code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a ( lowerCamelCase__, unittest.TestCase ): """simple docstring""" UpperCAmelCase = DebertaTokenizer UpperCAmelCase = True UpperCAmelCase = DebertaTokenizerFast def UpperCamelCase ( self: List[str] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] A__ = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) A__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A__ = {"""unk_token""": """[UNK]"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def UpperCamelCase ( self: int , **UpperCamelCase: Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = """lower newer""" A__ = """lower newer""" return input_text, output_text def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = self.get_tokenizer() A__ = """lower newer""" A__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A__ = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.get_tokenizer() A__ = tokenizer("""Hello""" , """World""" ) A__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowercase__ ) @slow def UpperCamelCase ( self: Any ): """simple docstring""" A__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A__ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase__ ) A__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase__ ) A__ = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) A__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase__ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] A__ = tokenizer(lowercase__ , padding=lowercase__ ) A__ = [tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) for seq in encoding["""input_ids"""]] # fmt: off A__ = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowercase__ ) for expected, decoded in zip(lowercase__ , lowercase__ ): self.assertEqual(lowercase__ , lowercase__ )
335
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: __lowercase = json.load(A__ ) else: raise ValueError(F"can't find {path}" ) return results def _A ( ): """simple docstring""" __lowercase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase = 7 if get_gpu_count() > 1 else 2 __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''translation_no_trainer''' ) ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase__ ) __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.1_0 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''image_classification_no_trainer''' ) ) )
104
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCamelCase__ = logging.get_logger(__name__) class A__ ( A__): A_ : Optional[int] = 'mask2former' A_ : List[str] = ['swin'] A_ : Optional[int] = {'hidden_size': 'hidden_dim'} def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 2_56 , _SCREAMING_SNAKE_CASE = 2_56 , _SCREAMING_SNAKE_CASE = 2_56 , _SCREAMING_SNAKE_CASE = 10_24 , _SCREAMING_SNAKE_CASE = "relu" , _SCREAMING_SNAKE_CASE = 6 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 20_48 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 2_55 , _SCREAMING_SNAKE_CASE = 1_00 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 2.0 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 1_25_44 , _SCREAMING_SNAKE_CASE = 3.0 , _SCREAMING_SNAKE_CASE = 0.75 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowerCAmelCase : Dict = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCAmelCase : Dict = backbone_config.pop('model_type' ) __lowerCAmelCase : int = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Dict = config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported )}" ) __lowerCAmelCase : List[Any] = backbone_config __lowerCAmelCase : Dict = feature_size __lowerCAmelCase : int = mask_feature_size __lowerCAmelCase : str = hidden_dim __lowerCAmelCase : Tuple = encoder_feedforward_dim __lowerCAmelCase : str = activation_function __lowerCAmelCase : Tuple = encoder_layers __lowerCAmelCase : Optional[int] = decoder_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : int = dropout __lowerCAmelCase : List[Any] = dim_feedforward __lowerCAmelCase : int = pre_norm __lowerCAmelCase : int = enforce_input_projection __lowerCAmelCase : Dict = common_stride __lowerCAmelCase : Optional[Any] = ignore_value __lowerCAmelCase : Optional[Any] = num_queries __lowerCAmelCase : Union[str, Any] = no_object_weight __lowerCAmelCase : Tuple = class_weight __lowerCAmelCase : Optional[int] = mask_weight __lowerCAmelCase : Tuple = dice_weight __lowerCAmelCase : Dict = train_num_points __lowerCAmelCase : Union[str, Any] = oversample_ratio __lowerCAmelCase : Dict = importance_sample_ratio __lowerCAmelCase : Optional[Any] = init_std __lowerCAmelCase : Any = init_xavier_std __lowerCAmelCase : List[str] = use_auxiliary_loss __lowerCAmelCase : Dict = feature_strides __lowerCAmelCase : List[Any] = output_auxiliary_logits __lowerCAmelCase : List[Any] = decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def __lowerCamelCase ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = copy.deepcopy(self.__dict__ ) __lowerCAmelCase : Optional[Any] = self.backbone_config.to_dict() __lowerCAmelCase : Tuple = self.__class__.model_type return output
357
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class A__ ( _lowerCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True}) A_ : ClassVar[Features] = Features({'text': Value('string')}) A_ : ClassVar[Features] = Features({'labels': ClassLabel}) A_ : str = "text" A_ : str = "labels" def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase : Any = copy.deepcopy(self ) __lowerCAmelCase : Dict = self.label_schema.copy() __lowerCAmelCase : List[Any] = features[self.label_column] __lowerCAmelCase : Dict = label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
182
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
267
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__ ( a , a ): """simple docstring""" lowerCAmelCase__ = "maskformer-swin" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple=224 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=96 , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : Any=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Dict=4.0 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-5 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __SCREAMING_SNAKE_CASE = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
267
1
"""simple docstring""" from random import randint, random def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = 5 , ) -> list: lowerCAmelCase__ : List[Any] = [[-1] * number_of_cells] # Create a highway without any car lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[Any] = max(__UpperCAmelCase , 0 ) while i < number_of_cells: lowerCAmelCase__ : Any = ( randint(0 , __UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = highway_now[car_index + 1 :] for cell in range(len(__UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__UpperCAmelCase , -1 ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: lowerCAmelCase__ : int = len(__UpperCAmelCase ) # Beforce calculations, the highway is empty lowerCAmelCase__ : List[Any] = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCAmelCase__ : Optional[int] = min(highway_now[car_index] + 1 , __UpperCAmelCase ) # Number of empty cell before the next car lowerCAmelCase__ : Any = get_distance(__UpperCAmelCase , __UpperCAmelCase ) - 1 # We can't have the car causing an accident lowerCAmelCase__ : Dict = min(next_highway[car_index] , __UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down lowerCAmelCase__ : Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list: lowerCAmelCase__ : Optional[Any] = len(highway[0] ) for i in range(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = update(highway[i] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : int = [-1] * number_of_cells for car_index in range(__UpperCAmelCase ): lowerCAmelCase__ : str = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCAmelCase__ : List[str] = (car_index + speed) % number_of_cells # Commit the change of position lowerCAmelCase__ : str = speed highway.append(__UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
212
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a_ ): _lowerCamelCase :Dict = ["image_processor", "tokenizer"] _lowerCamelCase :Dict = "BlipImageProcessor" _lowerCamelCase :Any = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = False super().__init__(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = self.image_processor def __call__( self : int , UpperCamelCase : ImageInput = None , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase__ : Any = self.tokenizer lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ : Tuple = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase ) if text is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) else: lowerCAmelCase__ : Tuple = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase ) return encoding_image_processor def _lowerCAmelCase ( self : int , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCAmelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
212
1
from __future__ import annotations UpperCAmelCase__ = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class lowercase_ : '''simple docstring''' def __init__( self : Dict , __UpperCAmelCase : dict[str, list[str]] , __UpperCAmelCase : str ) ->None: """simple docstring""" a = graph # mapping node to its parent in resulting breadth first tree a = {} a = source_vertex def __lowerCAmelCase ( self : Union[str, Any] ) ->None: """simple docstring""" a = {self.source_vertex} a = None a = [self.source_vertex] # first in first out queue while queue: a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__UpperCAmelCase ) a = vertex queue.append(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str ) ->str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex a = self.parent.get(__UpperCAmelCase ) if target_vertex_parent is None: a = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(__UpperCAmelCase ) return self.shortest_path(__UpperCAmelCase ) + F"""->{target_vertex}""" if __name__ == "__main__": UpperCAmelCase__ = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
0
from __future__ import annotations UpperCAmelCase__ = "Muhammad Umer Farooq" UpperCAmelCase__ = "MIT" UpperCAmelCase__ = "1.0.0" UpperCAmelCase__ = "Muhammad Umer Farooq" UpperCAmelCase__ = "[email protected]" UpperCAmelCase__ = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : str ) ->None: """simple docstring""" super().__init__() a = [] a = domain def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : list[tuple[str, str | None]] ) ->None: """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: a = parse.urljoin(self.domain , __UpperCAmelCase ) self.urls.append(__UpperCAmelCase ) def _a ( a :str ) -> str: return ".".join(get_sub_domain_name(a ).split('''.''' )[-2:] ) def _a ( a :str ) -> str: return parse.urlparse(a ).netloc def _a ( a :str = "https://github.com" ) -> list[str]: a = get_domain_name(a ) # Initialize the parser a = Parser(a ) try: # Open URL a = requests.get(a ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through a = set() for link in parser.urls: # open URL. # read = requests.get(link) try: a = requests.get(a ) # Get the valid email. a = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a ) if __name__ == "__main__": UpperCAmelCase__ = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
0
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase :str = logging.get_logger(__name__) lowerCAmelCase :Tuple = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase :Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase :int = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ): """simple docstring""" with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[Any] = json.loads(f.read() ) __magic_name__ : str = collections.OrderedDict() __magic_name__ : Optional[int] = collections.OrderedDict() __magic_name__ : List[Any] = collections.OrderedDict() with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __magic_name__ : Optional[int] = f.readlines() __magic_name__ : str = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCAmelCase ): __magic_name__ : int = b __magic_name__ : Dict = idx for wd in b: __magic_name__ : List[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , _A : str , _A : Tuple , _A : Dict="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|startoftext|>" , _A : List[Any]="<|endoftext|>" , _A : Union[str, Any]=False , **_A : int , ) -> List[str]: super().__init__( unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , ) if not os.path.isfile(_A ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(_A ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) __magic_name__ : Any = do_clean_text __magic_name__ : int = load_vocab_and_emoji(_A , _A ) __magic_name__ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __lowerCAmelCase ( self : int ) -> List[Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Tuple , _A : Any ) -> Union[str, Any]: return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text ) def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] ) -> Optional[Any]: return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : Any , _A : List[str] ) -> Dict: return self.subword_tokenizer.convert_id_to_token(_A ) def __lowerCAmelCase ( self : Optional[Any] , _A : Tuple ) -> Optional[Any]: __magic_name__ : Any = ''.join(_A ).strip() return out_string def __lowerCAmelCase ( self : Dict , _A : "Conversation" ) -> List[int]: __magic_name__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __magic_name__ : Tuple = input_ids[-self.model_max_length :] return input_ids def __lowerCAmelCase ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: __magic_name__ : Optional[Any] = 0 if os.path.isdir(_A ): __magic_name__ : List[Any] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : List[str] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: __magic_name__ : List[str] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : Union[str, Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_A , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __magic_name__ : List[Any] = token_index writer.write(','.join(_A ) + '\n' ) index += 1 with open(_A , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , _A ) return vocab_file, emoji_file class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[int] , _A : List[str] , _A : Dict , _A : List[str] ) -> Optional[Any]: __magic_name__ : List[str] = vocab # same as swe __magic_name__ : Tuple = ids_to_tokens # same as bpe __magic_name__ : Optional[int] = emoji __magic_name__ : Optional[int] = np.max([len(_A ) for w in self.vocab.keys()] ) __magic_name__ : Tuple = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) __magic_name__ : Union[str, Any] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) __magic_name__ : Optional[int] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) __magic_name__ : List[str] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __magic_name__ : Dict = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __magic_name__ : Optional[int] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) __magic_name__ : Union[str, Any] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' __magic_name__ : List[Any] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' __magic_name__ : int = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : int ) -> List[str]: return len(self.ids_to_tokens ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Tuple ) -> List[str]: __magic_name__ : List[str] = self.content_repattera.sub('<URL>' , _A ) __magic_name__ : Union[str, Any] = self.content_repattera.sub('<EMAIL>' , _A ) __magic_name__ : Any = self.content_repattera.sub('<TEL>' , _A ) __magic_name__ : Dict = self.content_repattera.sub('<DATE>' , _A ) __magic_name__ : Any = self.content_repattera.sub('<DATE>' , _A ) __magic_name__ : str = self.content_repattera.sub('<PRICE>' , _A ) __magic_name__ : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __magic_name__ : Dict = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def __lowerCAmelCase ( self : Optional[int] , _A : List[str] , _A : Dict=False ) -> List[Any]: __magic_name__ : int = text.replace(' ' , '<SP>' ) __magic_name__ : Any = text.replace(' ' , '<SP>' ) __magic_name__ : str = text.replace('\r\n' , '<BR>' ) __magic_name__ : Tuple = text.replace('\n' , '<BR>' ) __magic_name__ : Optional[int] = text.replace('\r' , '<BR>' ) __magic_name__ : Tuple = text.replace('\t' , '<TAB>' ) __magic_name__ : Tuple = text.replace('—' , 'ー' ) __magic_name__ : Dict = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: __magic_name__ : Union[str, Any] = text.replace(_A , _A ) if clean: __magic_name__ : List[str] = self.clean_text(_A ) def check_simbol(_A : Any ): __magic_name__ : Any = x.encode() if len(_A ) == 1 and len(_A ) == 2: __magic_name__ : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(_A : Tuple ): __magic_name__ : Dict = x.encode() if len(_A ) == 1 and len(_A ) == 3: __magic_name__ : str = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False __magic_name__ : List[Any] = 0 __magic_name__ : Union[str, Any] = [] while pos < len(_A ): __magic_name__ : Tuple = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 __magic_name__ : List[str] = [] # (token_id, token, pos) for e in range(_A , _A , -1 ): __magic_name__ : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: __magic_name__ : Union[str, Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted __magic_name__ : Dict = sorted(_A , key=lambda _A : x[0] )[0] result.append(_A ) __magic_name__ : int = e else: __magic_name__ : List[Any] = pos + 1 __magic_name__ : Optional[Any] = text[pos:end] if check_simbol(_A ): result.append('<KIGOU>' ) elif checkuae(_A ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) __magic_name__ : List[str] = end return result def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : Optional[int]="\n" ) -> Tuple: __magic_name__ : str = [] __magic_name__ : Tuple = [] __magic_name__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) ) __magic_name__ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode('utf-8' , errors='replace' ) ) __magic_name__ : str = ''.join(_A ) return text
370
'''simple docstring''' import socket def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __magic_name__ : Union[str, Any] = socket.gethostname() __magic_name__ : int = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __magic_name__ : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
275
0
"""simple docstring""" import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE : int = 16 SCREAMING_SNAKE_CASE : List[str] = 32 def lowercase ( _snake_case : Accelerator , _snake_case : int = 16 ) ->Dict: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __snake_case : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Tuple = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_snake_case : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : Optional[int] = 16 elif accelerator.mixed_precision != "no": __snake_case : Optional[int] = 8 else: __snake_case : Tuple = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __snake_case : str = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=SCREAMING_SNAKE_CASE__ ) __snake_case : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def lowercase ( _snake_case : Optional[Any] , _snake_case : int ) ->Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : Tuple = config['lr'] __snake_case : List[str] = int(config['''num_epochs'''] ) __snake_case : Any = int(config['''seed'''] ) __snake_case : Optional[int] = int(config['''batch_size'''] ) __snake_case : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __snake_case : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE __snake_case : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) __snake_case : List[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer __snake_case : Any = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __snake_case : int = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case : Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : Dict = model(**SCREAMING_SNAKE_CASE__ ) __snake_case : int = outputs.loss __snake_case : List[str] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) __snake_case : List[str] = outputs.logits.argmax(dim=-1 ) __snake_case : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __snake_case : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE__ ) def lowercase ( ) ->Union[str, Any]: """simple docstring""" __snake_case : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __snake_case : List[str] = parser.parse_args() __snake_case : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
102
# using dfs for finding eulerian path traversal def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCamelCase , _lowerCamelCase : Dict =True, True _lowerCamelCase : Optional[Any] =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return path def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =0 _lowerCamelCase : Union[str, Any] =-1 for i in range(SCREAMING_SNAKE_CASE__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCamelCase : Tuple =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Tuple =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCamelCase , _lowerCamelCase : Optional[int] =check_circuit_or_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowerCamelCase : Any =1 if check == 2: _lowerCamelCase : Tuple =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowerCamelCase : int =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCamelCase : str ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCamelCase : List[Any] ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCamelCase : Any ={1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCamelCase : Dict ={ 1: [], 2: [] # all degree is zero } _lowerCamelCase : str =10 check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
199
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
350
"""simple docstring""" from torch import nn class _SCREAMING_SNAKE_CASE( nn.Module ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE :Tuple = class_size __SCREAMING_SNAKE_CASE :str = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __SCREAMING_SNAKE_CASE :Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.mlp(SCREAMING_SNAKE_CASE__ ) return logits
239
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "deit" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=224, lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=16, **lowerCAmelCase__, ) -> List[Any]: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = encoder_stride class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
69
def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowercase ) SCREAMING_SNAKE_CASE : Any = len(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE : Union[str, Any] = True for i in range(_lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE : List[str] = True if a[i].islower(): SCREAMING_SNAKE_CASE : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
182
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : def __init__( self , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=6.0 , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_="fp4" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = load_in_abit _snake_case = load_in_abit _snake_case = llm_inta_threshold _snake_case = llm_inta_skip_modules _snake_case = llm_inta_enable_fpaa_cpu_offload _snake_case = llm_inta_has_fpaa_weight _snake_case = bnb_abit_quant_type _snake_case = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _snake_case = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): _snake_case = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def lowerCAmelCase ( self ) -> Tuple: if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def lowerCAmelCase ( self ) -> Optional[Any]: return self.load_in_abit or self.load_in_abit def lowerCAmelCase ( self ) -> str: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: _snake_case = cls(**lowerCAmelCase_ ) _snake_case = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: _snake_case = self.to_dict() _snake_case = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '\n' writer.write(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> str: return F'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCAmelCase ( self , lowerCAmelCase_ = True ) -> str: if use_diff is True: _snake_case = self.to_diff_dict() else: _snake_case = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = self.to_dict() # get the default config dict _snake_case = BitsAndBytesConfig().to_dict() _snake_case = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _snake_case = value return serializable_config_dict
368
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A__ ( __magic_name__ ): lowercase = 'M-CLIP' def __init__( self : Optional[Any] , a : str=1_024 , a : Union[str, Any]=768 , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = transformerDimSize lowerCAmelCase__ : List[Any] = imageDimSize super().__init__(**a ) class A__ ( __magic_name__ ): lowercase = MCLIPConfig def __init__( self : int , a : Tuple , *a : Optional[int] , **a : Any ): '''simple docstring''' super().__init__(a , *a , **a ) lowerCAmelCase__ : Any = XLMRobertaModel(a ) lowerCAmelCase__ : List[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCamelCase ( self : Any , a : Any , a : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.transformer(input_ids=a , attention_mask=a )[0] lowerCAmelCase__ : Any = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
212
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase__ = False @skip_mps class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowerCamelCase ( cls : Tuple ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) lowerCAmelCase__ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) lowerCAmelCase__ : str = CLIPTextModel(a ) lowerCAmelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Union[str, Any] , a : Tuple , a : Union[str, Any]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : Any = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[int] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowerCAmelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = torch.manual_seed(51 ) lowerCAmelCase__ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=a , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase__ : Optional[int] = 'a painting of an elephant with glasses' lowerCAmelCase__ : Any = [5, 7] lowerCAmelCase__ : Optional[Any] = pipe( prompt=a , token_indices=a , guidance_scale=7.5 , generator=a , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
212
1
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowercase_ ( _lowerCamelCase: Optional[int] ) -> List[str]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowercase_ ( ) -> int: '''simple docstring''' __lowerCamelCase : Optional[int] = "mock-s3-bucket" __lowerCamelCase : Optional[Any] = F"""s3://{mock_bucket}""" __lowerCamelCase : int = extract_path_from_uri(_lowerCamelCase ) assert dataset_path.startswith("s3://" ) is False __lowerCamelCase : Optional[Any] = "./local/path" __lowerCamelCase : Union[str, Any] = extract_path_from_uri(_lowerCamelCase ) assert dataset_path == new_dataset_path def lowercase_ ( _lowerCamelCase: List[Any] ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Optional[int] = is_remote_filesystem(_lowerCamelCase ) assert is_remote is True __lowerCamelCase : str = fsspec.filesystem("file" ) __lowerCamelCase : List[Any] = is_remote_filesystem(_lowerCamelCase ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int , _lowerCamelCase: Any , _lowerCamelCase: str , _lowerCamelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' __lowerCamelCase : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} __lowerCamelCase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: __lowerCamelCase : Optional[Any] = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCamelCase ) __lowerCamelCase : Tuple = fsspec.filesystem(compression_fs_class.protocol , fo=_lowerCamelCase ) assert isinstance(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = os.path.basename(_lowerCamelCase ) __lowerCamelCase : Dict = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(_lowerCamelCase , "r" , encoding="utf-8" ) as f, open(_lowerCamelCase , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: Optional[int] , _lowerCamelCase: Tuple ) -> List[Any]: '''simple docstring''' __lowerCamelCase : Any = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} __lowerCamelCase : Optional[int] = compressed_file_paths[protocol] __lowerCamelCase : int = "dataset.jsonl" __lowerCamelCase : Optional[Any] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" __lowerCamelCase , *__lowerCamelCase : Dict = fsspec.get_fs_token_paths(_lowerCamelCase ) assert fs.isfile(_lowerCamelCase ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: Dict , _lowerCamelCase: List[str] ) -> List[str]: '''simple docstring''' __lowerCamelCase : Any = hf_api.dataset_info(_lowerCamelCase , token=_lowerCamelCase ) __lowerCamelCase : Dict = HfFileSystem(repo_info=_lowerCamelCase , token=_lowerCamelCase ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(_lowerCamelCase ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def lowercase_ ( ) -> Tuple: '''simple docstring''' __lowerCamelCase : str = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_lowerCamelCase , _lowerCamelCase , clobber=_lowerCamelCase ) with pytest.warns(_lowerCamelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_lowerCamelCase ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
64
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( a__ ): def __init__( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): super().__init__() # make sure scheduler can always be converted to DDIM __lowerCamelCase : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self : str , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 50 , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCAmelCase ): __lowerCamelCase : Any = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __lowerCamelCase : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCamelCase : str = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Any = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCamelCase : Union[str, Any] = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , eta=UpperCAmelCase , use_clipped_model_output=UpperCAmelCase , generator=UpperCAmelCase ).prev_sample __lowerCamelCase : Any = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : str = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
64
1
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : Dict, lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if len(lowercase__ ) < k or k < 0: raise ValueError('''Invalid Input''' ) _UpperCamelCase = sum(array[:k] ) for i in range(len(lowercase__ ) - k ): _UpperCamelCase = current_sum - array[i] + array[i + k] _UpperCamelCase = max(lowercase__, lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase__ : List[str] = [randint(-10_00, 10_00) for i in range(1_00)] lowercase__ : str = randint(0, 1_10) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
324
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ConsistencyModelPipeline _UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _UpperCamelCase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def UpperCamelCase__ ( self , A_=False ) ->Dict: '''simple docstring''' if class_cond: __lowerCAmelCase : List[str] = self.dummy_cond_unet else: __lowerCAmelCase : Optional[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase__ ( self , A_ , A_=0 ) ->Tuple: '''simple docstring''' if str(A_ ).startswith('''mps''' ): __lowerCAmelCase : str = torch.manual_seed(A_ ) else: __lowerCAmelCase : Dict = torch.Generator(device=A_ ).manual_seed(A_ ) __lowerCAmelCase : Tuple = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Tuple = self.get_dummy_components() __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : List[str] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_dummy_inputs(A_ ) __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase : str = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : str = self.get_dummy_components(class_cond=A_ ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : List[Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[str] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Union[str, Any] = self.get_dummy_components() __lowerCAmelCase : List[Any] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : int = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Tuple = self.get_dummy_inputs(A_ ) __lowerCAmelCase : Any = 1 __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : Any = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=A_ ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(**A_ ) __lowerCAmelCase : Union[str, Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_dummy_inputs(A_ ) __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Dict = None __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , A_=0 , A_=False , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) ->str: '''simple docstring''' __lowerCAmelCase : Dict = torch.manual_seed(A_ ) __lowerCAmelCase : Tuple = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase : List[str] = self.get_fixed_latents(seed=A_ , device=A_ , dtype=A_ , shape=A_ ) __lowerCAmelCase : Union[str, Any] = latents return inputs def UpperCamelCase__ ( self , A_=0 , A_="cpu" , A_=torch.floataa , A_=(1, 3, 64, 64) ) ->Optional[int]: '''simple docstring''' if type(A_ ) == str: __lowerCAmelCase : int = torch.device(A_ ) __lowerCAmelCase : Optional[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) __lowerCAmelCase : Union[str, Any] = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) return latents def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : str = self.get_inputs() __lowerCAmelCase : Any = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : List[str] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : List[Any] = self.get_inputs() __lowerCAmelCase : Tuple = 1 __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : str = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCAmelCase : List[Any] = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Any = self.get_inputs(get_fixed_latents=A_ , device=A_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __lowerCAmelCase : Dict = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Dict = image[0, -3:, -3:, -1] __lowerCAmelCase : Optional[int] = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __lowerCAmelCase : Union[str, Any] = self.get_inputs(get_fixed_latents=A_ , device=A_ ) __lowerCAmelCase : Any = 1 __lowerCAmelCase : int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __lowerCAmelCase : int = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : str = image[0, -3:, -3:, -1] __lowerCAmelCase : Any = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
275
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' if "model" in orig_key: _a = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: _a = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: _a = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: _a = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: _a = orig_key.split('''.''' )[0].split('''_''' )[-1] _a = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _a = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: _a = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: _a = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: _a = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: _a = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: _a = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: _a = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: _a = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: _a = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: _a = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: _a = '''yoso.''' + orig_key return orig_key def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(UpperCamelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _a = val _a = orig_state_dict['''cls.predictions.decoder.bias'''] _a = torch.arange(UpperCamelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case_ (UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _a = torch.load(UpperCamelCase , map_location='''cpu''' )['''model_state_dict'''] _a = YosoConfig.from_json_file(UpperCamelCase ) _a = YosoForMaskedLM(UpperCamelCase ) _a = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase ) print(model.load_state_dict(UpperCamelCase ) ) model.eval() model.save_pretrained(UpperCamelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
179
'''simple docstring''' from __future__ import annotations def snake_case_ (UpperCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 _a = nums[0] _a = 0 for num in nums[1:]: _a , _a = ( max_excluding + num, max(UpperCamelCase , UpperCamelCase ), ) return max(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
179
1
def __UpperCamelCase ( _A : int ) ->list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowerCamelCase_ =[True] * (num + 1) lowerCamelCase_ =2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCAmelCase__ ): lowerCamelCase_ =False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Any = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
154
'''simple docstring''' import os def lowerCamelCase ( UpperCAmelCase__ : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as input_file: lowercase_ : str = [ [int(UpperCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) lowercase_ : Any = len(matrix[0] ) lowercase_ : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): lowercase_ : int = matrix[i][0] for j in range(1 , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase__ ): lowercase_ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase_ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
239
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __SCREAMING_SNAKE_CASE : Dict = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[Any] ) -> List[Any]: for attribute in key.split('''.''' ): _lowerCamelCase = getattr(lowercase_ , lowercase_ ) if weight_type is not None: _lowerCamelCase = getattr(lowercase_ , lowercase_ ).shape else: _lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_( lowercase_ : str , lowercase_ : Optional[Any] ) -> Any: _lowerCamelCase = [] _lowerCamelCase = fairseq_model.state_dict() _lowerCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight _lowerCamelCase = None for name, value in fairseq_dict.items(): _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True elif name.split('''.''' )[0] == "proj": _lowerCamelCase = fairseq_model.proj _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(lowercase_ )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , lowercase_ ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: _lowerCamelCase = '''weight''' else: _lowerCamelCase = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple ) -> Union[str, Any]: _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase_ ) def lowerCAmelCase_( lowercase_ : Any ) -> Any: _lowerCamelCase , _lowerCamelCase = emb.weight.shape _lowerCamelCase = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) _lowerCamelCase = emb.weight.data return lin_layer def lowerCAmelCase_( lowercase_ : Optional[Any] ) -> List[Any]: with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [line.split(''' ''' )[0] for line in lines] _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowercase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_( lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any] , ) -> Dict: _lowerCamelCase = WavaVecaConfig.from_pretrained(lowercase_ ) _lowerCamelCase = SpeechaTextaConfig.from_pretrained( lowercase_ , vocab_size=lowercase_ , decoder_layers=lowercase_ , do_stable_layer_norm=lowercase_ ) _lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowercase_ , return_attention_mask=lowercase_ , ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) _lowerCamelCase = model[0].eval() # set weights for wav2vec2 encoder _lowerCamelCase = WavaVecaModel(lowercase_ ) _lowerCamelCase = recursively_load_weights_wavaveca(model.encoder , lowercase_ ) _lowerCamelCase = SpeechaTextaForCausalLM(lowercase_ ) _lowerCamelCase , _lowerCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) _lowerCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _lowerCamelCase = SpeechEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) _lowerCamelCase = False # add projection layer _lowerCamelCase = nn.Parameter(projection_layer.weight ) _lowerCamelCase = nn.Parameter(projection_layer.bias ) _lowerCamelCase = create_vocab_dict(lowercase_ ) with open(os.path.join(lowercase_ , '''vocab.json''' ) , '''w''' ) as fp: json.dump(lowercase_ , lowercase_ ) _lowerCamelCase = SpeechaTextaTokenizer(os.path.join(lowercase_ , '''vocab.json''' ) ) tokenizer.save_pretrained(lowercase_ ) _lowerCamelCase = hf_wavavec.config.to_dict() _lowerCamelCase = tokenizer.pad_token_id _lowerCamelCase = tokenizer.bos_token_id _lowerCamelCase = tokenizer.eos_token_id _lowerCamelCase = '''speech_to_text_2''' _lowerCamelCase = '''wav2vec2''' _lowerCamelCase = SpeechEncoderDecoderConfig.from_dict(lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0_2_2_4, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
73
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __SCREAMING_SNAKE_CASE : List[Any] = '''src/diffusers''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __SCREAMING_SNAKE_CASE : Tuple = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __SCREAMING_SNAKE_CASE : Union[str, Any] = spec.loader.load_module() def lowerCAmelCase_( lowercase_ : str , lowercase_ : Tuple ) -> int: return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , lowercase_ ) is not None def lowerCAmelCase_( lowercase_ : Any ) -> Tuple: _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , F"""{module}.py""" ) ): i += 1 if i < len(lowercase_ ): _lowerCamelCase = os.path.join(lowercase_ , parts[i] ) if i >= len(lowercase_ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase_ , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase_ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase_ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(lowercase_ ) __SCREAMING_SNAKE_CASE : str = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __SCREAMING_SNAKE_CASE : List[Any] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''<FILL\s+[^>]*>''') def lowerCAmelCase_( lowercase_ : List[Any] ) -> str: _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(lowercase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase_ ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowerCAmelCase_( lowercase_ : List[Any] ) -> Union[str, Any]: _lowerCamelCase = len(get_indent(lowercase_ ) ) > 0 if has_indent: _lowerCamelCase = F"""class Bla:\n{code}""" _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowercase_ ) _lowerCamelCase = black.format_str(lowercase_ , mode=lowercase_ ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(lowercase_ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : Union[str, Any]=False ) -> str: with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase_ ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(lowercase_ ) _lowerCamelCase = get_indent(lowercase_ ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(lowercase_ ) and should_continue: line_index += 1 if line_index >= len(lowercase_ ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(lowercase_ , lowercase_ ) and re.search(F"""^{indent}# End copy""" , lowercase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(lowercase_ ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(lowercase_ ) is None] _lowerCamelCase = '''\n'''.join(lowercase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase_ ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(lowercase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(lowercase_ , lowercase_ , lowercase_ ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , lowercase_ ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , lowercase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(lowercase_ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowercase_ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowercase_ ) return diffs def lowerCAmelCase_( lowercase_ : bool = False ) -> Union[str, Any]: _lowerCamelCase = glob.glob(os.path.join(lowercase_ , '''**/*.py''' ) , recursive=lowercase_ ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(lowercase_ , lowercase_ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase_ ) > 0: _lowerCamelCase = '''\n'''.join(lowercase_ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __SCREAMING_SNAKE_CASE : str = parser.parse_args() check_copies(args.fix_and_overwrite)
73
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowerCAmelCase__ = int(input('''Enter number: ''').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
104
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
0
'''simple docstring''' a_ : Optional[int] = "Input must be a string of 8 numbers plus letter" a_ : List[Any] = "TRWAGMYFPDXBNJZSQVHLCKE" def _A (lowerCAmelCase__ :str ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = f'Expected string as input, found {type(lowerCAmelCase__ ).__name__}' raise TypeError(lowerCAmelCase__ ) _a = spanish_id.replace('-' , '' ).upper() if len(lowerCAmelCase__ ) != 9: raise ValueError(lowerCAmelCase__ ) try: _a = int(spanish_id_clean[0:8] ) _a = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCAmelCase__ ) from ex if letter.isdigit(): raise ValueError(lowerCAmelCase__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a_ : int = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
104
0
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , **snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) _snake_case : Dict = AutoModelForSeqaSeqLM.from_config(snake_case__ ) model.save_pretrained(snake_case__ ) AutoTokenizer.from_pretrained(snake_case__ ).save_pretrained(snake_case__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
64
"""simple docstring""" from math import factorial A_ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
64
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """vit_mae""" def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , _snake_case=512 , _snake_case=8 , _snake_case=2048 , _snake_case=0.75 , _snake_case=False , **_snake_case , ) -> int: """simple docstring""" super().__init__(**_snake_case ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = decoder_num_attention_heads UpperCAmelCase = decoder_hidden_size UpperCAmelCase = decoder_num_hidden_layers UpperCAmelCase = decoder_intermediate_size UpperCAmelCase = mask_ratio UpperCAmelCase = norm_pix_loss
360
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """deit""" def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , **_snake_case , ) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = encoder_stride class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self ) -> float: """simple docstring""" return 1e-4
152
0
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig a_ = logging.getLogger(__name__) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """masked_bert""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=0 , __lowerCamelCase="topK" , __lowerCamelCase="constant" , __lowerCamelCase=0.0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Dict = vocab_size __A : Union[str, Any] = hidden_size __A : Tuple = num_hidden_layers __A : Tuple = num_attention_heads __A : Optional[Any] = hidden_act __A : List[str] = intermediate_size __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : str = type_vocab_size __A : List[Any] = initializer_range __A : str = layer_norm_eps __A : Optional[int] = pruning_method __A : str = mask_init __A : Any = mask_scale
179
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """nat""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCamelCase=4 , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[3, 4, 6, 5] , __lowerCamelCase=[2, 4, 8, 16] , __lowerCamelCase=7 , __lowerCamelCase=3.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Union[str, Any] = patch_size __A : Optional[Any] = num_channels __A : Tuple = embed_dim __A : Dict = depths __A : str = len(__lowerCamelCase ) __A : Optional[Any] = num_heads __A : str = kernel_size __A : Any = mlp_ratio __A : Optional[int] = qkv_bias __A : str = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : int = drop_path_rate __A : int = hidden_act __A : Any = layer_norm_eps __A : Tuple = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : int = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __A : Union[str, Any] = layer_scale_init_value __A : List[str] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] __A , __A : Any = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
179
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.dummy_uncond_unet _UpperCamelCase : List[Any] = PNDMScheduler() _UpperCamelCase : Any = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Optional[int] = torch.manual_seed(0 ) _UpperCamelCase : str = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" ).images _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pndm(generator=__a , num_inference_steps=20 , output_type="numpy" , return_dict=__a )[0] _UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: _UpperCamelCase : Optional[int] = "google/ddpm-cifar10-32" _UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(__a ) _UpperCamelCase : Optional[Any] = PNDMScheduler() _UpperCamelCase : str = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Tuple = pndm(generator=__a , output_type="numpy" ).images _UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase : str = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
310
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase__ = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "rag" SCREAMING_SNAKE_CASE__ :List[str] = True def __init__( self : List[Any] , __a : Optional[Any]=None , __a : str=True , __a : Tuple=None , __a : Dict=None , __a : Optional[int]=None , __a : Optional[int]=None , __a : List[Any]=None , __a : Dict=" / " , __a : int=" // " , __a : Optional[Any]=5 , __a : Dict=300 , __a : Optional[int]=768 , __a : Tuple=8 , __a : Union[str, Any]="wiki_dpr" , __a : Dict="train" , __a : List[Any]="compressed" , __a : str=None , __a : Tuple=None , __a : int=False , __a : str=False , __a : Optional[int]=0.0 , __a : Dict=True , __a : Tuple=False , __a : Dict=False , __a : str=False , __a : str=True , __a : Optional[Any]=None , **__a : Tuple , ) -> Any: super().__init__( bos_token_id=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , is_encoder_decoder=__a , prefix=__a , vocab_size=__a , **__a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _UpperCamelCase : Optional[int] = kwargs.pop("question_encoder" ) _UpperCamelCase : str = question_encoder_config.pop("model_type" ) _UpperCamelCase : Tuple = kwargs.pop("generator" ) _UpperCamelCase : str = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCamelCase : Union[str, Any] = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : str = AutoConfig.for_model(__a , **__a ) _UpperCamelCase : Optional[int] = reduce_loss _UpperCamelCase : str = label_smoothing _UpperCamelCase : int = exclude_bos_score _UpperCamelCase : List[str] = do_marginalize _UpperCamelCase : Optional[int] = title_sep _UpperCamelCase : Optional[int] = doc_sep _UpperCamelCase : Union[str, Any] = n_docs _UpperCamelCase : Tuple = max_combined_length _UpperCamelCase : Union[str, Any] = dataset _UpperCamelCase : Any = dataset_split _UpperCamelCase : List[str] = index_name _UpperCamelCase : int = retrieval_vector_size _UpperCamelCase : str = retrieval_batch_size _UpperCamelCase : Dict = passages_path _UpperCamelCase : str = index_path _UpperCamelCase : Tuple = use_dummy_dataset _UpperCamelCase : Union[str, Any] = output_retrieved _UpperCamelCase : Optional[Any] = do_deduplication _UpperCamelCase : str = use_cache if self.forced_eos_token_id is None: _UpperCamelCase : List[str] = getattr(self.generator , "forced_eos_token_id" , __a ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: _UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCamelCase : List[Any] = self.question_encoder.to_dict() _UpperCamelCase : Tuple = self.generator.to_dict() _UpperCamelCase : Any = self.__class__.model_type return output
310
1
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: return base * power(lowerCamelCase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") a =int(input("""Enter the base: """).strip()) a =int(input("""Enter the exponent: """).strip()) a =power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a =1 / result print(F"""{base} to the power of {exponent} is {result}""")
73
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a =open # noqa: we just need to have a builtin inside this module to test it properly
73
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: if "img_encoder.pos_embed" in name: _snake_case = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: _snake_case = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: _snake_case = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: _snake_case = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: _snake_case = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: _snake_case = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: _snake_case = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: _snake_case = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: _snake_case = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: _snake_case = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: _snake_case = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: _snake_case = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: _snake_case = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: _snake_case = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: _snake_case = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: _snake_case = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: _snake_case = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: _snake_case = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: _snake_case = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: _snake_case = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: _snake_case = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: _snake_case = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: _snake_case = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Any: for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(__A ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case = key.split('.' ) _snake_case , _snake_case = int(key_split[2] ), int(key_split[4] ) _snake_case = config.vision_config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _snake_case = key.split('.' ) _snake_case = int(key_split[3] ) _snake_case = config.text_config.hidden_size if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[ dim : dim * 2, : ] _snake_case = val[-dim:, :] else: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = rename_key(__A ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _snake_case = val.squeeze_() else: _snake_case = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( ) -> Any: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A="groupvit-gcc-yfcc" , __A=False ) -> Optional[Any]: _snake_case = GroupViTConfig() _snake_case = GroupViTModel(__A ).eval() _snake_case = torch.load(__A , map_location='cpu' )['model'] _snake_case = convert_state_dict(__A , __A ) _snake_case , _snake_case = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A ) == 0) # verify result _snake_case = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) _snake_case = prepare_img() _snake_case = processor(text=['a photo of a cat', 'a photo of a dog'] , images=__A , padding=__A , return_tensors='pt' ) with torch.no_grad(): _snake_case = model(**__A ) if model_name == "groupvit-gcc-yfcc": _snake_case = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _snake_case = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , __A , atol=1e-3 ) processor.save_pretrained(__A ) model.save_pretrained(__A ) print('Successfully saved processor and model to' , __A ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(__A , organization='nielsr' ) model.push_to_hub(__A , organization='nielsr' ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowercase : Optional[int] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : List[str] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """marian""" __lowercase = ["""past_key_values"""] __lowercase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase_=5_81_01 , lowerCAmelCase_=None , lowerCAmelCase_=10_24 , lowerCAmelCase_=12 , lowerCAmelCase_=40_96 , lowerCAmelCase_=16 , lowerCAmelCase_=12 , lowerCAmelCase_=40_96 , lowerCAmelCase_=16 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=10_24 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=5_81_00 , lowerCAmelCase_=False , lowerCAmelCase_=5_81_00 , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = vocab_size _snake_case = decoder_vocab_size or vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = use_cache _snake_case = encoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , forced_eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) class __UpperCAmelCase ( _lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCamelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _snake_case = {0: 'batch'} _snake_case = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'decoder_sequence'} _snake_case = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(lowerCAmelCase_ ): _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} else: _snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCamelCase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = super().outputs else: _snake_case = super(lowerCAmelCase_ , self ).outputs if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(lowerCAmelCase_ ): _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} _snake_case = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Generate decoder inputs _snake_case = seq_length if not self.use_past else 1 _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _snake_case = dict(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape _snake_case = common_inputs['decoder_input_ids'].shape[1] _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = decoder_seq_length + 3 _snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _snake_case = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ )] , dim=1 ) _snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _snake_case , _snake_case = self.num_layers _snake_case = min(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = max(lowerCAmelCase_ , lowerCAmelCase_ ) - min_num_layers _snake_case = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ ), ) ) # TODO: test this. _snake_case = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase_ , lowerCAmelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case , _snake_case = self.num_layers _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = common_inputs['attention_mask'].dtype _snake_case = torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(lowerCAmelCase_ ) ] return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case = tokenizer.num_special_tokens_to_add(lowerCAmelCase_ ) _snake_case = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_ ) # Generate dummy inputs according to compute batch and sequence _snake_case = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _snake_case = dict(tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) else: _snake_case = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) return common_inputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case = super()._flatten_past_key_values_(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = super(lowerCAmelCase_ , self )._flatten_past_key_values_( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @property def lowerCamelCase ( self ): """simple docstring""" return 1E-4
160
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: @wraps(A__ ) def _inner_fn(*UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : str ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , A__ , ) return fn(*A__ , **A__ ) return _inner_fn
239
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } lowerCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" for attribute in key.split('''.''' ): __lowercase = getattr(A__ , A__ ) if weight_type is not None: __lowercase = getattr(A__ , A__ ).shape else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowercase = True if "*" in mapped_key: __lowercase = name.split(A__ )[0].split('''.''' )[-2] __lowercase = mapped_key.replace('''*''' , A__ ) if "weight_g" in name: __lowercase = '''weight_g''' elif "weight_v" in name: __lowercase = '''weight_v''' elif "bias" in name: __lowercase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = '''weight''' else: __lowercase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"Unused weights: {unused_weights}" ) def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = full_name.split('''conv_layers.''' )[-1] __lowercase = name.split('''.''' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A__ ) @torch.no_grad() def _A ( A__ , A__ , A__=None , A__=None , A__=True ): """simple docstring""" if config_path is not None: __lowercase = UniSpeechSatConfig.from_pretrained(A__ ) else: __lowercase = UniSpeechSatConfig() __lowercase = '''''' if is_finetuned: __lowercase = UniSpeechSatForCTC(A__ ) else: __lowercase = UniSpeechSatForPreTraining(A__ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowercase = model[0].eval() recursively_load_weights(A__ , A__ ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
104
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=a__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=a__ , default=5 ) parser.add_argument("""--batch_size""" , type=a__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=a__ , default=1 ) parser.add_argument("""--freeze""" , type=a__ , default=a__ ) parser.add_argument("""--learning_rate""" , type=a__ , default=5E-4 ) parser.add_argument("""--seed""" , type=a__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=a__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=a__ , default=10 ) parser.add_argument("""--weight_decay""" , type=a__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=a__ , default="""./results""" ) return parser.parse_args() UpperCAmelCase : List[Any] = load('accuracy') def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = eval_pred __SCREAMING_SNAKE_CASE = np.argmax(a__ , axis=1 ) return metric.compute(predictions=a__ , references=a__ ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> None: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = trainer def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> Dict: """simple docstring""" if control.should_evaluate: __SCREAMING_SNAKE_CASE = deepcopy(__SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_args() set_seed(args.seed ) __SCREAMING_SNAKE_CASE = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) __SCREAMING_SNAKE_CASE = dataset.train_test_split(test_size=0.2 ) __SCREAMING_SNAKE_CASE = train_test["""test"""].train_test_split(test_size=0.5 ) __SCREAMING_SNAKE_CASE = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) __SCREAMING_SNAKE_CASE = tokenizer.eos_token __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __SCREAMING_SNAKE_CASE = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(a__ ): __SCREAMING_SNAKE_CASE = tokenizer(example["""src"""] , truncation=a__ , max_length=10_24 ) __SCREAMING_SNAKE_CASE = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __SCREAMING_SNAKE_CASE = train_test_validation.map( a__ , batched=a__ , remove_columns=train_test_validation["""train"""].column_names , ) __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(tokenizer=a__ ) __SCREAMING_SNAKE_CASE = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) __SCREAMING_SNAKE_CASE = Trainer( model=a__ , args=a__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(a__ ) ) trainer.train() if __name__ == "__main__": main()
352
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __snake_case : Union[str, Any] = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = ['CLIPFeatureExtractor'] __snake_case : Optional[Any] = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f"{test_file} instead." ) SCREAMING_SNAKE_CASE__ : str =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) SCREAMING_SNAKE_CASE__ : Any =components[:-1] + [test_fn.replace('''.py''', '''''' )] SCREAMING_SNAKE_CASE__ : List[str] ='''.'''.join(UpperCamelCase__ ) return test_module_path def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =get_module_path(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =importlib.import_module(UpperCamelCase__ ) return test_module def _a( UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[] SCREAMING_SNAKE_CASE__ : List[Any] =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(UpperCamelCase__, UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Any =get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =getattr(UpperCamelCase__, UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE__ : Any =getattr(UpperCamelCase__, '''all_model_classes''', [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =test_class() if hasattr(UpperCamelCase__, '''setUp''' ): test.setUp() SCREAMING_SNAKE_CASE__ : List[Any] =None if hasattr(UpperCamelCase__, '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =test.model_tester.__class__ return model_tester def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =[] for test_class in test_classes: SCREAMING_SNAKE_CASE__ : List[str] =get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__, key=lambda UpperCamelCase__ : x.__name__ ) def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =get_test_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def _a( UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int ={ model_class: get_test_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =get_model_classes(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any ={ model_class: get_tester_classes_for_model(UpperCamelCase__, UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def _a( UpperCamelCase__ : int ): '''simple docstring''' if isinstance(UpperCamelCase__, UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__, (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__, UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
152
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Any = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase__ : Any = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCamelCase__ : Optional[int] = {"""facebook/blenderbot_small-90M""": 512} def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: """simple docstring""" a = set() a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a = char a = set(snake_case_ ) return pairs class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict="__start__" ,__lowerCamelCase : Any="__end__" ,__lowerCamelCase : List[Any]="__unk__" ,__lowerCamelCase : Optional[Any]="__null__" ,**__lowerCamelCase : Tuple ,): '''simple docstring''' super().__init__(unk_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,**__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase ,encoding='''utf-8''' ) as merges_handle: a = merges_handle.read().split('''\n''' )[1:-1] a = [tuple(merge.split() ) for merge in merges] a = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) a = {} @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] a = re.sub('''([.,!?()])''' ,r''' \1''' ,__lowerCamelCase ) a = re.sub('''(\')''' ,r''' \1 ''' ,__lowerCamelCase ) a = re.sub(r'''\s{2,}''' ,''' ''' ,__lowerCamelCase ) if "\n" in token: a = token.replace('''\n''' ,''' __newln__''' ) a = token.split(''' ''' ) a = [] for token in tokens: if not len(__lowerCamelCase ): continue a = token.lower() a = tuple(__lowerCamelCase ) a = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) a = get_pairs(__lowerCamelCase ) if not pairs: words.append(__lowerCamelCase ) continue while True: a = min(__lowerCamelCase ,key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a , a = bigram a = [] a = 0 while i < len(__lowerCamelCase ): try: a = word.index(__lowerCamelCase ,__lowerCamelCase ) new_word.extend(word[i:j] ) a = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a = tuple(__lowerCamelCase ) a = new_word if len(__lowerCamelCase ) == 1: break else: a = get_pairs(__lowerCamelCase ) a = '''@@ '''.join(__lowerCamelCase ) a = word[:-4] a = word words.append(__lowerCamelCase ) return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : str ): '''simple docstring''' a = [] a = re.findall(r'''\S+\n?''' ,__lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = token.lower() return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ,self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[str] ): '''simple docstring''' a = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' ,'''''' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCamelCase ,ensure_ascii=__lowerCamelCase ) + '''\n''' ) a = 0 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) a = token_index writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
class __lowerCamelCase : def __init__( self: str,A_: list[int] ): '''simple docstring''' __UpperCamelCase = len(A_ ) __UpperCamelCase = [0] * len_array if len_array > 0: __UpperCamelCase = array[0] for i in range(1,A_ ): __UpperCamelCase = self.prefix_sum[i - 1] + array[i] def snake_case_ ( self: Tuple,A_: int,A_: int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case_ ( self: Union[str, Any],A_: int ): '''simple docstring''' __UpperCamelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
310
def _A ( _lowercase ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(_lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
310
1
'''simple docstring''' def __snake_case( _lowerCAmelCase = 100 ) -> int: snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
43
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) snake_case__ : str = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : Tuple = False snake_case__ : Any = 0 snake_case__ : List[str] = 0 snake_case__ : Dict = 1e12 while not convergence: # Multiple matrix by the vector. snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. snake_case__ : Optional[Any] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : List[str] = vector.conj().T if is_complex else vector.T snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Dict = True snake_case__ : Union[str, Any] = lambda_ if is_complex: snake_case__ : int = np.real(lambda_ ) return lambda_, vector def __snake_case( ) -> None: snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : Tuple = np.array([41, 4, 20] ) snake_case__ : Dict = real_input_matrix.astype(np.complexaaa ) snake_case__ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : Optional[Any] = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Optional[Any] = complex_vector # Our implementation. snake_case__ , snake_case__ : Tuple = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ , snake_case__ : Dict = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. snake_case__ : Optional[int] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __snake_case =logging.getLogger(__name__) __snake_case ="""Hello world! cécé herlolip""" __snake_case =namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Dict ): lowerCAmelCase = BertAbsConfig( temp_dir='.' , finetune_bert=lowerCamelCase , large=lowerCamelCase , share_emb=lowerCamelCase , use_bert_emb=lowerCamelCase , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase = torch.load(lowerCamelCase , lambda lowerCamelCase , lowerCamelCase : storage ) lowerCAmelCase = AbsSummarizer(lowerCamelCase , torch.device('cpu' ) , lowerCamelCase ) original.eval() lowerCAmelCase = BertAbsSummarizer(lowerCamelCase , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowerCAmelCase = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase )) ) lowerCAmelCase = torch.tensor(lowerCamelCase ).unsqueeze(0 ) lowerCAmelCase = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowerCamelCase )) ) lowerCAmelCase = torch.tensor(lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase = encoder_input_ids lowerCAmelCase = decoder_input_ids lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase = original(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )[0] lowerCAmelCase = original.generator(lowerCamelCase ) lowerCAmelCase = new_model( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )[0] lowerCAmelCase = new_model.generator(lowerCamelCase ) lowerCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowerCamelCase ) ) lowerCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowerCamelCase ) ) lowerCAmelCase = torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) __snake_case =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
4
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=23 , _UpperCAmelCase=11 , _UpperCAmelCase=True , ): __a : str = parent __a : Any = batch_size __a : Any = seq_length __a : Optional[int] = act_dim __a : Any = state_dim __a : str = hidden_size __a : List[str] = max_length __a : Dict = is_training def _lowerCamelCase ( self ): __a : Dict = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __a : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __a : int = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) __a : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __a : str = random_attention_mask((self.batch_size, self.seq_length) ) __a : Dict = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCamelCase ( self ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a : Union[str, Any] = DecisionTransformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : List[str] = config_and_inputs __a : Dict = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (DecisionTransformerModel,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCAmelCase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : str = DecisionTransformerModelTester(self ) __a : Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = DecisionTransformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Union[str, Any] = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Dict = 2 # number of steps of autoregressive prediction we will perform __a : List[str] = 10 # defined by the RL environment, may be normalized __a : Union[str, Any] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) __a : str = model.to(_UpperCAmelCase ) __a : str = model.config torch.manual_seed(0 ) __a : List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset() __a : List[str] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_UpperCAmelCase ) __a : str = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __a : str = state __a : List[Any] = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa ) __a : List[Any] = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa ) __a : int = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCAmelCase ): __a : Optional[int] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 ) __a : Any = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __a , __a , __a : int = model( states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __a , __a , __a , __a : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __a : int = action_pred[0, -1] __a : int = torch.cat([states, state] , dim=1 ) __a : Any = returns_to_go[0, -1] - reward __a : Dict = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __a : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
160
0
'''simple docstring''' import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _snake_case ( A ) -> Any: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _snake_case ( A ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def _snake_case ( A ) -> List[str]: from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(A , id=A ) def _snake_case ( A , A ) -> Dict: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase__ = 0 # Doctest custom flag to ignore output. __UpperCAmelCase = doctest.register_optionflag('''IGNORE_RESULT''') __UpperCAmelCase = doctest.OutputChecker class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __UpperCAmelCase = CustomOutputChecker __UpperCAmelCase = HfDoctestModule __UpperCAmelCase = HfDocTestParser
356
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __UpperCAmelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def _snake_case ( A , A ) -> Optional[Any]: lowerCAmelCase__ = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase__ = int(re.match(R'''.*layer_(\d*).*''' , A )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def _snake_case ( A ) -> Optional[int]: if dtype == torch.bool: return 1 / 8 lowerCAmelCase__ = re.search(R'''[^\d](\d+)$''' , str(A ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) lowerCAmelCase__ = int(bit_search.groups()[0] ) return bit_size // 8 def _snake_case ( A , A , A , A , A ) -> Dict: # Construct model if bloom_config_file == "": lowerCAmelCase__ = BloomConfig() else: lowerCAmelCase__ = BloomConfig.from_json_file(A ) if shard_model: lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = {'''weight_map''': {}, '''metadata''': {}} lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = BloomConfig() for j, file in enumerate(A ): print('''Processing file: {}'''.format(A ) ) lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase__ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase__ = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) lowerCAmelCase__ = BloomConfig() lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCAmelCase__ = total_size with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) else: lowerCAmelCase__ = BloomModel(A ) lowerCAmelCase__ = os.listdir(A ) lowerCAmelCase__ = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) lowerCAmelCase__ = None for i, file in enumerate(A ): lowerCAmelCase__ = None for i in range(A ): # load all TP files lowerCAmelCase__ = file.replace('''model_00''' , F"""model_0{i}""" ) lowerCAmelCase__ = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names lowerCAmelCase__ = list(temp.keys() ) for key in keys: lowerCAmelCase__ = temp.pop(A ) if tensors is None: lowerCAmelCase__ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase__ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase__ = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase__ = tensors[key] / pretraining_tp lowerCAmelCase__ = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: lowerCAmelCase__ = set(other_keys.missing_keys ) else: lowerCAmelCase__ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: lowerCAmelCase__ = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __UpperCAmelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
228
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __lowerCamelCase ( ): """simple docstring""" a :Any = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=UpperCAmelCase_ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=UpperCAmelCase_ , default=5 ) parser.add_argument('''--batch_size''' , type=UpperCAmelCase_ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=UpperCAmelCase_ , default=1 ) parser.add_argument('''--freeze''' , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) parser.add_argument('''--learning_rate''' , type=UpperCAmelCase_ , default=5E-4 ) parser.add_argument('''--seed''' , type=UpperCAmelCase_ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=UpperCAmelCase_ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=UpperCAmelCase_ , default=10 ) parser.add_argument('''--weight_decay''' , type=UpperCAmelCase_ , default=0.01 ) parser.add_argument('''--output_dir''' , type=UpperCAmelCase_ , default='''./results''' ) return parser.parse_args() snake_case : str = load('''accuracy''') def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ): """simple docstring""" a :List[Any] = eval_pred a :List[Any] = np.argmax(UpperCAmelCase_ , axis=1 ) return metric.compute(predictions=UpperCAmelCase_ , references=UpperCAmelCase_ ) class _snake_case ( lowercase__ ): def __init__( self , _lowerCamelCase ): super().__init__() a :List[Any] = trainer def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): if control.should_evaluate: a :Optional[int] = deepcopy(_A ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def __lowerCamelCase ( ): """simple docstring""" a :str = get_args() set_seed(args.seed ) a :str = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) a :Tuple = dataset.train_test_split(test_size=0.2 ) a :str = train_test['test'].train_test_split(test_size=0.5 ) a :List[str] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) a :Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) a :Dict = tokenizer.eos_token a :int = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a :List[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a :Any = False a :Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(UpperCAmelCase_ : Dict ): a :Union[str, Any] = tokenizer(example['''src'''] , truncation=UpperCAmelCase_ , max_length=1024 ) a :Optional[Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a :Optional[Any] = train_test_validation.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=train_test_validation['''train'''].column_names , ) a :Optional[Any] = DataCollatorWithPadding(tokenizer=UpperCAmelCase_ ) a :int = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) a :Union[str, Any] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(UpperCAmelCase_ ) ) trainer.train() if __name__ == "__main__": main()
94
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCAmelCase :List[str] = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) lowerCAmelCase :List[Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Tuple = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } lowerCAmelCase :Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) lowerCAmelCase :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Union[str, Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) lowerCAmelCase :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' lowerCAmelCase :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :int = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' lowerCAmelCase :List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' lowerCAmelCase :int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' lowerCAmelCase :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' lowerCAmelCase :Tuple = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' lowerCAmelCase :Any = '''''' lowerCAmelCase :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' lowerCAmelCase :List[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' lowerCAmelCase :str = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): """simple docstring""" assert ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): __magic_name__ : str = ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] ): """simple docstring""" with pytest.raises(lowerCAmelCase , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" ReadMe.from_string(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Optional[int] = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Union[str, Any] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : str = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): __magic_name__ : int = ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Optional[int] = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) __magic_name__ : Any = expected_error.format(path=lowerCAmelCase ) with pytest.raises(lowerCAmelCase , match=re.escape(lowerCAmelCase ) ): ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ : Any = Path(lowerCAmelCase ) / 'README.md' with open(lowerCAmelCase , 'w+' ) as readme_file: readme_file.write(lowerCAmelCase ) ReadMe.from_readme(lowerCAmelCase , lowerCAmelCase , suppress_parsing_errors=lowerCAmelCase )
331
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def _lowerCamelCase( ): __a = 1_0 __a = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) __a = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [9_7], "text": ["1976"]}] * 1_0, "id": list(range(_a ) ), } , features=_a , ) return dataset @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): __a = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=_a ) return filename # FILE_CONTENT + files SCREAMING_SNAKE_CASE__:List[str] = """\ Text data. Second line of data.""" @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / """file.txt""" __a = FILE_CONTENT with open(_a , "w" ) as f: f.write(_a ) return filename @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): import bza __a = tmp_path_factory.mktemp("data" ) / """file.txt.bz2""" __a = bytes(_a , "utf-8" ) with bza.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): import gzip __a = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) __a = bytes(_a , "utf-8" ) with gzip.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): if datasets.config.LZ4_AVAILABLE: import lza.frame __a = tmp_path_factory.mktemp("data" ) / """file.txt.lz4""" __a = bytes(_a , "utf-8" ) with lza.frame.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __a = tmp_path_factory.mktemp("data" ) / """file.txt.7z""" with pyazr.SevenZipFile(_a , "w" ) as archive: archive.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): import tarfile __a = tmp_path_factory.mktemp("data" ) / """file.txt.tar""" with tarfile.TarFile(_a , "w" ) as f: f.add(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): import lzma __a = tmp_path_factory.mktemp("data" ) / """file.txt.xz""" __a = bytes(_a , "utf-8" ) with lzma.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): import zipfile __a = tmp_path_factory.mktemp("data" ) / """file.txt.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __a = tmp_path_factory.mktemp("data" ) / """file.txt.zst""" __a = bytes(_a , "utf-8" ) with zstd.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data" ) / """file.xml""" __a = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(_a , "w" ) as f: f.write(_a ) return filename SCREAMING_SNAKE_CASE__:List[str] = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] SCREAMING_SNAKE_CASE__:Any = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] SCREAMING_SNAKE_CASE__:Dict = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } SCREAMING_SNAKE_CASE__:Union[str, Any] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] SCREAMING_SNAKE_CASE__:Optional[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="session" ) def _lowerCamelCase( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = datasets.Dataset.from_dict(_a ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(_a ) ) as con: __a = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(_a , "w" , newline="" ) as f: __a = csv.DictWriter(_a , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(_a , "w" , newline="" ) as f: __a = csv.DictWriter(_a , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): import bza __a = tmp_path_factory.mktemp("data" ) / """dataset.csv.bz2""" with open(_a , "rb" ) as f: __a = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_a , "wb" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.csv.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.csv.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(_a , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) __a = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(_a , "wb" ) as f: __a = pq.ParquetWriter(_a , schema=_a ) __a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_a ) )] for k in DATA[0]} , schema=_a ) writer.write_table(_a ) writer.close() return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"""data""": DATA} with open(_a , "w" ) as f: json.dump(_a , _a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) __a = {"""data""": DATA_DICT_OF_LISTS} with open(_a , "w" ) as f: json.dump(_a , _a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(_a , "w" ) as f: for item in DATA: f.write(json.dumps(_a ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(_a , "w" ) as f: for item in DATA: f.write(json.dumps(_a ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(_a , "w" ) as f: for item in DATA_312: f.write(json.dumps(_a ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(_a , "w" ) as f: for item in DATA_STR: f.write(json.dumps(_a ) + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(_a , "rb" ) as orig_file: with gzip.open(_a , "wb" ) as zipped_file: zipped_file.writelines(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): import gzip __a = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(_a , "rb" ) as orig_file: with gzip.open(_a , "wb" ) as zipped_file: zipped_file.writelines(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.join("nested" , os.path.basename(_a ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.jsonl.tar""" with tarfile.TarFile(_a , "w" ) as f: f.add(_a , arcname=os.path.basename(_a ) ) f.add(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(_a , "w" ) as f: f.add(_a , arcname=os.path.join("nested" , os.path.basename(_a ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = ["""0""", """1""", """2""", """3"""] __a = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(_a , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = ["""0""", """1""", """2""", """3"""] __a = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(_a , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = ["""0""", """1""", """2""", """3"""] __a = tmp_path_factory.mktemp("data" ) / """dataset.abc""" with open(_a , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.text.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join("main_dir" , os.path.basename(_a ) ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.ext.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename("unsupported.ext" ) ) f.write(_a , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = """\n""".join(["First", "Second\u2029with Unicode new line", "Third"] ) __a = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(_a ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( ): return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def _lowerCamelCase( ): return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a ): __a = tmp_path_factory.mktemp("data" ) / """dataset.img.zip""" with zipfile.ZipFile(_a , "w" ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 1_0 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 1_0 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 1_0 ) return data_dir
365
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:str = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case__ ( snake_case_ ): _snake_case : str = """sew-d""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = max_position_embeddings __a = position_buckets __a = share_att_key __a = relative_attention __a = norm_rel_ebd __a = list(lowerCamelCase ) __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layer_norm_eps __a = feature_layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def a__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
268
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a_ = logging.get_logger("""transformers.models.speecht5""") a_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } a_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } a_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } a_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } a_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } a_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } a_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } a_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = [] a_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Union[str, Any] ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : int ,_UpperCamelCase : str ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase ,__lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : str ,_UpperCamelCase : int ): __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCamelCase ,_UpperCamelCase ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase ,__lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: __lowerCamelCase = '''weight''' elif "running_mean" in name: __lowerCamelCase = '''running_mean''' elif "running_var" in name: __lowerCamelCase = '''running_var''' elif "num_batches_tracked" in name: __lowerCamelCase = '''num_batches_tracked''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Tuple ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[str] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : str ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any]=None ,_UpperCamelCase : List[Any]=None ,_UpperCamelCase : str=None ,): if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(_UpperCamelCase ) elif task == "t2s": __lowerCamelCase = 18_76 __lowerCamelCase = 6_00 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(_UpperCamelCase ) elif task == "s2s": __lowerCamelCase = 18_76 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(_UpperCamelCase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(_UpperCamelCase ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('''<mask>''' ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch.load(_UpperCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] ,_UpperCamelCase ,_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
330
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : int = typing.Union[np.floataa, int, float] # noqa: UP007 def _SCREAMING_SNAKE_CASE ( _lowercase : Vector , _lowercase : Vector ) ->VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_lowercase ) - np.asarray(_lowercase )) ** 2 ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : Vector , _lowercase : Vector ) ->VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_lowercase , _lowercase ) ) ** (1 / 2) if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) benchmark()
79
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' a : int = HfArgumentParser(_lowercase ) a : int = parser.parse_args_into_dataclasses()[0] a : Any = TensorFlowBenchmark(args=_lowercase ) try: a : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: a : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." a : Tuple = " ".join(str(_lowercase ).split(" " )[:-1] ) a : Any = "" a : Any = eval(str(_lowercase ).split(" " )[-1] ) a : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowercase ) if len(_lowercase ) > 0: a : Tuple = full_error_msg + begin_error_msg + str(_lowercase ) raise ValueError(_lowercase ) benchmark.run() if __name__ == "__main__": main()
79
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 256 class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = ["""melgan"""] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None: super().__init__() # From MELGAN __UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training. __UpperCamelCase :int = 4.0 # Largest value for most examples __UpperCamelCase :str = 128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict: __UpperCamelCase , __UpperCamelCase :str = output_range if clip: __UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value) # Scale to [0, 1]. __UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :int = input_range __UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs # Scale to [0, 1]. __UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = input_tokens > 0 __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Optional[int] = noise_time if not torch.is_tensor(__lowercase): __UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0: __UpperCamelCase :Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) __UpperCamelCase :Tuple = self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase) return logits @torch.no_grad() def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase)}.""") __UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) __UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa) __UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) for i, encoder_input_tokens in enumerate(__lowercase): if i == 0: __UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. __UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCamelCase :Tuple = ones __UpperCamelCase :Optional[Any] = self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase) __UpperCamelCase :int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCamelCase :int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCamelCase :Optional[int] = self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0]) __UpperCamelCase :List[Any] = mel[:1] __UpperCamelCase :Optional[Any] = mel.cpu().float().numpy() __UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase) logger.info('''Generated segment''' , __lowercase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''') elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''') if output_type == "numpy": __UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: __UpperCamelCase :List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase)
43
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str]=5 ): """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 lowercase_ : str = torch.tensor(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) # Batch size 1 lowercase_ : List[Any] = model(__SCREAMING_SNAKE_CASE )[0] # The last hidden-state is the first element of the output tuple lowercase_ : Any = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase_ : Optional[Any] = logits[0, masked_index, :] lowercase_ : List[Any] = logits.softmax(dim=0 ) lowercase_ , lowercase_ : int = prob.topk(k=__SCREAMING_SNAKE_CASE , dim=0 ) lowercase_ : List[str] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__SCREAMING_SNAKE_CASE ) )] ) lowercase_ : Union[str, Any] = tokenizer.mask_token lowercase_ : Union[str, Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowercase_ : List[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__SCREAMING_SNAKE_CASE ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowercase : Union[str, Any] = CamembertTokenizer.from_pretrained("camembert-base") _lowercase : Tuple = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _lowercase : List[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
264
'''simple docstring''' import sys _lowercase : Union[str, Any] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Any = 1 for digit in s: product *= int(__SCREAMING_SNAKE_CASE ) return product def snake_case_ ( __SCREAMING_SNAKE_CASE : str = N ): """simple docstring""" lowercase_ : Any = -sys.maxsize - 1 lowercase_ : List[Any] = n[:13] lowercase_ : List[str] = 13 while cur_index < len(__SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowercase_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: lowercase_ : str = max(__SCREAMING_SNAKE_CASE , str_eval(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
264
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : List[Any] ) -> List[Any]: config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCamelCase ) def UpperCamelCase ( snake_case__ : List[Any] ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__lowerCamelCase , id=__lowerCamelCase ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[Any] ) -> List[Any]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: UpperCamelCase : Tuple = 0 # Doctest custom flag to ignore output. __UpperCAmelCase = doctest.register_optionflag('''IGNORE_RESULT''') __UpperCAmelCase = doctest.OutputChecker class lowerCAmelCase_ ( a__ ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = CustomOutputChecker __UpperCAmelCase = HfDoctestModule __UpperCAmelCase = HfDocTestParser
119
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowerCAmelCase : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = '''gelu''' def __init__( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :List[str]=13 , __magic_name__ :Union[str, Any]=7 , __magic_name__ :str=True , __magic_name__ :Union[str, Any]=False , __magic_name__ :Union[str, Any]=99 , __magic_name__ :List[Any]=32 , __magic_name__ :str=2 , __magic_name__ :List[str]=4 , __magic_name__ :str=37 , __magic_name__ :Any=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :List[str]=20 , __magic_name__ :Union[str, Any]=2 , __magic_name__ :List[Any]=1 , __magic_name__ :Optional[int]=0 , __magic_name__ :Optional[int]=4 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a = prepare_led_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) a = tf.concat( [tf.zeros_like(__magic_name__ )[:, :-1], tf.ones_like(__magic_name__ )[:, -1:]] , axis=-1 , ) a = global_attention_mask return config, inputs_dict def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :List[Any] ): '''simple docstring''' a = TFLEDModel(config=__magic_name__ ).get_decoder() a = inputs_dict["""input_ids"""] a = input_ids[:1, :] a = inputs_dict["""attention_mask"""][:1, :] a = 1 # first forward pass a = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__magic_name__ , attention_mask=__magic_name__ )[0] a = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[str]: if attention_mask is None: a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = TFLEDModelTester(self ) a = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase__ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self :str ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = tf.zeros_like(inputs_dict["""attention_mask"""] ) a = 2 a = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) a = True a = self.model_tester.seq_length a = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__magic_name__ :int ): a = outputs.decoder_attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__magic_name__ :Any ): a = [t.numpy() for t in outputs.encoder_attentions] a = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a = True a = False a = False a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) a = len(__magic_name__ ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) if self.is_encoder_decoder: a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_decoder_attentions_output(__magic_name__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a = True a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) # Check attention is always last and order is fine a = True a = True a = model_class(__magic_name__ ) a = model(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__magic_name__ ) ) self.assertEqual(model.config.output_hidden_states , __magic_name__ ) check_encoder_attentions_output(__magic_name__ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self :int ): '''simple docstring''' pass def __A ( __lowerCamelCase ) -> int: return tf.constant(__lowerCamelCase , dtype=tf.intaa ) __UpperCamelCase : int = 1E-4 @slow @require_tf class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here a = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = prepare_led_inputs_dict(model.config , __magic_name__ , __magic_name__ ) a = model(**__magic_name__ )[0] a = (1, 1024, 768) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-3 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' a = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here a = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) a = prepare_led_inputs_dict(model.config , __magic_name__ , __magic_name__ ) a = model(**__magic_name__ )[0] a = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __magic_name__ ) # change to expected output here a = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1E-3 , rtol=1E-3 )
228
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a_ ( unittest.TestCase ): def __a ( self :Dict) -> str: UpperCAmelCase_ = '''ylacombe/bark-small''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = '''en_speaker_1''' UpperCAmelCase_ = '''This is a test string''' UpperCAmelCase_ = '''speaker_embeddings_path.json''' UpperCAmelCase_ = '''speaker_embeddings''' def __a ( self :Tuple , **_lowercase :Tuple) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **_lowercase) def __a ( self :List[str]) -> Union[str, Any]: shutil.rmtree(self.tmpdirname) def __a ( self :str) -> str: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_lowercase) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ = 35 UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = { '''semantic_prompt''': np.ones(_lowercase), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len)), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_lowercase) UpperCAmelCase_ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([])).tolist()) # test loading voice preset from npz file UpperCAmelCase_ = os.path.join(self.tmpdirname , '''file.npz''') np.savez(_lowercase , **_lowercase) UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_lowercase) UpperCAmelCase_ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([])).tolist()) # test loading voice preset from the hub UpperCAmelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset) def __a ( self :str) -> Tuple: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_lowercase) UpperCAmelCase_ = processor(text=self.input_string) UpperCAmelCase_ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : str = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["""OwlViTFeatureExtractor"""] __lowerCamelCase : Optional[int] = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : Any=[10, 20, 30, 40] , lowerCAmelCase_ : Any=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=None , ) -> str: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Tuple = embeddings_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : str = scope UpperCAmelCase_ : str = len(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : List[Any] = TFRegNetModel(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = TFRegNetForImageClassification(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ (__A , __A , unittest.TestCase ): __magic_name__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __magic_name__ = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = TFRegNetModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) UpperCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : List[Any] = layer_type UpperCAmelCase_ : int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]={} ): UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) UpperCAmelCase_ : List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFRegNetModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ) # forward pass UpperCAmelCase_ : Tuple = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
268
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase__ ) def UpperCamelCase__ ( self ): snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=UpperCamelCase__ , vqvae=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ldm.to(UpperCamelCase__ ) ldm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''numpy''' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''numpy''' , return_dict=UpperCamelCase__ )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) snake_case_ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(UpperCamelCase__ ) ldm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=UpperCamelCase__ , num_inference_steps=5 , output_type='''numpy''' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) snake_case_ = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
367
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> list[int]: """simple docstring""" snake_case_ = int(SCREAMING_SNAKE_CASE ) # Initialize Result snake_case_ = [] # Traverse through all denomination for denomination in reversed(SCREAMING_SNAKE_CASE ): # Find denominations while int(SCREAMING_SNAKE_CASE ) >= int(SCREAMING_SNAKE_CASE ): total_value -= int(SCREAMING_SNAKE_CASE ) answer.append(SCREAMING_SNAKE_CASE ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase = [] UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'''Following is minimal change for {value}: ''') UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
267
0
'''simple docstring''' import requests def __lowercase ( __lowercase , __lowercase ) -> None: '''simple docstring''' _A = {"Content-Type": "application/json"} _A = requests.post(__lowercase , json={"text": message_body} , headers=__lowercase ) if response.status_code != 200: _A = ( "Request to slack returned an error " F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
79
'''simple docstring''' from typing import List import numpy as np def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = {key: len(__lowercase ) for key, value in gen_kwargs.items() if isinstance(__lowercase , __lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _A = max(lists_lengths.values() , default=0 ) return max(1 , __lowercase ) def __lowercase ( __lowercase , __lowercase ) -> List[range]: '''simple docstring''' _A = [] for group_idx in range(__lowercase ): _A = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _A = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _A = range(__lowercase , start + num_shards_to_add ) shards_indices_per_group.append(__lowercase ) return shards_indices_per_group def __lowercase ( __lowercase , __lowercase ) -> List[dict]: '''simple docstring''' _A = _number_of_shards_in_gen_kwargs(__lowercase ) if num_shards == 1: return [dict(__lowercase )] else: _A = _distribute_shards(num_shards=__lowercase , max_num_jobs=__lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowercase , __lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowercase ) ) ] def __lowercase ( __lowercase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowercase ( __lowercase , __lowercase ) -> dict: '''simple docstring''' _A = {len(__lowercase ) for value in gen_kwargs.values() if isinstance(__lowercase , __lowercase )} _A = {} for size in list_sizes: _A = list(range(__lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _A = dict(__lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowercase , __lowercase ): _A = [value[i] for i in indices_per_size[len(__lowercase )]] return shuffled_kwargs
79
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowerCAmelCase = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowerCAmelCase = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} __lowerCAmelCase = '''zero2''' __lowerCAmelCase = '''zero3''' __lowerCAmelCase = [ZEROa, ZEROa] def snake_case_ ( snake_case , snake_case , snake_case ) -> List[str]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowercase__: List[str] = parameterized.to_safe_name('_'.join(str(snake_case ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test __lowerCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __a ( __UpperCamelCase ): @parameterized.expand(lowerCAmelCase__ , name_func=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' self.run_and_check( stage=lowerCAmelCase__ , model=lowerCAmelCase__ , distributed=lowerCAmelCase__ , fpaa=lowerCAmelCase__ , ) @require_torch_multi_gpu @parameterized.expand(lowerCAmelCase__ , name_func=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' self.run_and_check( stage=lowerCAmelCase__ , model=lowerCAmelCase__ , distributed=lowerCAmelCase__ , fpaa=lowerCAmelCase__ , ) @parameterized.expand(lowerCAmelCase__ , name_func=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' self.run_and_check( stage=lowerCAmelCase__ , model=lowerCAmelCase__ , distributed=lowerCAmelCase__ , fpaa=lowerCAmelCase__ , ) @require_torch_multi_gpu @parameterized.expand(lowerCAmelCase__ , name_func=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' self.run_and_check( stage=lowerCAmelCase__ , model=lowerCAmelCase__ , distributed=lowerCAmelCase__ , fpaa=lowerCAmelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 10 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> Tuple: '''simple docstring''' lowercase__: Dict = models[model] lowercase__: Union[str, Any] = self.run_trainer( stage=lowerCAmelCase__ , model_name=lowerCAmelCase__ , eval_steps=lowerCAmelCase__ , num_train_epochs=1 , distributed=lowerCAmelCase__ , fpaa=lowerCAmelCase__ , ) self.do_checks(lowerCAmelCase__ ) return output_dir def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 10 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> str: '''simple docstring''' lowercase__: int = self.get_auto_remove_tmp_dir('./xxx' , after=lowerCAmelCase__ ) lowercase__: str = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCAmelCase__ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowercase__: Dict = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() lowercase__: Optional[int] = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] lowercase__: Optional[Any] = self.get_launcher(lowerCAmelCase__ ) lowercase__: str = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=False ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
350
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( snake_case , snake_case , snake_case = False ) -> list[float]: if radian_mode: return [magnitude * cos(snake_case ), magnitude * sin(snake_case )] return [magnitude * cos(radians(snake_case ) ), magnitude * sin(radians(snake_case ) )] def snake_case_ ( snake_case , snake_case , snake_case = 10**-1 ) -> bool: lowercase__: NDArray[floataa] = cross(snake_case , snake_case ) lowercase__: float = sum(snake_case ) return abs(snake_case ) < eps if __name__ == "__main__": # Test to check if it works __lowerCAmelCase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __lowerCAmelCase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __lowerCAmelCase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) __lowerCAmelCase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
288
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _UpperCAmelCase : _lowerCAmelCase : Tuple = LEDConfig _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Tuple = """gelu""" def __init__( self : Any , lowercase_ : Optional[int] , lowercase_ : Tuple=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : str=True , lowercase_ : Tuple=False , lowercase_ : List[str]=99 , lowercase_ : str=32 , lowercase_ : Any=2 , lowercase_ : str=4 , lowercase_ : List[str]=37 , lowercase_ : List[str]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Dict=20 , lowercase_ : Any=2 , lowercase_ : int=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : Optional[Any]=4 , ): snake_case_ : List[str] = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Dict = seq_length snake_case_ : Optional[Any] = is_training snake_case_ : List[Any] = use_labels snake_case_ : Any = vocab_size snake_case_ : str = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : List[Any] = eos_token_id snake_case_ : Any = pad_token_id snake_case_ : Tuple = bos_token_id snake_case_ : Union[str, Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ : Optional[int] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self : int ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case_ : int = prepare_led_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) snake_case_ : Optional[int] = tf.concat( [tf.zeros_like(lowercase_ )[:, :-1], tf.ones_like(lowercase_ )[:, -1:]] , axis=-1 , ) snake_case_ : List[str] = global_attention_mask return config, inputs_dict def _snake_case ( self : str , lowercase_ : Optional[int] , lowercase_ : int ): snake_case_ : List[str] = TFLEDModel(config=lowercase_ ).get_decoder() snake_case_ : str = inputs_dict['''input_ids'''] snake_case_ : Optional[int] = input_ids[:1, :] snake_case_ : List[str] = inputs_dict['''attention_mask'''][:1, :] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : str = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) snake_case_, snake_case_ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : int = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : int = model(lowercase_ , attention_mask=lowercase_ )[0] snake_case_ : Any = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def __lowercase ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , ): if attention_mask is None: snake_case_ : Dict = tf.cast(tf.math.not_equal(_a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowerCAmelCase : Union[str, Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowerCAmelCase : Optional[int] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowerCAmelCase : Any = True _lowerCAmelCase : Tuple = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[int] = False def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = TFLEDModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase_ ) def _snake_case ( self : Tuple ): self.config_tester.run_common_tests() def _snake_case ( self : int ): snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _snake_case ( self : List[Any] ): snake_case_, snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Union[str, Any] = tf.zeros_like(inputs_dict['''attention_mask'''] ) snake_case_ : Dict = 2 snake_case_ : List[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) snake_case_ : Tuple = True snake_case_ : List[Any] = self.model_tester.seq_length snake_case_ : int = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase_ : List[str] ): snake_case_ : str = outputs.decoder_attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase_ : Dict ): snake_case_ : Any = [t.numpy() for t in outputs.encoder_attentions] snake_case_ : Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = True snake_case_ : Tuple = False snake_case_ : int = False snake_case_ : Optional[int] = model_class(lowercase_ ) snake_case_ : str = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ : Any = len(lowercase_ ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) if self.is_encoder_decoder: snake_case_ : str = model_class(lowercase_ ) snake_case_ : Any = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_decoder_attentions_output(lowercase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ : List[Any] = True snake_case_ : Any = model_class(lowercase_ ) snake_case_ : Tuple = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) # Check attention is always last and order is fine snake_case_ : Optional[Any] = True snake_case_ : List[str] = True snake_case_ : int = model_class(lowercase_ ) snake_case_ : str = model(self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase_ ) ) self.assertEqual(model.config.output_hidden_states , lowercase_ ) check_encoder_attentions_output(lowercase_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def _snake_case ( self : List[str] ): pass def _snake_case ( self : Union[str, Any] ): # TODO: Head-masking not yet implement pass def __lowercase ( _a ): return tf.constant(_a , dtype=tf.intaa ) lowercase__ : Optional[int] = 1e-4 @slow @require_tf class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): snake_case_ : Tuple = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here snake_case_ : str = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case_ : str = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case_ : Optional[Any] = prepare_led_inputs_dict(model.config , lowercase_ , lowercase_ ) snake_case_ : Optional[int] = model(**lowercase_ )[0] snake_case_ : Optional[Any] = (1, 1024, 768) self.assertEqual(output.shape , lowercase_ ) # change to expected output here snake_case_ : Optional[Any] = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-3 ) def _snake_case ( self : Optional[int] ): snake_case_ : int = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here snake_case_ : Any = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case_ : Optional[int] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) snake_case_ : Optional[int] = prepare_led_inputs_dict(model.config , lowercase_ , lowercase_ ) snake_case_ : Tuple = model(**lowercase_ )[0] snake_case_ : Optional[int] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowercase_ ) # change to expected output here snake_case_ : Any = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1E-3 , rtol=1E-3 )
264
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : int = None lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = '''▁''' lowercase__ : Optional[int] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowercase__ : List[Any] = { '''google/pegasus-xsum''': 5_12, } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = PegasusTokenizer _lowerCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : Optional[Any]=None , lowercase_ : int=None , lowercase_ : Tuple="<pad>" , lowercase_ : int="</s>" , lowercase_ : Tuple="<unk>" , lowercase_ : str="<mask_2>" , lowercase_ : Optional[Any]="<mask_1>" , lowercase_ : str=None , lowercase_ : List[str]=103 , **lowercase_ : List[Any] , ): snake_case_ : Dict = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase_ )}, but is" f" {type(lowercase_ )}" ) snake_case_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) snake_case_ : Union[str, Any] = additional_special_tokens_extended else: snake_case_ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = vocab_file snake_case_ : List[Any] = False if not self.vocab_file else True def _snake_case ( self : str , lowercase_ : Union[str, Any] ): snake_case_ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self : int , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : Dict = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
264
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __snake_case ( tr.AbstractTransform ): def __init__( self , snake_case__ = " " ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict =sentence_delimiter def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' return list(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] for sent_idx, sentence in enumerate(snake_case__ ): chars.extend(self.process_string(snake_case__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__=False ) -> List[Any]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"] UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =0 for prediction, reference in zip(snake_case__ , snake_case__ ): UpperCAmelCase : int =jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
78
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """efficientnet""" def __init__( self , snake_case__ = 3 , snake_case__ = 600 , snake_case__ = 2.0 , snake_case__ = 3.1 , snake_case__ = 8 , snake_case__ = [3, 3, 5, 3, 5, 5, 3] , snake_case__ = [32, 16, 24, 40, 80, 112, 192] , snake_case__ = [16, 24, 40, 80, 112, 192, 320] , snake_case__ = [] , snake_case__ = [1, 2, 2, 2, 1, 2, 1] , snake_case__ = [1, 2, 2, 3, 3, 4, 1] , snake_case__ = [1, 6, 6, 6, 6, 6, 6] , snake_case__ = 0.25 , snake_case__ = "swish" , snake_case__ = 2560 , snake_case__ = "mean" , snake_case__ = 0.02 , snake_case__ = 0.001 , snake_case__ = 0.99 , snake_case__ = 0.5 , snake_case__ = 0.2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : Tuple =num_channels UpperCAmelCase : Any =image_size UpperCAmelCase : Optional[int] =width_coefficient UpperCAmelCase : Union[str, Any] =depth_coefficient UpperCAmelCase : List[Any] =depth_divisor UpperCAmelCase : List[str] =kernel_sizes UpperCAmelCase : Any =in_channels UpperCAmelCase : str =out_channels UpperCAmelCase : Optional[int] =depthwise_padding UpperCAmelCase : str =strides UpperCAmelCase : Tuple =num_block_repeats UpperCAmelCase : Union[str, Any] =expand_ratios UpperCAmelCase : Dict =squeeze_expansion_ratio UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : int =hidden_dim UpperCAmelCase : Optional[int] =pooling_type UpperCAmelCase : Union[str, Any] =initializer_range UpperCAmelCase : List[str] =batch_norm_eps UpperCAmelCase : List[str] =batch_norm_momentum UpperCAmelCase : Tuple =dropout_rate UpperCAmelCase : Tuple =drop_connect_rate UpperCAmelCase : int =sum(snake_case__ ) * 4 class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-5
78
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : Union[str, Any] = """ylacombe/bark-small""" A_ : Union[str, Any] = tempfile.mkdtemp() A_ : Any = """en_speaker_1""" A_ : List[str] = """This is a test string""" A_ : Optional[int] = """speaker_embeddings_path.json""" A_ : List[str] = """speaker_embeddings""" def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> int: return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Any: A_ : Optional[Any] = self.get_tokenizer() A_ : int = BarkProcessor(tokenizer=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Any: A_ : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: A_ : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A_ : Any = 35 A_ : Dict = 2 A_ : int = 8 A_ : Union[str, Any] = { """semantic_prompt""": np.ones(_lowerCamelCase ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A_ : Optional[Any] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) A_ : Any = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file A_ : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[int] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) A_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub A_ : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase_ ( self ) -> int: A_ : Dict = self.get_tokenizer() A_ : Union[str, Any] = BarkProcessor(tokenizer=_lowerCamelCase ) A_ : List[Any] = processor(text=self.input_string ) A_ : Dict = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
344
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : int = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
1
import numpy as np def UpperCAmelCase_ (_lowerCAmelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
351
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
171
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" super().tearDown() gc.collect() def __UpperCamelCase ( self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE : int = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE : Optional[int] = num_samples * [prompt] SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(a ) SCREAMING_SNAKE_CASE : Tuple = replicate(a ) SCREAMING_SNAKE_CASE : Dict = shard(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Dict = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE : str = sd_pipe(a , a , a , num_inference_steps=25 , jit=a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE : List[str] = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE : Any = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = "stabilityai/stable-diffusion-2" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(a , subfolder="scheduler" ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = FlaxStableDiffusionPipeline.from_pretrained( a , scheduler=a , revision="bf16" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE : Tuple = scheduler_params SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Optional[Any] = jax.device_count() SCREAMING_SNAKE_CASE : int = num_samples * [prompt] SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.prepare_inputs(a ) SCREAMING_SNAKE_CASE : Tuple = replicate(a ) SCREAMING_SNAKE_CASE : Optional[int] = shard(a ) SCREAMING_SNAKE_CASE : Dict = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : str = jax.random.split(a , jax.device_count() ) SCREAMING_SNAKE_CASE : str = sd_pipe(a , a , a , num_inference_steps=25 , jit=a )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
76
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE = PNDMScheduler() __SCREAMING_SNAKE_CASE = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type="""numpy""" , return_dict=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """google/ddpm-cifar10-32""" __SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PNDMScheduler() __SCREAMING_SNAKE_CASE = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) pndm.to(__SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pndm(generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
267
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowercase__ : Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase__ : Optional[Any] = json.loads(_lowerCamelCase) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase__ : List[str] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase__ : List[Any] = json.loads(_lowerCamelCase) if not mpi_options.get("sagemaker_mpi_enabled" , _lowerCamelCase): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class snake_case_ ( __A ): __A : str = field( default="" ,metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} ,) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase_ , ) @cached_property def __UpperCamelCase ( self : Dict ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowercase__ : List[Any] = torch.device("cpu" ) lowercase__ : Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): lowercase__ : Tuple = smp.local_rank() lowercase__ : Union[str, Any] = torch.device("cuda" , lowercase_ ) lowercase__ : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowercase__ : List[Any] = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowercase__ : Tuple = torch.device("cuda" , self.local_rank ) lowercase__ : Any = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase__ : Any = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase__ : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowercase__ : Dict = torch.device("cuda" , self.local_rank ) lowercase__ : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_ ) return device @property def __UpperCamelCase ( self : Tuple ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCamelCase ( self : str ) -> str: return not is_sagemaker_model_parallel_available() @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: return False
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __lowerCAmelCase ( A_): _a = '''git_vision_model''' def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any]=7_68 , _lowerCAmelCase: Optional[Any]=30_72 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: int=12 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Dict=2_24 , _lowerCAmelCase: str=16 , _lowerCAmelCase: Union[str, Any]="quick_gelu" , _lowerCAmelCase: Optional[int]=1e-5 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , **_lowerCAmelCase: Union[str, Any] , ): super().__init__(**_lowerCamelCase ) lowercase :Dict = hidden_size lowercase :Union[str, Any] = intermediate_size lowercase :Any = num_hidden_layers lowercase :List[str] = num_attention_heads lowercase :List[str] = num_channels lowercase :Tuple = patch_size lowercase :Dict = image_size lowercase :List[str] = initializer_range lowercase :Optional[int] = attention_dropout lowercase :Any = layer_norm_eps lowercase :Tuple = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls: List[Any] , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: Optional[Any] ): cls._set_token_in_kwargs(_lowerCamelCase ) lowercase , lowercase :Tuple = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowercase :List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __lowerCAmelCase ( A_): _a = '''git''' def __init__( self: str , _lowerCAmelCase: int=None , _lowerCAmelCase: str=3_05_22 , _lowerCAmelCase: int=7_68 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: int=12 , _lowerCAmelCase: int=30_72 , _lowerCAmelCase: Dict="gelu" , _lowerCAmelCase: int=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[str]=10_24 , _lowerCAmelCase: int=0.02 , _lowerCAmelCase: Tuple=1e-1_2 , _lowerCAmelCase: Dict=0 , _lowerCAmelCase: List[Any]="absolute" , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Optional[int]=1_01 , _lowerCAmelCase: List[str]=1_02 , _lowerCAmelCase: Any=None , **_lowerCAmelCase: str , ): super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , pad_token_id=_lowerCamelCase , **_lowerCamelCase ) if vision_config is None: lowercase :Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowercase :Tuple = GitVisionConfig(**_lowerCamelCase ) lowercase :Optional[int] = vocab_size lowercase :int = hidden_size lowercase :List[str] = num_hidden_layers lowercase :Union[str, Any] = num_attention_heads lowercase :List[str] = hidden_act lowercase :List[Any] = intermediate_size lowercase :str = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :int = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Optional[int] = layer_norm_eps lowercase :Optional[Any] = position_embedding_type lowercase :Tuple = use_cache lowercase :int = tie_word_embeddings lowercase :List[str] = num_image_with_embedding lowercase :Union[str, Any] = bos_token_id lowercase :Optional[Any] = eos_token_id def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :str = copy.deepcopy(self.__dict__ ) lowercase :Any = self.vision_config.to_dict() lowercase :List[str] = self.__class__.model_type return output
236
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PoolFormerFeatureExtractor'] A = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC snake_case_ = parse(importlib.metadata.version("""torch""")) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) UpperCAmelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ , parse(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): return compare_versions(lowercase_ , lowercase_ , lowercase_ )
78
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , *lowercase_ :str , **lowercase_ :List[Any] ) -> Union[str, Any]: super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any=None , lowercase_ :Optional[int]=None , lowercase_ :Tuple=None , **lowercase_ :Tuple ) -> Dict: UpperCAmelCase , UpperCAmelCase = {}, {} if padding is not None: UpperCAmelCase = padding if truncation is not None: UpperCAmelCase = truncation if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self :List[Any] , lowercase_ :Union["Image.Image", str] , lowercase_ :str = None , **lowercase_ :Union[str, Any] ) -> Union[str, Any]: if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = {'image': image, 'question': question} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(lowercase_ , **lowercase_ ) return results def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[Any] , lowercase_ :int=False , lowercase_ :Optional[int]=False ) -> Union[str, Any]: UpperCAmelCase = load_image(inputs['image'] ) UpperCAmelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> Any: UpperCAmelCase = self.model(**lowercase_ ) return model_outputs def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple , lowercase_ :List[Any]=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase_ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
78
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _lowercase : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : Any ): '''simple docstring''' if isinstance(a__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(a__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(a__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCamelCase__( _a ): __magic_name__ : Optional[int] = ["""pixel_values"""] def __init__( self : List[Any] , lowerCAmelCase : Optional[Any] = True , lowerCAmelCase : List[str] = None , lowerCAmelCase : List[str] = PILImageResampling.BILINEAR , lowerCAmelCase : List[Any] = True , lowerCAmelCase : Optional[Any] = None , lowerCAmelCase : str = True , lowerCAmelCase : Union[str, Any] = 1 / 255 , lowerCAmelCase : Optional[Any] = True , lowerCAmelCase : int = True , lowerCAmelCase : Tuple = None , lowerCAmelCase : Tuple = None , **lowerCAmelCase : int , )-> int: """simple docstring""" super().__init__(**__lowerCAmelCase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = offset UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__( self : str , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple = PILImageResampling.BILINEAR , lowerCAmelCase : Union[str, Any] = None , **lowerCAmelCase : Optional[int] , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(__lowerCAmelCase , size['''shortest_edge'''] , default_to_square=__lowerCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : List[Any] = None , **lowerCAmelCase : List[Any] , )-> int: """simple docstring""" UpperCAmelCase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict = True , lowerCAmelCase : Any = None , **lowerCAmelCase : List[str] , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = image.astype(np.floataa ) if offset: UpperCAmelCase = image - (scale / 2) return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : str = None , **lowerCAmelCase : List[Any] , )-> int: """simple docstring""" return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def a__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : str = None , lowerCAmelCase : Any = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Dict = None , lowerCAmelCase : str = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = None , lowerCAmelCase : Union[str, Any] = None , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : Any = ChannelDimension.FIRST , )-> Union[str, Any]: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = to_numpy_array(__lowerCAmelCase ) if do_resize: UpperCAmelCase = self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) if do_center_crop: UpperCAmelCase = self.center_crop(__lowerCAmelCase , size=__lowerCAmelCase ) if do_rescale: UpperCAmelCase = self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase , offset=__lowerCAmelCase ) if do_normalize: UpperCAmelCase = self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) UpperCAmelCase = to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) return image def a__( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : str = None , lowerCAmelCase : Union[str, Any] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Dict = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Dict = None , lowerCAmelCase : Dict = None , lowerCAmelCase : Any = None , lowerCAmelCase : str = None , lowerCAmelCase : List[Any] = None , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Tuple = ChannelDimension.FIRST , **lowerCAmelCase : List[Any] , )-> Dict: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = offset if offset is not None else self.offset UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase = make_batched(__lowerCAmelCase ) UpperCAmelCase = [ [ self._preprocess_image( image=__lowerCAmelCase , do_resize=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , do_center_crop=__lowerCAmelCase , crop_size=__lowerCAmelCase , do_rescale=__lowerCAmelCase , rescale_factor=__lowerCAmelCase , offset=__lowerCAmelCase , do_normalize=__lowerCAmelCase , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase , data_format=__lowerCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
371
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : str = logging.get_logger(__name__) _lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Tuple = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _lowercase : Union[str, Any] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : str = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ["input_ids", "attention_mask"] __magic_name__ : List[Any] = GPTaTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Union[str, Any]="<|endoftext|>" , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Tuple , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''add_bos_token''' , lowerCAmelCase ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space def a__( self : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
91
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : List[str] , snake_case__ : str=None , snake_case__ : Optional[int]=None , snake_case__ : List[Any]=None , snake_case__ : int=None , snake_case__ : Union[str, Any]=None , snake_case__ : Tuple=None , ): """simple docstring""" if attention_mask is None: _snake_case : Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : Tuple = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase: '''simple docstring''' def __init__( self: Dict, a_: Any, a_: str=13, a_: int=7, a_: Any=True, a_: Union[str, Any]=False, a_: str=99, a_: List[Any]=16, a_: Optional[Any]=2, a_: int=4, a_: int=4, a_: Dict="gelu", a_: int=0.1, a_: Dict=0.1, a_: Tuple=32, a_: Optional[int]=2, a_: Any=1, a_: List[str]=0, a_: Union[str, Any]=0.02, ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : Tuple = batch_size _snake_case : int = seq_length _snake_case : Optional[int] = is_training _snake_case : Tuple = use_labels _snake_case : List[str] = vocab_size _snake_case : Dict = hidden_size _snake_case : int = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Any = hidden_act _snake_case : Optional[int] = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[str] = pad_token_id _snake_case : Dict = bos_token_id _snake_case : Tuple = initializer_range def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) _snake_case : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) _snake_case : List[str] = shift_tokens_right(a_, 1, 2 ) _snake_case : List[str] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=a_, ) _snake_case : Tuple = prepare_blenderbot_inputs_dict(a_, a_, a_ ) return config, inputs_dict def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: Any, a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = 20 _snake_case : List[str] = model_class_name(a_ ) _snake_case : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) _snake_case , _snake_case : Optional[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : Tuple = model.init_cache(decoder_input_ids.shape[0], a_, a_ ) _snake_case : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="""i4""" ) _snake_case : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _snake_case : List[str] = model.decode( decoder_input_ids[:, :-1], a_, decoder_attention_mask=a_, past_key_values=a_, decoder_position_ids=a_, ) _snake_case : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="""i4""" ) _snake_case : Tuple = model.decode( decoder_input_ids[:, -1:], a_, decoder_attention_mask=a_, past_key_values=outputs_cache.past_key_values, decoder_position_ids=a_, ) _snake_case : List[str] = model.decode(a_, a_ ) _snake_case : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=f"Max diff is {diff}" ) def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: List[Any], a_: Any ): '''simple docstring''' _snake_case : Dict = 20 _snake_case : Optional[int] = model_class_name(a_ ) _snake_case : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) _snake_case , _snake_case : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) _snake_case : List[Any] = model.init_cache(decoder_input_ids.shape[0], a_, a_ ) _snake_case : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _snake_case : str = model.decode( decoder_input_ids[:, :-1], a_, decoder_attention_mask=a_, past_key_values=a_, decoder_position_ids=a_, ) _snake_case : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="""i4""" ) _snake_case : Optional[int] = model.decode( decoder_input_ids[:, -1:], a_, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=a_, decoder_position_ids=a_, ) _snake_case : Optional[int] = model.decode(a_, a_, decoder_attention_mask=a_ ) _snake_case : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=f"Max diff is {diff}" ) @require_flax class lowercase( unittest.TestCase ): '''simple docstring''' lowercase__ = 99 def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) _snake_case : Any = input_ids.shape[0] _snake_case : int = BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Dict = self._get_config_and_data() _snake_case : List[str] = FlaxBlenderbotForConditionalGeneration(a_ ) _snake_case : str = lm_model(input_ids=a_ ) _snake_case : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) _snake_case : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(a_ ) _snake_case : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) _snake_case : Dict = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) _snake_case : Optional[Any] = lm_model(input_ids=a_, decoder_input_ids=a_ ) _snake_case : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape, a_ ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) _snake_case : List[str] = shift_tokens_right(a_, 1, 2 ) _snake_case : int = np.equal(a_, 1 ).astype(np.floataa ).sum() _snake_case : Optional[int] = np.equal(a_, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(a_, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class lowercase( __a , unittest.TestCase , __a ): '''simple docstring''' lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Union[str, Any] = FlaxBlenderbotModelTester(self ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_, a_, a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_, a_, a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : List[Any] = self._prepare_for_class(a_, a_ ) _snake_case : List[Any] = model_class(a_ ) @jax.jit def encode_jitted(a_: str, a_: Optional[Any]=None, **a_: List[str] ): return model.encode(input_ids=a_, attention_mask=a_ ) with self.subTest("""JIT Enabled""" ): _snake_case : Optional[Any] = encode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case : int = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ), len(a_ ) ) for jitted_output, output in zip(a_, a_ ): self.assertEqual(jitted_output.shape, output.shape ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : int = model_class(a_ ) _snake_case : int = model.encode(inputs_dict["""input_ids"""], inputs_dict["""attention_mask"""] ) _snake_case : Optional[Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a_: Any, a_: Tuple, a_: int ): return model.decode( decoder_input_ids=a_, decoder_attention_mask=a_, encoder_outputs=a_, ) with self.subTest("""JIT Enabled""" ): _snake_case : Any = decode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _snake_case : List[str] = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ), len(a_ ) ) for jitted_output, output in zip(a_, a_ ): self.assertEqual(jitted_output.shape, output.shape ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : List[Any] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id _snake_case : Union[str, Any] = model(a_ ) self.assertIsNotNone(a_ ) @unittest.skipUnless(jax_device != """cpu""", """3B test too slow on CPU.""" ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Dict = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _snake_case : str = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _snake_case : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""", from_pt=a_ ) _snake_case : Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) _snake_case : str = ["""Sam"""] _snake_case : Tuple = tokenizer(a_, return_tensors="""jax""" ) _snake_case : str = model.generate(**a_, **a_ ) _snake_case : List[Any] = """Sam is a great name. It means \"sun\" in Gaelic.""" _snake_case : int = tokenizer.batch_decode(a_, **a_ ) assert generated_txt[0].strip() == tgt_text
64
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase__ : List[str] = text_generator("""This is a test""" , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) UpperCAmelCase__ : List[Any] = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( _lowerCamelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) UpperCAmelCase__ : int = text_generator("""This is a test""" , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"""generated_token_ids""": ANY(_lowerCamelCase )}, {"""generated_token_ids""": ANY(_lowerCamelCase )}, ] , ) UpperCAmelCase__ : Optional[int] = text_generator.model.config.eos_token_id UpperCAmelCase__ : Any = """<pad>""" UpperCAmelCase__ : Any = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {"""generated_token_ids""": ANY(_lowerCamelCase )}, {"""generated_token_ids""": ANY(_lowerCamelCase )}, ], [ {"""generated_token_ids""": ANY(_lowerCamelCase )}, {"""generated_token_ids""": ANY(_lowerCamelCase )}, ], ] , ) @require_tf def _a (self ): """simple docstring""" UpperCAmelCase__ : str = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCAmelCase__ : List[str] = text_generator("""This is a test""" , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) UpperCAmelCase__ : Dict = text_generator(["""This is a test""", """This is a second test"""] , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = TextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) return text_generator, ["This is a test", "Another test"] def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = """Hello I believe in""" UpperCAmelCase__ : Optional[int] = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase__ : Any = text_generator(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) UpperCAmelCase__ : int = text_generator(_lowerCamelCase , stop_sequence=""" fe""" ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = text_generator.model UpperCAmelCase__ : Union[str, Any] = text_generator.tokenizer UpperCAmelCase__ : Any = text_generator("""This is a test""" ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCAmelCase__ : List[Any] = text_generator("""This is a test""" , return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCAmelCase__ : int = pipeline(task="""text-generation""" , model=_lowerCamelCase , tokenizer=_lowerCamelCase , return_full_text=_lowerCamelCase ) UpperCAmelCase__ : Dict = text_generator("""This is a test""" ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCAmelCase__ : Optional[Any] = text_generator("""This is a test""" , return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCAmelCase__ : Union[str, Any] = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase__ : Union[str, Any] = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], [{"""generated_text""": ANY(_lowerCamelCase )}, {"""generated_text""": ANY(_lowerCamelCase )}], ] , ) with self.assertRaises(_lowerCamelCase ): UpperCAmelCase__ : List[Any] = text_generator("""test""" , return_full_text=_lowerCamelCase , return_text=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): UpperCAmelCase__ : Optional[Any] = text_generator("""test""" , return_full_text=_lowerCamelCase , return_tensors=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): UpperCAmelCase__ : Any = text_generator("""test""" , return_text=_lowerCamelCase , return_tensors=_lowerCamelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase__ : Dict = text_generator("""""" ) self.assertEqual(_lowerCamelCase , [{"""generated_text""": ANY(_lowerCamelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase__ : str = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase__ : Tuple = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) UpperCAmelCase__ : str = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowerCamelCase ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _a (self ): """simple docstring""" import torch # Classic `model_kwargs` UpperCAmelCase__ : str = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase__ : List[str] = pipe("""This is a test""" ) self.assertEqual( _lowerCamelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase__ : int = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase__ : Any = pipe("""This is a test""" ) self.assertEqual( _lowerCamelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase__ : Optional[Any] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCAmelCase__ : Optional[int] = pipe("""This is a test""" ) self.assertEqual( _lowerCamelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _a (self ): """simple docstring""" import torch UpperCAmelCase__ : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _a (self ): """simple docstring""" import torch UpperCAmelCase__ : Any = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=_lowerCamelCase , top_p=0.5 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = """Hello world""" UpperCAmelCase__ : str = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCAmelCase__ : Any = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCAmelCase__ : Union[str, Any] = logging.get_logger("""transformers.generation.utils""" ) UpperCAmelCase__ : Optional[int] = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowerCamelCase ) as cl: UpperCAmelCase__ : List[str] = text_generator(_lowerCamelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowerCamelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowerCamelCase ) as cl: UpperCAmelCase__ : Any = text_generator(_lowerCamelCase , max_new_tokens=1 ) self.assertNotIn(_lowerCamelCase , cl.out ) with CaptureLogger(_lowerCamelCase ) as cl: UpperCAmelCase__ : Optional[Any] = text_generator(_lowerCamelCase , max_length=10 ) self.assertNotIn(_lowerCamelCase , cl.out )
171
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a__( unittest.TestCase ): @property def lowercase_ ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self : int ): a : Tuple = ort.SessionOptions() a : int = False return options def lowercase_ ( self : str ): a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) a : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) a : Any = 'A red cat sitting on a park bench' a : int = np.random.RandomState(0 ) a : Dict = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='np' , ) a : Tuple = output.images a : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) a : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : Dict ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) a : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) a : Optional[int] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) a : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) a : str = 'A red cat sitting on a park bench' a : List[str] = np.random.RandomState(0 ) a : Optional[Any] = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='np' , ) a : Any = output.images a : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) a : Optional[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
96
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False lowercase__ = True def lowercase_ ( self : int ): super().setUp() a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Any , __snake_case : str ): a : Union[str, Any] = 'こんにちは、世界。 \nこんばんは、世界。' a : List[Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase_ ( self : Optional[Any] , __snake_case : Optional[Any] ): a , a : List[str] = self.get_input_output_texts(__snake_case ) a : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) a : str = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) return text, ids def lowercase_ ( self : Optional[Any] ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): pass # TODO add if relevant def lowercase_ ( self : Dict ): pass # TODO add if relevant def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file ) a : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self : Union[str, Any] ): a : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(__snake_case ) a : List[str] = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[int] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[Any] = pickle.load(__snake_case ) a : Tuple = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowercase_ ( self : Dict ): a : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : List[Any] ): try: a : int = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Any ): try: a : Union[str, Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : str ): a : Tuple = MecabTokenizer(do_lower_case=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase_ ( self : Union[str, Any] ): try: a : Any = MecabTokenizer( do_lower_case=__snake_case , normalize_text=__snake_case , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase_ ( self : List[Any] ): a : Dict = MecabTokenizer(normalize_text=__snake_case , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase_ ( self : str ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(__snake_case ) a : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' a : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Tuple = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : Optional[int] = pickle.load(__snake_case ) a : List[Any] = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_sudachi def lowercase_ ( self : List[Any] ): a : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Any ): a : str = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Optional[int] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): a : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase_ ( self : Dict ): a : Optional[int] = SudachiTokenizer(do_lower_case=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Tuple ): a : int = SudachiTokenizer(normalize_text=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase_ ( self : Union[str, Any] ): a : List[str] = SudachiTokenizer(trim_whitespace=__snake_case , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase_ ( self : List[Any] ): a : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(__snake_case ) a : str = 'こんにちは、世界。\nこんばんは、世界。' a : Tuple = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(__snake_case , 'wb' ) as handle: pickle.dump(__snake_case , __snake_case ) with open(__snake_case , 'rb' ) as handle: a : List[str] = pickle.load(__snake_case ) a : Any = tokenizer_new.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @require_jumanpp def lowercase_ ( self : List[str] ): a : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : List[str] ): a : List[Any] = JumanppTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : List[Any] = JumanppTokenizer(normalize_text=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase_ ( self : Any ): a : str = JumanppTokenizer(trim_whitespace=__snake_case ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase_ ( self : Tuple ): a : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase_ ( self : Any ): a : int = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] a : Optional[int] = {} for i, token in enumerate(__snake_case ): a : Dict = i a : Optional[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase_ ( self : Tuple ): a : List[Any] = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) a : List[Any] = tokenizer.subword_tokenizer a : List[str] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(__snake_case , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) a : Union[str, Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(__snake_case , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase_ ( self : Union[str, Any] ): a : Optional[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) a : Dict = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : str = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = BertJapaneseTokenizer lowercase__ = False def lowercase_ ( self : List[Any] ): super().setUp() a : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self : Optional[Any] , **__snake_case : List[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **__snake_case ) def lowercase_ ( self : Tuple , __snake_case : List[str] ): a : int = 'こんにちは、世界。 \nこんばんは、世界。' a : Optional[Any] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase_ ( self : str ): pass # TODO add if relevant def lowercase_ ( self : List[str] ): pass # TODO add if relevant def lowercase_ ( self : Any ): pass # TODO add if relevant def lowercase_ ( self : Any ): a : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) a : Tuple = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( __snake_case , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self : Any ): a : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] a : Optional[Any] = {} for i, token in enumerate(__snake_case ): a : Tuple = i a : Optional[int] = CharacterTokenizer(vocab=__snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase_ ( self : Tuple ): a : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) a : Optional[int] = tokenizer.encode('ありがとう。' , add_special_tokens=__snake_case ) a : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=__snake_case ) a : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a__( unittest.TestCase ): def lowercase_ ( self : List[str] ): a : List[Any] = 'cl-tohoku/bert-base-japanese' a : Dict = AutoTokenizer.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): a : List[str] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) a : Dict = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(__snake_case ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
96
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class A_ ( _a ): '''simple docstring''' def __init__(self , lowercase__ ) -> Dict: __UpperCAmelCase = data def __iter__(self ) -> Optional[int]: for element in self.data: yield element def __a ( SCREAMING_SNAKE_CASE=True ) -> Dict: '''simple docstring''' __UpperCAmelCase = Accelerator(even_batches=SCREAMING_SNAKE_CASE ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> List[str]: '''simple docstring''' if iterable: __UpperCAmelCase = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) else: __UpperCAmelCase = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE ) ) ) __UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) return dl def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' __UpperCAmelCase = create_dataloader(accelerator=SCREAMING_SNAKE_CASE , dataset_size=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __a ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) __UpperCAmelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = ddp_model(batch[0].float() ) __UpperCAmelCase = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __a ( SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for multi-GPU" in str(w[-1].message ) def __a ( ) -> Tuple: '''simple docstring''' __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): __UpperCAmelCase = train_dl.batch_sampler.even_batches __UpperCAmelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __a ( ) -> int: '''simple docstring''' __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) __UpperCAmelCase = create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): __UpperCAmelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __a ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = create_accelerator() __UpperCAmelCase = torch.nn.Linear(1 , 1 ) __UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE ) create_dataloader(SCREAMING_SNAKE_CASE , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE ) assert "only supported for map-style datasets" in str(w[-1].message ) def __a ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) __UpperCAmelCase = accelerator.state.distributed_type __UpperCAmelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = original_state if __name__ == "__main__": main()
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Tuple ="rwkv" UpperCamelCase__ : str ={"max_position_embeddings": "context_length"} def __init__( self :List[Any] , _lowercase :Optional[int]=50277 , _lowercase :Optional[Any]=1024 , _lowercase :int=4096 , _lowercase :Union[str, Any]=32 , _lowercase :Tuple=None , _lowercase :Tuple=None , _lowercase :Optional[int]=1E-5 , _lowercase :Optional[Any]=0 , _lowercase :int=0 , _lowercase :int=6 , _lowercase :Optional[int]=False , _lowercase :Optional[Any]=True , **_lowercase :Union[str, Any] , ) -> List[str]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = context_length UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = rescale_every UpperCAmelCase_ = use_cache UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__( tie_word_embeddings=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase)
357
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( _lowerCamelCase ): snake_case_ = (PNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def A_ ( self : Tuple , **lowercase_ : Tuple ): snake_case_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_ ) return config def A_ ( self : Any , lowercase_ : Optional[int]=0 , **lowercase_ : int ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Any ): pass def A_ ( self : Any , lowercase_ : Dict=0 , **lowercase_ : Optional[int] ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) snake_case_ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample snake_case_ = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : Dict , **lowercase_ : str ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**lowercase_ ) snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = 10 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def A_ ( self : Dict ): snake_case_ = dict(self.forward_default_kwargs ) snake_case_ = kwargs.pop('''num_inference_steps''' , lowercase_ ) for scheduler_class in self.scheduler_classes: snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps''' ): snake_case_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case_ = dummy_past_residuals[:] snake_case_ = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case_ = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample snake_case_ = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[Any] ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def A_ ( self : List[str] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(steps_offset=1 ) snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A_ ( self : Any ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def A_ ( self : List[str] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def A_ ( self : str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def A_ ( self : str ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def A_ ( self : str ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def A_ ( self : Any ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case_ = 27 for scheduler_class in self.scheduler_classes: snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case_ = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def A_ ( self : Tuple ): with self.assertRaises(lowercase_ ): snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A_ ( self : str ): snake_case_ = self.full_loop() snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def A_ ( self : Any ): snake_case_ = self.full_loop(prediction_type='''v_prediction''' ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def A_ ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def A_ ( self : str ): # We specify different beta, so that the first alpha is 0.99 snake_case_ = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(lowercase_ ) ) snake_case_ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
56
"""simple docstring""" def lowercase ( __snake_case : int ): if n == 1 or not isinstance(__snake_case , __snake_case ): return 0 elif n == 2: return 1 else: lowercase_ : Dict = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase ( __snake_case : int ): lowercase_ : str = 0 lowercase_ : List[str] = 2 while digits < n: index += 1 lowercase_ : Any = len(str(fibonacci(__snake_case ) ) ) return index def lowercase ( __snake_case : int = 1_0_0_0 ): return fibonacci_digits_index(__snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
33
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowercase__ = { """google/rembert""": 256, } lowercase__ = """▁""" class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = VOCAB_FILES_NAMES a_ : Dict = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[str] = RemBertTokenizer def __init__( self : Optional[int] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : Dict=True , a_ : List[Any]=True , a_ : List[Any]=False , a_ : int="[CLS]" , a_ : Any="[SEP]" , a_ : str="<unk>" , a_ : Dict="[SEP]" , a_ : Tuple="<pad>" , a_ : Optional[Any]="[CLS]" , a_ : List[str]="[MASK]" , **a_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : str = remove_space lowerCAmelCase_ : Any = keep_accents lowerCAmelCase_ : Dict = vocab_file lowerCAmelCase_ : int = False if not self.vocab_file else True def lowerCamelCase ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def lowerCamelCase ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Dict = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Optional[int] , a_ : str , a_ : Optional[str] = None ): if not os.path.isdir(a_ ): logger.error("Vocabulary path ({}) should be a directory".format(a_ ) ) return lowerCAmelCase_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
358
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) lowerCAmelCase_ : str = np.array(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = (1, 2, 1) lowerCAmelCase_ : str = (1, 1, 0, 7) lowerCAmelCase_ : List[Any] = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = model.fit(disp=__UpperCamelCase , maxiter=600 , method="nm" ) lowerCAmelCase_ : Optional[Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : int = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __UpperCamelCase ) -> float: """simple docstring""" train_user.sort() lowerCAmelCase_ : Optional[Any] = np.percentile(__UpperCamelCase , 25 ) lowerCAmelCase_ : List[Any] = np.percentile(__UpperCamelCase , 75 ) lowerCAmelCase_ : Union[str, Any] = qa - qa lowerCAmelCase_ : List[Any] = qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: lowerCAmelCase_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase__ = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ = normalize_df[:, 2].tolist() lowercase__ = normalize_df[:, 0].tolist() lowercase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ = normalize_df[:, [1, 2]].tolist() lowercase__ = x[: len(x) - 1] lowercase__ = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ = total_date[: len(total_date) - 1] lowercase__ = total_user[: len(total_user) - 1] lowercase__ = total_match[: len(total_match) - 1] lowercase__ = total_date[len(total_date) - 1 :] lowercase__ = total_user[len(total_user) - 1 :] lowercase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
161
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' snake_case_ = SwinvaConfig() snake_case_ = swinva_name.split("_" ) snake_case_ = name_split[1] if "to" in name_split[3]: snake_case_ = int(name_split[3][-3:] ) else: snake_case_ = int(name_split[3] ) if "to" in name_split[2]: snake_case_ = int(name_split[2][-2:] ) else: snake_case_ = int(name_split[2][6:] ) if model_size == "tiny": snake_case_ = 9_6 snake_case_ = (2, 2, 6, 2) snake_case_ = (3, 6, 1_2, 2_4) elif model_size == "small": snake_case_ = 9_6 snake_case_ = (2, 2, 1_8, 2) snake_case_ = (3, 6, 1_2, 2_4) elif model_size == "base": snake_case_ = 1_2_8 snake_case_ = (2, 2, 1_8, 2) snake_case_ = (4, 8, 1_6, 3_2) else: snake_case_ = 1_9_2 snake_case_ = (2, 2, 1_8, 2) snake_case_ = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: snake_case_ = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): snake_case_ = 2_1_8_4_1 snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-22k-id2label.json" snake_case_ = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(snake_case ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} else: snake_case_ = 1_0_0_0 snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(snake_case ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = img_size snake_case_ = num_classes snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size return config def UpperCamelCase_( snake_case : Any ): '''simple docstring''' if "patch_embed.proj" in name: snake_case_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: snake_case_ = "encoder." + name if "attn.proj" in name: snake_case_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case_ = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: snake_case_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: snake_case_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: snake_case_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: snake_case_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": snake_case_ = "layernorm.weight" if name == "norm.bias": snake_case_ = "layernorm.bias" if "head" in name: snake_case_ = name.replace("head" , "classifier" ) else: snake_case_ = "swinv2." + name return name def UpperCamelCase_( snake_case : int , snake_case : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: snake_case_ = key.split("." ) snake_case_ = int(key_split[1] ) snake_case_ = int(key_split[3] ) snake_case_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[ dim : dim * 2 ] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def UpperCamelCase_( snake_case : Any , snake_case : List[Any] ): '''simple docstring''' snake_case_ = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() snake_case_ = get_swinva_config(snake_case ) snake_case_ = SwinvaForImageClassification(snake_case ) model.eval() snake_case_ = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) snake_case_ = Image.open(requests.get(snake_case , stream=snake_case ).raw ) snake_case_ = image_processor(images=snake_case , return_tensors="pt" ) snake_case_ = timm_model(inputs["pixel_values"] ) snake_case_ = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1e-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
85
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''')) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=13 , lowercase_ : Dict=64 , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=2 , lowercase_ : Any=1 , lowercase_ : List[Any]=16 , lowercase_ : int=[128, 256, 384] , lowercase_ : str=[4, 6, 8] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Union[str, Any]=[16, 16, 16] , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=[2, 2, 2] , lowercase_ : Any=[2, 2, 2] , lowercase_ : List[str]=0.02 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = kernel_size SCREAMING_SNAKE_CASE_ : Optional[Any] = stride SCREAMING_SNAKE_CASE_ : List[str] = padding SCREAMING_SNAKE_CASE_ : int = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : int = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = key_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = LevitModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : Any = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) SCREAMING_SNAKE_CASE_ : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''') def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str): SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : str = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.model_tester.depths) + 1 self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) SCREAMING_SNAKE_CASE_ : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ : List[str] = model_class(lowercase_) model.gradient_checkpointing_enable() model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''title'''] SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ : str = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) SCREAMING_SNAKE_CASE_ : Any = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_) as warning_list: SCREAMING_SNAKE_CASE_ : int = model(**lowercase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = LevitModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1.04_48, -0.37_45, -1.83_17]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
91
0
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowerCAmelCase , 2 ) - pow(__lowerCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowerCAmelCase , 2 ) + pow(__lowerCAmelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
196
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __a ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Dict = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ : List[Any] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Tuple = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase__ : Tuple = {"unk_token": "<unk>"} UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCamelCase__ : int = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : List[str] = self.get_rust_tokenizer() UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : List[str] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase__ : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase__ : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.prepare_image_inputs() UpperCamelCase__ : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase__ : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = "lower newer" UpperCamelCase__ : int = processor(text=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = tokenizer(SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : Tuple = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE ): processor() def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : Optional[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Dict = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = "lower newer" UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
196
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ = logging.getLogger() def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCamelCase : List[Any] = json.load(lowercase__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results lowercase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def A_ ( self ): import xla_spawn _lowerCamelCase : List[Any] = self.get_auto_remove_tmp_dir() _lowerCamelCase : List[Any] = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(lowercase , 'argv' , lowercase ): _lowerCamelCase : Dict = time() xla_spawn.main() _lowerCamelCase : Any = time() _lowerCamelCase : Optional[int] = get_results(lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A_ ( self ): import xla_spawn _lowerCamelCase : Tuple = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(lowercase , 'argv' , lowercase ): xla_spawn.main()
96
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( lowercase__ , lowercase__ ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase__ , lowercase__ ) ) ) def _snake_case ( lowercase__ , lowercase__ ): if dataset.ndim != value_array.ndim: _lowerCamelCase : Tuple = ( 'Wrong input data\'s dimensions... ' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowercase__ ) try: if dataset.shape[1] != value_array.shape[1]: _lowerCamelCase : Optional[int] = ( 'Wrong input data\'s shape... ' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowercase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: _lowerCamelCase : int = ( 'Input data have different datatype... ' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowercase__ ) _lowerCamelCase : Optional[int] = [] for value in value_array: _lowerCamelCase : Tuple = euclidean(lowercase__ , dataset[0] ) _lowerCamelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: _lowerCamelCase : Optional[Any] = euclidean(lowercase__ , lowercase__ ) if dist > temp_dist: _lowerCamelCase : List[Any] = temp_dist _lowerCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( lowercase__ , lowercase__ ): return np.dot(lowercase__ , lowercase__ ) / (norm(lowercase__ ) * norm(lowercase__ )) if __name__ == "__main__": import doctest doctest.testmod()
96
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Construct model if gpta_config_file == "": UpperCamelCase_: Union[str, Any] = GPTaConfig() else: UpperCamelCase_: Optional[Any] = GPTaConfig.from_json_file(lowerCamelCase ) UpperCamelCase_: List[Any] = GPTaModel(lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model UpperCamelCase_: int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase_: Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) lowerCamelCase_ : List[str] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
223
def A__ ( lowerCamelCase , lowerCamelCase ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowerCamelCase ) * abs(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
223
1
import argparse import os import re __A : int = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __A : Optional[int] = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings __A : Optional[int] = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = False ) -> List[str]: '''simple docstring''' with open(a_, 'r', encoding='utf-8' ) as f: lowerCAmelCase : Optional[int] = f.read() lowerCAmelCase : List[Any] = content.split('\n' ) lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[int] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCAmelCase : Optional[int] = len(re.search(r'^(\s*)\S', lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCAmelCase : Any = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCAmelCase : List[str] = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCAmelCase : Optional[int] = sorted(a_, key=lambda _UpperCAmelCase : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_, 'w', encoding='utf-8' ) as f: f.write('\n'.join(a_ ) ) elif "\n".join(a_ ) != content: return True def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = False ) -> List[Any]: '''simple docstring''' lowerCAmelCase : List[str] = [os.path.join(a_, a_ ) for f in os.listdir(a_ ) if f.endswith('.py' )] lowerCAmelCase : Union[str, Any] = [sort_auto_mapping(a_, overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): lowerCAmelCase : Tuple = [f for f, d in zip(a_, a_ ) if d] raise ValueError( f"The following files have auto mappings that need sorting: {', '.join(a_ )}. Run `make style` to fix" ' this.' ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __A : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
138
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
0
# using dfs for finding eulerian path traversal def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Optional[int]=None ): """simple docstring""" __a =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __a , __a =True, True __a =dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def UpperCamelCase_( _snake_case : int , _snake_case : Optional[Any] ): """simple docstring""" __a =0 __a =-1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __a =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Tuple ): """simple docstring""" __a =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __a , __a =check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return __a =1 if check == 2: __a =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) __a =dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def UpperCamelCase_( ): """simple docstring""" __a ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __a ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __a ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __a ={1: [2, 3], 2: [1, 3], 3: [1, 2]} __a ={ 1: [], 2: [] # all degree is zero } __a =10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
"""simple docstring""" from maths.prime_factors import prime_factors def _snake_case ( lowercase__ : Dict ) -> int: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ :Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase__ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
84
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" __A = torch.exp(UpperCAmelCase ) __A = torch.sum(UpperCAmelCase , dim=1 ) # sum of exp(x_i) __A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCAmelCase ) - B / A class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :int ) -> Union[str, Any]: '''simple docstring''' super().__init__() __A = config.output_attentions __A = config.output_hidden_states __A = nn.ModuleList([BertLayer(_A ) for _ in range(config.num_hidden_layers )] ) __A = nn.ModuleList([BertHighway(_A ) for _ in range(config.num_hidden_layers )] ) __A = [-1 for _ in range(config.num_hidden_layers )] def lowercase_ ( self :Any , _A :List[Any] ) -> Tuple: '''simple docstring''' if (type(_A ) is float) or (type(_A ) is int): for i in range(len(self.early_exit_entropy ) ): __A = x else: __A = x def lowercase_ ( self :Optional[Any] , _A :List[str] ) -> Dict: '''simple docstring''' __A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase_ ( self :List[Any] , _A :Tuple , _A :Tuple=None , _A :int=None , _A :List[Any]=None , _A :str=None , ) -> Tuple: '''simple docstring''' __A = () __A = () __A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = layer_module( _A , _A , head_mask[i] , _A , _A ) __A = layer_outputs[0] if self.output_attentions: __A = all_attentions + (layer_outputs[1],) __A = (hidden_states,) if self.output_hidden_states: __A = current_outputs + (all_hidden_states,) if self.output_attentions: __A = current_outputs + (all_attentions,) __A = self.highway[i](_A ) # logits, pooled_output if not self.training: __A = highway_exit[0] __A = entropy(_A ) __A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_A , i + 1 ) else: __A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __A = all_hidden_states + (hidden_states,) __A = (hidden_states,) if self.output_hidden_states: __A = outputs + (all_hidden_states,) if self.output_attentions: __A = outputs + (all_attentions,) __A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Tuple , _A :List[str] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config __A = BertEmbeddings(_A ) __A = DeeBertEncoder(_A ) __A = BertPooler(_A ) self.init_weights() def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' return self.embeddings.word_embeddings def lowercase_ ( self :Tuple , _A :Tuple ) -> Union[str, Any]: '''simple docstring''' __A = value def lowercase_ ( self :int , _A :int ) -> Tuple: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_A ) @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :int=None , _A :List[Any]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Optional[int]=None , _A :Any=None , _A :List[str]=None , _A :Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __A = input_ids.size() elif inputs_embeds is not None: __A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __A = torch.ones(_A , device=_A ) if encoder_attention_mask is None: __A = torch.ones(_A , device=_A ) if token_type_ids is None: __A = torch.zeros(_A , dtype=torch.long , device=_A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __A = self.get_extended_attention_mask(_A , _A , _A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __A = encoder_attention_mask[:, None, None, :] __A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __A = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __A = self.get_head_mask(_A , self.config.num_hidden_layers ) __A = self.embeddings( input_ids=_A , position_ids=_A , token_type_ids=_A , inputs_embeds=_A ) __A = self.encoder( _A , attention_mask=_A , head_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A = encoder_outputs[0] __A = self.pooler(_A ) __A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[Any] , _A :str , _A :List[str] ) -> Optional[int]: '''simple docstring''' __A = message __A = exit_layer # start from 1! class UpperCamelCase__ ( nn.Module): def __init__( self :Any , _A :Dict ) -> Tuple: '''simple docstring''' super().__init__() __A = BertPooler(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , config.num_labels ) def lowercase_ ( self :List[Any] , _A :Optional[Any] ) -> int: '''simple docstring''' __A = encoder_outputs[0] __A = self.pooler(_A ) # "return" pooler_output # BertModel __A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __A = bmodel_output[1] __A = self.dropout(_A ) __A = self.classifier(_A ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , SCREAMING_SNAKE_CASE , ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :str , _A :Optional[Any] ) -> str: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = config.num_hidden_layers __A = DeeBertModel(_A ) __A = nn.Dropout(config.hidden_dropout_prob ) __A = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_A ) def lowercase_ ( self :Tuple , _A :str=None , _A :Optional[int]=None , _A :Any=None , _A :str=None , _A :int=None , _A :Tuple=None , _A :Any=None , _A :List[str]=-1 , _A :Optional[Any]=False , ) -> List[str]: '''simple docstring''' __A = self.num_layers try: __A = self.bert( _A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __A = outputs[1] __A = self.dropout(_A ) __A = self.classifier(_A ) __A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A = e.message __A = e.exit_layer __A = outputs[0] if not self.training: __A = entropy(_A ) __A = [] __A = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __A = [] for highway_exit in outputs[-1]: __A = highway_exit[0] if not self.training: highway_logits_all.append(_A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __A = MSELoss() __A = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __A = CrossEntropyLoss() __A = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_A ) if train_highway: __A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __A = (loss,) + outputs if not self.training: __A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
161
0
"""simple docstring""" lowerCamelCase = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
241
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3 ) ) @slow def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCAmelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase_ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3 ) )
241
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
196
__lowerCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def snake_case_ ( snake_case , snake_case , snake_case ) -> list[str]: lowercase__: int = set() # keep track of all the paths to be checked lowercase__: Optional[int] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase__: List[Any] = queue.pop(0 ) # get the last node from the path lowercase__: Optional[int] = path[-1] if node not in explored: lowercase__: Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase__: Tuple = list(snake_case ) new_path.append(snake_case ) queue.append(snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case ) # in case there's no path between the 2 nodes return [] def snake_case_ ( snake_case , snake_case , snake_case ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase__: Tuple = [start] lowercase__: List[Any] = set(snake_case ) # Keep tab on distances from `start` node. lowercase__: Tuple = {start: 0, target: -1} while queue: lowercase__: Dict = queue.pop(0 ) if node == target: lowercase__: str = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case ) queue.append(snake_case ) lowercase__: List[str] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
196
1
import os import re import shutil import sys import tempfile import unittest import black a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a : int = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _a ( unittest.TestCase ): def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, """models/bert/""" ) ) UpperCAmelCase_: Dict = self.transformer_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE_, """src/transformers/models/bert/modeling_bert.py""" ), os.path.join(self.transformer_dir, """models/bert/modeling_bert.py""" ), ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Any = """src/transformers""" shutil.rmtree(self.transformer_dir ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[Any]: UpperCAmelCase_: List[str] = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCAmelCase_: Optional[Any] = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCAmelCase_: Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) UpperCAmelCase_: Dict = black.format_str(SCREAMING_SNAKE_CASE_, mode=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = os.path.join(self.transformer_dir, """new_code.py""" ) with open(SCREAMING_SNAKE_CASE_, """w""", newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_, """r""" ) as f: self.assertTrue(f.read(), SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: str = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""", """BertLMPredictionHead""", REFERENCE_CODE + """\n""", ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""", """BertLMPredictionHead""", SCREAMING_SNAKE_CASE_, ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""", """TestModelLMPredictionHead""", re.sub("""Bert""", """TestModel""", SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with a really long name UpperCAmelCase_: Any = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}', f'{long_class_name}LMPredictionHead', re.sub("""Bert""", SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""", """TestModelLMPredictionHead""", SCREAMING_SNAKE_CASE_, overwrite_result=re.sub("""Bert""", """TestModel""", SCREAMING_SNAKE_CASE_ ), ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] UpperCAmelCase_: Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) UpperCAmelCase_: Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_: Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) UpperCAmelCase_ , UpperCAmelCase_: int = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) self.assertFalse(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ , UpperCAmelCase_: List[str] = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) UpperCAmelCase_: Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_: int = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_ , UpperCAmelCase_: List[str] = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
82
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _a ( unittest.TestCase , _lowerCAmelCase ): def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[int] = load_tool("""text-classification""" ) self.tool.setup() UpperCAmelCase_: str = load_tool("""text-classification""", remote=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = self.remote_tool("""That's quite cool""", ["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> Any: UpperCAmelCase_: Tuple = self.tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" ) def __snake_case (self ) -> int: UpperCAmelCase_: Dict = self.remote_tool(text="""That's quite cool""", labels=["""positive""", """negative"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, """positive""" )
82
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_ ( __lowerCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__lowerCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( ): lowercase_ :Optional[Any] = 2 while True: if is_prime(__lowerCamelCase ): yield num num += 1 def UpperCAmelCase_ ( __lowerCamelCase : int = 2_00_00_00 ): return sum(takewhile(lambda __lowerCamelCase : x < n ,prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
223
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a_ ( unittest.TestCase ): def __init__( self : List[str] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : int=7 , lowercase : List[str]=True , lowercase : int=True , lowercase : str=True , lowercase : Any=True , lowercase : List[str]=99 , lowercase : Union[str, Any]=32 , lowercase : Optional[Any]=5 , lowercase : Dict=4 , lowercase : Dict=37 , lowercase : Dict="gelu" , lowercase : Optional[int]=0.1 , lowercase : str=0.1 , lowercase : List[Any]=512 , lowercase : str=16 , lowercase : Dict=2 , lowercase : Any=0.02 , lowercase : Any=4 , ): """simple docstring""" lowercase_ :List[str] = parent lowercase_ :Any = batch_size lowercase_ :Dict = seq_length lowercase_ :Union[str, Any] = is_training lowercase_ :Optional[int] = use_attention_mask lowercase_ :Any = use_token_type_ids lowercase_ :Union[str, Any] = use_labels lowercase_ :Dict = vocab_size lowercase_ :Tuple = hidden_size lowercase_ :Tuple = num_hidden_layers lowercase_ :Optional[int] = num_attention_heads lowercase_ :Optional[Any] = intermediate_size lowercase_ :str = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Tuple = max_position_embeddings lowercase_ :Any = type_vocab_size lowercase_ :int = type_sequence_label_size lowercase_ :Tuple = initializer_range lowercase_ :Optional[Any] = num_choices def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :Union[str, Any] = None if self.use_attention_mask: lowercase_ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ :List[str] = None if self.use_token_type_ids: lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ :Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Any = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :Union[str, Any] = config_and_inputs lowercase_ :Dict = True lowercase_ :Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = True __A = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Optional[Any] = FlaxBertModelTester(self ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[str] = FlaxBertModel.from_pretrained("bert-base-cased" ) lowercase_ :str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase )
223
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = dataset _UpperCamelCase = process _UpperCamelCase = params def __len__( self) -> int: '''simple docstring''' return len(self.dataset) def __getitem__( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = self.dataset[i] _UpperCamelCase = self.process(_A , **self.params) return processed class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a , __a , __a=None) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = loader _UpperCamelCase = infer _UpperCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCamelCase = None _UpperCamelCase = loader_batch_size # Internal bookkeeping _UpperCamelCase = None _UpperCamelCase = None def __len__( self) -> Optional[int]: '''simple docstring''' return len(self.loader) def __iter__( self) -> int: '''simple docstring''' _UpperCamelCase = iter(self.loader) return self def UpperCAmelCase ( self) -> int: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice _UpperCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_A , _A): # Convert ModelOutput to tuple first _UpperCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor): _UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): _UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_A , _A): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): _UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): _UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around _UpperCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. _UpperCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCamelCase = self._loader_batch_data.__class__(_A) self._loader_batch_index += 1 return result def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCamelCase = next(self.iterator) _UpperCamelCase = self.infer(_A , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_A , torch.Tensor): _UpperCamelCase = processed else: _UpperCamelCase = list(processed.keys())[0] _UpperCamelCase = processed[key] if isinstance(_A , _A): _UpperCamelCase = len(_A) else: _UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCamelCase = processed _UpperCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a , __a , __a=None) -> Union[str, Any]: '''simple docstring''' super().__init__(_A , _A , _A) def __iter__( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = iter(self.loader) _UpperCamelCase = None return self def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' if self.subiterator is None: _UpperCamelCase = self.infer(next(self.iterator) , **self.params) try: # Try to return next item _UpperCamelCase = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCamelCase = self.infer(next(self.iterator) , **self.params) _UpperCamelCase = next(self.subiterator) return processed class _UpperCAmelCase( _lowerCamelCase ): def __iter__( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = iter(self.loader) return self def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = False _UpperCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase = self.loader_batch_item() _UpperCamelCase = item.pop('''is_last''') accumulator.append(_A) if is_last: return accumulator while not is_last: _UpperCamelCase = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(_A , torch.Tensor): _UpperCamelCase = processed else: _UpperCamelCase = list(processed.keys())[0] _UpperCamelCase = processed[key] if isinstance(_A , _A): _UpperCamelCase = len(_A) else: _UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCamelCase = observed_batch_size _UpperCamelCase = processed _UpperCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCamelCase = self.loader_batch_item() _UpperCamelCase = item.pop('''is_last''') accumulator.append(_A) if is_last: return accumulator else: _UpperCamelCase = processed _UpperCamelCase = item.pop('''is_last''') accumulator.append(_A) return accumulator class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = dataset _UpperCamelCase = key def __len__( self) -> Any: '''simple docstring''' return len(self.dataset) def __getitem__( self , __a) -> List[str]: '''simple docstring''' return self.dataset[i][self.key] class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = dataset _UpperCamelCase = keya _UpperCamelCase = keya def __len__( self) -> Any: '''simple docstring''' return len(self.dataset) def __getitem__( self , __a) -> Optional[int]: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
194
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: int = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) _A: Optional[int] = GenerationConfig.from_pretrained(lowerCamelCase__ , config_name=lowerCamelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , lowerCamelCase__ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Dict = AutoConfig.from_pretrained('''gpt2''' ) _A: Tuple = GenerationConfig.from_model_config(lowerCamelCase__ ) _A: Tuple = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: List[str] = GenerationConfig() _A: Optional[Any] = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } _A: Dict = copy.deepcopy(lowerCamelCase__ ) _A: List[Any] = generation_config.update(**lowerCamelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCamelCase__ , {'''foo''': '''bar'''} ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[int] = GenerationConfig() _A: Union[str, Any] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(lowerCamelCase__ ) _A: Optional[Any] = GenerationConfig.from_pretrained(lowerCamelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) _A: Dict = GenerationConfig.from_model_config(lowerCamelCase__ ) assert not hasattr(lowerCamelCase__ , '''foo''' ) # no new kwargs should be initialized if from config def __magic_name__ ( self : List[str] ): """simple docstring""" _A: Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCamelCase__ ) self.assertEqual(default_config.num_beams , 1 ) _A: List[Any] = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCamelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) _A: Tuple = GenerationConfig.from_pretrained(lowerCamelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCamelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__ ( cls : Union[str, Any] ): """simple docstring""" _A: int = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def __magic_name__ ( cls : Union[str, Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def __magic_name__ ( self : int ): """simple docstring""" _A: Any = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) _A: List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''test-generation-config''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _A: Tuple = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = GenerationConfig( do_sample=lowerCamelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) _A: Optional[int] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _A: Dict = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) )
357
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( a , a = True , a = math.inf , a = -math.inf , a = math.inf , a = -math.inf , a = False , a = 1_00 , a = 0.01 , a = 1 , ) -> Any: _A: Optional[Any] = False _A: Dict = search_prob _A: str = start_temperate _A: Optional[int] = [] _A: int = 0 _A: Dict = None while not search_end: _A: Dict = current_state.score() if best_state is None or current_score > best_state.score(): _A: List[Any] = current_state scores.append(a ) iterations += 1 _A: List[str] = None _A: str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _A: Any = random.randint(0 , len(a ) - 1 ) # picking a random neighbor _A: Union[str, Any] = neighbors.pop(a ) _A: List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _A: Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _A: str = picked_neighbor else: _A: Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _A: Optional[int] = picked_neighbor _A: Dict = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _A: Any = True else: _A: List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a ) , a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[int] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( a , a ) -> Optional[Any]: return (3 * x**2) - (6 * y) UpperCAmelCase__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" ) UpperCAmelCase__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase__ : List[Any] = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F"""{local_min.score()}""" )
301
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : Optional[Any] = mock.Mock() lowerCAmelCase_ : Tuple = 5_00 lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Any = HTTPError lowerCAmelCase_ : List[str] = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : Tuple = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: lowerCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCamelCase ( self : Optional[int] ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : Any = mock.Mock() lowerCAmelCase_ : List[Any] = 5_00 lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Optional[Any] = HTTPError lowerCAmelCase_ : int = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : int = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: lowerCAmelCase_ : List[Any] = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 try: lowerCAmelCase_ : List[str] = tempfile.mktemp() with open(a_ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a_ ) lowerCAmelCase_ : Any = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a_ ) lowerCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCamelCase ( self : List[str] ): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ : List[Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def lowerCamelCase ( cls : Dict ): lowerCAmelCase_ : Optional[Any] = TOKEN HfFolder.save_token(a_ ) @classmethod def lowerCamelCase ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : int = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase_ : Optional[int] = BertTokenizer(a_ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) lowerCAmelCase_ : Tuple = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_ , repo_id="test-tokenizer" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : Optional[int] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCamelCase ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : List[str] = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase_ : str = BertTokenizer(a_ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) lowerCAmelCase_ : str = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a_ , use_auth_token=self._token ) lowerCAmelCase_ : str = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCamelCase ( self : Optional[int] ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : List[Any] = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase_ : List[str] = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Dict = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase_ : Optional[int] = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) lowerCAmelCase_ : int = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) lowerCAmelCase_ : int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=a_ , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Any = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : str = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Dict = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCamelCase ( self : str ): lowerCAmelCase_ : List[Any] = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCamelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. lowerCAmelCase_ : Tuple = Trie() lowerCAmelCase_ : List[Any] = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_ , ["AB", "C"] )
241
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def __lowerCamelCase ( __UpperCamelCase ) -> str: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) lowerCAmelCase_ : str = precision lowerCAmelCase_ : Tuple = ceil(precision / 14 ) lowerCAmelCase_ : Optional[int] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Any = 13591409 lowerCAmelCase_ : List[str] = Decimal(__UpperCamelCase ) for k in range(1 , __UpperCamelCase ): lowerCAmelCase_ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCamelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase__ = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
241
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase : """simple docstring""" lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = '''gelu''' def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : Any=7 , __magic_name__ : int=True , __magic_name__ : Tuple=False , __magic_name__ : str=99 , __magic_name__ : str=16 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=4 , __magic_name__ : str="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Any=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : List[Any]=16 , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = word_embed_proj_dim SCREAMING_SNAKE_CASE_ = False def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__magic_name__ , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_opt_inputs_dict(__magic_name__ , __magic_name__ ) return config, inputs_dict def __A ( self : Dict , __magic_name__ : Any , __magic_name__ : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 1_0 def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ ) def __A ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__magic_name__ : int , __magic_name__ : List[str] ): if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __magic_name__ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __magic_name__ ) SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) def a__ ( __UpperCamelCase ): return tf.constant(__UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = 9_9 def __A ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) SCREAMING_SNAKE_CASE_ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ = tf.not_equal(__magic_name__ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE_ = model(input_ids=__magic_name__ , attention_mask=__magic_name__ ).last_hidden_state SCREAMING_SNAKE_CASE_ = (1, 11, 512) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-3 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = xla_generate(__magic_name__ , __magic_name__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @property def __A ( self : Dict ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = "facebook/opt-125m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "left" # use different length sentences to test batching SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little", "Today, I", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs["input_ids"] SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , attention_mask=inputs["attention_mask"] ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
from math import isqrt, loga def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , snake_case , snake_case ): _lowerCAmelCase = False return [i for i in range(2 , snake_case ) if is_prime[i]] def _UpperCAmelCase ( snake_case = 80_08_00 , snake_case = 80_08_00 ): """simple docstring""" _lowerCAmelCase = degree * loga(snake_case ) _lowerCAmelCase = int(snake_case ) _lowerCAmelCase = calculate_prime_numbers(snake_case ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
82
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A__ = logging.getLogger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''summarization''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ROUGE_KEYS __lowerCamelCase = '''rouge2''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: _lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(_snake_case , num_labels=_snake_case , mode=self.mode , **_snake_case ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) _lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" _lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) _lowerCAmelCase = 0 _lowerCAmelCase = defaultdict(_snake_case ) _lowerCAmelCase = self.config.model_type _lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _lowerCAmelCase = get_git_info()["""repo_sha"""] _lowerCAmelCase = hparams.num_workers _lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _snake_case ): _lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _lowerCAmelCase = self.decoder_start_token_id _lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _lowerCAmelCase = False _lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _lowerCAmelCase = self.hparams.eval_max_gen_length else: _lowerCAmelCase = self.model.config.max_length _lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(_snake_case , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) _lowerCAmelCase = True return readable_batch def snake_case ( self , _snake_case , **_snake_case ): """simple docstring""" return self.model(_snake_case , **_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.pad_token_id _lowerCAmelCase , _lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] _lowerCAmelCase = batch["""labels"""] if isinstance(self.model , _snake_case ): _lowerCAmelCase = self.model._shift_right(_snake_case ) else: _lowerCAmelCase = shift_tokens_right(_snake_case , _snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _lowerCAmelCase = decoder_input_ids self.save_readable_batch(_snake_case ) _lowerCAmelCase = self(_snake_case , attention_mask=_snake_case , decoder_input_ids=_snake_case , use_cache=_snake_case ) _lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size _lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _lowerCAmelCase = nn.functional.log_softmax(_snake_case , dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = label_smoothed_nll_loss( _snake_case , _snake_case , self.hparams.label_smoothing , ignore_index=_snake_case ) return (loss,) @property def snake_case ( self ): """simple docstring""" return self.tokenizer.pad_token_id def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) # tokens per batch _lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].shape[0] _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case , _snake_case="val" ): """simple docstring""" self.step_count += 1 _lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _lowerCAmelCase = losses["""loss"""] _lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _lowerCAmelCase = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) _lowerCAmelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()} _lowerCAmelCase = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path _lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_rouge(_snake_case , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=_snake_case , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] _lowerCAmelCase = self.ids_to_clean_text(_snake_case ) _lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) _lowerCAmelCase = self.calc_generative_metrics(_snake_case , _snake_case ) _lowerCAmelCase = np.mean(lmap(_snake_case , _snake_case ) ) base_metrics.update(gen_time=_snake_case , gen_len=_snake_case , preds=_snake_case , target=_snake_case , **_snake_case ) return base_metrics def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" return self.validation_epoch_end(_snake_case , prefix="""test""" ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.n_obs[type_path] _lowerCAmelCase = self.target_lens[type_path] _lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=_snake_case , n_obs=_snake_case , max_target_length=_snake_case , **self.dataset_kwargs , ) return dataset def snake_case ( self , _snake_case , _snake_case , _snake_case = False ): """simple docstring""" _lowerCAmelCase = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_sortish_sampler(_snake_case , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_sampler=_snake_case , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=_snake_case ) return dataloader def snake_case ( self ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def snake_case ( self ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case ( _snake_case , _snake_case ): """simple docstring""" BaseTransformer.add_model_specific_args(_snake_case , _snake_case ) add_generic_args(_snake_case , _snake_case ) parser.add_argument( """--max_source_length""" , default=1024 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--max_tokens_per_batch""" , type=_snake_case , default=_snake_case ) parser.add_argument("""--logger_name""" , type=_snake_case , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=_snake_case , default=500 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=_snake_case , default="""summarization""" , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=_snake_case , default=0.0 , required=_snake_case ) parser.add_argument("""--src_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--tgt_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--eval_beams""" , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument( """--val_metric""" , type=_snake_case , default=_snake_case , required=_snake_case , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=_snake_case , default=_snake_case , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=_snake_case , default=1 , required=_snake_case , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=_snake_case , default=-1 , required=_snake_case , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''translation''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ['''bleu'''] __lowerCamelCase = '''bleu''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" super().__init__(_snake_case , **_snake_case ) _lowerCAmelCase = hparams.src_lang _lowerCAmelCase = hparams.tgt_lang def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_bleu(_snake_case , _snake_case ) def _UpperCAmelCase ( snake_case , snake_case=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=snake_case ) check_output_dir(snake_case , expected_items=3 ) if model is None: if "summarization" in args.task: _lowerCAmelCase = SummarizationModule(snake_case ) else: _lowerCAmelCase = TranslationModule(snake_case ) _lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , snake_case ) _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=snake_case ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: _lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _lowerCAmelCase = False _lowerCAmelCase = args.val_metric == """loss""" _lowerCAmelCase = generic_train( snake_case , snake_case , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , snake_case ) , early_stopping_callback=snake_case , logger=snake_case , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _lowerCAmelCase = """""" _lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=snake_case ) ) if checkpoints: _lowerCAmelCase = checkpoints[-1] _lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A__ = argparse.ArgumentParser() A__ = pl.Trainer.add_argparse_args(parser) A__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A__ = parser.parse_args() main(args)
82
1
import flax.linen as nn import jax import jax.numpy as jnp class a ( nn.Module ): '''simple docstring''' lowerCAmelCase : int lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self : str ): UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __snake_case : int ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = hidden_states.shape UpperCAmelCase_ = jax.image.resize( __snake_case , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) UpperCAmelCase_ = self.conv(__snake_case ) return hidden_states class a ( nn.Module ): '''simple docstring''' lowerCAmelCase : int lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , __snake_case : Union[str, Any] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) UpperCAmelCase_ = self.conv(__snake_case ) return hidden_states class a ( nn.Module ): '''simple docstring''' lowerCAmelCase : int lowerCAmelCase : int = None lowerCAmelCase : float = 0.0 lowerCAmelCase : bool = None lowerCAmelCase : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase_ = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase_ = nn.Dense(__snake_case , dtype=self.dtype ) UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase_ = nn.Dropout(self.dropout_prob ) UpperCAmelCase_ = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase_ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase_ = None if use_nin_shortcut: UpperCAmelCase_ = nn.Conv( __snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : Tuple , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Any=True ): UpperCAmelCase_ = hidden_states UpperCAmelCase_ = self.norma(__snake_case ) UpperCAmelCase_ = nn.swish(__snake_case ) UpperCAmelCase_ = self.conva(__snake_case ) UpperCAmelCase_ = self.time_emb_proj(nn.swish(__snake_case ) ) UpperCAmelCase_ = jnp.expand_dims(jnp.expand_dims(__snake_case , 1 ) , 1 ) UpperCAmelCase_ = hidden_states + temb UpperCAmelCase_ = self.norma(__snake_case ) UpperCAmelCase_ = nn.swish(__snake_case ) UpperCAmelCase_ = self.dropout(__snake_case , __snake_case ) UpperCAmelCase_ = self.conva(__snake_case ) if self.conv_shortcut is not None: UpperCAmelCase_ = self.conv_shortcut(__snake_case ) return hidden_states + residual
177
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=False ) -> Dict: UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub UpperCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: UpperCAmelCase_ = '''detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = DetrImageProcessor(format=__UpperCamelCase ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = detr(__UpperCamelCase ) UpperCAmelCase_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
177
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): _a = None _a = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): _a = datasets.Audio() _a = 'audio' _a = AudioFolderConfig _a = 42 # definition at the bottom of the script _a = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowercase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] lowercase_ = AUDIO_EXTENSIONS
205
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Dict: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : List[str] = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: lowerCamelCase__ : int = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: lowerCamelCase__ : Any = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): lowerCamelCase__ : Any = [element for element in set_a if element in set_b] if alternative_union: lowerCamelCase__ : Optional[int] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: lowerCamelCase__ : Tuple = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": _UpperCAmelCase : List[Any] = {"a", "b", "c", "d", "e"} _UpperCAmelCase : List[Any] = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
359
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : List[Any] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _a : Any = TypeVar('T') class __A ( Generic[T] ): _UpperCamelCase : deque[T] # Cache store of keys _UpperCamelCase : set[T] # References of the keys in cache _UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self , a__ ): _lowerCAmelCase : Any = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _lowerCAmelCase : List[Any] = n def __A ( self , a__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Dict = self.dq_store.pop() self.key_reference.remove(a__ ) else: self.dq_store.remove(a__ ) self.dq_store.appendleft(a__ ) self.key_reference.add(a__ ) def __A ( self ): for k in self.dq_store: print(a__ ) def __repr__( self ): return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() _a : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
44
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = DebertaVaTokenizer _snake_case = DebertaVaTokenizerFast _snake_case = True _snake_case = True def A__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , snake_case_ ) -> List[Any]: __lowerCAmelCase = """this is a test""" __lowerCAmelCase = """this is a test""" return input_text, output_text def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = """<pad>""" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def A__ ( self ) -> Any: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(snake_case_ ) , 30_001 ) def A__ ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> int: pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def A__ ( self ) -> Dict: pass def A__ ( self ) -> List[str]: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Dict: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Tuple: # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Any: # fmt: off __lowerCAmelCase = """ \tHeLLo!how \n Are yoU? """ __lowerCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , do_lower_case=snake_case_ , split_by_punct=snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> int: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = """This is a test""" __lowerCAmelCase = [13, 1, 4_398, 25, 21, 1_289] __lowerCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCAmelCase = DebertaVaTokenizer(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = DebertaVaTokenizerFast(snake_case_ , keep_accents=snake_case_ ) __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # fmt: off __lowerCAmelCase = """I was born in 92000, and this is falsé.""" __lowerCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __lowerCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = DebertaVaTokenizer(snake_case_ ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , snake_case_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , snake_case_ , ) @slow def A__ ( self ) -> int: # fmt: off __lowerCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
301
0
def A__ ( __lowerCamelCase, __lowerCamelCase ): return int((input_a, input_a).count(0 ) != 0 ) def A__ ( ): assert nand_gate(0, 0 ) == 1 assert nand_gate(0, 1 ) == 1 assert nand_gate(1, 0 ) == 1 assert nand_gate(1, 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
365
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ =None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase_ =PandasConfig def _UpperCamelCase ( self ) -> int: return datasets.DatasetInfo(features=self.config.features ) def _UpperCamelCase ( self , _A ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): SCREAMING_SNAKE_CASE_ = data_files if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE_ = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def _UpperCamelCase ( self , _A ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ = table_cast(_A , self.config.features.arrow_schema ) return pa_table def _UpperCamelCase ( self , _A ) -> Any: for i, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE_ = pa.Table.from_pandas(pd.read_pickle(_A ) ) yield i, self._cast_table(_A )
257
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') A : Tuple = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : '''simple docstring''' A__ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) A__ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) A__ = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) A__ = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class A : '''simple docstring''' A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCAmelCase__ )} , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) A__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) A__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Dict=192 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : str=0.6 ) -> str: """simple docstring""" lowercase__ = input_size lowercase__ = mask_patch_size lowercase__ = model_patch_size lowercase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase__ = self.input_size // self.mask_patch_size lowercase__ = self.mask_patch_size // self.model_patch_size lowercase__ = self.rand_size**2 lowercase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self : int ) -> Tuple: """simple docstring""" lowercase__ = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ = np.zeros(self.token_count , dtype=_UpperCAmelCase ) lowercase__ = 1 lowercase__ = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCamelCase ( __magic_name__ : List[str] ) -> List[str]: """simple docstring""" lowercase__ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase__ = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0: lowercase__ = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase__ = split["""train"""] lowercase__ = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__magic_name__ , """decoder_type""" ): lowercase__ = """simmim""" # adapt config lowercase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase__ = AutoModelForMaskedImageModeling.from_config(__magic_name__ ) if training_args.do_train: lowercase__ = ds["""train"""].column_names else: lowercase__ = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = """image""" elif "img" in column_names: lowercase__ = """img""" else: lowercase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ = Compose( [ Lambda(lambda __magic_name__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__magic_name__ : Any ): lowercase__ = [transforms(__magic_name__ ) for image in examples[image_column_name]] lowercase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase__ = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__magic_name__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase__ = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__magic_name__ ) # Initialize our trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics("""eval""" , __magic_name__ ) trainer.save_metrics("""eval""" , __magic_name__ ) # Write model card and (optionally) push to hub lowercase__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) if __name__ == "__main__": main()
305
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
1
"""simple docstring""" from __future__ import annotations import math def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" a_ = u for i in range(1 , UpperCAmelCase ): a_ = temp * (u - i) return temp def UpperCamelCase ( ) ->None: """simple docstring""" a_ = int(input("enter the numbers of values: " ) ) a_ = [] for _ in range(UpperCAmelCase ): y.append([] ) for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): y[i].append(UpperCAmelCase ) a_ = 0 print("enter the values of parameters in a list: " ) a_ = list(map(UpperCAmelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(UpperCAmelCase ): a_ = float(input() ) a_ = int(input("enter the value to interpolate: " ) ) a_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCAmelCase ): for j in range(n - i ): a_ = y[j + 1][i - 1] - y[j][i - 1] a_ = y[0][0] for i in range(1 , UpperCAmelCase ): summ += (ucal(UpperCAmelCase , UpperCAmelCase ) * y[0][i]) / math.factorial(UpperCAmelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
"""simple docstring""" import os def SCREAMING_SNAKE_CASE__ ( ) -> int: with open(os.path.dirname(__UpperCAmelCase ) + '''/grid.txt''' ) as f: lowercase__: Tuple = [] # noqa: E741 for _ in range(2_0 ): l.append([int(__UpperCAmelCase ) for x in f.readline().split()] ) lowercase__: List[str] = 0 # right for i in range(2_0 ): for j in range(1_7 ): lowercase__: Tuple = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase__: Any = temp # down for i in range(1_7 ): for j in range(2_0 ): lowercase__: Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase__: str = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): lowercase__: Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase__: Union[str, Any] = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): lowercase__: int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase__: Dict = temp return maximum if __name__ == "__main__": print(solution())
177
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase__: Tuple = grid[0] for row_n in range(1 , len(__UpperCAmelCase ) ): lowercase__: Tuple = grid[row_n] lowercase__: Dict = fill_row(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
177
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int = 50 ) -> int: SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
38
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE = json.load(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) SCREAMING_SNAKE_CASE = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
38
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor a_ : Any = logging.get_logger(__name__) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''', lowerCAmelCase, ) super().__init__(*lowerCAmelCase, **lowerCAmelCase )
75
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 1_0) lowercase_ = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase_ = "" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
45
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase : Dict = """pytorch_model.bin""" lowercase : str = """pytorch_model.bin.index.json""" lowercase : Any = """adapter_config.json""" lowercase : List[str] = """adapter_model.bin""" lowercase : List[Any] = """adapter_model.safetensors""" lowercase : Optional[Any] = """tf_model.h5""" lowercase : Optional[Any] = """tf_model.h5.index.json""" lowercase : Optional[Any] = """model.ckpt""" lowercase : Optional[Any] = """flax_model.msgpack""" lowercase : Optional[int] = """flax_model.msgpack.index.json""" lowercase : Tuple = """model.safetensors""" lowercase : Union[str, Any] = """model.safetensors.index.json""" lowercase : Dict = """config.json""" lowercase : Optional[Any] = """preprocessor_config.json""" lowercase : Optional[int] = FEATURE_EXTRACTOR_NAME lowercase : Union[str, Any] = """generation_config.json""" lowercase : str = """modelcard.json""" lowercase : str = """▁""" lowercase : List[str] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase : List[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase : Dict = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase : List[str] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def A_ ( A__ ) -> Tuple: if version.parse(A__ ) < version.parse(A__ ): if "dev" in min_version: a__ : Optional[int] = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: a__ : Optional[int] = F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
225
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A_ ( A__ ) -> Dict: if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> List[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : List[str] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Dict = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Tuple: '''simple docstring''' a__ , a__ : Any = self.get_vision_text_model(lowercase , lowercase) a__ : Tuple = {'vision_model': vision_model, 'text_model': text_model} a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase) a__ : Any = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : int = self.get_vision_text_model(lowercase , lowercase) a__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : int = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase) a__ : str = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : List[str] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase) a__ : str = after_output[0].numpy() a__ : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[int]: '''simple docstring''' a__ , a__ : Optional[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : Optional[int] = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[Any] = to_atuple(vision_model.config.image_size) a__ : Dict = to_atuple(vision_model.config.patch_size) a__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : str = np.abs((a - b)).max() self.assertLessEqual(lowercase , lowercase , F'Difference between torch and flax is {diff} (>= {tol}).') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = self.prepare_config_and_inputs() self.check_save_load(**lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.get_pretrained_model_and_inputs() a__ : Optional[int] = model_a(**lowercase) a__ : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase) a__ : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase) a__ : int = model_a(**lowercase) a__ : str = after_outputs[0].numpy() a__ : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowercase , 1e-5) @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert') a__ : str = 13 a__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Optional[int] = random_attention_mask([batch_size, 4]) a__ : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = TFViTModel(lowercase , name='vision_model') a__ : Tuple = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFViTModelTester(self) a__ : int = TFBertModelTester(self) a__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() a__ : Any = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Optional[int] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta') a__ : Union[str, Any] = 13 a__ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : Optional[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : Any = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[Any] = self.get_vision_text_model(lowercase , lowercase) a__ : Any = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase) a__ : int = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase) a__ : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(lowercase) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : Optional[int] = to_atuple(vision_model.config.image_size) a__ : str = to_atuple(vision_model.config.patch_size) a__ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) a__ : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) a__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(lowercase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[str] = TFDeiTModel(lowercase , name='vision_model') a__ : Optional[int] = TFRobertaModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = TFDeiTModelTester(self) a__ : str = TFRobertaModelTester(self) a__ : str = vit_model_tester.prepare_config_and_inputs() a__ : Dict = bert_model_tester.prepare_config_and_inputs() a__ , a__ , a__ : Any = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert') a__ : Optional[int] = 13 a__ : Optional[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) a__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) a__ : str = random_attention_mask([batch_size, 4]) a__ : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : str = TFCLIPVisionModel(lowercase , name='vision_model') a__ : str = TFBertModel(lowercase , name='text_model') return vision_model, text_model def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = TFCLIPVisionModelTester(self) a__ : Dict = TFBertModelTester(self) a__ : Optional[Any] = clip_model_tester.prepare_config_and_inputs() a__ : List[Any] = bert_model_tester.prepare_config_and_inputs() a__ , a__ : Union[str, Any] = vision_config_and_inputs ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowercase) a__ : str = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') a__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') a__ : Optional[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowercase , padding=lowercase , return_tensors='np') a__ : int = model(**lowercase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) a__ : List[str] = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase , atol=1e-3))
225
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): return 1.0 / (1.0 + np.exp(-_outputs )) def _a ( SCREAMING_SNAKE_CASE_ : Tuple ): __lowerCAmelCase = np.max(_outputs , axis=-1 , keepdims=a__ ) __lowerCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a__ ) class a__ ( UpperCamelCase_ ): _a : Union[str, Any] = '''sigmoid''' _a : Dict = '''softmax''' _a : Tuple = '''none''' @add_end_docstrings( UpperCamelCase_ , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class a__ ( UpperCamelCase_ ): _a : Optional[Any] = False _a : str = ClassificationFunction.NONE def __init__( self , **_A ): """simple docstring""" super().__init__(**_A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __SCREAMING_SNAKE_CASE( self , _A=None , _A=None , _A="" , **_A ): """simple docstring""" __lowerCAmelCase = tokenizer_kwargs __lowerCAmelCase = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: __lowerCAmelCase = self.model.config.return_all_scores if isinstance(_A , _A ) or top_k is None: __lowerCAmelCase = top_k __lowerCAmelCase = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , _A , ) if return_all_scores: __lowerCAmelCase = None else: __lowerCAmelCase = 1 if isinstance(_A , _A ): __lowerCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *_A , **_A ): """simple docstring""" __lowerCAmelCase = super().__call__(*_A , **_A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCAmelCase = "top_k" not in kwargs if isinstance(args[0] , _A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __SCREAMING_SNAKE_CASE( self , _A , **_A ): """simple docstring""" __lowerCAmelCase = self.framework if isinstance(_A , _A ): return self.tokenizer(**_A , return_tensors=_A , **_A ) elif isinstance(_A , _A ) and len(_A ) == 1 and isinstance(inputs[0] , _A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_A , **_A ) elif isinstance(_A , _A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(_A , return_tensors=_A , **_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.model(**_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A=None , _A=1 , _A=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: __lowerCAmelCase = self.model.config.function_to_apply else: __lowerCAmelCase = ClassificationFunction.NONE __lowerCAmelCase = model_outputs["logits"][0] __lowerCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCAmelCase = sigmoid(_A ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCAmelCase = softmax(_A ) elif function_to_apply == ClassificationFunction.NONE: __lowerCAmelCase = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCAmelCase = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(_A ) ] if not _legacy: dict_scores.sort(key=lambda _A : x["score"] , reverse=_A ) if top_k is not None: __lowerCAmelCase = dict_scores[:top_k] return dict_scores
92
def __lowercase ( a__=2_81_23 ) -> List[str]: __SCREAMING_SNAKE_CASE = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(a__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
257
0
from __future__ import annotations class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : str , lowerCamelCase : str ) -> Tuple: __snake_case , __snake_case : Any = text, pattern __snake_case , __snake_case : Any = len(lowerCamelCase ), len(lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __snake_case ( self : Optional[Any] , lowerCamelCase : int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __snake_case ( self : int ) -> list[int]: # searches pattern in text and returns index positions __snake_case : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): __snake_case : Optional[Any] = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: __snake_case : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) __snake_case : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _snake_case : Dict = "ABAABA" _snake_case : Dict = "AB" _snake_case : Tuple = BoyerMooreSearch(text, pattern) _snake_case : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
134
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 2_0 ): __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): __snake_case : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
134
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , _A : Any , _A : Optional[int] ): """simple docstring""" return F'''gaussian_noise_s={seed}_shape={"_".join([str(_A ) for s in shape] )}.npy''' def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase__ ( self : Optional[int] , _A : Optional[int]=0 , _A : Union[str, Any]=(4, 4, 64, 64) , _A : List[str]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : int = jnp.array(load_hf_numpy(self.get_file_format(_A , _A ) ) , dtype=_A ) return image def UpperCAmelCase__ ( self : List[Any] , _A : Dict=False , _A : List[str]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Tuple = '''bf16''' if fpaa else None __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = FlaxUNetaDConditionModel.from_pretrained( _A , subfolder='''unet''' , dtype=_A , revision=_A ) return model, params def UpperCAmelCase__ ( self : Any , _A : Any=0 , _A : List[Any]=(4, 77, 768) , _A : Tuple=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = jnp.bfloataa if fpaa else jnp.floataa __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(_A , _A ) ) , dtype=_A ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1000, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict , _A : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_A ) __SCREAMING_SNAKE_CASE : int = self.get_latents(_A , fpaa=_A ) __SCREAMING_SNAKE_CASE : str = self.get_encoder_hidden_states(_A , fpaa=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = model.apply( {'''params''': params} , _A , jnp.array(_A , dtype=jnp.intaa ) , encoder_hidden_states=_A , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(_A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_A , _A , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1000, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_latents(_A , shape=(4, 4, 96, 96) , fpaa=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_encoder_hidden_states(_A , shape=(4, 77, 1024) , fpaa=_A ) __SCREAMING_SNAKE_CASE : Dict = model.apply( {'''params''': params} , _A , jnp.array(_A , dtype=jnp.intaa ) , encoder_hidden_states=_A , ).sample assert sample.shape == latents.shape __SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.array(_A , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_A , _A , atol=1e-2 )
303
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['''prompt'''] lowerCAmelCase_ = ['''prompt''', '''negative_prompt'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def UpperCAmelCase__ ( self : int ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return 100 @property def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_A ) @property def UpperCAmelCase__ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } __SCREAMING_SNAKE_CASE : Optional[Any] = PriorTransformer(**_A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection(_A ) return model @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor( crop_size=224 , do_center_crop=_A , do_normalize=_A , do_resize=_A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_prior __SCREAMING_SNAKE_CASE : str = self.dummy_image_encoder __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image_processor __SCREAMING_SNAKE_CASE : str = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=10.0 , ) __SCREAMING_SNAKE_CASE : int = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCAmelCase__ ( self : Union[str, Any] , _A : int , _A : Dict=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Any = self.pipeline_class(**_A ) __SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(_A ) ) __SCREAMING_SNAKE_CASE : Tuple = output.image_embeds __SCREAMING_SNAKE_CASE : Optional[Any] = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -10:] __SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -10:] assert image.shape == (1, 32) __SCREAMING_SNAKE_CASE : List[str] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = False self._test_inference_batch_single_identical( test_max_difference=_A , relax_max_difference=_A , test_mean_pixel_difference=_A , ) @skip_mps def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = torch_device == '''cpu''' __SCREAMING_SNAKE_CASE : List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=_A , test_mean_pixel_difference=_A , )
303
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata A_ : int ='''''' if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class __a ( tr.AbstractTransform ): def __init__( self , a__ = " " ): _lowerCamelCase = sentence_delimiter def snake_case_ ( self , a__ ): return list(lowercase_ ) def snake_case_ ( self , a__ ): _lowerCamelCase = [] for sent_idx, sentence in enumerate(lowercase_ ): chars.extend(self.process_string(lowercase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowercase_ ) - 1: chars.append(self.sentence_delimiter ) return chars A_ : Union[str, Any] =tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: A_ : Optional[Any] =tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) A_ : List[str] ='''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' A_ : Dict ='''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' A_ : str =''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def snake_case_ ( self , a__ , a__ , a__=False ): if concatenate_texts: return jiwer.compute_measures( lowercase_ , lowercase_ , truth_transform=lowercase_ , hypothesis_transform=lowercase_ , )["wer"] _lowerCamelCase = 0 _lowerCamelCase = 0 for prediction, reference in zip(lowercase_ , lowercase_ ): _lowerCamelCase = jiwer.compute_measures( lowercase_ , lowercase_ , truth_transform=lowercase_ , hypothesis_transform=lowercase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
358
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : "DiagonalGaussianDistribution" class __a ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = True @register_to_config def __init__( self , a__ = 3 , a__ = 3 , a__ = ("DownEncoderBlock2D",) , a__ = ("UpDecoderBlock2D",) , a__ = (64,) , a__ = 1 , a__ = "silu" , a__ = 4 , a__ = 32 , a__ = 32 , a__ = 0.18215 , ): super().__init__() # pass init params to Encoder _lowerCamelCase = Encoder( in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , ) # pass init params to Decoder _lowerCamelCase = Decoder( in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , norm_num_groups=a__ , act_fn=a__ , ) _lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _lowerCamelCase = nn.Convad(a__ , a__ , 1 ) _lowerCamelCase = False _lowerCamelCase = False # only relevant if vae tiling is enabled _lowerCamelCase = self.config.sample_size _lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowerCamelCase = 0.25 def snake_case_ ( self , a__ , a__=False ): if isinstance(a__ , (Encoder, Decoder) ): _lowerCamelCase = value def snake_case_ ( self , a__ = True ): _lowerCamelCase = use_tiling def snake_case_ ( self ): self.enable_tiling(a__ ) def snake_case_ ( self ): _lowerCamelCase = True def snake_case_ ( self ): _lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ): _lowerCamelCase = {} def fn_recursive_add_processors(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): _lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , a__ , a__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ , a__ , a__ ) return processors def snake_case_ ( self , a__ ): _lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(a__ , a__ ) and len(a__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(a__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): if not isinstance(a__ , a__ ): module.set_processor(a__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , a__ , a__ ) for name, module in self.named_children(): fn_recursive_attn_processor(a__ , a__ , a__ ) def snake_case_ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a__ , return_dict=a__ ) if self.use_slicing and x.shape[0] > 1: _lowerCamelCase = [self.encoder(a__ ) for x_slice in x.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a__ , return_dict=a__ ) _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_slicing and z.shape[0] > 1: _lowerCamelCase = [self._decode(a__ ).sample for z_slice in z.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self._decode(a__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[2] , b.shape[2] , a__ ) for y in range(a__ ): _lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[3] , b.shape[3] , a__ ) for x in range(a__ ): _lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCamelCase = [] for i in range(0 , x.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , x.shape[3] , a__ ): _lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCamelCase = [] for i in range(0 , z.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , z.shape[3] , a__ ): _lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ = False , a__ = True , a__ = None , ): _lowerCamelCase = sample _lowerCamelCase = self.encode(a__ ).latent_dist if sample_posterior: _lowerCamelCase = posterior.sample(generator=a__ ) else: _lowerCamelCase = posterior.mode() _lowerCamelCase = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
80
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = ["""pixel_values"""] def __init__( self : str , __lowerCamelCase : bool = True , __lowerCamelCase : int = 32 , __lowerCamelCase : List[str]=PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[Any] , ): UpperCamelCase :List[str] = do_resize UpperCamelCase :Tuple = do_rescale UpperCamelCase :str = size_divisor UpperCamelCase :Any = resample super().__init__(**__lowerCamelCase ) def _A ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[ChannelDimension] = None , **__lowerCamelCase : List[Any] ): UpperCamelCase , UpperCamelCase :Tuple = get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase :Union[str, Any] = height // size_divisor * size_divisor UpperCamelCase :int = width // size_divisor * size_divisor UpperCamelCase :List[str] = resize(__lowerCamelCase , (new_h, new_w) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) return image def _A ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : Optional[ChannelDimension] = None , **__lowerCamelCase : List[str] ): return rescale(image=__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[TensorType, str]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Optional[int] , ): UpperCamelCase :int = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Union[str, Any] = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase :Optional[int] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) UpperCamelCase :str = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. UpperCamelCase :Dict = [to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: UpperCamelCase :Any = [self.resize(__lowerCamelCase , size_divisor=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase :Dict = [self.rescale(__lowerCamelCase , scale=1 / 255 ) for image in images] UpperCamelCase :Tuple = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase :List[str] = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
38
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase_ : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Optional[int] , **__lowerCamelCase : Optional[int] ): requires_backends(self , ["""bs4"""] ) super().__init__(**__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : Any ): UpperCamelCase :Optional[int] = [] UpperCamelCase :List[str] = [] UpperCamelCase :Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase :Optional[Any] = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) UpperCamelCase :Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _A ( self : Any , __lowerCamelCase : Tuple ): UpperCamelCase :Any = BeautifulSoup(__lowerCamelCase , """html.parser""" ) UpperCamelCase :Union[str, Any] = [] UpperCamelCase :Tuple = [] UpperCamelCase :Tuple = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase :Any = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Tuple = """""" for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __lowerCamelCase : Dict ): UpperCamelCase :Any = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): UpperCamelCase :Any = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F"""but is of type {type(__lowerCamelCase )}.""" ) UpperCamelCase :str = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: UpperCamelCase :Any = [html_strings] # Get nodes + xpaths UpperCamelCase :Union[str, Any] = [] UpperCamelCase :str = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase :int = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) UpperCamelCase :int = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict UpperCamelCase :Optional[int] = {"""nodes""": nodes, """xpaths""": xpaths} UpperCamelCase :Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
38
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> dict[str, float]: if (voltage, current, resistance).count(0) != 1: raise ValueError("""One and only one argument must be 0""") if resistance < 0: raise ValueError("""Resistance cannot be negative""") if voltage == 0: return {"voltage": float(current * resistance)} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""") if __name__ == "__main__": import doctest doctest.testmod()
293
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase : Any = 250_004 __UpperCAmelCase : List[str] = 250_020 @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MBartaaTokenizer lowerCAmelCase__ = MBartaaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def UpperCAmelCase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing __snake_case: Optional[int] = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Any = """<s>""" __snake_case: Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_054 ) def UpperCAmelCase__ ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Dict = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) __snake_case: int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case: Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __snake_case: List[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case: int = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def UpperCAmelCase__ ( self : Optional[int] ): # fmt: off __snake_case: List[str] = {"""input_ids""": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def UpperCAmelCase__ ( self : Union[str, Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __snake_case: Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Optional[int] = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: List[str] = tempfile.mkdtemp() __snake_case: Tuple = tokenizer_r.save_pretrained(A ) __snake_case: Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __snake_case: Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way __snake_case: Tuple = tokenizer_r.from_pretrained(A ) __snake_case: Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True __snake_case: Tuple = tempfile.mkdtemp() __snake_case: Any = tokenizer_r.save_pretrained(A , legacy_format=A ) __snake_case: List[str] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way __snake_case: List[Any] = tokenizer_r.from_pretrained(A ) __snake_case: Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False __snake_case: List[str] = tempfile.mkdtemp() __snake_case: Any = tokenizer_r.save_pretrained(A , legacy_format=A ) __snake_case: Dict = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case: Any = tokenizer_r.from_pretrained(A ) __snake_case: Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = """facebook/mbart-large-50-one-to-many-mmt""" lowerCAmelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCAmelCase__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def UpperCAmelCase__ ( cls : int ): __snake_case: MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __snake_case: str = 1 return cls def UpperCAmelCase__ ( self : Any ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.assertIn(A , self.tokenizer.all_special_ids ) __snake_case: Dict = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __snake_case: str = self.tokenizer.decode(A , skip_special_tokens=A ) __snake_case: Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: List[str] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) __snake_case: Union[str, Any] = 10 __snake_case: List[Any] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[0] , A ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(A ) , A ) def UpperCAmelCase__ ( self : Tuple ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = tempfile.mkdtemp() __snake_case: Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) __snake_case: Union[str, Any] = MBartaaTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) __snake_case: List[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __snake_case: Optional[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __snake_case: List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self : str ): __snake_case: List[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) __snake_case: Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) __snake_case: Dict = targets["""input_ids"""] __snake_case: Any = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # en_XX, A, test, EOS """input_ids""": [[250_004, 62, 3_034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, } , )
293
1
from __future__ import annotations from collections.abc import Callable def UpperCAmelCase_ ( __UpperCAmelCase : Callable[[int | float], int | float] , __UpperCAmelCase : int | float , __UpperCAmelCase : int | float , __UpperCAmelCase : int = 1_00 , ) -> float: SCREAMING_SNAKE_CASE_ = x_start SCREAMING_SNAKE_CASE_ = fnc(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0.0 for _ in range(__UpperCAmelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area SCREAMING_SNAKE_CASE_ = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE_ = fnc(__UpperCAmelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step SCREAMING_SNAKE_CASE_ = xa SCREAMING_SNAKE_CASE_ = fxa return area if __name__ == "__main__": def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Optional[int]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') lowerCamelCase__ : List[Any] = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
225
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Any=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : str=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , ): SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE_ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] SCREAMING_SNAKE_CASE_ = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase_ = (LlamaForCausalLM,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'single_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 'multi_label_classification' SCREAMING_SNAKE_CASE_ = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ = input_ids.ne(1 ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self : int ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state SCREAMING_SNAKE_CASE_ = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) SCREAMING_SNAKE_CASE_ = model(torch.tensor(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(_lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_lowerCAmelCase ) # greedy generation outputs SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
225
1
from __future__ import annotations from typing import TypedDict class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : int def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(UpperCamelCase__ ) )] def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) snake_case_ = all_rotations(UpperCamelCase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation snake_case_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(UpperCamelCase__ ), } return response def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: snake_case_ = int(UpperCamelCase__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(UpperCamelCase__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) snake_case_ = [''] * len(UpperCamelCase__ ) for _ in range(len(UpperCamelCase__ ) ): for i in range(len(UpperCamelCase__ ) ): snake_case_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = """Provide a string that I will generate its BWT transform: """ _UpperCAmelCase : Dict = input(entry_msg).strip() _UpperCAmelCase : List[str] = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result["bwt_string"]}\'''' ) _UpperCAmelCase : Optional[Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' F'''we get original string \'{original_string}\'''' )
200
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=99 , snake_case=0 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_lengths snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = gelu_activation snake_case_ = sinusoidal_embeddings snake_case_ = causal snake_case_ = asm snake_case_ = n_langs snake_case_ = vocab_size snake_case_ = n_special snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = summary_type snake_case_ = use_proj snake_case_ = scope snake_case_ = bos_token_id def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 ).float() snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , lengths=snake_case , langs=snake_case ) snake_case_ = model(snake_case , langs=snake_case ) snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) snake_case_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((snake_case_) , ) = result_with_labels.to_tuple() snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((snake_case_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_labels snake_case_ = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_choices snake_case_ = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE : int = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self , snake_case , snake_case , snake_case=False ): snake_case_ = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def a ( self ): snake_case_ = XLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , emb_dim=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = min_length + idx + 1 snake_case_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def a ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case ) snake_case_ = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case ) # the president snake_case_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case_ = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
200
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) # add QFormer tokenizer A__ : Union[str, Any] =qformer_tokenizer def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) A__ : List[str] =BatchFeature() if text is not None: A__ : Optional[int] =self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) encoding.update(lowerCAmelCase_ ) A__ : List[Any] =self.qformer_tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : List[str] =qformer_text_encoding.pop("""input_ids""" ) A__ : List[str] =qformer_text_encoding.pop("""attention_mask""" ) if images is not None: A__ : Optional[Any] =self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) encoding.update(lowerCAmelCase_ ) return encoding def lowercase__ ( self : Optional[int] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : int , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : List[Any] =self.tokenizer.model_input_names A__ : Dict =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' if os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) A__ : List[Any] =os.path.join(lowerCAmelCase_ , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(lowerCAmelCase_ ) return super().save_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowercase__ ( cls : Union[str, Any] , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' A__ : int =AutoTokenizer.from_pretrained(lowerCAmelCase_ , subfolder="""qformer_tokenizer""" ) A__ : Any =cls._get_arguments_from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) args.append(lowerCAmelCase_ ) return cls(*lowerCAmelCase_ )
134
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __magic_name__ = re.compile(r"\s+") def _lowerCAmelCase ( A__: Tuple ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(A__ , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _lowerCAmelCase ( A__: str ): '''simple docstring''' UpperCAmelCase = [len(A__ ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(A__ ), "line_max": max(A__ )} def _lowerCAmelCase ( A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _lowerCAmelCase ( A__: str , A__: int ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _lowerCAmelCase ( A__: Dict , A__: Optional[Any]=5 ): '''simple docstring''' UpperCAmelCase = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] UpperCAmelCase = example['''content'''].splitlines() for _, line in zip(range(A__ ) , A__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _lowerCAmelCase ( A__: Optional[Any] , A__: str=5 , A__: Union[str, Any]=0.05 ): '''simple docstring''' UpperCAmelCase = ['''unit tests''', '''test file''', '''configuration file'''] UpperCAmelCase = example['''content'''].splitlines() UpperCAmelCase = 0 UpperCAmelCase = 0 # first test for _, line in zip(range(A__ ) , A__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCAmelCase = example['''content'''].count('''\n''' ) UpperCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _lowerCAmelCase ( A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = ['''def ''', '''class ''', '''for ''', '''while '''] UpperCAmelCase = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _lowerCAmelCase ( A__: str , A__: Tuple=4 ): '''simple docstring''' UpperCAmelCase = example['''content'''].splitlines() UpperCAmelCase = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _lowerCAmelCase ( A__: Tuple ): '''simple docstring''' UpperCAmelCase = tokenizer(example['''content'''] , truncation=A__ )['''input_ids'''] UpperCAmelCase = len(example['''content'''] ) / len(A__ ) return {"ratio": ratio} def _lowerCAmelCase ( A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = {} results.update(get_hash(A__ ) ) results.update(line_stats(A__ ) ) results.update(alpha_stats(A__ ) ) results.update(char_token_ratio(A__ ) ) results.update(is_autogenerated(A__ ) ) results.update(is_config_or_test(A__ ) ) results.update(has_no_keywords(A__ ) ) results.update(has_few_assignments(A__ ) ) return results def _lowerCAmelCase ( A__: List[str] , A__: List[Any] , A__: Optional[Any] ): '''simple docstring''' if not check_uniques(A__ , A__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _lowerCAmelCase ( A__: Tuple ): '''simple docstring''' with open(A__ , '''rb''' ) as f_in: with gzip.open(str(A__ ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(A__ , A__ ) os.unlink(A__ ) # Settings __magic_name__ = HfArgumentParser(PreprocessingArguments) __magic_name__ = parser.parse_args() if args.num_workers is None: __magic_name__ = multiprocessing.cpu_count() __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __magic_name__ = time.time() __magic_name__ = load_dataset(args.dataset_name, split="train") print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __magic_name__ = time.time() __magic_name__ = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __magic_name__ = set(ds.unique("hash")) __magic_name__ = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __magic_name__ = time.time() __magic_name__ = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __magic_name__ = time.time() __magic_name__ , __magic_name__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __magic_name__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) __magic_name__ = output_dir / "data" data_dir.mkdir(exist_ok=True) __magic_name__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __magic_name__ = str(data_dir / f'''file-{file_number+1:012}.json''') __magic_name__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
152
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__ = { "abeja/gpt-neox-japanese-2.7b": 2048, } def _lowerCAmelCase ( A__: List[Any] , A__: int ): '''simple docstring''' with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.loads(f.read() ) UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() UpperCAmelCase = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): UpperCAmelCase = b UpperCAmelCase = idx for wd in b: UpperCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(_snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) UpperCAmelCase = do_clean_text UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case ) UpperCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def snake_case_ ( self ) -> Any: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_snake_case ) def snake_case_ ( self , _snake_case ) -> List[str]: """simple docstring""" UpperCAmelCase = ''''''.join(_snake_case ).strip() return out_string def snake_case_ ( self , _snake_case ) -> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = 0 if os.path.isdir(_snake_case ): UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''','''.join(_snake_case ) + '''\n''' ) index += 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab # same as swe UpperCAmelCase = ids_to_tokens # same as bpe UpperCAmelCase = emoji UpperCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] ) UpperCAmelCase = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) UpperCAmelCase = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) UpperCAmelCase = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) UpperCAmelCase = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) UpperCAmelCase = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) UpperCAmelCase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' UpperCAmelCase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' UpperCAmelCase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> Dict: """simple docstring""" return len(self.ids_to_tokens ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.content_repattera.sub('''<URL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<EMAIL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<TEL>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<DATE>''' , _snake_case ) UpperCAmelCase = self.content_repattera.sub('''<PRICE>''' , _snake_case ) UpperCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def snake_case_ ( self , _snake_case , _snake_case=False ) -> str: """simple docstring""" UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace(''' ''' , '''<SP>''' ) UpperCAmelCase = text.replace('''\r\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\n''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\r''' , '''<BR>''' ) UpperCAmelCase = text.replace('''\t''' , '''<TAB>''' ) UpperCAmelCase = text.replace('''—''' , '''ー''' ) UpperCAmelCase = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase = text.replace(_snake_case , _snake_case ) if clean: UpperCAmelCase = self.clean_text(_snake_case ) def check_simbol(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: UpperCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(_snake_case ): UpperCAmelCase = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: UpperCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False UpperCAmelCase = 0 UpperCAmelCase = [] while pos < len(_snake_case ): UpperCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 UpperCAmelCase = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): UpperCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: UpperCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) UpperCAmelCase = e else: UpperCAmelCase = pos + 1 UpperCAmelCase = text[pos:end] if check_simbol(_snake_case ): result.append('''<KIGOU>''' ) elif checkuae(_snake_case ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) UpperCAmelCase = end return result def snake_case_ ( self , _snake_case , _snake_case="\n" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode('''utf-8''' , errors='''replace''' ) ) UpperCAmelCase = ''''''.join(_snake_case ) return text
152
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(A_ ) ) _lowerCamelCase : Optional[Any] = os.path.join(A_, '''words.txt''' ) _lowerCamelCase : Dict = '''''' with open(A_ ) as f: _lowerCamelCase : Any = f.readline() _lowerCamelCase : List[str] = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _lowerCamelCase : Union[str, Any] = [ word for word in [sum(ord(A_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A_ ) if __name__ == "__main__": print(solution())
72
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A , __A , __A ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
80
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Any = [True] * (num + 1) lowerCamelCase : str = [] lowerCamelCase : Dict = 2 lowerCamelCase : Optional[int] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : int = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
205
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A = pytest.mark.integration @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def _UpperCamelCase ( self ) -> List[Any]: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() lowerCamelCase : Optional[int] = dset.map( lambda UpperCAmelCase_ , UpperCAmelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ) lowerCamelCase : Dict = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def _UpperCamelCase ( self ) -> Tuple: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> int: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: from elasticsearch import Elasticsearch lowerCamelCase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Tuple = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: import faiss lowerCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : List[str] = 1 lowerCamelCase , lowerCamelCase : int = index.search(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase : Tuple = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase , lowerCamelCase : List[str] = index.search_batch(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search_batch , queries[0] ) lowerCamelCase : List[str] = [scores[0] for scores in total_scores] lowerCamelCase : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: import faiss lowerCamelCase : List[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase : int = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase_ ): lowerCamelCase : str = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = faiss.IndexFlat(5 ) lowerCamelCase : Any = FaissIndex(custom_index=UpperCAmelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase : Dict = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase , lowerCamelCase : str = index.search(UpperCAmelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCAmelCase ( a_ ): '''simple docstring''' import faiss lowerCamelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) lowerCamelCase : Union[str, Any] = 'index.faiss' lowerCamelCase : List[Any] = F"""mock://{index_name}""" index.save(a_, storage_options=mockfs.storage_options ) lowerCamelCase : Optional[int] = FaissIndex.load(a_, storage_options=mockfs.storage_options ) lowerCamelCase : str = np.zeros(5, dtype=np.floataa ) lowerCamelCase : str = 1 lowerCamelCase , lowerCamelCase : int = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> int: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Union[str, Any] = Elasticsearch() lowerCamelCase : Optional[Any] = {'acknowledged': True} lowerCamelCase : str = ElasticSearchIndex(es_client=UpperCAmelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase : Tuple = 'foo' lowerCamelCase : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Any = index.search(UpperCAmelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase : Dict = 'foo' lowerCamelCase : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Optional[Any] = index.search(UpperCAmelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase : str = ['foo', 'bar', 'foobar'] lowerCamelCase : Union[str, Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Optional[int] = index.search_batch(UpperCAmelCase_ ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ ) # batched queries with timeout lowerCamelCase : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Dict = index.search_batch(UpperCAmelCase_ , request_timeout=30 ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ )
205
1