCase = 6_5521 def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = 1 snake_case_ = 0 for plain_chr in plain_text: snake_case_ = (a + ord(UpperCAmelCase )) % MOD_ADLER snake_case_ = (b + a) % MOD_ADLER return (b << 16) | a
69
from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = "cpu" ,lowercase = None ) -> None: snake_case : int = torch.load(lowercase ,map_location=lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) snake_case : Dict = v.half() if save_path is None: # overwrite src_path snake_case : Optional[Any] = src_path torch.save(lowercase ,lowercase ) if __name__ == "__main__": fire.Fire(convert)
124
0
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __snake_case : Optional[Any] = range(3 , int(math.sqrt(_snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowercase ( _snake_case : Dict , _snake_case : int=1 , **_snake_case : Optional[int] ) ->Optional[Any]: """simple docstring""" __snake_case : Tuple = factor * value __snake_case : int = value while not is_prime(_snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_snake_case ) return value
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase_ : int ,lowercase_ : List[Any] ): lowerCAmelCase__ : Optional[Any] = question_encoder lowerCAmelCase__ : int = generator lowerCAmelCase__ : Optional[Any] = self.question_encoder def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Any ): if os.path.isfile(lowercase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowercase_ ,exist_ok=lowercase_ ) lowerCAmelCase__ : int = os.path.join(lowercase_ ,'''question_encoder_tokenizer''' ) lowerCAmelCase__ : List[Any] = os.path.join(lowercase_ ,'''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def __lowerCAmelCase ( cls : Any ,lowercase_ : int ,**lowercase_ : Optional[int] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowerCAmelCase__ : Any = kwargs.pop('''config''' ,lowercase_ ) if config is None: lowerCAmelCase__ : int = RagConfig.from_pretrained(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained( lowercase_ ,config=config.question_encoder ,subfolder='''question_encoder_tokenizer''' ) lowerCAmelCase__ : Any = AutoTokenizer.from_pretrained( lowercase_ ,config=config.generator ,subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase_ ,generator=lowercase_ ) def __call__( self : Optional[int] ,*lowercase_ : Union[str, Any] ,**lowercase_ : Union[str, Any] ): return self.current_tokenizer(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ,*lowercase_ : List[str] ,**lowercase_ : Tuple ): return self.generator.batch_decode(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : int ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): return self.generator.decode(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Optional[int] = self.question_encoder def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : str = self.generator def __lowerCAmelCase ( self : str ,lowercase_ : List[str] ,lowercase_ : Optional[List[str]] = None ,lowercase_ : Optional[int] = None ,lowercase_ : Optional[int] = None ,lowercase_ : str = "longest" ,lowercase_ : str = None ,lowercase_ : bool = True ,**lowercase_ : Tuple ,): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' ,lowercase_ ,) if max_length is None: lowerCAmelCase__ : Union[str, Any] = self.current_tokenizer.model_max_length lowerCAmelCase__ : List[Any] = self( lowercase_ ,add_special_tokens=lowercase_ ,return_tensors=lowercase_ ,max_length=lowercase_ ,padding=lowercase_ ,truncation=lowercase_ ,**lowercase_ ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCAmelCase__ : Optional[Any] = self.current_tokenizer.model_max_length lowerCAmelCase__ : List[str] = self( text_target=lowercase_ ,add_special_tokens=lowercase_ ,return_tensors=lowercase_ ,padding=lowercase_ ,max_length=lowercase_ ,truncation=lowercase_ ,**lowercase_ ,) lowerCAmelCase__ : List[str] = labels['''input_ids'''] return model_inputs
106
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a = Features({'image': Image()} ) _a = Features({'labels': ClassLabel} ) _a = "image" _a = "labels" def __lowercase ( self : List[str] , lowerCAmelCase : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __lowercase ( self : Optional[Any] ): return { self.image_column: "image", self.label_column: "labels", }
155
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case_ = 0 snake_case_ = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case_ = [int(__lowerCAmelCase ) for i in num_string] snake_case_ = 1 for i in range(0 , len(__lowerCAmelCase ) ): total *= numbers[i] snake_case_ = str(__lowerCAmelCase ) steps += 1 return steps def _a ( _SCREAMING_SNAKE_CASE ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case_ = 0 snake_case_ = str(__lowerCAmelCase ) while len(__lowerCAmelCase ) != 1: snake_case_ = [int(__lowerCAmelCase ) for i in num_string] snake_case_ = 0 for i in range(0 , len(__lowerCAmelCase ) ): total += numbers[i] snake_case_ = str(__lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""}) __lowercase: Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""}) __lowercase: Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""}) __lowercase: Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""}) __lowercase: Optional[float] = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""}) __lowercase: Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""}) __lowercase: Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""}) __lowercase: Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""}) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""}) __lowercase: Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""}) __lowercase: Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __lowercase: Optional[str] = field( default=snake_case__ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """If True the data is pretokenized."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) __lowercase: Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""}) __lowercase: Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) __lowercase: Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) __lowercase: Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Sample from the language model's output distribution."""}) __lowercase: Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""}) __lowercase: Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""}) __lowercase: Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""}) __lowercase: Optional[float] = field(default=0.9_5 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""}) __lowercase: Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""}) __lowercase: Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""}) __lowercase: Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""}) __lowercase: Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""}) __lowercase: Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = field( default=snake_case__ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""}) __lowercase: Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""}) __lowercase: Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.2_5 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""}) __lowercase: Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __lowercase: Optional[bool] = field( default=snake_case__ , metadata={"""help""": """If True, near-duplicate samples are removed."""}) __lowercase: Optional[float] = field( default=0.8_5 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""}) __lowercase: Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""}) __lowercase: Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) __lowercase: Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""}) __lowercase: Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""}) __lowercase: Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""}) __lowercase: Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""}) @dataclass class __A : '''simple docstring''' __lowercase: Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""}) __lowercase: Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""}) __lowercase: Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""}) __lowercase: Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""})
233
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = knapsack(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, index + 1 ) if weights[index] <= max_weight: lowerCAmelCase : List[str] = values[index] + knapsack( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, max_weight - weights[index], index + 1 ) return max(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[int] = (DEISMultistepScheduler,) lowerCAmelCase : str = (("num_inference_steps", 25),) def lowerCAmelCase__ ( self : Optional[Any] , **lowerCamelCase__ : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, } config.update(**lowerCamelCase__ ) return config def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[int]=0 , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[int] = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : Union[str, Any] = 0.1 * sample _UpperCAmelCase : List[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : List[Any] = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals _UpperCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase : List[Any] = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : str ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str=0 , **lowerCamelCase__ : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : List[Any] = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) _UpperCAmelCase : Any = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample _UpperCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : List[str] ) ->Any: '''simple docstring''' if scheduler is None: _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : Tuple = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : List[Any] = 10 _UpperCAmelCase : int = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Dict = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase : Dict = dict(self.forward_default_kwargs ) _UpperCAmelCase : int = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Any = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , "set_timesteps" ): _UpperCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _UpperCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase : Optional[Any] = scheduler.timesteps[5] _UpperCAmelCase : str = scheduler.timesteps[6] _UpperCAmelCase : str = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample _UpperCAmelCase : str = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = DEISMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase : Optional[Any] = self.full_loop(scheduler=lowerCamelCase__ ) _UpperCAmelCase : Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 _UpperCAmelCase : Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase : Optional[int] = self.full_loop(scheduler=lowerCamelCase__ ) _UpperCAmelCase : Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[Any]: '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="deis" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) _UpperCAmelCase : List[str] = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def lowerCAmelCase__ ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = self.full_loop() _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 def lowerCAmelCase__ ( self : Tuple ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1E-3 def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) _UpperCAmelCase : int = scheduler_class(**lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = 10 _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[Any] = model(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
234
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ = '▁' class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[int] = ["input_ids", "token_type_ids"] lowerCAmelCase : Optional[Any] = FNetTokenizer def __init__( self : Dict , lowerCamelCase__ : int=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=False , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : List[str]="[SEP]" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : Optional[Any]="[CLS]" , lowerCamelCase__ : Any="[MASK]" , **lowerCamelCase__ : Any , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = ( AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ , normalized=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token ) super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : Tuple = remove_space _UpperCAmelCase : List[Any] = keep_accents _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : str = False if not self.vocab_file else True def lowerCAmelCase__ ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
234
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } SCREAMING_SNAKE_CASE : str = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } SCREAMING_SNAKE_CASE : Union[str, Any] = { "ctrl": 256, } SCREAMING_SNAKE_CASE : Dict = { "Pregnancy": 168_629, "Christianity": 7_675, "Explain": 106_423, "Fitness": 63_440, "Saving": 63_163, "Ask": 27_171, "Ass": 95_985, "Joke": 163_509, "Questions": 45_622, "Thoughts": 49_605, "Retail": 52_342, "Feminism": 164_338, "Writing": 11_992, "Atheism": 192_263, "Netflix": 48_616, "Computing": 39_639, "Opinion": 43_213, "Alone": 44_967, "Funny": 58_917, "Gaming": 40_358, "Human": 4_088, "India": 1_331, "Joker": 77_138, "Diet": 36_206, "Legal": 11_859, "Norman": 4_939, "Tip": 72_689, "Weight": 52_343, "Movies": 46_273, "Running": 23_425, "Science": 2_090, "Horror": 37_793, "Confession": 60_572, "Finance": 12_250, "Politics": 16_360, "Scary": 191_985, "Support": 12_654, "Technologies": 32_516, "Teenage": 66_160, "Event": 32_769, "Learned": 67_460, "Notion": 182_770, "Wikipedia": 37_583, "Books": 6_665, "Extract": 76_050, "Confessions": 102_701, "Conspiracy": 75_932, "Links": 63_674, "Narcissus": 150_425, "Relationship": 54_766, "Relationships": 134_796, "Reviews": 41_671, "News": 4_256, "Translation": 26_820, "multilingual": 128_406, } def UpperCamelCase ( _a ) -> Dict: '''simple docstring''' lowercase_ :str = set() lowercase_ :Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ :List[Any] = char lowercase_ :int = set(_a ) return pairs class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Optional[Any] =VOCAB_FILES_NAMES lowercase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Any =CONTROL_CODES def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="<unk>" , **UpperCamelCase_ ): super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowercase_ :List[Any] = json.load(UpperCamelCase_ ) lowercase_ :List[str] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowercase_ :List[str] = merges_handle.read().split('''\n''' )[1:-1] lowercase_ :int = [tuple(merge.split() ) for merge in merges] lowercase_ :Any = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowercase_ :Any = {} @property def UpperCamelCase ( self ): return len(self.encoder ) def UpperCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] lowercase_ :Union[str, Any] = tuple(UpperCamelCase_ ) lowercase_ :Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase_ :Any = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowercase_ :Union[str, Any] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase_ :str = bigram lowercase_ :List[Any] = [] lowercase_ :List[Any] = 0 while i < len(UpperCamelCase_ ): try: lowercase_ :Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ :Union[str, Any] = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ :Dict = tuple(UpperCamelCase_ ) lowercase_ :Dict = new_word if len(UpperCamelCase_ ) == 1: break else: lowercase_ :Any = get_pairs(UpperCamelCase_ ) lowercase_ :Optional[int] = '''@@ '''.join(UpperCamelCase_ ) lowercase_ :int = word[:-4] lowercase_ :Dict = word return word def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Optional[Any] = [] lowercase_ :int = re.findall(R'''\S+\n?''' , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def UpperCamelCase ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Any = ''' '''.join(UpperCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase_ :Any = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ :List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) lowercase_ :List[str] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) lowercase_ :int = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
361
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
0
'''simple docstring''' from __future__ import annotations from typing import Any class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 0 ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =row, column lowerCamelCase_ =[[default_value for c in range(a__ )] for r in range(a__ )] def __str__( self ): """simple docstring""" lowerCamelCase_ =f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase_ =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase_ =max(a__, len(str(a__ ) ) ) lowerCamelCase_ =f'''%{max_element_length}s''' # Make string and return def single_line(lowerCAmelCase ) -> str: nonlocal string_format_identifier lowerCamelCase_ ='''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a__ ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if not (isinstance(a__, (list, tuple) ) and len(a__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(a__ ) return self.array[loc[0]][loc[1]] def __setitem__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(a__ ) lowerCamelCase_ =value def __add__( self, lowerCAmelCase ): """simple docstring""" assert isinstance(a__, a__ ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =-self[r, c] return result def __sub__( self, lowerCAmelCase ): """simple docstring""" return self + (-another) def __mul__( self, lowerCAmelCase ): """simple docstring""" if isinstance(a__, (int, float) ): # Scalar multiplication lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] * another return result elif isinstance(a__, a__ ): # Matrix multiplication assert self.column == another.row lowerCamelCase_ =Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase_ =f'''Unsupported type given for another ({type(a__ )})''' raise TypeError(a__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] return result def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" assert isinstance(a__, a__ ) and isinstance(a__, a__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase_ =v.transpose() lowerCamelCase_ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ) -> None: """simple docstring""" # a^(-1) lowerCamelCase_ =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase_ =1 print(F'''a^(-1) is {ainv}''' ) # u, v lowerCamelCase_ =Matrix(3 , 1 , 0 ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =1, 2, -3 lowerCamelCase_ =Matrix(3 , 1 , 0 ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_ , snake_case_ )}''' ) def a_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
import qiskit def A_ ( A__ , A__ ) -> qiskit.result.counts.Counts: a__ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register a__ : str = qiskit.QuantumCircuit(A__ , A__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator a__ : Tuple = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
369
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) a__ : Optional[Any] = import_module('tasks' ) try: a__ : List[Any] = getattr(A__ , model_args.task_type ) a__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a__ : Tuple = token_classification_task.get_labels(data_args.labels ) a__ : Dict[int, str] = dict(enumerate(A__ ) ) a__ : Union[str, Any] = len(A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel=A__ , labelaid={label: i for i, label in enumerate(A__ )} , cache_dir=model_args.cache_dir , ) a__ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a__ : List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets a__ : int = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a__ : Optional[int] = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A__ , A__ ) -> Tuple[List[int], List[int]]: a__ : Union[str, Any] = np.argmax(A__ , axis=2 ) a__ , a__ : Dict = preds.shape a__ : Union[str, Any] = [[] for _ in range(A__ )] a__ : Optional[int] = [[] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A__ ) -> Dict: a__ , a__ : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A__ , A__ ), "precision": precision_score(A__ , A__ ), "recall": recall_score(A__ , A__ ), "f1": fa_score(A__ , A__ ), } # Data collator a__ : Union[str, Any] = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a__ : List[str] = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ : Optional[Any] = trainer.evaluate() a__ : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) results.update(A__ ) # Predict if training_args.do_predict: a__ : Optional[Any] = TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a__ , a__ , a__ : Any = trainer.predict(A__ ) a__ , a__ : Union[str, Any] = align_predictions(A__ , A__ ) a__ : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions a__ : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A__ , A__ , A__ ) return results def A_ ( A__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
225
0
def snake_case_ ( lowerCAmelCase_ : dict ): __lowercase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowercase : set[int] = set() return any( node not in visited and depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for node in graph ) def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : int , lowerCAmelCase_ : set , lowerCAmelCase_ : set ): visited.add(lowerCAmelCase_ ) rec_stk.add(lowerCAmelCase_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCAmelCase_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
233
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : Tuple = '''document_qa''' _A : Dict = AutoProcessor _A : Tuple = VisionEncoderDecoderModel _A : Optional[int] = ['''image''', '''text'''] _A : Optional[int] = ['''text'''] def __init__( self : Any , *__a : List[str] , **__a : Any ) -> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : "Image" , __a : str ) -> List[str]: """simple docstring""" __lowercase : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __lowercase : str = task_prompt.replace("""{user_input}""" , __a ) __lowercase : Union[str, Any] = self.pre_processor.tokenizer( __a , add_special_tokens=__a , return_tensors="""pt""" ).input_ids __lowercase : int = self.pre_processor(__a , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCAmelCase ( self : Optional[int] , __a : int ) -> int: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__a , ).sequences def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.pre_processor.batch_decode(__a )[0] __lowercase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) __lowercase : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) __lowercase : Optional[Any] = re.sub(r"""<.*?>""" , """""" , __a , count=1 ).strip() # remove first task start token __lowercase : Dict = self.pre_processor.tokenajson(__a ) return sequence["answer"]
233
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase_ = '''main''' # Default branch name lowerCamelCase_ = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) lowerCamelCase_ = '''aaaaaaa''' # This commit does not exist, so we should 404. lowerCamelCase_ = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase_ = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def snake_case ( ): print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def snake_case ( ): print("Bonjour!" ) yield print("Au revoir!" ) class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class UpperCamelCase_ (unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[int]: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] ) -> Optional[int]: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> str: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class UpperCamelCase_ (A_ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) self.assertEqual(find_labels(snake_case__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(snake_case__ ) , ["start_positions", "end_positions"] ) class UpperCamelCase_ (A_ ): pass self.assertEqual(find_labels(snake_case__ ) , ["labels"] ) @require_flax def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) self.assertEqual(find_labels(snake_case__ ) , [] ) class UpperCamelCase_ (A_ ): pass self.assertEqual(find_labels(snake_case__ ) , [] )
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ ) try: pickle.loads(pickle.dumps(lowerCAmelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
253
0
'''simple docstring''' def __A ( lowerCamelCase_ = 10**9 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE : str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
323
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
1
import random class UpperCAmelCase__ : """simple docstring""" @staticmethod def _a ( A_ ) -> tuple[list[int], list[int]]: __UpperCamelCase =[ord(A_ ) for i in text] __UpperCamelCase =[] __UpperCamelCase =[] for i in plain: __UpperCamelCase =random.randint(1 , 300 ) __UpperCamelCase =(i + k) * k cipher.append(A_ ) key.append(A_ ) return cipher, key @staticmethod def _a ( A_ , A_ ) -> str: __UpperCamelCase =[] for i in range(len(A_ ) ): __UpperCamelCase =int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(A_ ) ) return "".join(A_ ) if __name__ == "__main__": _A , _A = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
117
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _A = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , A_ = True , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =size if size is not None else {'shortest_edge': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) __UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ , param_name='crop_size' ) __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =resample __UpperCamelCase =do_center_crop __UpperCamelCase =crop_size __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_normalize __UpperCamelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase =image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase =do_convert_rgb def _a ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __UpperCamelCase =get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> Union[str, Any]: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =size if size is not None else self.size __UpperCamelCase =get_size_dict(A_ , param_name='size' , default_to_square=A_ ) __UpperCamelCase =resample if resample is not None else self.resample __UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase =crop_size if crop_size is not None else self.crop_size __UpperCamelCase =get_size_dict(A_ , param_name='crop_size' , default_to_square=A_ ) __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase =image_mean if image_mean is not None else self.image_mean __UpperCamelCase =image_std if image_std is not None else self.image_std __UpperCamelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase =[convert_to_rgb(A_ ) for image in images] # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for image in images] if do_resize: __UpperCamelCase =[self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: __UpperCamelCase =[self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __UpperCamelCase =[self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
117
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : List[Any] ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _lowercase ( self : int ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _lowercase ( self : int ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCAmelCase__ ) def _lowercase ( self : str ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : str = DDIMScheduler() SCREAMING_SNAKE_CASE : Any = self.dummy_vq_model SCREAMING_SNAKE_CASE : List[str] = LDMPipeline(unet=UpperCAmelCase__ , vqvae=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) ldm.to(UpperCAmelCase__ ) ldm.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = ldm(generator=UpperCAmelCase__ , num_inference_steps=2 , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ldm(generator=UpperCAmelCase__ , num_inference_steps=2 , output_type="""numpy""" , return_dict=UpperCAmelCase__ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) SCREAMING_SNAKE_CASE : Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : int ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(UpperCAmelCase__ ) ldm.set_progress_bar_config(disable=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = ldm(generator=UpperCAmelCase__ , num_inference_steps=5 , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) SCREAMING_SNAKE_CASE : Any = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
245
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase_ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase_ = { 'jukebox': 512, } class __lowerCamelCase ( lowerCAmelCase__ ): lowerCamelCase_ : Any = VOCAB_FILES_NAMES lowerCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCamelCase_ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=["v3", "v2", "v2"] , lowerCamelCase=512 , lowerCamelCase=5 , lowerCamelCase="<|endoftext|>" , **lowerCamelCase , ) -> Optional[int]: snake_case_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token super().__init__( unk_token=_SCREAMING_SNAKE_CASE , n_genres=_SCREAMING_SNAKE_CASE , version=_SCREAMING_SNAKE_CASE , max_n_lyric_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ = version snake_case_ = max_n_lyric_tokens snake_case_ = n_genres with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: snake_case_ = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: snake_case_ = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: snake_case_ = json.load(_SCREAMING_SNAKE_CASE ) snake_case_ = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case_ = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case_ = regex.compile(_SCREAMING_SNAKE_CASE ) snake_case_ = {v: k for k, v in self.artists_encoder.items()} snake_case_ = {v: k for k, v in self.genres_encoder.items()} snake_case_ = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCAmelCase_ ( self ) -> int: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: snake_case_ = [self.artists_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for artist in list_artists] for genres in range(len(_SCREAMING_SNAKE_CASE ) ): snake_case_ = [self.genres_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for genre in list_genres[genres]] snake_case_ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case_ = [[self.lyrics_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCAmelCase_ ( self , lowerCamelCase ) -> List[Any]: return list(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> Tuple: snake_case_ , snake_case_ , snake_case_ = self.prepare_for_tokenization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = self._tokenize(_SCREAMING_SNAKE_CASE ) return artist, genre, lyrics def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case_ = artists[idx].lower() snake_case_ = [genres[idx].lower()] else: snake_case_ = self._normalize(artists[idx] ) + """.v2""" snake_case_ = [ self._normalize(_SCREAMING_SNAKE_CASE ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case_ = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case_ = {vocab[index]: index + 1 for index in range(len(_SCREAMING_SNAKE_CASE ) )} snake_case_ = 0 snake_case_ = len(_SCREAMING_SNAKE_CASE ) + 1 snake_case_ = self.vocab snake_case_ = {v: k for k, v in self.vocab.items()} snake_case_ = """""" else: snake_case_ = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case_ = self._run_strip_accents(_SCREAMING_SNAKE_CASE ) snake_case_ = lyrics.replace("""\\""" , """\n""" ) snake_case_ = self.out_of_vocab.sub("""""" , _SCREAMING_SNAKE_CASE ), [], [] return artists, genres, lyrics def lowerCAmelCase_ ( self , lowerCamelCase ) -> Tuple: snake_case_ = unicodedata.normalize("""NFD""" , _SCREAMING_SNAKE_CASE ) snake_case_ = [] for char in text: snake_case_ = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Mn": continue output.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: snake_case_ = ( [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case_ = frozenset(_SCREAMING_SNAKE_CASE ) snake_case_ = re.compile(r"""_+""" ) snake_case_ = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case_ = pattern.sub("""_""" , _SCREAMING_SNAKE_CASE ).strip("""_""" ) return text def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: return " ".join(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> Union[str, Any]: # Convert to TensorType if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = TensorType(_SCREAMING_SNAKE_CASE ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case_ = tf.constant snake_case_ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case_ = torch.tensor snake_case_ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case_ = jnp.array snake_case_ = _is_jax else: snake_case_ = np.asarray snake_case_ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case_ = [inputs] if not is_tensor(_SCREAMING_SNAKE_CASE ): snake_case_ = as_tensor(_SCREAMING_SNAKE_CASE ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="" , lowerCamelCase="pt" ) -> BatchEncoding: snake_case_ = [0, 0, 0] snake_case_ = [artist] * len(self.version ) snake_case_ = [genres] * len(self.version ) snake_case_ , snake_case_ , snake_case_ = self.tokenize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = self._convert_token_to_id(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = [-INFINITY] * len(full_tokens[-1] ) snake_case_ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_SCREAMING_SNAKE_CASE ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) snake_case_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) snake_case_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) return (artists_file, genres_file, lyrics_file) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[str]: snake_case_ = self.artists_decoder.get(_SCREAMING_SNAKE_CASE ) snake_case_ = [self.genres_decoder.get(_SCREAMING_SNAKE_CASE ) for genre in genres_index] snake_case_ = [self.lyrics_decoder.get(_SCREAMING_SNAKE_CASE ) for character in lyric_index] return artist, genres, lyrics
354
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase_ = logging.getLogger(__name__) class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Optional[int] = 'masked_bert' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase="topK" , lowerCamelCase="constant" , lowerCamelCase=0.0 , **lowerCamelCase , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
34
0
import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase : Tuple = '' _lowerCAmelCase : Optional[Any] = '' _lowerCAmelCase : Any = '' _lowerCAmelCase : Optional[int] = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase ( ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_dataset(__UpperCAmelCase , __UpperCAmelCase ) print("Processing..." ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = update_image_and_anno(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for index, image in enumerate(__UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase__ = random_chars(32 ) UpperCAmelCase__ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCAmelCase__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__UpperCAmelCase )} with {file_name}''' ) UpperCAmelCase__ = [] for anno in new_annos[index]: UpperCAmelCase__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__UpperCAmelCase ) with open(F'''/{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase , "*.txt" ) ): UpperCAmelCase__ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(__UpperCAmelCase ) as in_file: UpperCAmelCase__ = in_file.readlines() UpperCAmelCase__ = os.path.join(__UpperCAmelCase , F'''{label_name}.jpg''' ) UpperCAmelCase__ = [] for obj_list in obj_lists: UpperCAmelCase__ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def lowerCAmelCase ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int = 1 ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for idx in range(len(__UpperCAmelCase ) ): UpperCAmelCase__ = [] UpperCAmelCase__ = img_list[idx] path_list.append(__UpperCAmelCase ) UpperCAmelCase__ = anno_list[idx] UpperCAmelCase__ = cva.imread(__UpperCAmelCase ) if flip_type == 1: UpperCAmelCase__ = cva.flip(__UpperCAmelCase , __UpperCAmelCase ) for bbox in img_annos: UpperCAmelCase__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase__ = cva.flip(__UpperCAmelCase , __UpperCAmelCase ) for bbox in img_annos: UpperCAmelCase__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCAmelCase ) new_imgs_list.append(__UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase ( _lowerCAmelCase : int = 32 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase__ = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
169
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : Tuple = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ : int = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } lowerCamelCase__ : str = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : str="[UNK]" , _lowerCAmelCase : Union[str, Any]="[SEP]" , _lowerCAmelCase : List[Any]="[PAD]" , _lowerCAmelCase : str="[CLS]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = strip_accents SCREAMING_SNAKE_CASE_ = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ = normalizer_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = do_lower_case def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int]=None ): SCREAMING_SNAKE_CASE_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
225
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" a__ : Optional[int] =OmegaConf.load(SCREAMING_SNAKE_CASE ) if display: print(yaml.dump(OmegaConf.to_container(SCREAMING_SNAKE_CASE ) ) ) return config def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" if conf_path is None: a__ : Union[str, Any] ="./model_checkpoints/vqgan_only.yaml" a__ : str =load_config(SCREAMING_SNAKE_CASE , display=SCREAMING_SNAKE_CASE ) a__ : Any =VQModel(**config.model.params ) if ckpt_path is None: a__ : Optional[int] ="./model_checkpoints/vqgan_only.pt" a__ : Dict =torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) if ".ckpt" in ckpt_path: a__ : Optional[int] =sd["state_dict"] model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) del sd return model def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : str =model.encode(SCREAMING_SNAKE_CASE ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) a__ : int =model.decode(SCREAMING_SNAKE_CASE ) return xrec def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int=False ): """simple docstring""" a__ : Optional[Any] =string.rsplit("." , 1 ) if reload: a__ : List[str] =importlib.import_module(SCREAMING_SNAKE_CASE ) importlib.reload(SCREAMING_SNAKE_CASE ) return getattr(importlib.import_module(SCREAMING_SNAKE_CASE , package=SCREAMING_SNAKE_CASE ) , cls ) def _A ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=True ): """simple docstring""" a__ : List[Any] =instantiate_from_config(SCREAMING_SNAKE_CASE ) if sd is not None: model.load_state_dict(SCREAMING_SNAKE_CASE ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if ckpt: a__ : Dict =torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" ) a__ : Any =pl_sd["global_step"] print(f'''loaded model from global step {global_step}.''' ) else: a__ : Optional[Any] ={"state_dict": None} a__ : Any =None a__ : int =load_model_from_config(config.model , pl_sd["state_dict"] , gpu=SCREAMING_SNAKE_CASE , eval_mode=SCREAMING_SNAKE_CASE )["model"] return model, global_step
364
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowerCAmelCase ( UpperCamelCase__): _lowercase : str = ["""vqvae"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , mel=lowerCAmelCase__ , vqvae=lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowerCAmelCase__ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' a__ : List[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCAmelCase__ ) a__ : Tuple =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: a__ : List[str] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a__ : Optional[Any] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCAmelCase__ , device=self.device , ) a__ : List[str] =noise a__ : Optional[Any] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =self.mel.audio_slice_to_image(lowerCAmelCase__ ) a__ : List[Any] =np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) a__ : Optional[Any] =(input_image / 2_5_5) * 2 - 1 a__ : Dict =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: a__ : str =self.vqvae.encode(torch.unsqueeze(lowerCAmelCase__ , 0 ) ).latent_dist.sample( generator=lowerCAmelCase__ )[0] a__ : Any =self.vqvae.config.scaling_factor * input_images if start_step > 0: a__ : Optional[int] =self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler.timesteps[start_step - 1] ) a__ : Tuple =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a__ : Union[str, Any] =int(mask_start_secs * pixels_per_second ) a__ : List[str] =int(mask_end_secs * pixels_per_second ) a__ : Optional[Any] =self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCAmelCase__ ): a__ : List[str] =self.unet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["sample"] else: a__ : Optional[Any] =self.unet(lowerCAmelCase__ , lowerCAmelCase__ )["sample"] if isinstance(self.scheduler , lowerCAmelCase__ ): a__ : int =self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["prev_sample"] else: a__ : str =self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["prev_sample"] if mask is not None: if mask_start > 0: a__ : List[Any] =mask[:, step, :, :mask_start] if mask_end > 0: a__ : Union[str, Any] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a__ : Any =1 / self.vqvae.config.scaling_factor * images a__ : str =self.vqvae.decode(lowerCAmelCase__ )["sample"] a__ : str =(images / 2 + 0.5).clamp(0 , 1 ) a__ : int =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() a__ : List[Any] =(images * 2_5_5).round().astype("uint8" ) a__ : Dict =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCAmelCase__ , mode="RGB" ).convert("L" ) for _ in images) ) a__ : str =[self.mel.image_to_audio(lowerCAmelCase__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCAmelCase__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCAmelCase__ ) ) @torch.no_grad() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ ) a__ : Union[str, Any] =np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) a__ : Tuple =(sample / 2_5_5) * 2 - 1 a__ : List[Any] =torch.Tensor(lowerCAmelCase__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): a__ : str =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a__ : Dict =self.scheduler.alphas_cumprod[t] a__ : Optional[Any] =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a__ : Optional[Any] =1 - alpha_prod_t a__ : str =self.unet(lowerCAmelCase__ , lowerCAmelCase__ )["sample"] a__ : Optional[Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output a__ : List[str] =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a__ : Optional[Any] =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> torch.Tensor: '''simple docstring''' a__ : Any =acos(torch.dot(torch.flatten(lowerCAmelCase__ ) , torch.flatten(lowerCAmelCase__ ) ) / torch.norm(lowerCAmelCase__ ) / torch.norm(lowerCAmelCase__ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCAmelCase__ ) + sin(alpha * theta ) * xa / sin(lowerCAmelCase__ )
148
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __snake_case =True from torch.cuda.amp import autocast __snake_case =logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCamelCase : Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCamelCase : Optional[bool] = field( default=__lowercase , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowerCamelCase : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowerCamelCase : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowerCamelCase : Optional[float] = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def a_ ( lowerCamelCase : ModelArguments , lowerCamelCase : TrainingArguments ): logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCAmelCase = logging.WARNING if model_args.verbose_logging: lowerCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowerCAmelCase = logging.INFO logger.setLevel(lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase : str = field( default=__lowercase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCamelCase : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCamelCase : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowerCamelCase : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCamelCase : Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCamelCase : Optional[float] = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase_ : lowerCamelCase : WavaVecaForPreTraining lowerCamelCase : WavaVecaFeatureExtractor lowerCamelCase : Union[bool, str] = "longest" lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[int] = None def __call__( self : Union[str, Any] , UpperCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format lowerCAmelCase = self.feature_extractor.pad( UpperCAmelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) lowerCAmelCase = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) lowerCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCAmelCase = 1 lowerCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase__ , min_masks=2 , ) return batch class UpperCAmelCase_ ( __lowercase ): def __init__( self : Optional[int] , *UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int]=1 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : List[str]=1.0 , **UpperCAmelCase__ : int ) -> int: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = 0 lowerCAmelCase = max_gumbel_temp lowerCAmelCase = min_gumbel_temp lowerCAmelCase = gumbel_temp_decay def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : nn.Module , UpperCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() lowerCAmelCase = self._prepare_inputs(UpperCAmelCase__ ) if self.use_amp: with autocast(): lowerCAmelCase = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) else: lowerCAmelCase = self.compute_loss(UpperCAmelCase__ , UpperCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses() configure_logger(lowerCamelCase , lowerCamelCase ) # Downloading and loading a dataset from the hub. lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCAmelCase = DatasetDict() lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCAmelCase = DatasetDict() lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowerCamelCase ) def prepare_dataset(lowerCamelCase : Optional[Any] ): # check that all files have the correct sampling rate lowerCAmelCase , lowerCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowerCAmelCase = datasets.map( lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long lowerCAmelCase = vectorized_datasets.filter( lambda lowerCamelCase : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase : Dict ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowerCAmelCase = vectorized_datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) lowerCAmelCase = WavaVecaForPreTraining(lowerCamelCase ) lowerCAmelCase = DataCollatorForWavaVecaPretraining(model=lowerCamelCase , feature_extractor=lowerCamelCase ) lowerCAmelCase = WavaVecaPreTrainer( model=lowerCamelCase , data_collator=lowerCamelCase , args=lowerCamelCase , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
4
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
353
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : List[str] = {'vocab_file': 'spiece.model'} snake_case__ : Tuple = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 snake_case__ : Optional[int] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } snake_case__ : Union[str, Any] = '▁' class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__(self :str , _UpperCamelCase :int , _UpperCamelCase :Optional[int]="</s>" , _UpperCamelCase :int="<unk>" , _UpperCamelCase :Union[str, Any]="<pad>" , _UpperCamelCase :Any=100 , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :Optional[Dict[str, Any]] = None , _UpperCamelCase :Optional[int]=True , **_UpperCamelCase :Tuple , )-> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __A = [f"""<extra_id_{i}>""" for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __A = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) __A = legacy __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) __A = vocab_file __A = extra_ids __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def _lowerCAmelCase (_UpperCamelCase :List[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :str )-> Tuple: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __A = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def _lowerCAmelCase (self :List[str] )-> Dict: return self.sp_model.get_piece_size() + self._extra_ids def _lowerCAmelCase (self :Optional[int] )-> int: __A = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None , _UpperCamelCase :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def _lowerCAmelCase (self :int )-> List[str]: return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCAmelCase (self :Union[str, Any] )-> Any: return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def _lowerCAmelCase (self :Any , _UpperCamelCase :List[int] )-> List[int]: if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: __A = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__(self :Union[str, Any] )-> List[str]: __A = self.__dict__.copy() __A = None return state def __setstate__(self :str , _UpperCamelCase :Optional[int] )-> int: __A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :"TextInput" , **_UpperCamelCase :List[str] )-> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __A = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :Any , **_UpperCamelCase :Optional[Any] )-> Any: if not self.legacy: __A = text.startswith(_UpperCamelCase ) if is_first: __A = text[1:] __A = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): __A = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str )-> List[Any]: if token.startswith('''<extra_id_''' ): __A = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) __A = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Union[str, Any] )-> Dict: if index < self.sp_model.get_piece_size(): __A = self.sp_model.IdToPiece(_UpperCamelCase ) else: __A = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[str] )-> Dict: __A = [] __A = '''''' __A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token __A = True __A = [] else: current_sub_tokens.append(_UpperCamelCase ) __A = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCAmelCase (self :Dict , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __A = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
117
import argparse import copy def _a ( lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __A = {} with open(lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __A = [] _list.append([line.split()[1], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __A = [] _list.append([line.split()[0], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _a ( lowerCamelCase: Any , lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' with open(lowerCamelCase ) as f: __A = f.read(1 ) __A = start_node __A = [] __A = start_node __A = 0 while visiting not in first_solution: __A = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase ) and k[0] not in first_solution: __A = k[1] __A = k[0] first_solution.append(lowerCamelCase ) __A = distance_of_first_solution + int(lowerCamelCase ) __A = best_node first_solution.append(lowerCamelCase ) __A = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __A = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _a ( lowerCamelCase: List[str] , lowerCamelCase: Any ) -> Any: '''simple docstring''' __A = [] for n in solution[1:-1]: __A = solution.index(lowerCamelCase ) for kn in solution[1:-1]: __A = solution.index(lowerCamelCase ) if n == kn: continue __A = copy.deepcopy(lowerCamelCase ) __A = kn __A = n __A = 0 for k in _tmp[:-1]: __A = _tmp[_tmp.index(lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __A = distance + int(i[1] ) _tmp.append(lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __A = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Dict , lowerCamelCase: Any , lowerCamelCase: Optional[int] , lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' __A = 1 __A = first_solution __A = [] __A = distance_of_first_solution __A = solution while count <= iters: __A = find_neighborhood(lowerCamelCase , lowerCamelCase ) __A = 0 __A = neighborhood[index_of_best_solution] __A = len(lowerCamelCase ) - 1 __A = False while not found: __A = 0 while i < len(lowerCamelCase ): if best_solution[i] != solution[i]: __A = best_solution[i] __A = solution[i] break __A = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __A = True __A = best_solution[:-1] __A = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __A = cost __A = solution else: __A = index_of_best_solution + 1 __A = neighborhood[index_of_best_solution] if len(lowerCamelCase ) >= size: tabu_list.pop(0 ) __A = count + 1 return best_solution_ever, best_cost def _a ( lowerCamelCase: List[str]=None ) -> str: '''simple docstring''' __A = generate_neighbours(args.File ) __A , __A = generate_first_solution( args.File , lowerCamelCase ) __A , __A = tabu_search( lowerCamelCase , lowerCamelCase , lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
117
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> int: snake_case : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): snake_case : List[str] = """segformer.encoder.""" + key if key.startswith("""backbone""" ): snake_case : int = key.replace("""backbone""" ,"""segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case : str = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] snake_case : Tuple = key.replace(f"""patch_embed{idx}""" ,f"""patch_embeddings.{int(__snake_case )-1}""" ) if "norm" in key: snake_case : Union[str, Any] = key.replace("""norm""" ,"""layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case : Optional[Any] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] snake_case : Optional[Any] = key.replace(f"""layer_norm{idx}""" ,f"""layer_norm.{int(__snake_case )-1}""" ) if "layer_norm1" in key: snake_case : int = key.replace("""layer_norm1""" ,"""layer_norm_1""" ) if "layer_norm2" in key: snake_case : List[str] = key.replace("""layer_norm2""" ,"""layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 snake_case : Tuple = key[key.find("""block""" ) + len("""block""" )] snake_case : Optional[Any] = key.replace(f"""block{idx}""" ,f"""block.{int(__snake_case )-1}""" ) if "attn.q" in key: snake_case : Any = key.replace("""attn.q""" ,"""attention.self.query""" ) if "attn.proj" in key: snake_case : Union[str, Any] = key.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in key: snake_case : int = key.replace("""attn""" ,"""attention.self""" ) if "fc1" in key: snake_case : int = key.replace("""fc1""" ,"""dense1""" ) if "fc2" in key: snake_case : Tuple = key.replace("""fc2""" ,"""dense2""" ) if "linear_pred" in key: snake_case : Optional[Any] = key.replace("""linear_pred""" ,"""classifier""" ) if "linear_fuse" in key: snake_case : int = key.replace("""linear_fuse.conv""" ,"""linear_fuse""" ) snake_case : Any = key.replace("""linear_fuse.bn""" ,"""batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case : Union[str, Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] snake_case : Tuple = key.replace(f"""linear_c{idx}""" ,f"""linear_c.{int(__snake_case )-1}""" ) if key.startswith("""head""" ): snake_case : Dict = key.replace("""head""" ,"""classifier""" ) snake_case : List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case : List[Any] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict snake_case : Tuple = kv_weight[ : config.hidden_sizes[i], : ] snake_case : Optional[Any] = kv_bias[: config.hidden_sizes[i]] snake_case : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] snake_case : Tuple = kv_bias[ config.hidden_sizes[i] : ] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: snake_case : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : Optional[int] = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : List[Any] = SegformerConfig() snake_case : Tuple = False # set attributes based on model_name snake_case : str = """huggingface/label-files""" if "segformer" in model_name: snake_case : Optional[Any] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: snake_case : Union[str, Any] = 150 snake_case : Union[str, Any] = """ade20k-id2label.json""" snake_case : List[Any] = (1, 150, 128, 128) elif "city" in model_name: snake_case : Tuple = 19 snake_case : Dict = """cityscapes-id2label.json""" snake_case : Tuple = (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: snake_case : Any = True snake_case : Dict = model_name[4:6] snake_case : List[str] = 1000 snake_case : Optional[int] = """imagenet-1k-id2label.json""" snake_case : Optional[int] = (1, 1000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes snake_case : int = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : Tuple = {int(__snake_case ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = idalabel snake_case : List[str] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case : List[str] = [64, 128, 320, 512] snake_case : int = 256 elif size == "b2": snake_case : Tuple = [64, 128, 320, 512] snake_case : Any = 768 snake_case : Dict = [3, 4, 6, 3] elif size == "b3": snake_case : Union[str, Any] = [64, 128, 320, 512] snake_case : List[str] = 768 snake_case : int = [3, 4, 18, 3] elif size == "b4": snake_case : int = [64, 128, 320, 512] snake_case : List[str] = 768 snake_case : Tuple = [3, 8, 27, 3] elif size == "b5": snake_case : Dict = [64, 128, 320, 512] snake_case : str = 768 snake_case : Dict = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) snake_case : Dict = SegformerImageProcessor( image_scale=(512, 512) ,keep_ratio=__snake_case ,align=__snake_case ,do_random_crop=__snake_case ) # prepare image snake_case : Any = prepare_img() snake_case : List[str] = image_processor(images=__snake_case ,return_tensors="""pt""" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: snake_case : int = torch.load(__snake_case ,map_location=torch.device("""cpu""" ) ) else: snake_case : int = torch.load(__snake_case ,map_location=torch.device("""cpu""" ) )["""state_dict"""] # rename keys snake_case : Tuple = rename_keys(__snake_case ,encoder_only=__snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__snake_case ,__snake_case ) # create HuggingFace model and load state dict if encoder_only: snake_case : List[str] = False snake_case : Union[str, Any] = SegformerForImageClassification(__snake_case ) else: snake_case : Union[str, Any] = SegformerForSemanticSegmentation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # forward pass snake_case : Optional[int] = model(__snake_case ) snake_case : List[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case : Any = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case : str = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case : str = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case : int = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case : Any = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case : int = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case : List[Any] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case : List[str] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case : Dict = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case : List[str] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case : Optional[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case : str = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case : Union[str, Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case : List[Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case : Optional[int] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case : List[str] = logits.argmax(-1 ).item() print("""Predicted class:""" ,model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] ,__snake_case ,atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCamelCase : int = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
362
import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase ,**lowercase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowercase ,) return fn(*lowercase ,**lowercase ) return _inner_fn
176
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = ["""input_values""", """attention_mask"""] def __init__( self , UpperCamelCase__ = 1 , UpperCamelCase__ = 1_6000 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = False , UpperCamelCase__ = 80 , UpperCamelCase__ = 16 , UpperCamelCase__ = 64 , UpperCamelCase__ = "hann_window" , UpperCamelCase__ = 1.0 , UpperCamelCase__ = 80 , UpperCamelCase__ = 7600 , UpperCamelCase__ = 1e-10 , UpperCamelCase__ = 2 , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> Dict: super().__init__(feature_size=UpperCamelCase__ , sampling_rate=UpperCamelCase__ , padding_value=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Any = do_normalize lowerCamelCase : Tuple = return_attention_mask lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : Optional[int] = hop_length lowerCamelCase : Dict = win_length lowerCamelCase : Any = win_function lowerCamelCase : Any = frame_signal_scale lowerCamelCase : int = fmin lowerCamelCase : int = fmax lowerCamelCase : Optional[int] = mel_floor lowerCamelCase : Any = reduction_factor lowerCamelCase : Tuple = win_length * sampling_rate // 1000 lowerCamelCase : int = hop_length * sampling_rate // 1000 lowerCamelCase : int = optimal_fft_length(self.sample_size ) lowerCamelCase : List[str] = (self.n_fft // 2) + 1 lowerCamelCase : List[str] = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCamelCase__ ) lowerCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCamelCase__ , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCamelCase__ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCamelCase : List[Any] = np.array(UpperCamelCase__ , np.intaa ) lowerCamelCase : str = [] for vector, length in zip(UpperCamelCase__ , attention_mask.sum(-1 ) ): lowerCamelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase : List[Any] = padding_value normed_input_values.append(UpperCamelCase__ ) else: lowerCamelCase : str = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def _lowercase ( self , UpperCamelCase__ , ) -> np.ndarray: lowerCamelCase : Optional[int] = spectrogram( UpperCamelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: lowerCamelCase : Dict = self._process_audio( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) else: lowerCamelCase : Dict = None if audio_target is not None: lowerCamelCase : Optional[int] = self._process_audio( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) if inputs is None: return inputs_target else: lowerCamelCase : Optional[Any] = inputs_target["input_values"] lowerCamelCase : List[str] = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase : Dict = decoder_attention_mask return inputs def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchFeature: lowerCamelCase : Dict = isinstance(UpperCamelCase__ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase : Optional[int] = is_batched_numpy or ( isinstance(UpperCamelCase__ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase : Dict = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(UpperCamelCase__ , np.ndarray ): lowerCamelCase : Optional[int] = np.asarray(UpperCamelCase__ , dtype=np.floataa ) elif isinstance(UpperCamelCase__ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCamelCase : str = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase : List[Any] = [speech] # needed to make pad() work on spectrogram inputs lowerCamelCase : Any = self.feature_size # convert into correct format for padding if is_target: lowerCamelCase : List[Any] = [self._extract_mel_features(UpperCamelCase__ ) for waveform in speech] lowerCamelCase : Union[str, Any] = BatchFeature({"input_values": features} ) lowerCamelCase : Any = self.num_mel_bins else: lowerCamelCase : List[str] = BatchFeature({"input_values": speech} ) lowerCamelCase : Tuple = self.pad( UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase : Optional[int] = feature_size_hack # convert input values to correct format lowerCamelCase : Optional[Any] = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): lowerCamelCase : Any = [np.asarray(UpperCamelCase__ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(UpperCamelCase__ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCamelCase : Any = [array.astype(np.floataa ) for array in input_values] elif isinstance(UpperCamelCase__ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCamelCase : int = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCamelCase : Any = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase : Dict = [np.asarray(UpperCamelCase__ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCamelCase : Any = ( attention_mask if self._get_padding_strategies(UpperCamelCase__ , max_length=UpperCamelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase : Any = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=UpperCamelCase__ , padding_value=self.padding_value ) if return_tensors is not None: lowerCamelCase : Tuple = padded_inputs.convert_to_tensors(UpperCamelCase__ ) return padded_inputs def _lowercase ( self ) -> Dict[str, Any]: lowerCamelCase : Optional[int] = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCamelCase : Dict = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
48
'''simple docstring''' from ..utils import DummyObject, requires_backends class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *lowercase : str , **lowercase : List[Any] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : int ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : int , *lowercase : Tuple , **lowercase : Dict ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : List[str] , *lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Union[str, Any] , **lowercase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : int = ["""flax""", """transformers"""] def __init__( self : Optional[int] , *lowercase : Union[str, Any] , **lowercase : Any ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : Tuple , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Any , *lowercase : Dict , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) class _a ( metaclass=__a ): __a : Any = ["""flax""", """transformers"""] def __init__( self : Any , *lowercase : Optional[Any] , **lowercase : Optional[int] ): '''simple docstring''' requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Dict , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def A ( cls : Union[str, Any] , *lowercase : str , **lowercase : Any ): '''simple docstring''' requires_backends(cls , ['''flax''', '''transformers'''] )
34
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _A : def __init__( self , __lowerCAmelCase , ): """simple docstring""" lowercase = parent lowercase = 13 lowercase = 7 lowercase = 30 lowercase = self.seq_length + self.mem_len lowercase = 15 lowercase = True lowercase = True lowercase = 99 lowercase = [10, 50, 80] lowercase = 32 lowercase = 32 lowercase = 4 lowercase = 8 lowercase = 128 lowercase = 2 lowercase = 2 lowercase = None lowercase = 1 lowercase = 0 lowercase = 3 lowercase = self.vocab_size - 1 lowercase = 0.0_1 def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def A__ ( self ): """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFTransfoXLModel(__lowerCAmelCase ) lowercase , lowercase = model(__lowerCAmelCase ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a} lowercase , lowercase = model(__lowerCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFTransfoXLLMHeadModel(__lowerCAmelCase ) lowercase , lowercase = model(__lowerCAmelCase ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """labels""": lm_labels} lowercase , lowercase = model(__lowerCAmelCase ).to_tuple() lowercase , lowercase = model([input_ids_a, mems_a] ).to_tuple() lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowercase , lowercase = model(__lowerCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFTransfoXLForSequenceClassification(__lowerCAmelCase ) lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase)) = config_and_inputs lowercase = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case__ : List[str] = () if is_tf_available() else () snake_case__ : Tuple = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case__ : List[str] = False snake_case__ : List[Any] = False snake_case__ : List[Any] = False snake_case__ : Optional[int] = False def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def A__ ( self ): """simple docstring""" lowercase = TFTransfoXLModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , d_embed=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" self.model_tester.set_seed() lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.model_tester.set_seed() lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase = model.get_output_embeddings() assert isinstance(__lowerCAmelCase , tf.keras.layers.Layer ) lowercase = model.get_bias() assert name is None else: lowercase = model.get_output_embeddings() assert x is None lowercase = model.get_bias() assert name is None def A__ ( self ): """simple docstring""" pass @slow def A__ ( self ): """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFTransfoXLModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def A__ ( self ): """simple docstring""" pass @require_tf class _A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def A__ ( self ): """simple docstring""" lowercase = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off lowercase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase = model.generate(__lowerCAmelCase , max_length=200 , do_sample=__lowerCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCAmelCase )
32
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCAmelCase__ :Dict = logging.getLogger(__name__) @dataclass class __a ( lowerCamelCase_ ): _a : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _a : bool = field(default=lowerCamelCase_ , metadata={'help': 'Whether to SortishSamler or not.'} ) _a : bool = field( default=lowerCamelCase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _a : bool = field(default=lowerCamelCase_ , metadata={'help': 'whether to use adafactor'} ) _a : Optional[float] = field( default=lowerCamelCase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _a : Optional[float] = field( default=lowerCamelCase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _a : Optional[float] = field(default=lowerCamelCase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} ) _a : Optional[float] = field( default=lowerCamelCase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _a : Optional[str] = field( default='linear' , metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
329
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """mask2former""" a__ : Union[str, Any] = ["""swin"""] a__ : Dict = {"""hidden_size""": """hidden_dim"""} def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 1_024 , SCREAMING_SNAKE_CASE = "relu" , SCREAMING_SNAKE_CASE = 6 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 2_048 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 255 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 2.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 12_544 , SCREAMING_SNAKE_CASE = 3.0 , SCREAMING_SNAKE_CASE = 0.75 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case : List[str] = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = backbone_config.pop("model_type" ) snake_case : Dict = CONFIG_MAPPING[backbone_model_type] snake_case : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case : List[str] = backbone_config snake_case : Optional[int] = feature_size snake_case : Optional[int] = mask_feature_size snake_case : Optional[int] = hidden_dim snake_case : List[str] = encoder_feedforward_dim snake_case : Dict = activation_function snake_case : Optional[Any] = encoder_layers snake_case : Any = decoder_layers snake_case : Optional[int] = num_attention_heads snake_case : List[str] = dropout snake_case : List[Any] = dim_feedforward snake_case : Tuple = pre_norm snake_case : int = enforce_input_projection snake_case : str = common_stride snake_case : List[Any] = ignore_value snake_case : Optional[int] = num_queries snake_case : Optional[int] = no_object_weight snake_case : Dict = class_weight snake_case : Tuple = mask_weight snake_case : Tuple = dice_weight snake_case : Tuple = train_num_points snake_case : int = oversample_ratio snake_case : Dict = importance_sample_ratio snake_case : Tuple = init_std snake_case : Dict = init_xavier_std snake_case : List[Any] = use_auxiliary_loss snake_case : Dict = feature_strides snake_case : List[Any] = output_auxiliary_logits snake_case : Union[str, Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return cls( backbone_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = copy.deepcopy(self.__dict__ ) snake_case : str = self.backbone_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
148
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase =2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase =5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[str, float]: __lowerCamelCase = len([g for position, g in enumerate(UpperCamelCase__ ) if g == main_target[position]] ) return (item, float(UpperCamelCase__ )) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[str, str]: __lowerCamelCase = random.randint(0 , len(UpperCamelCase__ ) - 1 ) __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = list(UpperCamelCase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCamelCase = random.choice(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> list[str]: __lowerCamelCase = [] # Generate more children proportionally to the fitness score. __lowerCamelCase = int(parent_a[1] * 1_00 ) + 1 __lowerCamelCase = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase__ ): __lowerCamelCase = population_score[random.randint(0 , UpperCamelCase__ )][0] __lowerCamelCase , __lowerCamelCase = crossover(parent_a[0] , UpperCamelCase__ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) return pop def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowerCamelCase = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(UpperCamelCase__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCamelCase = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(UpperCamelCase__ ) # Generate random starting population. __lowerCamelCase = [] for _ in range(UpperCamelCase__ ): population.append(''''''.join([random.choice(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCamelCase , __lowerCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCamelCase = [evaluate(UpperCamelCase__ , UpperCamelCase__ ) for item in population] # Check if there is a matching evolution. __lowerCamelCase = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCamelCase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase__ ) # Normalize population score to be between 0 and 1. __lowerCamelCase = [ (item, score / len(UpperCamelCase__ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase__ ): population.extend(select(population_score[int(UpperCamelCase__ )] , UpperCamelCase__ , UpperCamelCase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase__ ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) __UpperCAmelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
354
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = [] __lowerCamelCase = set({'''(''', '''[''', '''{'''} ) __lowerCamelCase = set({''')''', ''']''', '''}'''} ) __lowerCamelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(UpperCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase__ ) == 0 or (len(UpperCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase__ ) == 0 def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCamelCase = input('''Enter sequence of brackets: ''' ) if is_balanced(UpperCamelCase__ ): print(UpperCamelCase__ , '''is balanced''' ) else: print(UpperCamelCase__ , '''is not balanced''' ) if __name__ == "__main__": main()
237
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : int = 400_0000 ) -> Any: """simple docstring""" snake_case : int = [0, 1] snake_case : List[str] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 snake_case : str = 0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
203
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "resnet" lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = embedding_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Dict = depths _UpperCAmelCase : List[Any] = layer_type _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = downsample_in_first_stage _UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : str ) ->float: '''simple docstring''' return 1E-3
322
0
'''simple docstring''' from collections.abc import Sequence def a ( __a = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) UpperCamelCase__ :Optional[Any] = nums[0] for i in range(1 , len(__a ) ): UpperCamelCase__ :Tuple = nums[i] UpperCamelCase__ :Union[str, Any] = max(__a , ans + num , __a ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case = int(input('''Enter number of elements : ''').strip()) __snake_case = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
97
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __snake_case = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Any =PRETRAINED_VOCAB_FILES_MAP A__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple =["""input_ids""", """attention_mask"""] A__ : Optional[int] =BartTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE__ = 'post_processor' SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE__ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE__ = False if state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = True if state.get('trim_offsets' , UpperCAmelCase_ ) != trim_offsets: SCREAMING_SNAKE_CASE__ = trim_offsets SCREAMING_SNAKE_CASE__ = True if changes_to_apply: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property def A_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self : Any , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value SCREAMING_SNAKE_CASE__ = value def A_ ( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
176
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __A =logging.get_logger(__name__) __A ={ 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _snake_case ( __lowercase ): lowerCAmelCase :Optional[int] = '''mctct''' def __init__( self , _lowerCamelCase=8065 , _lowerCamelCase=1536 , _lowerCamelCase=36 , _lowerCamelCase=6144 , _lowerCamelCase=4 , _lowerCamelCase=384 , _lowerCamelCase=920 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.3 , _lowerCamelCase="relu" , _lowerCamelCase=0.02 , _lowerCamelCase=0.3 , _lowerCamelCase=0.3 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0.3 , _lowerCamelCase=1 , _lowerCamelCase=(7,) , _lowerCamelCase=(3,) , _lowerCamelCase=80 , _lowerCamelCase=1 , _lowerCamelCase=None , _lowerCamelCase="sum" , _lowerCamelCase=False , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Any = attention_head_dim UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : List[str] = layerdrop UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = pad_token_id UpperCAmelCase__ : Optional[int] = bos_token_id UpperCAmelCase__ : List[str] = eos_token_id UpperCAmelCase__ : Optional[Any] = conv_glu_dim UpperCAmelCase__ : List[str] = conv_dropout UpperCAmelCase__ : Union[str, Any] = num_conv_layers UpperCAmelCase__ : Optional[int] = input_feat_per_channel UpperCAmelCase__ : List[str] = input_channels UpperCAmelCase__ : Any = conv_channels UpperCAmelCase__ : Optional[Any] = ctc_loss_reduction UpperCAmelCase__ : Optional[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase__ : List[str] = list(_lowerCamelCase) UpperCAmelCase__ : List[str] = list(_lowerCamelCase) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''')
363
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) UpperCAmelCase__ : List[str] = Vector() def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(_lowerCamelCase) , """(0,0,0,0,0,1)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4]) self.assertEqual(len(_lowerCamelCase) , 4) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Vector([1, 2]) UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5]) UpperCAmelCase__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def snake_case__ ( self): UpperCAmelCase__ : int = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[Any] = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3]) UpperCAmelCase__ : Dict = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def snake_case__ ( self): UpperCAmelCase__ : Tuple = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[int] = Vector([2, -1, 4]) # for test of dot product UpperCAmelCase__ : Any = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def snake_case__ ( self): self.assertEqual(str(zero_vector(10)).count("""0""") , 10) def snake_case__ ( self): self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([1, 2, 3]) UpperCAmelCase__ : List[str] = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase)) , """(3,4,7)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Optional[int] = x.copy() self.assertEqual(str(_lowerCamelCase) , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(_lowerCamelCase) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) UpperCAmelCase__ : List[Any] = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def snake_case__ ( self): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
283
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase_ : Optional[int] = '<<<<<<< This should probably be modified because it mentions: ' UpperCAmelCase_ : Tuple = '=======\n>>>>>>>\n' UpperCAmelCase_ : Tuple = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] UpperCAmelCase_ : List[str] = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def SCREAMING_SNAKE_CASE_ ( __A : Namespace ) -> Optional[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> int: a_ : Tuple = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: a_ : List[str] = get_logger('datasets-cli/converting' ) a_ : Union[str, Any] = tfds_path a_ : Any = datasets_directory def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: if os.path.isdir(self._tfds_path ): a_ : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a_ : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) a_ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) a_ : Optional[Any] = [] a_ : Any = [] a_ : Union[str, Any] = {} if os.path.isdir(self._tfds_path ): a_ : Any = os.listdir(SCREAMING_SNAKE_CASE__ ) else: a_ : int = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) a_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as f: a_ : Union[str, Any] = f.readlines() a_ : List[str] = [] a_ : Optional[int] = False a_ : List[str] = False a_ : List[str] = [] for line in lines: a_ : str = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a_ : Optional[int] = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here a_ : Optional[int] = '' continue elif "from absl import logging" in out_line: a_ : Dict = 'from datasets import logging\n' elif "getLogger" in out_line: a_ : Optional[Any] = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a_ : List[str] = True a_ : int = list(filter(lambda SCREAMING_SNAKE_CASE__ : e in out_line , SCREAMING_SNAKE_CASE__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(SCREAMING_SNAKE_CASE__ ) + '\n' ) out_lines.append(SCREAMING_SNAKE_CASE__ ) out_lines.append(SCREAMING_SNAKE_CASE__ ) continue else: for pattern, replacement in TO_CONVERT: a_ : Dict = re.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a_ : str = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , SCREAMING_SNAKE_CASE__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) a_ : Optional[int] = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a_ : Dict = True out_lines.append(SCREAMING_SNAKE_CASE__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a_ : Any = f_name.replace('.py' , '' ) a_ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(SCREAMING_SNAKE_CASE__ ) if needs_manual_update: with_manual_update.append(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: a_ : List[Any] = os.path.basename(SCREAMING_SNAKE_CASE__ ) a_ : Dict = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
32
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCamelCase__ = 637_8137.0 lowerCamelCase__ = 635_6752.31_4245 lowerCamelCase__ = 637_8137 def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> float: """simple docstring""" _UpperCamelCase : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCamelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowercase_ ) ) ) _UpperCamelCase : Any = atan((1 - flattening) * tan(radians(lowercase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCamelCase : Optional[Any] = haversine_distance(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCamelCase : int = (b_lata + b_lata) / 2 _UpperCamelCase : Union[str, Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCamelCase : Union[str, Any] = (sin(lowercase_ ) ** 2) * (cos(lowercase_ ) ** 2) _UpperCamelCase : Optional[Any] = cos(sigma / 2 ) ** 2 _UpperCamelCase : Any = (sigma - sin(lowercase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCamelCase : Union[str, Any] = (cos(lowercase_ ) ** 2) * (sin(lowercase_ ) ** 2) _UpperCamelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCamelCase : List[str] = (sigma + sin(lowercase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = "cpu" lowerCAmelCase_ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" lowerCAmelCase_ = "path-to-your-trained-model" lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ = pipe.to(device) # to channels last lowerCAmelCase_ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ = torch.randn(2, 4, 64, 64) lowerCAmelCase_ = torch.rand(1) * 999 lowerCAmelCase_ = torch.randn(2, 77, 768) lowerCAmelCase_ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ = 666 lowerCAmelCase_ = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ = {"generator": generator} if args.steps is not None: lowerCAmelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
16
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase : Optional[int] =" def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: A__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) A__ = self.transformer_dir shutil.copy( os.path.join(lowercase_ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :Tuple=None )-> Optional[Any]: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ = black.format_str(lowercase_ , mode=lowercase_ ) A__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self :str )-> Optional[Any]: A__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowercase_ ) , ) # Copy consistency with a really long name A__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowercase_ , overwrite_result=re.sub("Bert" , "TestModel" , lowercase_ ) , ) def UpperCAmelCase_ ( self :Dict )-> Any: A__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
237
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'sew-d' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a=2, __a=512, __a=256, __a=True, __a=True, __a=("p2c", "c2p"), __a="layer_norm", __a="gelu_python", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.1, __a=0.02, __a=1E-7, __a=1E-5, __a="group", __a="gelu", __a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), __a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), __a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), __a=False, __a=128, __a=16, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a="mean", __a=False, __a=False, __a=256, __a=0, __a=1, __a=2, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : str = feat_extract_norm _lowerCAmelCase : List[str] = feat_extract_activation _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : int = list(__a) _lowerCAmelCase : Any = list(__a) _lowerCAmelCase : Tuple = conv_bias _lowerCAmelCase : Tuple = num_conv_pos_embeddings _lowerCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups _lowerCAmelCase : Optional[int] = len(self.conv_dim) _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Optional[Any] = squeeze_factor _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : int = position_buckets _lowerCAmelCase : str = share_att_key _lowerCAmelCase : Optional[int] = relative_attention _lowerCAmelCase : List[Any] = norm_rel_ebd _lowerCAmelCase : Dict = list(__a) _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[int] = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = feature_layer_norm_eps _lowerCAmelCase : str = initializer_range _lowerCAmelCase : int = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)" f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Optional[int] = apply_spec_augment _lowerCAmelCase : Dict = mask_time_prob _lowerCAmelCase : Tuple = mask_time_length _lowerCAmelCase : Any = mask_time_min_masks _lowerCAmelCase : Union[str, Any] = mask_feature_prob _lowerCAmelCase : Tuple = mask_feature_length _lowerCAmelCase : Tuple = mask_feature_min_masks # ctc loss _lowerCAmelCase : Union[str, Any] = ctc_loss_reduction _lowerCAmelCase : str = ctc_zero_infinity # sequence classification _lowerCAmelCase : List[str] = use_weighted_layer_sum _lowerCAmelCase : Dict = classifier_proj_size @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
300
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( _lowerCamelCase = 8 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' i -= len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = i // 3 _lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCAmelCase : str = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' pass # Put your code here... def A ( _lowerCamelCase , _lowerCamelCase = 8 ): '''simple docstring''' if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCAmelCase : Tuple = any(char in ascii_uppercase for char in password ) _lowerCAmelCase : Tuple = any(char in ascii_lowercase for char in password ) _lowerCAmelCase : Optional[Any] = any(char in digits for char in password ) _lowerCAmelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCAmelCase : Tuple = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
300
1
from __future__ import annotations import typing from collections import Counter def __lowerCAmelCase ( a__ ) -> typing.Counter[int]: __a = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): __a = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __a = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __lowerCAmelCase ( a__ = 1000 ) -> int: __a = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
6
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a__ ( __snake_case ): A__ : Union[str, Any] = 'big_bird' def __init__( self , UpperCAmelCase=5_0_3_5_8 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=4_0_9_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=6_6 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=6_4 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> int: super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , sep_token_id=UpperCAmelCase , **UpperCAmelCase , ) __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps __a = use_cache __a = rescale_embeddings __a = attention_type __a = use_bias __a = block_size __a = num_random_blocks __a = classifier_dropout class a__ ( __snake_case ): @property def __SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __a = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
197
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[int] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __A( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=[0.4814_5466, 0.457_8275, 0.4082_1073] , _snake_case=[0.2686_2954, 0.2613_0258, 0.2757_7711] , _snake_case=True , ) -> Any: '''simple docstring''' __a = size if size is not None else {'''height''': 224, '''width''': 224} __a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = do_normalize __a = image_mean __a = image_std __a = do_convert_rgb def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False , _snake_case=False , _snake_case=False ) -> Union[str, Any]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __a = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __a = [] for i in range(self.batch_size ): __a , __a = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __a = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] if torchify: __a = [torch.from_numpy(_snake_case ) for x in image_inputs] return image_inputs @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = ChineseCLIPImageProcessingTester(self , do_center_crop=_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''size''' ) ) self.assertTrue(hasattr(_snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(_snake_case , '''center_crop''' ) ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(_snake_case , '''image_std''' ) ) self.assertTrue(hasattr(_snake_case , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_snake_case ) __a = 3 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''size''' ) ) self.assertTrue(hasattr(_snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(_snake_case , '''center_crop''' ) ) self.assertTrue(hasattr(_snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(_snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(_snake_case , '''image_std''' ) ) self.assertTrue(hasattr(_snake_case , '''do_convert_rgb''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = self.image_processor_tester.prepare_inputs(equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a = image_processing(_snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
6
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[] ): '''simple docstring''' lowerCamelCase : Optional[Any] = size[0] - overlap_pixels * 2 lowerCamelCase : int = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCamelCase : Tuple = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCamelCase : List[Any] = np.pad(SCREAMING_SNAKE_CASE_ , mode="linear_ramp" , pad_width=SCREAMING_SNAKE_CASE_ , end_values=0 ) if "l" in remove_borders: lowerCamelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCamelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCamelCase : List[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCamelCase : Tuple = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return max(SCREAMING_SNAKE_CASE_ , min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCamelCase : Any = clamp_rect(SCREAMING_SNAKE_CASE_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(SCREAMING_SNAKE_CASE_ , (original_slice, 0) ) return result def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCamelCase : int = tile.crop(SCREAMING_SNAKE_CASE_ ) return tile def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = n % d return n - divisor class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): """simple docstring""" super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def _snake_case ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : Tuple = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCamelCase : Union[str, Any] = add_overlap_rect(__A , __A , image.size ) lowerCamelCase : List[str] = image.crop(__A ) lowerCamelCase : Optional[int] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCamelCase : int = translated_slice_x - (original_image_slice / 2) lowerCamelCase : Optional[Any] = max(0 , __A ) lowerCamelCase : Tuple = squeeze_tile(__A , __A , __A , __A ) lowerCamelCase : Dict = to_input.size lowerCamelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCamelCase : Dict = super(__A , self ).__call__(image=__A , **__A ).images[0] lowerCamelCase : Tuple = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCamelCase : Optional[Any] = unsqueeze_tile(__A , __A ) lowerCamelCase : Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCamelCase : int = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) lowerCamelCase : int = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode="L" , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): """simple docstring""" lowerCamelCase : Dict = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) lowerCamelCase : Union[str, Any] = math.ceil(image.size[0] / tile_size ) lowerCamelCase : Dict = math.ceil(image.size[1] / tile_size ) lowerCamelCase : str = tcx * tcy lowerCamelCase : int = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def lowercase_( ): '''simple docstring''' lowerCamelCase : Dict = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="fp16" , torch_dtype=torch.floataa ) lowerCamelCase : Optional[Any] = pipe.to("cuda" ) lowerCamelCase : List[str] = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(SCREAMING_SNAKE_CASE_ ): print(f"""progress: {obj['progress']:.4f}""" ) obj["image"].save("diffusers_library_progress.jpg" ) lowerCamelCase : int = pipe(image=SCREAMING_SNAKE_CASE_ , prompt="Black font, white background, vector" , noise_level=40 , callback=SCREAMING_SNAKE_CASE_ ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
283
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _A : int = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase , UpperCAmelCase , f=output_path.as_posix() , input_names=UpperCAmelCase , output_names=UpperCAmelCase , dynamic_axes=UpperCAmelCase , do_constant_folding=UpperCAmelCase , use_external_data_format=UpperCAmelCase , enable_onnx_checker=UpperCAmelCase , opset_version=UpperCAmelCase , ) else: export( UpperCAmelCase , UpperCAmelCase , f=output_path.as_posix() , input_names=UpperCAmelCase , output_names=UpperCAmelCase , dynamic_axes=UpperCAmelCase , do_constant_folding=UpperCAmelCase , opset_version=UpperCAmelCase , ) @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase__ : Optional[int] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase__ : str = '''cpu''' lowerCamelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase , torch_dtype=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = Path(UpperCAmelCase ) # TEXT ENCODER lowerCamelCase__ : int = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase__ : List[str] = pipeline.text_encoder.config.hidden_size lowerCamelCase__ : List[Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCAmelCase , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=UpperCAmelCase , ) del pipeline.text_encoder # UNET lowerCamelCase__ : Optional[int] = pipeline.unet.config.in_channels lowerCamelCase__ : int = pipeline.unet.config.sample_size lowerCamelCase__ : Tuple = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), torch.randn(2 ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), torch.randn(2 , UpperCAmelCase , UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), False, ) , output_path=UpperCAmelCase , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=UpperCAmelCase , use_external_data_format=UpperCAmelCase , ) lowerCamelCase__ : List[str] = str(unet_path.absolute().as_posix() ) lowerCamelCase__ : str = os.path.dirname(UpperCAmelCase ) lowerCamelCase__ : Dict = onnx.load(UpperCAmelCase ) # clean up existing tensor files shutil.rmtree(UpperCAmelCase ) os.mkdir(UpperCAmelCase ) # collate external tensor files into one onnx.save_model( UpperCAmelCase , UpperCAmelCase , save_as_external_data=UpperCAmelCase , all_tensors_to_one_file=UpperCAmelCase , location='''weights.pb''' , convert_attribute=UpperCAmelCase , ) del pipeline.unet # VAE ENCODER lowerCamelCase__ : Optional[Any] = pipeline.vae lowerCamelCase__ : List[str] = vae_encoder.config.in_channels lowerCamelCase__ : Optional[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase__ : Union[str, Any] = lambda UpperCAmelCase , UpperCAmelCase : vae_encoder.encode(UpperCAmelCase , UpperCAmelCase )[0].sample() onnx_export( UpperCAmelCase , model_args=( torch.randn(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCAmelCase , ) # VAE DECODER lowerCamelCase__ : Optional[Any] = pipeline.vae lowerCamelCase__ : Any = vae_decoder.config.latent_channels lowerCamelCase__ : Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase__ : Optional[Any] = vae_encoder.decode onnx_export( UpperCAmelCase , model_args=( torch.randn(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=UpperCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase__ : Dict = pipeline.safety_checker lowerCamelCase__ : Union[str, Any] = safety_checker.config.vision_config.num_channels lowerCamelCase__ : int = safety_checker.config.vision_config.image_size lowerCamelCase__ : Dict = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), torch.randn(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=UpperCAmelCase , ) del pipeline.safety_checker lowerCamelCase__ : Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowerCamelCase__ : Optional[Any] = pipeline.feature_extractor else: lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCAmelCase ) print('''ONNX pipeline saved to''' , UpperCAmelCase ) del pipeline del onnx_pipeline lowerCamelCase__ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _A : Optional[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
354
def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowerCamelCase__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
265
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> str: """simple docstring""" raise RuntimeError("""CUDA out of memory.""" ) class A (nn.Module ): '''simple docstring''' def __init__( self : Tuple ) -> Optional[int]: """simple docstring""" super().__init__() A__ = nn.Linear(3 , 4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 , 5 ) def a_ ( self : Optional[int] , __lowerCAmelCase : int ) -> str: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(A_ ) ) ) class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__lowerCAmelCase : List[Any] ): nonlocal batch_sizes batch_sizes.append(A_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(A_ , [1_28, 64, 32, 16, 8] ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__lowerCAmelCase : int , __lowerCAmelCase : List[str] ): nonlocal batch_sizes batch_sizes.append(A_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A__ , A__ = mock_training_loop_function("""hello""" ) self.assertListEqual(A_ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def a_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCAmelCase : int ): pass with self.assertRaises(A_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def a_ ( self : int ) -> Optional[int]: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCAmelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(A_ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def a_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(A_ ) as cm: mock_training_loop_function(1_28 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1=\'hello\', arg2=\'world\')""" , cm.exception.args[0] ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCAmelCase : List[Any] ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(A_ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = torch.cuda.memory_allocated() A__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , A_ ) A__ = release_memory(A_ ) self.assertEqual(torch.cuda.memory_allocated() , A_ )
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(add_help=_SCREAMING_SNAKE_CASE , allow_abbrev=_SCREAMING_SNAKE_CASE ) # The main config parser _UpperCAmelCase = config_command_parser(_SCREAMING_SNAKE_CASE ) # The subparser to add commands to _UpperCAmelCase = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_config_parser() _UpperCAmelCase = config_parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
300
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Dict: A_ : Optional[Any] = nn.functional.normalize(_lowerCAmelCase ) A_ : List[str] = nn.functional.normalize(_lowerCAmelCase ) return torch.mm(_lowerCAmelCase , normalized_text_embeds.t() ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self :int , snake_case :CLIPConfig ): '''simple docstring''' super().__init__(snake_case ) A_ : int = CLIPVisionModel(config.vision_config ) A_ : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) A_ : Tuple = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) A_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) A_ : int = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' A_ : List[Any] = self.vision_model(snake_case )[1] # pooled_output A_ : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() A_ : Union[str, Any] = [] A_ : Any = image_embeds.shape[0] for i in range(snake_case ): A_ : Optional[int] = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A_ : Optional[Any] = special_cos_dist[i][concept_idx] A_ : Tuple = self.special_care_embeds_weights[concept_idx].item() A_ : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) A_ : Any = 0.01 for concept_idx in range(len(cos_dist[0] ) ): A_ : Tuple = cos_dist[i][concept_idx] A_ : Tuple = self.concept_embeds_weights[concept_idx].item() A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) A_ : Any = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :torch.FloatTensor , snake_case :torch.FloatTensor ): '''simple docstring''' A_ : List[str] = self.vision_model(snake_case )[1] # pooled_output A_ : int = self.visual_projection(snake_case ) A_ : Tuple = cosine_distance(snake_case , self.special_care_embeds ) A_ : Tuple = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A_ : Optional[Any] = 0.0 A_ : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A_ : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) A_ : Optional[Any] = special_care * 0.01 A_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A_ : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A_ : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
300
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = "transfo-xl" __UpperCAmelCase : Union[str, Any] = ["mems"] __UpperCAmelCase : Tuple = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int, UpperCAmelCase__ : Optional[Any]=2_6_7_7_3_5, UpperCAmelCase__ : int=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0], UpperCAmelCase__ : Optional[Any]=1_0_2_4, UpperCAmelCase__ : str=1_0_2_4, UpperCAmelCase__ : Union[str, Any]=1_6, UpperCAmelCase__ : Optional[Any]=6_4, UpperCAmelCase__ : Optional[Any]=4_0_9_6, UpperCAmelCase__ : Tuple=4, UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : Optional[int]=1_8, UpperCAmelCase__ : int=1_6_0_0, UpperCAmelCase__ : List[str]=1_0_0_0, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : Union[str, Any]=True, UpperCAmelCase__ : List[str]=0, UpperCAmelCase__ : List[Any]=-1, UpperCAmelCase__ : int=True, UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : int=0.0, UpperCAmelCase__ : str=True, UpperCAmelCase__ : List[str]="normal", UpperCAmelCase__ : List[str]=0.01, UpperCAmelCase__ : Optional[int]=0.01, UpperCAmelCase__ : List[str]=0.02, UpperCAmelCase__ : Union[str, Any]=1E-5, UpperCAmelCase__ : List[str]=0, **UpperCAmelCase__ : Tuple, ): __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(UpperCAmelCase__ ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : List[Any] ): # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self : List[str], UpperCAmelCase__ : Optional[int] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
362
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _a = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _a , _a = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _a = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _a = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _a = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
144
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): snake_case__ : Optional[int] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING snake_case__ : str = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AudioClassificationPipeline(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) # test with a raw waveform lowercase = np.zeros((3_4000,) ) lowercase = np.zeros((1_4000,) ) return audio_classifier, [audioa, audio] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = examples lowercase = audio_classifier(__lowerCAmelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( __lowerCAmelCase , [ {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, ] , ) lowercase = audio_classifier(__lowerCAmelCase , top_k=1 ) self.assertEqual( __lowerCAmelCase , [ {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, ] , ) self.run_torchaudio(__lowerCAmelCase ) @require_torchaudio def A__ ( self , __lowerCAmelCase ): """simple docstring""" import datasets # test with a local file lowercase = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) lowercase = dataset[0]["""audio"""]["""array"""] lowercase = audio_classifier(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, ] , ) @require_torch def A__ ( self ): """simple docstring""" lowercase = """anton-l/wav2vec2-random-tiny-classifier""" lowercase = pipeline("""audio-classification""" , model=__lowerCAmelCase ) lowercase = np.ones((8000,) ) lowercase = audio_classifier(__lowerCAmelCase , top_k=4 ) lowercase = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] lowercase = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(__lowerCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowercase = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} lowercase = audio_classifier(__lowerCAmelCase , top_k=4 ) self.assertIn(nested_simplify(__lowerCAmelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def A__ ( self ): """simple docstring""" import datasets lowercase = """superb/wav2vec2-base-superb-ks""" lowercase = pipeline("""audio-classification""" , model=__lowerCAmelCase ) lowercase = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) lowercase = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) lowercase = audio_classifier(__lowerCAmelCase , top_k=4 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def A__ ( self ): """simple docstring""" pass
197
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : List[str] = ['onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""onnx"""] )
197
1
"""simple docstring""" from math import isqrt def lowerCAmelCase_( lowercase_ : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase_ ) + 1 ) ) def lowerCAmelCase_( lowercase_ : int = 10**6 ) -> int: _lowerCamelCase = 0 _lowerCamelCase = 1 _lowerCamelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
73
"""simple docstring""" import qiskit def lowerCAmelCase_( lowercase_ : int , lowercase_ : int ) -> qiskit.result.counts.Counts: _lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowerCamelCase = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowerCamelCase = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
73
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _SCREAMING_SNAKE_CASE : int = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: _SCREAMING_SNAKE_CASE : List[Any] = json.load(f) @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' return FSMTTokenizer.from_pretrained(a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' snake_case_ = FSMTForConditionalGeneration.from_pretrained(a__ ).to(a__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 2_6.0], ["ru-en", 2_2.0], ["en-de", 2_2.0], ["de-en", 2_9.0], ] ) @slow def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = F'facebook/wmt19-{pair}' snake_case_ = self.get_tokenizer(a__ ) snake_case_ = self.get_model(a__ ) snake_case_ = bleu_data[pair]["src"] snake_case_ = bleu_data[pair]["tgt"] snake_case_ = tokenizer(a__ , return_tensors="pt" , truncation=a__ , padding="longest" ).to(a__ ) snake_case_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) snake_case_ = tokenizer.batch_decode( a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ ) snake_case_ = calculate_bleu(a__ , a__ ) print(a__ ) self.assertGreaterEqual(scores["bleu"] , a__ )
85
'''simple docstring''' from __future__ import annotations import math class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Optional[int] = size # approximate the overall size of segment tree with given value UpperCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase : Any = [0 for i in range(0 , 4 * size )] UpperCAmelCase : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowercase( self , A ) -> int: return idx * 2 def _lowercase( self , A ) -> int: return idx * 2 + 1 def _lowercase( self , A , A , A , A ) -> None: if left_element == right_element: UpperCAmelCase : str = a[left_element - 1] else: UpperCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(A ) , A , A , A ) self.build(self.right(A ) , mid + 1 , A , A ) UpperCAmelCase : str = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) def _lowercase( self , A , A , A , A , A , A ) -> bool: if self.flag[idx] is True: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : int = False if left_element != right_element: UpperCAmelCase : List[str] = self.lazy[idx] UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase : Optional[Any] = val if left_element != right_element: UpperCAmelCase : Tuple = val UpperCAmelCase : int = val UpperCAmelCase : Any = True UpperCAmelCase : str = True return True UpperCAmelCase : str = (left_element + right_element) // 2 self.update(self.left(A ) , A , A , A , A , A ) self.update(self.right(A ) , mid + 1 , A , A , A , A ) UpperCAmelCase : List[str] = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) return True def _lowercase( self , A , A , A , A , A ) -> int | float: if self.flag[idx] is True: UpperCAmelCase : Any = self.lazy[idx] UpperCAmelCase : Any = False if left_element != right_element: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : Tuple = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase : Dict = (left_element + right_element) // 2 UpperCAmelCase : List[Any] = self.query(self.left(A ) , A , A , A , A ) UpperCAmelCase : str = self.query(self.right(A ) , mid + 1 , A , A , A ) return max(A , A ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A , A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] a : Optional[Any] = 1_5 a : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
265
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __UpperCAmelCase = HUGGINGFACE_HUB_CACHE __UpperCAmelCase = 'config.json' __UpperCAmelCase = 'diffusion_pytorch_model.bin' __UpperCAmelCase = 'diffusion_flax_model.msgpack' __UpperCAmelCase = 'model.onnx' __UpperCAmelCase = 'diffusion_pytorch_model.safetensors' __UpperCAmelCase = 'weights.pb' __UpperCAmelCase = 'https://huggingface.co' __UpperCAmelCase = default_cache_path __UpperCAmelCase = 'diffusers_modules' __UpperCAmelCase = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) __UpperCAmelCase = ['fp16', 'non-ema'] __UpperCAmelCase = '.self_attn'
145
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __UpperCAmelCase = 'Usage of script: script_name <size_of_canvas:int>' __UpperCAmelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): UpperCAmelCase_ : Tuple = bool(random.getrandbits(1 ) ) def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.array(__snake_case ) UpperCAmelCase_ : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): UpperCAmelCase_ : Optional[int] = __judge_point( __snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ : List[Any] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowercase__ ( __snake_case : bool , __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ : List[Any] = pt if pt: if alive < 2: UpperCAmelCase_ : str = False elif alive == 2 or alive == 3: UpperCAmelCase_ : int = True elif alive > 3: UpperCAmelCase_ : List[Any] = False else: if alive == 3: UpperCAmelCase_ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __UpperCAmelCase = int(sys.argv[1]) # main working structure of this module. __UpperCAmelCase = create_canvas(canvas_size) seed(c) __UpperCAmelCase , __UpperCAmelCase = plt.subplots() fig.show() __UpperCAmelCase = ListedColormap(['w', 'k']) try: while True: __UpperCAmelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
145
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCamelCase : """simple docstring""" @staticmethod def UpperCAmelCase ( *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' pass @is_pipeline_test @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : str = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) __snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : Dict = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) __snake_case : str = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : List[str] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) __snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : Dict = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) __snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes __snake_case : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : str = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __snake_case : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : int = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes __snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __snake_case : Tuple = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict): """simple docstring""" warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_)
313
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
1
import math def __lowercase ( _A , _A ) -> int: SCREAMING_SNAKE_CASE : int = len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) SCREAMING_SNAKE_CASE : List[Any] = 0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: SCREAMING_SNAKE_CASE : str = step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Dict = prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCAmelCase__ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(""",""")] UpperCAmelCase__ : List[str] = int(input("""Enter the number to be searched:\n""")) UpperCAmelCase__ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F"""Number {x} is at index {res}""")
245
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline _UpperCAmelCase :List[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase :List[str] = ["image_embeds", "negative_image_embeds", "image", "hint"] _UpperCAmelCase :Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase :str = False @property def UpperCAmelCase__ ( self : Tuple ): return 32 @property def UpperCAmelCase__ ( self : List[Any] ): return 32 @property def UpperCAmelCase__ ( self : Dict ): return self.time_input_dim @property def UpperCAmelCase__ ( self : int ): return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Optional[int] ): return 100 @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] ={ "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase_ : Union[str, Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self : Any ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : int ): torch.manual_seed(0 ) lowerCamelCase_ : int =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =self.dummy_unet lowerCamelCase_ : Optional[Any] =self.dummy_movq lowerCamelCase_ : Optional[Any] ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase_ : Optional[Any] =DDIMScheduler(**snake_case__ ) lowerCamelCase_ : Optional[Any] ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : str , snake_case__ : str=0 ): lowerCamelCase_ : Optional[int] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Optional[Any] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCamelCase_ : List[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCamelCase_ : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ : Tuple =Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) # create hint lowerCamelCase_ : Dict =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): lowerCamelCase_ : List[Any] =torch.manual_seed(snake_case__ ) else: lowerCamelCase_ : List[str] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCamelCase_ : Dict ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Any ="cpu" lowerCamelCase_ : Dict =self.get_dummy_components() lowerCamelCase_ : Dict =self.pipeline_class(**snake_case__ ) lowerCamelCase_ : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[Any] =pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : Dict =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCamelCase_ : List[str] =image[0, -3:, -3:, -1] lowerCamelCase_ : Optional[int] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ : Union[str, Any] =np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : List[Any] =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCamelCase_ : Optional[int] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase_ : Optional[int] =init_image.resize((512, 512) ) lowerCamelCase_ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCamelCase_ : Any =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 lowerCamelCase_ : Union[str, Any] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase_ : str ="A robot, 4k photo" lowerCamelCase_ : List[Any] =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCamelCase_ : Any =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) lowerCamelCase_ : List[str] =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Tuple =torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ , lowerCamelCase_ : Tuple =pipe_prior( snake_case__ , image=snake_case__ , strength=0.85 , generator=snake_case__ , negative_prompt="" , ).to_tuple() lowerCamelCase_ : str =pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) lowerCamelCase_ : Optional[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
144
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __snake_case =logging.get_logger(__name__) __snake_case ={ "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : str , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str=None , *UpperCAmelCase__ : str , **UpperCAmelCase__ : str ) -> Union[str, Any]: super().__init__(*a_ , **a_ ) if config is None: assert isinstance(self.model , a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) lowerCAmelCase = self.model.config else: lowerCAmelCase = config lowerCAmelCase = data_args lowerCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..' ) if self.args.label_smoothing == 0: lowerCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase = label_smoothed_nll_loss def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> int: if self.optimizer is None: lowerCAmelCase = ['bias', 'LayerNorm.weight'] lowerCAmelCase = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] lowerCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase = Adafactor lowerCAmelCase = {'scale_parameter': False, 'relative_step': False} else: lowerCAmelCase = AdamW lowerCAmelCase = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } lowerCAmelCase = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase = OSS( params=a_ , optim=a_ , **a_ , ) else: lowerCAmelCase = optimizer_cls(a_ , **a_ ) if self.lr_scheduler is None: lowerCAmelCase = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str] ) -> Tuple: lowerCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=a_ ) return scheduler def __UpperCAmelCase ( self : List[Any] ) -> Dict: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Tuple: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase = model(**a_ , use_cache=a_ )[0] lowerCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase , lowerCAmelCase = model(**a_ , labels=a_ , use_cache=a_ )[:2] else: # compute label smoothed loss lowerCAmelCase = model(**a_ , use_cache=a_ )[0] lowerCAmelCase = torch.nn.functional.log_softmax(a_ , dim=-1 ) lowerCAmelCase , lowerCAmelCase = self.loss_fn(a_ , a_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict ) -> List[Any]: lowerCAmelCase = inputs.pop('labels' ) lowerCAmelCase , lowerCAmelCase = self._compute_loss(a_ , a_ , a_ ) return loss def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : nn.Module , UpperCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase__ : bool , UpperCAmelCase__ : Optional[List[str]] = None , ) -> List[str]: lowerCAmelCase = self._prepare_inputs(a_ ) lowerCAmelCase = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **a_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase = self._pad_tensors_to_max_len(a_ , gen_kwargs['max_length'] ) lowerCAmelCase = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase , lowerCAmelCase = self._compute_loss(a_ , a_ , a_ ) lowerCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase = self._pad_tensors_to_max_len(a_ , gen_kwargs['max_length'] ) return (loss, logits, labels) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ) -> List[str]: lowerCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F''' padded to `max_length`={max_length}''' ) lowerCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase = tensor return padded_tensor
359
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a_ ( lowerCamelCase : Iterable[str] , lowerCamelCase : int ): lowerCAmelCase = iter(lowerCamelCase ) while True: lowerCAmelCase = tuple(itertools.islice(lowerCamelCase , lowerCamelCase ) ) if not chunk: return yield chunk def a_ ( lowerCamelCase : str ): lowerCAmelCase = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase = '' if len(lowerCamelCase ) < 2: return dirty for i in range(len(lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase ) & 1: clean += "X" return clean def a_ ( lowerCamelCase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase ) return table def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = prepare_input(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
55
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: # Load checkpoint __lowerCamelCase : Union[str, Any] = torch.load(lowerCamelCase__ , map_location='cpu' ) __lowerCamelCase : Dict = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCamelCase : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCamelCase : int = v else: __lowerCamelCase : List[Any] = v __lowerCamelCase : Any = chkpt['params'] __lowerCamelCase : List[Any] = {n: v for n, v in config.items() if not isinstance(lowerCamelCase__ , (torch.FloatTensor, numpy.ndarray) )} __lowerCamelCase : Union[str, Any] = chkpt['dico_word2id'] __lowerCamelCase : Union[str, Any] = {s + '</w>' if s.find('@@' ) == -1 and i > 1_3 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCamelCase : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase__ , indent=2 ) + '\n' ) print(F"Save vocab file to {pytorch_config_dump_path}" ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase__ , indent=2 ) + '\n' ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a =parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
73
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __lowerCamelCase : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
73
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase = get_tests_dir("""fixtures""") class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =mock.Mock() __lowercase =5_0_0 __lowercase ={} __lowercase =HTTPError __lowercase ={} # Download this model to make sure it's in the cache. __lowercase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_lowerCAmelCase) as mock_head: __lowercase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2') # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json') @is_staging_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCamelCase ( cls : Union[str, Any]): '''simple docstring''' __lowercase =TOKEN HfFolder.save_token(_lowerCAmelCase) @classmethod def __lowerCamelCase ( cls : str): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor') except HTTPError: pass def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token) __lowercase =WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id='test-feature-extractor' , push_to_hub=_lowerCAmelCase , use_auth_token=self._token) __lowercase =WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""") for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase)) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token) __lowercase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_lowerCAmelCase , use_auth_token=self._token) __lowercase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase)) def __lowerCamelCase ( self : Dict): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __lowercase =CustomFeatureExtractor.from_pretrained(_lowerCAmelCase) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __lowercase =AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_lowerCAmelCase) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor')
358
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """bart""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Any=4_0_9_6 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Dict=4_0_9_6 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=1_0_2_4 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : str=2 , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowerCAmelCase): __lowercase =self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.') class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
48
0
'''simple docstring''' from copy import deepcopy class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : list[int] | None = None , lowerCAmelCase__ : int | None = None ) -> None: """simple docstring""" if arr is None and size is not None: _UpperCAmelCase : List[str] = size _UpperCAmelCase : int = [0] * size elif arr is not None: self.init(lowerCAmelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : list[int] ) -> None: """simple docstring""" _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = deepcopy(lowerCAmelCase__ ) for i in range(1 , self.size ): _UpperCAmelCase : Optional[int] = self.next_(lowerCAmelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _lowerCAmelCase ( self : Any ) -> list[int]: """simple docstring""" _UpperCAmelCase : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _UpperCAmelCase : List[Any] = self.next_(lowerCAmelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int ) -> int: """simple docstring""" return index + (index & (-index)) @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : int ) -> int: """simple docstring""" return index - (index & (-index)) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _UpperCAmelCase : List[Any] = self.next_(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: """simple docstring""" self.add(lowerCAmelCase__ , value - self.get(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int ) -> int: """simple docstring""" if right == 0: return 0 _UpperCAmelCase : Dict = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _UpperCAmelCase : Optional[Any] = self.prev(lowerCAmelCase__ ) return result def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: """simple docstring""" return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> int: """simple docstring""" return self.query(lowerCAmelCase__ , index + 1 ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int ) -> int: """simple docstring""" value -= self.tree[0] if value < 0: return -1 _UpperCAmelCase : Any = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _UpperCAmelCase : Any = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
145
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple ) -> None: """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
145
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowercase__ = TypeVar("T") lowercase__ = TypeVar("U") class snake_case__ ( Generic[T, U] ): """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" snake_case : List[Any] = key snake_case : Union[str, Any] = val snake_case : DoubleLinkedListNode[T, U] | None = None snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Any ) -> List[Any]: """simple docstring""" return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class snake_case__ ( Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_ ) snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ , lowercase_ ) snake_case : Optional[int] = self.rear, self.head def __repr__( self : str ) -> Any: """simple docstring""" snake_case : Dict = ["DoubleLinkedList"] snake_case : Union[str, Any] = self.head while node.next is not None: rep.append(str(lowercase_ ) ) snake_case : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" snake_case : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None snake_case : str = node snake_case : Tuple = previous snake_case : List[str] = node snake_case : Tuple = self.rear def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" if node.prev is None or node.next is None: return None snake_case : Optional[Any] = node.next snake_case : Dict = node.prev snake_case : Any = None snake_case : str = None return node class snake_case__ ( Generic[T, U] ): """simple docstring""" lowerCamelCase = {} def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() snake_case : List[str] = capacity snake_case : List[str] = 0 snake_case : int = 0 snake_case : str = 0 snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : List[Any] ) -> Optional[int]: """simple docstring""" return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : int , UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return key in self.cache def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" if key in self.cache: self.hits += 1 snake_case : DoubleLinkedListNode[T, U] = self.cache[key] snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity snake_case : List[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 snake_case : Optional[int] = DoubleLinkedListNode(lowercase_ , lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value snake_case : int = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list snake_case : Dict = value self.list.add(lowercase_ ) @classmethod def lowerCAmelCase ( cls : Optional[Any] , UpperCamelCase__ : int = 128 ) -> Union[str, Any]: """simple docstring""" def cache_decorator_inner(UpperCamelCase__ : Union[str, Any] ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCamelCase__ : List[str] ) -> U: if func not in cls.decorator_function_to_instance_map: snake_case : str = LRUCache(lowercase_ ) snake_case : Dict = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: snake_case : Optional[int] = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , '''cache_info''' , lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = DebertaTokenizer lowerCamelCase = True lowerCamelCase = DebertaTokenizerFast def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case : List[Any] = {'''unk_token''': '''[UNK]'''} snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def lowerCAmelCase ( self : Union[str, Any] , **UpperCamelCase__ : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case : Tuple = '''lower newer''' snake_case : Optional[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = '''lower newer''' snake_case : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : int = self.get_tokenizer() snake_case : Optional[int] = tokenizer('''Hello''' , '''World''' ) snake_case : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) snake_case : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) snake_case : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case : Any = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] snake_case : Optional[Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) snake_case : List[str] = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off snake_case : Optional[int] = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
83
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "bridgetower_vision_model" def __init__( self: str , UpperCAmelCase_: Dict=768 , UpperCAmelCase_: Tuple=12 , UpperCAmelCase_: Optional[int]=3 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: Tuple=288 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: Dict=1E-05 , UpperCAmelCase_: Optional[int]=False , UpperCAmelCase_: Optional[int]=True , UpperCAmelCase_: str=False , **UpperCAmelCase_: List[str] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = stop_gradient _SCREAMING_SNAKE_CASE = share_layernorm _SCREAMING_SNAKE_CASE = remove_last_layer @classmethod def UpperCamelCase ( cls: Any , UpperCAmelCase_: Union[str, os.PathLike] , **UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = "bridgetower_text_model" def __init__( self: int , UpperCAmelCase_: Optional[int]=50_265 , UpperCAmelCase_: Optional[int]=768 , UpperCAmelCase_: Tuple=12 , UpperCAmelCase_: Tuple=12 , UpperCAmelCase_: str=1 , UpperCAmelCase_: List[str]=3_072 , UpperCAmelCase_: Union[str, Any]="gelu" , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: Dict=514 , UpperCAmelCase_: Optional[int]=1 , UpperCAmelCase_: List[str]=1E-05 , UpperCAmelCase_: Any=1 , UpperCAmelCase_: List[Any]=0 , UpperCAmelCase_: Tuple=2 , UpperCAmelCase_: Dict="absolute" , UpperCAmelCase_: Optional[Any]=True , **UpperCAmelCase_: Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id @classmethod def UpperCamelCase ( cls: Tuple , UpperCAmelCase_: Union[str, os.PathLike] , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = "bridgetower" def __init__( self: Dict , UpperCAmelCase_: Optional[Any]=True , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: Union[str, Any]=768 , UpperCAmelCase_: Optional[int]=1 , UpperCAmelCase_: Optional[Any]=1E-05 , UpperCAmelCase_: Dict=False , UpperCAmelCase_: List[Any]="add" , UpperCAmelCase_: List[Any]=12 , UpperCAmelCase_: int=6 , UpperCAmelCase_: str=False , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Any=None , **UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = kwargs.pop("""text_config_dict""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = kwargs.pop("""vision_config_dict""" , UpperCAmelCase_ ) super().__init__(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = share_cross_modal_transformer_layers _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = share_link_tower_layers _SCREAMING_SNAKE_CASE = link_tower_type _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = tie_word_embeddings _SCREAMING_SNAKE_CASE = init_layernorm_from_vision_encoder if text_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _SCREAMING_SNAKE_CASE = BridgeTowerTextConfig(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = BridgeTowerVisionConfig(**UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: int , UpperCAmelCase_: BridgeTowerTextConfig , UpperCAmelCase_: BridgeTowerVisionConfig , **UpperCAmelCase_: List[str] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.text_config.to_dict() _SCREAMING_SNAKE_CASE = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
125
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[str] = KandinskyVaaInpaintPipeline __snake_case : Union[str, Any] = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Tuple = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : str = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : List[str] = False @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
125
1
def lowercase__ ( __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str ): '''simple docstring''' if index == r: for j in range(__snake_case ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ : Tuple = arr[i] combination_util(__snake_case , __snake_case , __snake_case , index + 1 , __snake_case , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase__ ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case , __snake_case , __snake_case , 0 , __snake_case , 0 ) if __name__ == "__main__": # Driver code to check the function above __UpperCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
29
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a_ : int = logging.get_logger(__name__) class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["input_features", "attention_mask"] def __init__( self , UpperCamelCase=80 , UpperCamelCase=1_6000 , UpperCamelCase=80 , UpperCamelCase=0.0 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = num_mel_bins lowerCamelCase_ = do_ceptral_normalize lowerCamelCase_ = normalize_means lowerCamelCase_ = normalize_vars lowerCamelCase_ = True def snake_case ( self , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCamelCase_ = torch.from_numpy(UpperCamelCase ).unsqueeze(0 ) lowerCamelCase_ = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: lowerCamelCase_ = x[:input_length].mean(axis=0 ) lowerCamelCase_ = np.subtract(UpperCamelCase , UpperCamelCase ) if normalize_vars: lowerCamelCase_ = x[:input_length].std(axis=0 ) lowerCamelCase_ = np.divide(UpperCamelCase , UpperCamelCase ) if input_length < x.shape[0]: lowerCamelCase_ = padding_value # make sure array is in float32 lowerCamelCase_ = x.astype(np.floataa ) return x def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase , UpperCamelCase ) ] def __call__( self , UpperCamelCase , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase_ = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): lowerCamelCase_ = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [raw_speech] # extract fbank features lowerCamelCase_ = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCamelCase_ = BatchFeature({"input_features": features} ) lowerCamelCase_ = self.pad( UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) # make sure list is in array format lowerCamelCase_ = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase ): lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features] lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCamelCase_ = ( np.array(UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(UpperCamelCase ) return padded_inputs
55
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase = {ord(char) for char in VALID_CHARS} UpperCAmelCase = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def lowerCamelCase (a_ :list[int] , a_ :tuple[int, ...]) -> str | None: lowercase :str = "" lowercase :int lowercase :int lowercase :int for keychar, cipherchar in zip(cycle(a_) , a_): lowercase :Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(a_) return decoded def lowerCamelCase (a_ :list[int]) -> list[str]: lowercase :list[str] = [] for key in product(a_ , repeat=3): lowercase :Union[str, Any] = try_key(a_ , a_) if encoded is not None: possibles.append(a_) return possibles def lowerCamelCase (a_ :list[str] , a_ :str) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase (a_ :str = "p059_cipher.txt") -> int: lowercase :list[int] lowercase :list[str] lowercase :str lowercase :str lowercase :str = Path(a_).parent.joinpath(a_).read_text(encoding='''utf-8''') lowercase :int = [int(a_) for number in data.strip().split(''',''')] lowercase :Union[str, Any] = filter_valid_chars(a_) for common_word in COMMON_WORDS: lowercase :str = filter_common_word(a_ , a_) if len(a_) == 1: break lowercase :Union[str, Any] = possibles[0] return sum(ord(a_) for char in decoded_text) if __name__ == "__main__": print(F"""{solution() = }""")
370
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __snake_case = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __snake_case = { 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } __snake_case = '▁' class __snake_case ( lowerCAmelCase__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = ["""input_ids""", """token_type_ids"""] __lowerCamelCase : List[str] = FNetTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__="<unk>" , snake_case__="[SEP]" , snake_case__="<pad>" , snake_case__="[CLS]" , snake_case__="[MASK]" , **snake_case__ , ) -> str: '''simple docstring''' UpperCAmelCase : Any =( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase : Optional[Any] =do_lower_case UpperCAmelCase : Union[str, Any] =remove_space UpperCAmelCase : str =keep_accents UpperCAmelCase : Optional[Any] =vocab_file UpperCAmelCase : List[Any] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : List[str] =[self.sep_token_id] UpperCAmelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : int =os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
348
def A ( _SCREAMING_SNAKE_CASE ) -> list: if n_term == "": return [] lowerCamelCase : list = [] for temp in range(int(_SCREAMING_SNAKE_CASE ) ): series.append(f'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
48
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm A : Optional[int] = logging.get_logger(__name__) @dataclass class __A( a ): """simple docstring""" snake_case_ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_snake_case ) -> Union[str, Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a = deprecated_arg[3:] setattr(self , _snake_case , not kwargs.pop(_snake_case ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __a = kwargs.pop('''torchscript''' , self.torchscript ) __a = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __a = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**_snake_case ) snake_case_ = field(default=a , metadata={'''help''': '''Trace the models using torchscript'''} ) snake_case_ = field(default=a , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) snake_case_ = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __a = torch.device('''cpu''' ) __a = 0 elif is_torch_tpu_available(): __a = xm.xla_device() __a = 0 else: __a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __a = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.n_gpu > 0
355
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_( lowerCamelCase_ ) -> Any: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Dict = TFVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Dict = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Tuple: """simple docstring""" _lowercase , _lowercase : Optional[int] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Any = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : Union[str, Any] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Optional[int] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : str = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : List[Any] = after_output[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : int = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : Dict = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Optional[int] = to_atuple(vision_model.config.patch_size) _lowercase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Any = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[Any] = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @slow def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Optional[int] = after_outputs[0].numpy() _lowercase : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-random-bert') _lowercase : Union[str, Any] = 13 _lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : str = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : int = TFViTModel(lowerCamelCase, name='vision_model') _lowercase : Union[str, Any] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = TFViTModelTester(self) _lowercase : List[Any] = TFBertModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf', 'hf-internal-testing/tiny-random-roberta') _lowercase : Dict = 13 _lowercase : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : int = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : Tuple = random_attention_mask([batch_size, 4]) _lowercase : Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase , _lowercase : Dict = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=lowerCamelCase, text_model=lowerCamelCase) _lowercase : List[Any] = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : List[Any] = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase : Dict = to_atuple(vision_model.config.image_size) _lowercase : List[str] = to_atuple(vision_model.config.patch_size) _lowercase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Any = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Tuple = TFDeiTModel(lowerCamelCase, name='vision_model') _lowercase : str = TFRobertaModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = TFDeiTModelTester(self) _lowercase : Tuple = TFRobertaModelTester(self) _lowercase : Any = vit_model_tester.prepare_config_and_inputs() _lowercase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[Any] = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf', 'hf-internal-testing/tiny-random-bert') _lowercase : List[Any] = 13 _lowercase : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _lowercase : List[str] = ids_tensor([batch_size, 4], model.text_model.config.vocab_size) _lowercase : List[Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : str = TFCLIPVisionModel(lowerCamelCase, name='vision_model') _lowercase : List[str] = TFBertModel(lowerCamelCase, name='text_model') return vision_model, text_model def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Any = TFCLIPVisionModelTester(self) _lowercase : Tuple = TFBertModelTester(self) _lowercase : Optional[Any] = clip_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Any = vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian', logit_scale_init_value=1.0, from_pt=lowerCamelCase) _lowercase : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : int = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : Union[str, Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Any = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(), lowerCamelCase, atol=1E-3))
21
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : MutableSequence[float] ): '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _UpperCamelCase : list[float] = list(lowerCamelCase__ ) _UpperCamelCase : Tuple = degree def __add__( self : Optional[int] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCamelCase : str = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,lowerCamelCase__ ) else: _UpperCamelCase : str = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,lowerCamelCase__ ) def __sub__( self : Dict ,lowerCamelCase__ : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self : Dict ): '''simple docstring''' return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : int | float ): '''simple docstring''' _UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = '' for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : List[str] ): '''simple docstring''' return self.__str__() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): _UpperCamelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int | float = 0 ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + 2) _UpperCamelCase : Any = constant for i in range(self.degree + 1 ): _UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,lowerCamelCase__ ) def __eq__( self : str ,lowerCamelCase__ : object ): '''simple docstring''' if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] ,lowerCamelCase__ : object ): '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
83
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = ['''torch''', '''scipy'''] def __init__( self : List[str] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : Any = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Optional[int] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) snake_case_ : Any = spec.loader.load_module() snake_case_ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` snake_case_ : int = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") snake_case_ : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCAmelCase_ : Tuple = False # source code of `config_class` UpperCAmelCase_ : int = inspect.getsource(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCAmelCase_ , UpperCAmelCase_ : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase_ : Tuple = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCAmelCase_ : int = True break UpperCAmelCase_ : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: UpperCAmelCase_ : str = '''\n'''.join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
125
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __a : def __init__( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[int]=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Dict=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=99 , __magic_name__ : List[str]=32 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=37 , __magic_name__ : Dict="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Optional[int]=5_12 , __magic_name__ : Tuple=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=3 , __magic_name__ : str=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=0 , ) -> Any: """simple docstring""" UpperCAmelCase_ : str = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : Tuple = num_choices UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Union[str, Any] = projection_dim def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCAmelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) UpperCAmelCase_ : List[str] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : int = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Any = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = TFDPRQuestionEncoder(config=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = TFDPRReader(config=__magic_name__ ) UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __a : int = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __a : str = False __a : str = False __a : Dict = False __a : Optional[Any] = False __a : Any = False def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[int] = TFDPRModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = TFDPRContextEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = TFDPRReader.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class __a (unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Any = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCAmelCase_ : Optional[int] = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] UpperCAmelCase_ : List[Any] = model(__magic_name__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : int = 100_0000 )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : List[Any] = {1: 1} for inputa in range(2 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Dict = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: UpperCAmelCase__ : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: UpperCAmelCase__ : List[Any] = counter if counter > pre_counter: UpperCAmelCase__ : Tuple = inputa UpperCAmelCase__ : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
370
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Tuple = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
347
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
0
"""simple docstring""" from __future__ import annotations def _snake_case ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): A__ = list(range(len(lowerCAmelCase__ ) ) ) A__ = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda UpperCAmelCase_ : ratio[i] , reverse=lowerCAmelCase__ ) A__ = 0 A__ = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
69
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class A__ ( _A , _A , unittest.TestCase ): lowerCAmelCase__ : int = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : Any = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : str = False lowerCAmelCase__ : int = False def a__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=False ) -> int: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class A__ ( _A ): def __init__( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : str=32 , _UpperCAmelCase : str=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Tuple=None , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = embedding_size def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = TFMobileBertModel(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowercase = TFMobileBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFMobileBertForNextSentencePrediction(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = TFMobileBertForPreTraining(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" __lowercase = self.num_choices __lowercase = TFMobileBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = TFMobileBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : str ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : str ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: __lowercase = TFMobileBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 3_05_22] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
"""simple docstring""" def lowercase ( __snake_case : list[int] ): lowercase_ : List[Any] = len(__snake_case ) for i in range(__snake_case ): for j in range(i + 1 , __snake_case ): if numbers[j] < numbers[i]: lowercase_ , lowercase_ : Optional[int] = numbers[j], numbers[i] return numbers if __name__ == "__main__": __A : int = input('''Enter numbers separated by a comma:\n''').strip() __A : Any = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
33
0
"""simple docstring""" from typing import Any class _a : def __init__( self : Any, lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' _UpperCamelCase : Optional[int] = data _UpperCamelCase : Optional[Any] = None class _a : def __init__( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = None def snake_case ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = self.head while temp is not None: print(temp.data, end=''' ''' ) _UpperCamelCase : int = temp.next print() def snake_case ( self : List[str], lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = Node(lowerCAmelCase__ ) _UpperCamelCase : str = self.head _UpperCamelCase : Any = new_node def snake_case ( self : List[str], lowerCAmelCase__ : Union[str, Any], lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' if node_data_a == node_data_a: return else: _UpperCamelCase : Tuple = self.head while node_a is not None and node_a.data != node_data_a: _UpperCamelCase : Tuple = node_a.next _UpperCamelCase : str = self.head while node_a is not None and node_a.data != node_data_a: _UpperCamelCase : List[str] = node_a.next if node_a is None or node_a is None: return _UpperCamelCase , _UpperCamelCase : Tuple = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase_ =LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
128
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase = AltDiffusionPipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=3_2, ) _UpperCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=lowerCAmelCase__, set_alpha_to_one=lowerCAmelCase__, ) torch.manual_seed(0 ) _UpperCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _UpperCamelCase : str = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=3_2, projection_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5_0_0_2, ) _UpperCamelCase : List[Any] = CLIPTextModel(lowerCAmelCase__ ) _UpperCamelCase : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _UpperCamelCase : str = 7_7 _UpperCamelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case ( self : Dict, lowerCAmelCase__ : Any, lowerCAmelCase__ : int=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('''mps''' ): _UpperCamelCase : Any = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case ( self : List[Any] ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case ( self : List[Any] ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' _UpperCamelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : int = self.get_dummy_components() torch.manual_seed(0 ) _UpperCamelCase : Any = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : str = text_encoder _UpperCamelCase : List[Any] = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A photo of an astronaut''' _UpperCamelCase : Any = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : Any = output.images _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Optional[Any] = self.get_dummy_components() _UpperCamelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) _UpperCamelCase : int = RobertaSeriesConfig( hidden_size=3_2, project_dim=3_2, intermediate_size=3_7, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, vocab_size=5_0_0_2, ) # TODO: remove after fixing the non-deterministic text encoder _UpperCamelCase : Tuple = RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) _UpperCamelCase : int = text_encoder _UpperCamelCase : str = AltDiffusionPipeline(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = alt_pipe(**lowerCAmelCase__ ) _UpperCamelCase : List[str] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCamelCase : List[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def snake_case ( self : List[str] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', safety_checker=lowerCAmelCase__ ) _UpperCamelCase : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : int = '''A painting of a squirrel eating a burger''' _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Dict = alt_pipe([prompt], generator=lowerCAmelCase__, guidance_scale=6.0, num_inference_steps=2_0, output_type='''np''' ) _UpperCamelCase : Optional[int] = output.images _UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : List[str] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self : str ) -> str: '''simple docstring''' _UpperCamelCase : Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''', subfolder='''scheduler''' ) _UpperCamelCase : Dict = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__ ) _UpperCamelCase : Dict = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = '''A painting of a squirrel eating a burger''' _UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = alt_pipe([prompt], generator=lowerCAmelCase__, num_inference_steps=2, output_type='''numpy''' ) _UpperCamelCase : Tuple = output.images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCamelCase : str = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
128
1
'''simple docstring''' from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = "openai/whisper-base" _SCREAMING_SNAKE_CASE : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) _SCREAMING_SNAKE_CASE : List[str] = "transcriber" _SCREAMING_SNAKE_CASE : Optional[Any] = WhisperProcessor _SCREAMING_SNAKE_CASE : str = WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE : List[str] = ["audio"] _SCREAMING_SNAKE_CASE : Tuple = ["text"] def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self.pre_processor(UpperCAmelCase__ , return_tensors="""pt""" ).input_features def __A ( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' return self.model.generate(inputs=UpperCAmelCase__ ) def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0]
254
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowerCAmelCase ( unittest.TestCase ,lowercase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = load_tool("text-classification" ) self.tool.setup() __lowercase = load_tool("text-classification", remote=UpperCAmelCase__ ) def _lowercase ( self : str ): __lowercase = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : str ): __lowercase = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : List[str] ): __lowercase = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" ) def _lowercase ( self : Tuple ): __lowercase = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase__, "positive" )
17
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]="pt" ): UpperCamelCase_ : Union[str, Any] = {'add_prefix_space': True} if isinstance(_a , _a ) and not line.startswith(' ' ) else {} UpperCamelCase_ : str = padding_side return tokenizer( [line] , max_length=_a , padding='max_length' if pad_to_max_length else None , truncation=_a , return_tensors=_a , add_special_tokens=_a , **_a , ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : int=None , ): UpperCamelCase_ : List[str] = input_ids.ne(_a ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowercase ( snake_case_ ): def __init__( self : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : str , snake_case : Tuple , snake_case : str="train" , snake_case : List[str]=None , snake_case : Union[str, Any]=None , snake_case : str=None , snake_case : Union[str, Any]="" , ) -> Any: """simple docstring""" super().__init__() UpperCamelCase_ : List[str] = Path(lowerCamelCase_ ).joinpath(type_path + '.source' ) UpperCamelCase_ : str = Path(lowerCamelCase_ ).joinpath(type_path + '.target' ) UpperCamelCase_ : Tuple = self.get_char_lens(self.src_file ) UpperCamelCase_ : Any = max_source_length UpperCamelCase_ : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" UpperCamelCase_ : Tuple = tokenizer UpperCamelCase_ : Optional[Any] = prefix if n_obs is not None: UpperCamelCase_ : int = self.src_lens[:n_obs] UpperCamelCase_ : Any = src_lang UpperCamelCase_ : str = tgt_lang def __len__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return len(self.src_lens ) def __getitem__( self : Dict , snake_case : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCamelCase_ : Optional[Any] = index + 1 # linecache starts at 1 UpperCamelCase_ : List[str] = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase_ ).rstrip('\n' ) UpperCamelCase_ : List[Any] = linecache.getline(str(self.tgt_file ) , lowerCamelCase_ ).rstrip('\n' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCamelCase_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer ) UpperCamelCase_ : Dict = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer UpperCamelCase_ : List[Any] = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_source_length , 'right' ) UpperCamelCase_ : Dict = encode_line(lowerCamelCase_ , lowerCamelCase_ , self.max_target_length , 'right' ) UpperCamelCase_ : Union[str, Any] = source_inputs['input_ids'].squeeze() UpperCamelCase_ : str = target_inputs['input_ids'].squeeze() UpperCamelCase_ : Any = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> Any: """simple docstring""" return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCamelCase_ : Dict = torch.stack([x['input_ids'] for x in batch] ) UpperCamelCase_ : Optional[Any] = torch.stack([x['attention_mask'] for x in batch] ) UpperCamelCase_ : Dict = torch.stack([x['decoder_input_ids'] for x in batch] ) UpperCamelCase_ : List[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCamelCase_ : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCamelCase_ : str = trim_batch(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = trim_batch(lowerCamelCase_ , lowerCamelCase_ , attention_mask=lowerCamelCase_ ) UpperCamelCase_ : Tuple = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch a_ = getLogger(__name__) def __lowercase ( lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(_a ) ) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Dict = get_git_info() save_json(_a , os.path.join(_a , 'git_log.json' ) ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=4 , **lowerCamelCase : Dict ): with open(_a , 'w' ) as f: json.dump(_a , _a , indent=_a , **_a ) def __lowercase ( lowerCamelCase : Union[str, Any] ): with open(_a ) as f: return json.load(_a ) def __lowercase ( ): UpperCamelCase_ : Optional[int] = git.Repo(search_parent_directories=_a ) UpperCamelCase_ : Union[str, Any] = { 'repo_id': str(_a ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __lowercase ( lowerCamelCase : Callable , lowerCamelCase : Iterable ): return list(map(_a , _a ) ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : List[Any] ): with open(_a , 'wb' ) as f: return pickle.dump(_a , _a ) def __lowercase ( lowerCamelCase : Any ): def remove_articles(lowerCamelCase : int ): return re.sub(R'\b(a|an|the)\b' , ' ' , _a ) def white_space_fix(lowerCamelCase : str ): return " ".join(text.split() ) def remove_punc(lowerCamelCase : str ): UpperCamelCase_ : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) ) def __lowercase ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): UpperCamelCase_ : int = normalize_answer(_a ).split() UpperCamelCase_ : Optional[Any] = normalize_answer(_a ).split() UpperCamelCase_ : Optional[int] = Counter(_a ) & Counter(_a ) UpperCamelCase_ : Optional[int] = sum(common.values() ) if num_same == 0: return 0 UpperCamelCase_ : Any = 1.0 * num_same / len(_a ) UpperCamelCase_ : Any = 1.0 * num_same / len(_a ) UpperCamelCase_ : Any = (2 * precision * recall) / (precision + recall) return fa def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] ): return normalize_answer(_a ) == normalize_answer(_a ) def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : List[str] ): assert len(_a ) == len(_a ) UpperCamelCase_ : Union[str, Any] = 0 for hypo, pred in zip(_a , _a ): em += exact_match_score(_a , _a ) if len(_a ) > 0: em /= len(_a ) return {"em": em} def __lowercase ( lowerCamelCase : str ): return model_prefix.startswith('rag' ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict ): UpperCamelCase_ : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCamelCase_ : str = 'dropout_rate' for p in extra_params: if getattr(_a , _a , _a ): if not hasattr(_a , _a ) and not hasattr(_a , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_a ) ) delattr(_a , _a ) continue UpperCamelCase_ : Tuple = p if hasattr(_a , _a ) else equivalent_param[p] setattr(_a , _a , getattr(_a , _a ) ) delattr(_a , _a ) return hparams, config
360
a_ = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
0
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = generate_pascal_triangle(_UpperCAmelCase ) for row_idx in range(_UpperCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_: list[list[int]] = [] for current_row_idx in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = populate_current_row(_UpperCAmelCase , _UpperCAmelCase ) triangle.append(_UpperCAmelCase ) return triangle def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = 1, 1 for current_col_idx in range(1 , _UpperCAmelCase ): calculate_current_element( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return current_row def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: str = triangle[current_row_idx - 1][current_col_idx - 1] SCREAMING_SNAKE_CASE_: Optional[int] = triangle[current_row_idx - 1][current_col_idx] SCREAMING_SNAKE_CASE_: str = above_to_left_elt + above_to_right_elt def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_: list[list[int]] = [[1]] for row_index in range(1 , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = [0] + result[-1] + [0] SCREAMING_SNAKE_CASE_: Tuple = row_index + 1 # Calculate the number of distinct elements in a row SCREAMING_SNAKE_CASE_: Any = sum(divmod(_UpperCAmelCase , 2 ) ) SCREAMING_SNAKE_CASE_: Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] SCREAMING_SNAKE_CASE_: Tuple = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() SCREAMING_SNAKE_CASE_: List[str] = row_first_half + row_second_half result.append(_UpperCAmelCase ) return result def A_ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) -> None: SCREAMING_SNAKE_CASE_: int = f"{func.__name__}({value})" SCREAMING_SNAKE_CASE_: List[str] = timeit(f"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
13
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase_ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase_ ( )-> Optional[int]: _snake_case : List[Any] = cn.convert_to_negative(lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase_ ( )-> str: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCamelCase_ ( )-> int: _snake_case : Dict = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase_ ( )-> Tuple: _snake_case : Any = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _snake_case : Any = canny.canny(lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase_ ( )-> Dict: assert gg.gaussian_filter(lowerCAmelCase , 5 , sigma=0.9 ).all() def lowerCamelCase_ ( )-> int: # laplace diagonals _snake_case : List[str] = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _snake_case : Any = conv.img_convolve(lowerCAmelCase , lowerCAmelCase ).astype(lowerCAmelCase ) assert res.any() def lowerCamelCase_ ( )-> Union[str, Any]: assert med.median_filter(lowerCAmelCase , 3 ).any() def lowerCamelCase_ ( )-> List[Any]: _snake_case : Any = sob.sobel_filter(lowerCAmelCase ) assert grad.any() and theta.any() def lowerCamelCase_ ( )-> int: _snake_case : Tuple = sp.make_sepia(lowerCAmelCase , 20 ) assert sepia.all() def lowerCamelCase_ ( lowerCAmelCase: str = "digital_image_processing/image_data/lena_small.jpg" )-> List[str]: _snake_case : Optional[int] = bs.Burkes(imread(lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase_ ( lowerCAmelCase: str = "digital_image_processing/image_data/lena_small.jpg" , )-> List[Any]: _snake_case : Optional[int] = rs.NearestNeighbour(imread(lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def lowerCamelCase_ ( )-> Dict: _snake_case : str = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _snake_case : Dict = imread(lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _snake_case : List[Any] = 0 _snake_case : Union[str, Any] = 0 _snake_case : Tuple = image[x_coordinate][y_coordinate] _snake_case : List[Any] = lbp.get_neighbors_pixel( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _snake_case : int = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _snake_case : Any = lbp.local_binary_value(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert lbp_image.any()
354
lowerCAmelCase_ = 256 # Modulus to hash a string lowerCAmelCase_ = 100_0003 def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str )-> bool: _snake_case : Optional[int] = len(lowerCAmelCase ) _snake_case : int = len(lowerCAmelCase ) if p_len > t_len: return False _snake_case : str = 0 _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase ): _snake_case : Union[str, Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _snake_case : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _snake_case : Union[str, Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _snake_case : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_ ( )-> None: _snake_case : int = 'abc1abc12' _snake_case : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _snake_case : Tuple = 'alskfjaldsk23adsfabcabc' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) and not rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 2) _snake_case : List[str] = 'ABABX' _snake_case : Optional[Any] = 'ABABZABABYABABX' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 3) _snake_case : Tuple = 'AAAB' _snake_case : Dict = 'ABAAAAAB' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 4) _snake_case : List[Any] = 'abcdabcy' _snake_case : Dict = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 5) _snake_case : Optional[int] = 'Lü' _snake_case : Optional[int] = 'Lüsai' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) _snake_case : Any = 'Lue' assert not rabin_karp(lowerCAmelCase , lowerCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
260
0
import re from filelock import FileLock try: import nltk __lowerCAmelCase : Dict =True except (ImportError, ModuleNotFoundError): __lowerCAmelCase : List[Any] =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( lowercase__ ): re.sub('''<n>''' , '''''' , lowercase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase__ ) )
9
"""simple docstring""" import argparse __UpperCamelCase = '''docs/source/_static/js/custom.js''' def UpperCAmelCase ( UpperCAmelCase ) -> int: with open(UpperCAmelCase , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() snake_case_ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 snake_case_ = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') __UpperCamelCase = parser.parse_args() update_custom_js(args.version)
69
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ = None ,A__ = None ,A__ = False ,A__ = False ,A__ = None ,A__ = None ,**A__ ,): super().__init__( features=A__ ,cache_dir=A__ ,keep_in_memory=A__ ,streaming=A__ ,num_proc=A__ ,**A__ ,) lowercase = Generator( cache_dir=A__ ,features=A__ ,generator=A__ ,gen_kwargs=A__ ,**A__ ,) def A__ ( self): # Build iterable dataset if self.streaming: lowercase = self.builder.as_streaming_dataset(split='''train''') # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=A__ ,download_mode=A__ ,verification_mode=A__ ,base_path=A__ ,num_proc=self.num_proc ,) lowercase = self.builder.as_dataset( split='''train''' ,verification_mode=A__ ,in_memory=self.keep_in_memory) return dataset
97
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ :Union[str, Any] = 16 lowercase__ :Optional[Any] = 32 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ): '''simple docstring''' lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ :List[str] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": lowercase = 2 # New Code # lowercase = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config['''lr'''] lowercase = int(config['''num_epochs'''] ) lowercase = int(config['''seed'''] ) lowercase = int(config['''batch_size'''] ) lowercase = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowerCAmelCase__ ) lowercase , lowercase = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase__ ): lowercase = model(**lowerCAmelCase__ ) lowercase = output.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase__ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase = parser.parse_args() lowercase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
97
1
from pathlib import Path import fire def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = Path(_lowerCAmelCase) UpperCamelCase_ = Path(_lowerCAmelCase) dest_dir.mkdir(exist_ok=_lowerCAmelCase) for path in src_dir.iterdir(): UpperCamelCase_ = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase_ = dest_dir.joinpath(path.name) print(_lowerCAmelCase) dest_path.open("w").write("\n".join(_lowerCAmelCase)) if __name__ == "__main__": fire.Fire(minify)
128
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase : Tuple =2_9979_2458 # Symbols UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =symbols("""ct x y z""") def _lowerCAmelCase (_lowerCAmelCase): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!") elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!") return velocity / c def _lowerCAmelCase (_lowerCAmelCase): return 1 / sqrt(1 - beta(_lowerCAmelCase) ** 2) def _lowerCAmelCase (_lowerCAmelCase): return np.array( [ [gamma(_lowerCAmelCase), -gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), 0, 0], [-gamma(_lowerCAmelCase) * beta(_lowerCAmelCase), gamma(_lowerCAmelCase), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ]) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase = None): # Ensure event is not empty if event is None: UpperCamelCase_ = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCAmelCase) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase : Optional[Any] =transform(2997_9245) print("""Example of four vector: """) print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCAmelCase : List[Any] ={ct: c, x: 1, y: 1, z: 1} UpperCAmelCase : Optional[Any] =[four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
128
1
import itertools import math def _UpperCamelCase ( snake_case__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(snake_case__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : int = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def _UpperCamelCase ( snake_case__ = 1_0001 ) -> int: return next(itertools.islice(prime_generator(), nth - 1, snake_case__ ) ) if __name__ == "__main__": print(F'{solution() = }')
342
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
1
'''simple docstring''' def a_ ( __snake_case : list , __snake_case : list , __snake_case : int ) -> int: """simple docstring""" if len(__snake_case ) != len(__snake_case ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCamelCase_ =[p / w for p, w in zip(__snake_case , __snake_case )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCamelCase_ =sorted(__snake_case ) # declaring useful variables lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCamelCase_ =sorted_profit_by_weight[length - i - 1] lowerCamelCase_ =profit_by_weight.index(__snake_case ) lowerCamelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) a_ : Optional[int] = [int(x) for x in input("""Input profits separated by spaces: """).split()] a_ : List[str] = [int(x) for x in input("""Input weights separated by spaces: """).split()] a_ : int = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
75
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
from __future__ import annotations from dataclasses import dataclass @dataclass class _snake_case : _lowercase : float _lowercase : TreeNode | None = None _lowercase : TreeNode | None = None def lowerCamelCase__ (_UpperCAmelCase): # Validation def is_valid_tree(_UpperCAmelCase) -> bool: if node is None: return True if not isinstance(_UpperCAmelCase , _UpperCAmelCase): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(_UpperCAmelCase): raise ValueError( 'Each node should be type of TreeNode and data should be float.') def is_binary_search_tree_recursive_check( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCAmelCase , node.data) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCAmelCase) ) return is_binary_search_tree_recursive_check(_UpperCAmelCase , -float('inf') , float('inf')) if __name__ == "__main__": import doctest doctest.testmod()
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ : Optional[Any] = logging.get_logger(__name__) class _snake_case ( A__ ): _lowercase : Optional[int] = ['''pixel_values'''] def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None: super().__init__(**a) SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''') SCREAMING_SNAKE_CASE = (size['height'], size['width']) return resize(a , size=a , resample=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]: return rescale(a , scale=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a) SCREAMING_SNAKE_CASE = make_list_of_images(a) if not valid_images(a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images] SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a) return encoded_outputs
327
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCAmelCase : Optional[int] = False class snake_case__ (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> int: a = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = generator.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self : str ) -> List[str]: a = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
107
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Union[str, Any] = 16 __A : Optional[Any] = 32 def lowercase ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 ): '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : Optional[int] = mocked_dataloaders # noqa: F811 def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": _UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config['''num_epochs'''] ) _UpperCAmelCase = int(config['''seed'''] ) _UpperCAmelCase = int(config['''batch_size'''] ) set_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _UpperCAmelCase = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split('''.''' )[0] accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _UpperCAmelCase = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _SCREAMING_SNAKE_CASE ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(_SCREAMING_SNAKE_CASE ), '''epoch''': epoch, } , step=_SCREAMING_SNAKE_CASE , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=_SCREAMING_SNAKE_CASE , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
0
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __A (snake_case__): '''simple docstring''' __lowercase: torch.FloatTensor __lowercase: Optional[torch.FloatTensor] = None def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.999 , _SCREAMING_SNAKE_CASE="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) snake_case_ = [] for i in range(_SCREAMING_SNAKE_CASE ): snake_case_ = i / num_diffusion_timesteps snake_case_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class __A (snake_case__ , snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = 1 @register_to_config def __init__( self : Dict , UpperCAmelCase_ : int = 1_000 , UpperCAmelCase_ : float = 0.0_001 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "epsilon" , UpperCAmelCase_ : float = 1.0 , **UpperCAmelCase_ : Any , ) ->str: """simple docstring""" if kwargs.get("""set_alpha_to_one""" , UpperCAmelCase_ ) is not None: snake_case_ = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) snake_case_ = kwargs["""set_alpha_to_one"""] if trained_betas is not None: snake_case_ = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case_ = torch.linspace(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) snake_case_ = 1.0 - self.betas snake_case_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. snake_case_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution snake_case_ = 1.0 # setable values snake_case_ = None snake_case_ = torch.from_numpy(np.arange(0 , UpperCAmelCase_ ).copy().astype(np.intaa ) ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None ) ->torch.FloatTensor: """simple docstring""" return sample def lowerCAmelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ) ->str: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) snake_case_ = num_inference_steps snake_case_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round().copy().astype(np.intaa ) snake_case_ = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.timesteps += self.config.steps_offset def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : bool = True , ) ->Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" snake_case_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process snake_case_ = self.alphas_cumprod[timestep] snake_case_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) snake_case_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 snake_case_ = model_output elif self.config.prediction_type == "sample": snake_case_ = model_output snake_case_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": snake_case_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output snake_case_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: snake_case_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def __len__( self : List[str] ) ->Any: """simple docstring""" return self.config.num_train_timesteps
233
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __SCREAMING_SNAKE_CASE : List[str] = namedtuple('covid_data', 'cases deaths recovered') def _a ( _SCREAMING_SNAKE_CASE = "https://www.worldometers.info/coronavirus/" ) -> covid_data: snake_case_ = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(_SCREAMING_SNAKE_CASE ).content ).xpath(_SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE : List[str] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
233
1
'''simple docstring''' from collections import defaultdict class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase__ :Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase__ :str = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase__ :Optional[int] = (1 << len(UpperCamelCase_ )) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase__ :str = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase__ :Optional[int] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
97
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCamelCase__ :Tuple = g.get_repo('''huggingface/transformers''' ) UpperCamelCase__ :Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCamelCase__ :List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) UpperCamelCase__ :List[Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
97
1
'''simple docstring''' __snake_case = 65521 def a ( __a ): '''simple docstring''' UpperCamelCase__ :Tuple = 1 UpperCamelCase__ :Tuple = 0 for plain_chr in plain_text: UpperCamelCase__ :int = (a + ord(__a )) % MOD_ADLER UpperCamelCase__ :Tuple = (b + a) % MOD_ADLER return (b << 16) | a
361
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( __a=None ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = argparse.ArgumentParser(add_help=__a , allow_abbrev=__a ) # The main config parser UpperCamelCase__ :str = config_command_parser(__a ) # The subparser to add commands to UpperCamelCase__ :Union[str, Any] = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(__a , parents=[parent_parser] ) update_command_parser(__a , parents=[parent_parser] ) return config_parser def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :int = get_config_parser() UpperCamelCase__ :List[Any] = config_parser.parse_args() if not hasattr(__a , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
219
0
import itertools import math def UpperCamelCase ( _A ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(_A ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = 2 while True: if is_prime(_A ): yield num num += 1 def UpperCamelCase ( _A = 10001 ): """simple docstring""" return next(itertools.islice(prime_generator(), nth - 1, _A ) ) if __name__ == "__main__": print(F"""{solution() = }""")
342
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : str = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
155
"""simple docstring""" def __lowercase ( _a ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
155
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _SCREAMING_SNAKE_CASE = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =1 __UpperCamelCase =2 while i * i <= n: __UpperCamelCase =0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ): __UpperCamelCase =1 __UpperCamelCase =1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
117
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) __UpperCamelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if metric == "rouge2": __UpperCamelCase ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __UpperCamelCase ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __UpperCamelCase ='{val_avg_em:.4f}-{step_count}' elif metric == "loss": __UpperCamelCase ='{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __UpperCamelCase =ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class UpperCAmelCase__ ( pl.Callback ): """simple docstring""" def _a ( self , A_ , A_ ) -> int: __UpperCamelCase ={f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A_ ) @rank_zero_only def _a ( self , A_ , A_ , A_ , A_=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __UpperCamelCase =Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase =od / 'test_results.txt' __UpperCamelCase =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase =od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=A_ ) generations_file.parent.mkdir(exist_ok=A_ ) with open(A_ , 'a+' ) as writer: for key in sorted(A_ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase =metrics[key] if isinstance(A_ , torch.Tensor ): __UpperCamelCase =val.item() __UpperCamelCase =f'{key}: {val:.6f}\n' writer.write(A_ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(A_ ) @rank_zero_only def _a ( self , A_ , A_ ) -> Optional[int]: try: __UpperCamelCase =pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase =pl_module.model.num_parameters() __UpperCamelCase =count_trainable_parameters(A_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A_ , A_ , 'test' ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
117
1